151
|
George TK, Joy A, Divya K, Jisha MS. In vitro and in silico docking studies of antibacterial compounds derived from endophytic Penicillium setosum. Microb Pathog 2019; 131:87-97. [PMID: 30951817 DOI: 10.1016/j.micpath.2019.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/01/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
Occasionally, endophytic fungal species cognize as a hidden prospective source of plant secondary metabolites. In this study, a potent Penicillium setosum sp. nov. was explored for its detailed antibacterial action on Escherichia coli and Staphylococcus aureus through different in vitro and in silico assays. Fluorescence based viability assay determined increase in the number of dead cells in course of time with the continual exposure of extract during a 4 h period. Scanning electron micrographs reflect the distinguishable morphological changes in treated cells, namely shortening of size, bubbles, and blisters on the surface of E. coli, as well as open holes and deep craters on the surface of S. aureus, ultimately leading to rupture of cells. Significant intracellular changes in bacteria were remarkably noticed through different membrane permeabilization assays. The rate of Na+ and K+ leakage with respect to time, intracellular material and cytoplasmic β-galactosidase release were measured spectroscopically. The results indisputably prove that membrane disruption of S. aureus cells occurs within 2 h and in E.coli occurs in between 2 and 4 h of exposure. Crude extract of P. setosum was fractioned using semi-preparative HPLC and the separated antibacterial active fraction showed antibacterial efficacy with the minimum inhibitory concentration of 8 μg/mL against both organisms. Active fraction contains four well-known plant metabolite belongs to the polyphenolic group (Leucodelphinidin, dihydroquercetin, kaempferol, and quercetin) and one polyketide (patulin) familiar as fungal metabolite, identified through high resolution LC-MS. Interaction mechanisms of identified compounds with nine important antimicrobial drug targets showed highest binding affinity by leucodelphinidin followed by dihydroquercetin > kaempferol > quercetin. This is the first instance of using leucodelphinidin and dihydroquercetin for detailed interaction study with multiple targets, and it was found that they showed more effective interaction than quercetin, which was earlier utilized for antibacterial studies.
Collapse
Affiliation(s)
- Tijith K George
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Akhil Joy
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K Divya
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
152
|
Patel OP, Arun A, Singh PK, Saini D, Karade SS, Chourasia MK, Konwar R, Yadav PP. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. Eur J Med Chem 2019; 167:226-244. [DOI: 10.1016/j.ejmech.2019.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
|
153
|
Hernández-Bolio GI, Ruiz-Vargas JA, Peña-Rodríguez LM. Natural Products from the Yucatecan Flora: Structural Diversity and Biological Activity. JOURNAL OF NATURAL PRODUCTS 2019; 82:647-656. [PMID: 30855145 DOI: 10.1021/acs.jnatprod.8b00959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Yucatan Peninsula possesses a unique climate, geology, landscape, and biota that includes a distinct flora of over 2300 species; of these, close to 800 plants are used in what is known as Mayan traditional medicine, and about 170 are listed as native or endemic. Even though the flora of the Yucatan peninsula has been widely studied by naturalists and biologists, to date, phytochemical and pharmacological knowledge of most of the plants, including the medicinal plants, is limited. Presently, phytochemical studies carried out on plants from the Yucatecan flora have resulted in the identification of a wide variety of natural products that include flavonoids, terpenoids, polyketides, and phenolics with cytotoxic, antiprotozoal, antibacterial, anti-inflammatory, analgesic, antioxidant, and antifungal activities. This review describes the main findings in over 20 years (1992 to 2018) of exploring the natural product diversity of the Yucatecan flora.
Collapse
Affiliation(s)
- Gloria I Hernández-Bolio
- Departamento de Recursos del Mar , Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional - Unidad Mérida , Mérida , México
| | - Javier A Ruiz-Vargas
- Laboratorio de Química Orgánica, Unidad de Biotecnología , Centro de Investigación Científica de Yucatán , Mérida , México
| | - Luis M Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología , Centro de Investigación Científica de Yucatán , Mérida , México
| |
Collapse
|
154
|
Beer MF, Bivona AE, Sánchez Alberti A, Cerny N, Reta GF, Martín VS, Padrón JM, Malchiodi EL, Sülsen VP, Donadel OJ. Preparation of Sesquiterpene Lactone Derivatives: Cytotoxic Activity and Selectivity of Action. Molecules 2019; 24:molecules24061113. [PMID: 30897836 PMCID: PMC6471591 DOI: 10.3390/molecules24061113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the most important causes of death worldwide. Solid tumors represent the great majority of cancers (>90%) and the chemotherapeutic agents used for their treatment are still characterized by variable efficacy and toxicity. Sesquiterpene lactones are a group of naturally occurring compounds that have displayed a diverse range of biological activities including cytotoxic activity. A series of oxygenated and oxy-nitrogenated derivatives (4⁻15) from the sesquiterpene lactones cumanin (1), helenalin (2), and hymenin (3) were synthesized. The silylated derivatives of helenalin, compounds 13 and 14, were found to be the most active against tumor cell lines, with GI50 values ranging from 0.15 to 0.59 μM. The ditriazolyl cumanin derivative (11) proved to be more active and selective than cumanin in the tested breast, cervix, lung, and colon tumor cell lines. This compound was the least toxic against splenocytes (CC50 = 524.1 µM) and exhibited the greatest selectivity on tumor cell lines. This compound showed a GI50 of 2.3 µM and a SI of 227.9 on WiDr human colon tumor cell lines. Thus, compound 11 can be considered for further studies and is a candidate for the development of new antitumor agents.
Collapse
Affiliation(s)
- María F Beer
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1445, CP D5700HGC, San Luis, Argentina.
- CONICET-Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956 2°P (1113), Buenos Aires, Argentina.
| | - Augusto E Bivona
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 2°P (1113), Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires. Instituto de Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina. Paraguay 2155. Piso 13, Buenos Aires, Argentina.
| | - Andrés Sánchez Alberti
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 2°P (1113), Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires. Instituto de Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina. Paraguay 2155. Piso 13, Buenos Aires, Argentina.
| | - Natacha Cerny
- CONICET-Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Ruta 5 y Avenida Constitución-(6700), Luján, Argentina.
| | - Guillermo F Reta
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1445, CP D5700HGC, San Luis, Argentina.
| | - Víctor S Martín
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - José M Padrón
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - Emilio L Malchiodi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 2°P (1113), Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires. Instituto de Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina. Paraguay 2155. Piso 13, Buenos Aires, Argentina.
| | - Valeria P Sülsen
- CONICET-Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956 2°P (1113), Buenos Aires, Argentina.
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 2°P (1113), Buenos Aires, Argentina.
| | - Osvaldo J Donadel
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1445, CP D5700HGC, San Luis, Argentina.
| |
Collapse
|
155
|
Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules 2019; 24:E1007. [PMID: 30871182 PMCID: PMC6470864 DOI: 10.3390/molecules24061007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Chiral molecules are stereoselective with regard to specific biological functions. Enantiomers differ considerably in their physiological reactions with the human body. Safeguarding the quality and safety of drugs requires an efficient analytical platform by which to selectively probe chiral compounds to ensure the extraction of single enantiomers. Asymmetric synthesis is a mature approach to the production of single enantiomers; however, it is poorly suited to mass production and allows for only specific enantioselective reactions. Furthermore, it is too expensive and time-consuming for the evaluation of therapeutic drugs in the early stages of development. These limitations have prompted the development of surface-modified nanoparticles using amino acids, chiral organic ligands, or functional groups as chiral selectors applicable to a racemic mixture of chiral molecules. The fact that these combinations can be optimized in terms of sensitivity, specificity, and enantioselectivity makes them ideal for enantiomeric recognition and separation. In chiral resolution, molecules bond selectively to particle surfaces according to homochiral interactions, whereupon an enantiopure compound is extracted from the solution through a simple filtration process. In this review article, we discuss the fabrication of chiral nanoparticles and look at the ways their distinctive surface properties have been adopted in enantiomeric recognition and separation.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, Assam 785001, India.
| | - Nirmal Mazumder
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | - Harsh Ranawat
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Rd., Taichung 40447, Taiwan.
| |
Collapse
|
156
|
Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. J Pharm Anal 2019; 9:301-311. [PMID: 31929939 PMCID: PMC6951490 DOI: 10.1016/j.jpha.2019.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate antibacterial activity of Origanum compactum essential oils collected at three phenological stages on Escherichia coli and Bacillus subtilis. The antibacterial activity was evaluated using the agar-well diffusion assay. The MIC and MBC values were determined using the micro-dilution assay. The investigation of the antibacterial action was carried out by the evaluation of the effect of O. compactum essential oils on the antibacterial kinetic growth, the integrity of cell membrane and permeability of the cell membrane. The anti-quorum sensing activity was tested by the inhibition of the biofilm formation. The findings of this study showed that O. compactum essential oil has potent antibacterial activities against E. coli and B. subtilis. The lowest inhibition value against B. subtilis was obtained with O. compactum essential oil at the post-flowering stage (MIC = MBC = 0.0312% (v/v)). The antibacterial mechanisms of O. compactum essential oils are related to the disturbing of the cell membrane integrity and the increasing of the membrane permeability, which leads to the leakage of genetic materials (DNA and RNA). Moreover, O. compactum essential oils inhibited the formation of the biofilms, a phenotype that has been known to be quorum sensing regulated.
Collapse
|
157
|
Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-1444-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
158
|
Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:204-216. [DOI: 10.1016/j.msec.2018.10.071] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/10/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
|
159
|
Deice Raasch-Fernandes L, Bonaldo SM, de Jesus Rodrigues D, Magela Vieira-Junior G, Regina Freitas Schwan-Estrada K, Rocco da Silva C, Gabriela Araújo Verçosa A, Lopes de Oliveira D, Wender Debiasi B. Induction of phytoalexins and proteins related to pathogenesis in plants treated with extracts of cutaneous secretions of southern Amazonian Bufonidae amphibians. PLoS One 2019; 14:e0211020. [PMID: 30653617 PMCID: PMC6336429 DOI: 10.1371/journal.pone.0211020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/02/2018] [Indexed: 01/31/2023] Open
Abstract
Cutaneous secretions produced by amphibians of the family Bufonidae are rich sources of bioactive compounds that can be useful as new chemical templates for agrochemicals. In crop protection, the use of elicitors to induce responses offers the prospect of durable, broad-spectrum disease control using the plant's own resistance. Therefore, we evaluated the potential of methanolic extracts of cutaneous secretions of two species of amphibians of the family Bufonidae found in the Amazon biome-Rhaebo guttatus (species 1) and Rhinella marina (species 2)-in the synthesis of phytoalexins in soybean cotyledons, bean hypocotyls, and sorghum mesocotyls. Additionally, changes in the enzyme activity of β-1,3-glucanase, peroxidase (POX), and polyphenol oxidase (PPO) and in the total protein content of soybean cotyledons were determined. In the soybean cultivar 'TMG 132 RR', our results indicated that the methanolic extract of R. guttatus cutaneous secretions suppressed glyceollin synthesis and β-1,3-glucanase activity and increased POX and PPO activities at higher concentrations and total protein content at a concentration of 0.2 mg/mL. On the other hand, the methanolic extract of R. marina cutaneous secretions induced glyceollin synthesis in the soybean cultivars 'TMG 132 RR' and 'Monsoy 8372 IPRO' at 0.1-0.2 mg/mL and 0.2 mg/mL, respectively. The methanolic extract of R. marina cutaneous secretions also increased the specific activity of POX and PPO in 'Monsoy 8372 IPRO' and 'TMG 132 RR', respectively, and decreased the activity of β-1,3-glucanases in 'Monsoy 8372 IPRO'. At 0.3 mg/mL, it stimulated phaseolin synthesis. The extracts did not express bioactivity in the synthesis of deoxyanthocyanidins in sorghum mesocotyls. The study in soybean suggests that the bioactivity in defense responses is influenced by cultivar genotypes. Therefore, these results provide evidence that extracts of cutaneous secretions of these amphibians species may contribute to the bioactivity of defense metabolites in plants.
Collapse
Affiliation(s)
- Livia Deice Raasch-Fernandes
- Postgraduate Program in Environmental Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| | - Solange Maria Bonaldo
- Federal University of Mato Grosso and the Postgraduate Program in Environmental Sciences, Sinop, Mato Grosso State, Brazil
| | - Domingos de Jesus Rodrigues
- Federal University of Mato Grosso and the Postgraduate Program in Environmental Sciences, Sinop, Mato Grosso State, Brazil
| | | | | | - Camila Rocco da Silva
- Graduate Program in Agronomy, State University of Maringá, Maringá, Paraná State, Brazil
| | - Ana Gabriela Araújo Verçosa
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| | - Daiane Lopes de Oliveira
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| | - Bryan Wender Debiasi
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| |
Collapse
|
160
|
Puratchikody A, Umamaheswari A, Irfan N, Sinha S, Manju SL, Ramanan M, Ramamoorthy G, Doble M. A novel class of tyrosine derivatives as dual 5-LOX and COX-2/mPGES1 inhibitors with PGE2 mediated anticancer properties. NEW J CHEM 2019. [DOI: 10.1039/c8nj04385j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leukotriene and prostaglandin pathways are controlled by the enzymes, LOX and COX/mPGES1 respectively and are responsible for inflammatory responses.
Collapse
Affiliation(s)
- Ayarivan Puratchikody
- Drug Discovery and Development Research Group
- Department of Pharmaceutical Technology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli
| | - Appavoo Umamaheswari
- Drug Discovery and Development Research Group
- Department of Pharmaceutical Technology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli
| | - Navabshan Irfan
- Drug Discovery and Development Research Group
- Department of Pharmaceutical Technology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli
| | - Shweta Sinha
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - S. L. Manju
- Department of Chemistry
- Vellore Institute of Technology
- Vellore
- India
| | - Meera Ramanan
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - Gayathri Ramamoorthy
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - Mukesh Doble
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| |
Collapse
|
161
|
Mukhtar YM, Adu-Frimpong M, Xu X, Yu J. Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Biosci Rep 2018; 38:BSR20181253. [PMID: 30287506 PMCID: PMC6239267 DOI: 10.1042/bsr20181253] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Monocyclic monoterpenes have been recognized as useful pharmacological ingredients due to their ability to treat numerous diseases. Limonene and perillyl alcohol as well as their metabolites (especially perillic acid and its methyl ester) possess bioactivities such as antitumor, antiviral, anti-inflammatory, and antibacterial agents. These therapeutic properties have been well documented. Based on the aforementioned biological properties of limonene and its metabolites, their structural modification and development into effective drugs could be rewarding. However, utilization of these monocyclic monoterpenes as scaffolds for the design and developments of more effective chemoprotective agents has not received the needed attention by medicinal scientists. Recently, some derivatives of limonene metabolites have been synthesized. Nonetheless, there have been no thorough studies on their pharmacokinetic and pharmacodynamic properties as well as their inhibition against isoprenylation enzymes. In this review, recent research progress in the biochemical significance of limonene and its metabolites was summarized with emphasis on their antitumor effects. Future prospects of these bioactive monoterpenes for drug design and development are also highlighted.
Collapse
Affiliation(s)
- Yusif M Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
- Department of Basic and Biomedical Sciences, College of Health and Well-Being, P. O. Box 9, Kintampo, Ghana
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| |
Collapse
|
162
|
Pohl F, Kong Thoo Lin P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018; 23:E3283. [PMID: 30544977 PMCID: PMC6321248 DOI: 10.3390/molecules23123283] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease, present a major health issue and financial burden for health care systems around the world. The impact of these diseases will further increase over the next decades due to increasing life expectancies. No cure is currently available for the treatment of these conditions; only drugs, which merely alleviate the symptoms. Oxidative stress has long been associated with neurodegeneration, whether as a cause or as part of the downstream results caused by other factors. Thus, the use of antioxidants to counter cellular oxidative stress within the nervous system has been suggested as a potential treatment option for neurological disorders. Over the last decade, significant research has focused on the potential use of natural antioxidants to target oxidative stress. However, clinical trial results have lacked success for the treatment of patients with neurological disorders. The knowledge that natural extracts show other positive molecular activities in addition to antioxidant activity, however, has led to further research of natural extracts for their potential use as prevention or treatment/management of neurodegenerative diseases. This review will cover several in vitro and in vivo research studies, as well as clinical trials, and highlight the potential of natural antioxidants.
Collapse
Affiliation(s)
- Franziska Pohl
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| |
Collapse
|
163
|
Jamali T, Kavoosi G, Safavi M, Ardestani SK. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci Rep 2018; 8:15787. [PMID: 30361692 PMCID: PMC6202332 DOI: 10.1038/s41598-018-34055-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Oliveria decumbens is an Iranian endemic plant used extensively in traditional medicine. Recently, some studies have been performed on biological effects of Oliveria essential oil (OEO). However, to our knowledge, the anticancer activity of OEO has not been reported. Based on our GC/MS analysis, the basic ingredients of OEO are thymol, carvacrol, p-cymene and γ-terpinene. Therefore, we used OEO and its main component, thymol, to explore their effects on cell growth inhibition and anticancer activity. Despite having a limited effect on L929 normal cells, OEO/thymol induced cytotoxicity in MDA-MB231 breast cancer monolayers (2D) and to a lesser extent in MDA-MB231 spheroids (3D). Flow cytometry, caspase-3 activity assay in treated monolayers/spheroids and also fluorescence staining and DNA fragmentation in treated monolayers demonstrated apoptotic death mode. Indeed, OEO/thymol increased the Reactive Oxygen Species (ROS) level leading to mitochondrial membrane potential (MMP, ΔΨm) loss, caspase-3 activation and DNA damage caused S-phase cell cycle arrest. Furthermore, immunoblotting studies revealed the activation of intrinsic and maybe extrinsic apoptosis pathways by OEO/thymol. Additionally, in-vitro experiments, indicated that OEO/thymol interacts with DNA via minor grooves confirmed by docking method. Altogether, our reports underlined the potential of OEO to be considered as a new candidate for cancer therapy.
Collapse
Affiliation(s)
- Tahereh Jamali
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Susan K Ardestani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
164
|
Anti-infective potential of a quorum modulatory polyherbal extract (panchvalkal) against certain pathogenic bacteria. J Ayurveda Integr Med 2018; 11:336-343. [PMID: 33012317 PMCID: PMC7527823 DOI: 10.1016/j.jaim.2017.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 11/20/2022] Open
Abstract
Background In view of the gravity of the problem of antimicrobial resistance among pathogenic bacteria against conventional bactericidal agents, investigation on alternative approaches to combat bacterial infections is warranted. Objective Current study aimed at investigating anti-infective potential of a polyherbal ayurvedic formulation namely panchvalkal against three different pathogenic bacteria. Materials and methods The panchvalkal formulation available as Pentaphyte P5® was tested for its possible in vitro quorum-modulatory potential against Chromobacterium violaceum, Serratia marcescens, and Staphylococcus aureus through broth dilution assay. Invivo efficacy was demonstrated employing Caenorhabditis elegans as the model host for test pathogens. Results This formulation was found to exert quorum-modulatory effect on C. violaceum, S. marcescens, and S. aureus at 250–750 μg/ml. Besides altering production of the quorum sensing-regulated pigments in these bacteria, the test formulation also had in vitro effect on antibiotic susceptibility, catalase activity and haemolytic potential of the pathogens. Invivo assay confirmed the protective effect of this panchvalkal formulation on C. elegans, when challenged with the pathogenic bacteria. Repeated exposure of S. aureus to panchvalkal did not induce resistance in this bacterium. Conclusion To the best of our awareness, this the first report on quorum-modulatory potential of panchvalkal formulation, validating the anti-infective potential and moderate prebiotic property of this polyherbal preparation.
Collapse
|
165
|
Zengin G, Llorent-Martínez EJ, Molina-García L, Fernández-de Córdova ML, Aktumsek A, Uysal S, Rengasamy KRR, Aumeeruddy MZ, Bahadori MB, Mahomoodally MF. Chemical profile, antioxidant, and enzyme inhibitory properties of two Scutellaria species: S. orientalis L. and S. salviifolia Benth. J Pharm Pharmacol 2018; 71:270-280. [PMID: 30306560 DOI: 10.1111/jphp.13030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This study investigates into the biological effects of solvent extracts (ethyl acetate, methanol, and water) of Scutellaria orientalis L. and Scutellaria salviifolia Benth. based on its enzyme inhibitory activity and antioxidant ability together with the screening of bioactive compounds. METHODS Total and individual bioactive components were determined using spectrophotometric and HPLC-ESI-MS methods. Six antioxidant assays were conducted and enzyme inhibition was tested against key enzymes linked to the pathology of common chronic disorders. KEY FINDINGS Results revealed that the aqueous extracts of both plants exerted better 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid scavenging, reducing power, metal chelating, and α-glucosidase inhibitory activities. The methanol extracts showed highest tyrosinase inhibition and antioxidant activity in phosphomolybdenum assay while the less polar ethyl acetate extracts showed better acetylcholinesterase, butyrylcholinesterase, and α-amylase inhibition. Phytochemical evaluation by HPLC-ESI-MS revealed the presence of high amounts of flavones. CONCLUSIONS Scutellaria orientalis and S. salviifolia are important sources of bioactive agents that warrants further studies.
Collapse
Affiliation(s)
- Gokhan Zengin
- Science Faculty, Department of Biology, Selcuk University, Konya, Turkey
| | | | - Lucía Molina-García
- Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | | | | | - Sengul Uysal
- Science Faculty, Department of Biology, Selcuk University, Konya, Turkey
| | | | | | - Mir Babak Bahadori
- Phytopharmacology Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | | |
Collapse
|
166
|
Confortin TC, Todero I, Luft L, Soares JF, Mazutti MA, Zabot GL, Tres MV. Importance of Lupinus albescens in agricultural and food-related areas: A review. 3 Biotech 2018; 8:448. [PMID: 30333950 DOI: 10.1007/s13205-018-1474-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The purpose of this review is to assist readers in understanding the importance of Lupinus albescens to nature, farmers, and scientists. L. albescens is mostly found in Argentina, Uruguay, Paraguay, and in "Campanha, Litoral and Missões" regions of State of Rio Grande do Sul (Brazil). Therefore, this review presents information and discussion on this plant that can encourage novel studies in a near future for exploring evermore the biological and physicochemical properties of L. albescens. The plant presents adaptive characteristics of soils with low content of nutrients, being an important plant for the recovering of degraded areas. In the last few years, there was an increase in scientific interest for exploring its chemical composition and biological activities. All plant matrices (i.e., roots, leaves, seeds, and stalks) are rich in antioxidant and antifungal compounds, especially stigmasterol. For example, the extracts obtained from the roots are reported with more than 50 wt% stigmasterol and 25 wt% ergosterol. Furthermore, the extracts present remarkable fungicide effects, especially against Fusarium oxysporum and Fusarium verticillioides.
Collapse
Affiliation(s)
- Tássia Carla Confortin
- 1Department of Agricultural Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97105-900 Brazil
- 3Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Av. Presidente Vargas, 1958, Cachoeira do Sul, 96506-302 Brazil
| | - Izelmar Todero
- 1Department of Agricultural Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97105-900 Brazil
| | - Luciana Luft
- 2Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97105-900 Brazil
| | - Juliana Ferreira Soares
- 1Department of Agricultural Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97105-900 Brazil
| | - Marcio Antonio Mazutti
- 1Department of Agricultural Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97105-900 Brazil
- 2Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97105-900 Brazil
| | - Giovani Leone Zabot
- 3Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Av. Presidente Vargas, 1958, Cachoeira do Sul, 96506-302 Brazil
| | - Marcus Vinícius Tres
- 3Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Av. Presidente Vargas, 1958, Cachoeira do Sul, 96506-302 Brazil
| |
Collapse
|
167
|
Patil MD, Grogan G, Yun H. Biocatalyzed C−C Bond Formation for the Production of Alkaloids. ChemCatChem 2018. [DOI: 10.1002/cctc.201801130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahesh D. Patil
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| | - Gideon Grogan
- Department of ChemistryUniversity of York Heslington York, YO10 5DD UK
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| |
Collapse
|
168
|
Al-Malki AL. Shikimic acid from Artemisia absinthium inhibits protein glycation in diabetic rats. Int J Biol Macromol 2018; 122:1212-1216. [PMID: 30227208 DOI: 10.1016/j.ijbiomac.2018.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
This study investigated the impact of Shikimic Acid (SA) obtained from leaves of Artemisia absinthium on protein glycation in the retina of diabetic rats. The GC/MS analysis of A. absinthium showed that the most abundant bioactive compound was SA (C7H10O5) with a measured retention Index (RI) of 1960 compared to that of the reference sample (1712). Male albino rats were divided into two main groups, Group I (control) and Group II (diabetic); Group II was further divided into four subgroups: Group IIa (diabetic control), Group IIb (diabetic rats were given SA orally [50 mg/kg, body weight (bw)/day], Group IIc diabetic rats were given SA orally [100 mg/kg, bw/day], and Group IId (diabetic rats were given metformin orally [100 mg/kg, bw/day] as positive control). The data obtained suggested that SA reduced glucose and glycated hemoglobin levels. In addition, SA also decreased the formation of glucose-derived advanced glycation end products. Interestingly, SA showed interference with the release of inflammatory mediators in retina and possess antioxidant potential. In conclusion, SA protected the tissues from detrimental effects of hyperglycemia and enhanced antioxidant activity. SA could be a potential lead in the process of drug development in the future to prevent retinopathy in diabetic subjects.
Collapse
Affiliation(s)
- Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, Experimental Biochemistry Unit, King Fahd Medical Research Center, Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
169
|
Alara OR, Abdurahman NH, Afolabi HK, Olalere OA. Efficient extraction of antioxidants from Vernonia cinerea leaves: Comparing response surface methodology and artificial neural network. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
170
|
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E93. [PMID: 30149600 PMCID: PMC6165118 DOI: 10.3390/medicines5030093] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Phenolic compounds as well as flavonoids are well-known as antioxidant and many other important bioactive agents that have long been interested due to their benefits for human health, curing and preventing many diseases. This review attempts to demonstrate an overview of flavonoids and other phenolic compounds as the interesting alternative sources for pharmaceutical and medicinal applications. The examples of these phytochemicals from several medicinal plants are also illustrated, and their potential applications in pharmaceutical and medical aspects, especially for health promoting e.g., antioxidant effects, antibacterial effect, anti-cancer effect, cardioprotective effects, immune system promoting and anti-inflammatory effects, skin protective effect from UV radiation and so forth are highlighted.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
- Department of Botany, Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan.
| | - Areeya Thongboonyou
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Apinan Pholboon
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Aujana Yangsabai
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
171
|
Zarezin DP, Kabylda AM, Vinogradova VI, Dorovatovskii PV, Khrustalev VN, Nenajdenko VG. Efficient synthesis of tetrazole derivatives of cytisine using the azido-Ugi reaction. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
172
|
Jaradat NA, Zaid AN, Hussen F, Issa L, Altamimi M, Fuqaha B, Nawahda A, Assadi M. Phytoconstituents, antioxidant, sun protection and skin anti-wrinkle effects using four solvents fractions of the root bark of the traditional plant Alkanna tinctoria (L.). Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
173
|
Lee JY, Kim GJ, Choi JK, Choi YA, Jeong NH, Park PH, Choi H, Kim SH. 4-(Hydroxymethyl)catechol Extracted From Fungi in Marine Sponges Attenuates Rheumatoid Arthritis by Inhibiting PI3K/Akt/NF-κB Signaling. Front Pharmacol 2018; 9:726. [PMID: 30079020 PMCID: PMC6062625 DOI: 10.3389/fphar.2018.00726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease specific to synovial joints; it causes joint damage and other systemic abnormalities, thereby leading to physical disability and early mortality. Marine sponge-derived fungi, Pestalotiopsis sp., secrete immunosuppressive compounds in the culture broth. In the present study, we isolated 4-(hydroxymethyl)catechol (4-HMC) from these fungal species, and evaluated its anti-RA effects using a murine collagen-induced arthritis model and tumor necrosis factor-α-stimulated human RA synovial fibroblasts. Oral 4-HMC administration decreased the clinical arthritis score, paw thickness, histologic and radiologic changes, and serum IgG1 and IgG2a levels. It prevented the proliferation of helper T (Th) 1/Th17 CD4+ lymphocytes isolated from inguinal lymph nodes, thereby reducing inflammatory cytokine production in CIA mice. It decreased the expression of inflammatory mediators, including cytokines and matrix metalloproteinases (MMPs), both in vitro and in vivo. We observed that 4-HMC suppresses Th immune responses and MMP expression to inhibit inflammatory cytokine production in human RA synovial fibroblasts by modulating the PI3K/Akt/NF-κB pathway. These results verify the anti-RA potential of 4-HMC.
Collapse
Affiliation(s)
- Jong Y Lee
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Geum J Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jin K Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea.,Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Na-Hee Jeong
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
174
|
Arulmozhi P, Vijayakumar S, Kumar T. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb Pathog 2018; 123:219-226. [PMID: 30009969 DOI: 10.1016/j.micpath.2018.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
The aim of the present study is to investigate the antimicrobial potency of leaves from various extracts of Capparis zeylanica, Streblus asper and Tribulus terrestris were evaluated. In addition, this is the first report on MIC, MBC/MFC antimicrobial activities of above mentioned plants and also identify the phytochemical, functional groups by GC-MS and FT-IR respectively. Soxhlet extraction method was used for preparation of different extracts viz., aqueous, petroleum ether, ethyl acetate and methanol. The extracts were examined against Staphylococcus epidermidis, Enterococcus faecallis, Salmonella paratyphi, Shigella dysenteriae, Candida albicans and Mycobacterium tuberculosis by agar well diffusion method, and Minimum Inhibitory Concentratioon (MIC), Minimum Bactericidal/Fungicidal Concentration (MBC/MFC) values were determined through micro dilution method. Phytochemical analysis of compounds was carried out by GC-MS analysis and functional groups were identified by FT-IR. Based on the outcome of our results, Ethyl acetate extract Showed significant antimicrobial activity against the tested pathogens especially, for C. albicans (40 mm) followed by ethyl acetate of S. asper against S. paratyphi (38 mm). While, the least inhibition was observed with aqueous extract of T. terrestris against S. paratyphi (10 mm). The MIC ranged from 3.21 mg/ml to 50 mg/ml and MBC/MFC 6.25 mg/ml to 50 mg/ml was recorded. Ethyl acetate extracts of almost all samples showed better activity than other extracts in inhibition growth of pathogens. Phytochemical analysis exhibited the presence of Steroids, tannins and cardiac glycosides were found only in ethyl acetate extract of C. zeylanica. Functional group of leaf extract was confirmed by FT-IR spectrum and GC-MS analysis of the ethyl acetate extract revealed the presence of 20 compounds. The results revealed that ethyl acetate extract of C. zeylanica leaves has potential activity than the other extracts as well as standard drugs (Gentamycin and Ketocozole). Hence, this plant may be recommended for further studies in isolation of active compounds and related pharmacological activities.
Collapse
Affiliation(s)
- P Arulmozhi
- Computational Phytochemistry Lab, PG and Research Department of Botany and Microbiology, AVVM Sri Pushpam College (Autonomous) Poondi, Thanjavur (Dist), Tamil Nadu, India
| | - S Vijayakumar
- Computational Phytochemistry Lab, PG and Research Department of Botany and Microbiology, AVVM Sri Pushpam College (Autonomous) Poondi, Thanjavur (Dist), Tamil Nadu, India.
| | - T Kumar
- Computational Phytochemistry Lab, PG and Research Department of Botany and Microbiology, AVVM Sri Pushpam College (Autonomous) Poondi, Thanjavur (Dist), Tamil Nadu, India
| |
Collapse
|
175
|
Yang W, Zhou K, Zhou Y, An Y, Hu T, Lu J, Huang S, Pei G. Naringin Dihydrochalcone Ameliorates Cognitive Deficits and Neuropathology in APP/PS1 Transgenic Mice. Front Aging Neurosci 2018; 10:169. [PMID: 29922152 PMCID: PMC5996202 DOI: 10.3389/fnagi.2018.00169] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/18/2018] [Indexed: 01/30/2023] Open
Abstract
Alzheimer’s disease (AD) is a multi-factorial neurodegenerative disorder with abnormal accumulation of amyloid-β (Aβ) plaques, neuroinflammation and impaired neurogenesis. Mounting evidences suggest that single-target drugs have limited effects on clinical treatment and alternative or multiple targets are required. In recent decades, natural compounds and their derivatives have gained increasing attention in AD drug discovery due to their inherently enormous chemical and structural diversity. In this study, we demonstrated that naringin dihydrochalcone (NDC), a widely used dietary sweetener with strong antioxidant activity, improved the cognitive function of transgenic AD mice. Pathologically, NDC attenuated Aβ deposition in AD mouse brain. Furthermore, NDC reduced periplaque activated microglia and astrocytes, indicating the inhibition of neuroinflammation. It also enhanced neurogenesis as investigated by BrdU/NeuN double labeling. Additionally, the inhibition of Aβ level and neuroinflammation by NDC treatment was also observed in an AD cell model or a microglia cell line. Taken together, our study indicated that NDC might be a potential therapeutic agent for the treatment of AD against multiple targets that include Aβ pathology, neuroinflammation and neurogenesis.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Keyan Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuqian An
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tingting Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
176
|
In Vivo Nematicidal Potential of Camel Milk on Heligmosomoides Polygyrus Gastro-intestinal Nematode of Rodents. Helminthologia 2018; 55:112-118. [PMID: 31662636 PMCID: PMC6799549 DOI: 10.2478/helm-2018-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/02/2018] [Indexed: 11/29/2022] Open
Abstract
Following our previous findings on the in vitro anthelmintic effect of camel milk on Haemonchus contortus, the current study aimed at investigating its in vivo effect. Investigations were carried out using mice infected with Heligmosomoides polygyrus which is a parasite commonly used to test the efficacy of anthelmintics. Thirty six Swiss white mice of both sexes aged 5 – 6 weeks old, and weighing between 20 and 25 g were orally infected with 0.5 ml dose of 100, 1-week-old H. polygyrus infective larvae (L3). After the pre-patent period, infected animals were randomly divided into 6 groups of 6 animals each. The nematicidal efficacy of camel milk was monitored through faecal egg count reduction (FECR) and total worm count reduction (TWCR). Four doses (8.25; 16.5; 33.0; 66.0 ml/kg body weight (bw)) for fresh camel milk and 22 mg/kg bw for albendazole were studied using a bioassay. Albendazole and 4 % dimethylsulfoxide were included in the protocol as reference drug and placebo, respectively. For all tested doses except 8.25 ml/kg bw, camel milk was effective in vivo against H. polygyrus reducing both faecal egg count and worm count (p < 0.05). The dose 66 ml/kg bw showed the highest nematicidal activity causing a 76.75 % FECR and a 69.62 % TWCR 7 day after initiating the treatment. These results support the possible use of camel milk in the control of gastro-intestinal helminthiasis.
Collapse
|
177
|
Kumar S, Mahanti P, Singh NR, Rath SK, Jena PK, Patra JK. Antioxidant activity, antibacterial potential and characterization of active fraction of Dioscorea pentaphylla L. tuber extract collected from Similipal Biosphere Reserve, Odisha, India. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000417006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
178
|
Fungal Metabolite Antagonists of Plant Pests and Human Pathogens: Structure-Activity Relationship Studies. Molecules 2018; 23:molecules23040834. [PMID: 29621148 PMCID: PMC6017029 DOI: 10.3390/molecules23040834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Fungi are able to produce many bioactive secondary metabolites that belong to different classes of natural compounds. Some of these compounds have been selected for their antagonism against pests and human pathogens and structure-activity relationship (SAR) studies have been performed to better understand which structural features are essential for the biological activity. In some cases, these studies allowed for the obtaining of hemisynthetic derivatives with increased selectivity and stability in respect to the natural products as well as reduced toxicity in view of their potential practical applications. This review deals with the SAR studies performed on fungal metabolites with potential fungicidal, bactericidal, insecticidal, and herbicidal activities from 1990 to the present (beginning of 2018).
Collapse
|
179
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
180
|
Antileishmanial potential of medicinal plant extracts from the North-West of Morocco. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
181
|
Rtibi K, Selmi S, Grami D, Amri M, Sebai H, Marzouki L. Opposite Effect of Opuntia ficus-indica L. Juice Depending on Fruit Maturity Stage on Gastrointestinal Physiological Parameters in Rat. J Med Food 2018; 21:617-624. [PMID: 29489444 DOI: 10.1089/jmf.2017.0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The phytochemical composition and the effect of the green and ripe Opuntia ficus-indica juice on some gastrointestinal (GI) physiological parameters such as stomach emptying and small-intestinal motility and permeability were determined in rats administered multiple concentrations of the prickly pear juice (5, 10, and 20 mL kg-1, b.w., p.o.). Other separate groups of rats were received, respectively; sodium chloride (0.9%, b.w., p.o.), clonidine (α-2-adrenergic agonist, 1 mg kg-1, b.w., i.p.), yohimbine (α-2-adrenergic antagonist, 2 mg kg-1, b.w., i.p.), and loperamide (5 mg kg-1, b.w., p.o.). In vivo reverse effect of juice on GI physiological parameters was investigated using a charcoal meal test, phenol-red colorimetric method, loperamide-induced acute constipation, and castor oil-caused small-bowel hypersecretion. However, the opposite in vitro influence of juice on intestinal permeability homeostasis was assessed by the Ussing chamber system. Mature prickly pear juice administration stimulated significantly and dose dependently the GI transit (GIT; 8-26%) and gastric emptying (0.9-11%) in a rat model. Conversely, the immature prickly pear juice reduced gastric emptying (7-23%), GIT (10-28%), and diarrhea (59-88%). Moreover, the standard drugs have produced their antagonistic effects on GI physiological functions. The permeability of the isolated perfused rat small-intestine has a paradoxical response flowing prickly pear juices administration at diverse doses and maturity grade. Most importantly, the quantitative phytochemical analyses of both juices showed a different composition depending on the degree of maturity. In conclusion, the prickly pear juice at two distinct phases of maturity has different phytochemical characteristics and opposite effects on GI physiological actions in rat.
Collapse
Affiliation(s)
- Kais Rtibi
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia .,2 Laboratory of Functional Neurophysiology and Pathologies, Department of Biological Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Slimen Selmi
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia
| | - Dhekra Grami
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia
| | - Mohamed Amri
- 2 Laboratory of Functional Neurophysiology and Pathologies, Department of Biological Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Hichem Sebai
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia
| | - Lamjed Marzouki
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia .,2 Laboratory of Functional Neurophysiology and Pathologies, Department of Biological Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia
| |
Collapse
|
182
|
Pandith SA, Dar RA, Lattoo SK, Shah MA, Reshi ZA. Rheum australe, an endangered high-value medicinal herb of North Western Himalayas: a review of its botany, ethnomedical uses, phytochemistry and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:573-609. [PMID: 32214920 PMCID: PMC7088705 DOI: 10.1007/s11101-018-9551-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 05/05/2023]
Abstract
Rheum australe (Himalayan Rhubarb) is a multipurpose, endemic and endangered medicinal herb of North Western Himalayas. It finds extensive use as a medicinal herb since antiquity in different traditional systems of medicine to cure a wide range of ailments related to the circulatory, digestive, endocrine, respiratory and skeletal systems as well as to treat various infectious diseases. The remedying properties of this plant species are ascribed to a set of diverse bioactive secondary metabolite constituents, particularly anthraquinones (emodin, chrysophanol, physcion, aloe-emodin and rhein) and stilbenoids (piceatannol, resveratrol), besides dietary flavonoids known for their putative health benefits. Recent studies demonstrate the pharmacological efficacy of some of these metabolites and/or their derivatives as lead molecules for the treatment of various human diseases. Present review comprehensively covers the literature available on R. australe from 1980 to early 2018. The review provides up-to-date information available on its botany for easy identification of the plant, and origin and historical perspective detailing its trade and commerce. Distribution, therapeutic potential in relation to traditional uses and pharmacology, phytochemistry and general biosynthesis of major chemical constituents are also discussed. Additionally, efficient and reproducible in vitro propagation studies holding vital significance in preserving the natural germplasm of the plant and for its industrial exploitation have also been highlighted. The review presents a detailed perspective for future studies to conserve and sustainably make use of this endangered plant species at a commercial scale.
Collapse
Affiliation(s)
- Shahzad A. Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Riyaz Ahmad Dar
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Surrinder K. Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
183
|
Kumar H, Agrawal R, Kumar V. Barleria cristata: perspective towards phytopharmacological aspects. ACTA ACUST UNITED AC 2018; 70:475-487. [PMID: 29441576 DOI: 10.1111/jphp.12881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/16/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Barleria cristata (Family: Acanthaceae), commonly known as Philippine violet, is used in different ethnomedical systems for the treatment of a wide range of ailments. This review aimed to provide a scientific overview of B. cristata with reference to its ethnobotanical aspects, geographical distribution, medicinal uses, phytochemistry and pharmacological activity, and critical analyses research gaps and future research opportunities for investigations on this plant. KEY FINDINGS Ethnomedical uses of the plant have been observed in lungs disorders, inflammatory conditions, toothache, anaemia, snake bite, diabetes and tuberculosis. The exhaustive bibliographic research carried out on this plant revealed that the plant parts are rich in various phytochemical constituents including triterpenes, phenolic compounds, glycosides and flavonoids type phenolic compounds. Furthermore, the plant was also investigated in terms of its anti-inflammatory, antibacterial, antidiabetic, antifungal, hepatoprotective and antioxidant activity. CONCLUSIONS This review confirms that B. cristata is a potential herb for the treatment of a wide range of diseases especially lung disorders and inflammatory conditions. Modern pharmacological studies have also validated many ethnobotanical uses of B. cristata, though data regarding many aspects of this plant such as mechanism of action, adverse effects of extracts and active compounds are still limited which call for additional studies.
Collapse
Affiliation(s)
- Harish Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Rohini Agrawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
184
|
Tseeleesuren D, Kant R, Yen CH, Hsiao HH, Chen YMA. 1,2,3,4,6-Penta- O-Galloyl-Beta-D-Glucopyranoside Inhibits Proliferation of Multiple Myeloma Cells Accompanied with Suppression of MYC Expression. Front Pharmacol 2018; 9:65. [PMID: 29472861 PMCID: PMC5810280 DOI: 10.3389/fphar.2018.00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/18/2018] [Indexed: 11/21/2022] Open
Abstract
Multiple myeloma (MM) still remains an incurable disease, therefore discovery of novel drugs boosts the therapeutics for MM. The natural compound 1,2,3,4,6-Penta-O-galloyl-beta-D-glucopyranoside (PGG) has been shown to exhibit antitumor activities against various cancer cells. Here, we aim to evaluate antitumor effects of PGG on MM cell lines. PGG inhibited the growth of three different MM cell lines in a dose- and time-dependent manner. Cell cycle analysis revealed that PGG treatment caused cell cycle arrest in G1 phase. It also induced apoptosis which was indicated by significant increases of Annexin V positive cells, caspase 3/7 activity, and cleaved caspase 3 expression in PGG treated MM cell. Since MYC is frequently hyperactivated in MM and inhibition of MYC leads to MM cell death. We further demonstrated that PGG decreased MYC expression in protein and mRNA levels and reversed the mRNA expression of MYC target genes such as p21, p27, and cyclin D2. In addition, PGG also reduced protein expression of DEPTOR which is commonly overexpressed in MM. Unexpectedly, PGG antagonized the cytotoxic effect of bortezomib in the combination treatment. However, PGG treatment sensitized MM cells to another proteasome inhibitor MG132 induced cytotoxicity. Moreover, MYC inhibitor JQ1 enhanced the cytotoxic effect of bortezomib on MM cells. Our findings raised concerns about the combinatory use of bortezomib with particular types of chemicals. The evidence also provide useful insights into the combination of MYC and proteasome-inhibitors for MM therapy. Finally, PGG has a therapeutic potential for treatment of MM and further development is mandatory.
Collapse
Affiliation(s)
- Duurenjargal Tseeleesuren
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rajni Kant
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hua Hsiao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ming A Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
185
|
Zhang T, Qiu Y, Luo Q, Zhao L, Yan X, Ding Q, Jiang H, Yang H. The Mechanism by Which Luteolin Disrupts the Cytoplasmic Membrane of Methicillin-Resistant Staphylococcus aureus. J Phys Chem B 2018; 122:1427-1438. [PMID: 29309144 DOI: 10.1021/acs.jpcb.7b05766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most versatile human pathogens. Luteolin (LUT) has anti-MRSA activity by disrupting the MRSA cytoplasmic membrane. However, the mechanism by which luteolin disrupts the membrane remains unclear. Here, we performed differential scanning calorimetry (DSC) and all-atomic molecular dynamics (AA-MD) simulations to investigate the interactions and effects of LUT on model membranes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG). We detected the transition thermodynamic parameters of dipalmitoylphosphatidylcholine (DPPC) liposomes, dipalmitoylphosphatidylglycerol (DPPG) liposomes, and liposomes composed of both DPPC and DPPG at different LUT concentrations and showed that LUT molecules were located between polar heads and the hydrophobic region of DPPC/DPPG. In the MD trajectories, LUT molecules ranging from 5 to 50 had different effects on the membranes thickness, fluidity and ordered property of lipids, and lateral pressure of lipid bilayers composed of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG). Also, most LUT molecules were distributed in the region between the phosphorus atoms and C9 atoms of DOPC and DOPG. On the basis of the combination of these results, we conclude that the distinct effects of LUT on lipid bilayers composed of PCs and PGs may elucidate the mechanism by which LUT disrupts the cytoplasmic membrane of MRSA.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Yunguang Qiu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Qichao Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Lifen Zhao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xin Yan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , 393 Huaxiazhong Road, Shanghai 201210, China
| | - Qiaoce Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Huaiyu Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
186
|
Kim J, Lee SL, Kang I, Song YA, Ma J, Hong YS, Park S, Moon SI, Kim S, Jeong S, Kim JE. Natural Products from Single Plants as Sleep Aids: A Systematic Review. J Med Food 2018; 21:433-444. [PMID: 29356580 DOI: 10.1089/jmf.2017.4064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insufficient sleep, insomnia, and sleep-related problems are important health issues, as their overall prevalence accounts for about 30% of the general population. The aim of this study was to systematically review previous studies investigating the effects of orally administered single plant-derived extracts on sleep-related outcomes in humans. Data sources were PubMed, Google Scholar, and Cochrane Library. The data search was conducted in two steps: step 1, names of plants which have been studied as sleep aids in humans were searched and retrieved; and step 2, each ingredient listed in step 1 was then added into the search term. Only original articles or reviews were applicable to the scope of this review. Studies on human subjects, with or without sleep-related disorders, were included. Sleep-related disorders refer to not only insomnia or sleep behavior disorders but also diseases with sleep-related symptoms. Studies were considered eligible for this review when the plant extracts were administered orally. Outcome measures relevant to sleep quality, duration, or other sleep-related problems were included. Twenty-one plants were listed in the first step of the search as potential candidates for natural sleep aids. Seventy-nine articles using these single plant-derived natural products were included in the final review. Although valerian was most frequently studied, conflicting results were reported, possibly due to the various outcome measures of each study. Other plants were not as rigorously tested in human studies. There was limited evidence with inconclusive results regarding the effects of single plant-derived natural products on sleep, warranting further studies.
Collapse
Affiliation(s)
- Jungyoon Kim
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
- 2 Department of Brain and Cognitive Sciences, Division of Convergence, Scranton College, Ewha Womans University , Seoul, South Korea
| | - Suji L Lee
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
- 2 Department of Brain and Cognitive Sciences, Division of Convergence, Scranton College, Ewha Womans University , Seoul, South Korea
| | - Ilhyang Kang
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
- 2 Department of Brain and Cognitive Sciences, Division of Convergence, Scranton College, Ewha Womans University , Seoul, South Korea
| | - Youme A Song
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
| | - Jiyoung Ma
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
- 3 Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University , Seoul, South Korea
| | - Young Sun Hong
- 4 Department of Internal Medicine, School of Medicine, Ewha Womans University , Seoul, South Korea
| | - Shinwon Park
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
- 2 Department of Brain and Cognitive Sciences, Division of Convergence, Scranton College, Ewha Womans University , Seoul, South Korea
| | - Seog In Moon
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
| | - Soojeong Kim
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
| | - Semi Jeong
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
| | - Jieun E Kim
- 1 Ewha Brain Institute, Ewha Womans University , Seoul, South Korea
- 2 Department of Brain and Cognitive Sciences, Division of Convergence, Scranton College, Ewha Womans University , Seoul, South Korea
| |
Collapse
|
187
|
Reis LTC, da Silva MRD, Costa SL, Velozo EDS, Batista R, da Cunha Lima ST. Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E8. [PMID: 29342924 PMCID: PMC5874573 DOI: 10.3390/medicines5010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Background: A number of medicinal plants are traditionally used for metabolic disorders in Bahia state, Brazil. The aim of this study was to evaluate the estrogen receptor (ER) and thyroid receptor (TR) activation of crude extracts prepared from 20 plants. Methods: Species were extracted and assayed for receptor activation through both ER and TR gene-reporter assays, using 17β-estradiol and triiodothyronine (T3), respectively, as the positive controls. Results: Cajanus cajan (Fabaceae), Abarema cochliacarpus (Fabaceae), and Borreria verticillata (Rubiaceae) were able to activate ER as much as the positive control (17β-estradiol). These three plant species were also assayed for TR activation. At the concentration of 50 µg/mL, C. cajans exerted the highest positive modulation on TR, causing an activation of 59.9%, while B. verticillata and A. cochliacarpus caused 30.8% and 23.3%, respectively. Conclusions: Our results contribute towards the validation of the traditional use of C. cajans, B. verticillata, and A. cochliacarpus in the treatment of metabolic disorders related to ER and TR functions. The gene-reporter assay was proven effective in screening crude plant extracts for ER/TR activation, endorsing this methodology as an important tool for future bioprospection studies focused on identifying novel starting molecules for the development of estrogen and thyroid agonists.
Collapse
Affiliation(s)
- Luã Tainã Costa Reis
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Magnus Régios Dias da Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Federal University of São Paulo (UNIFESP), R. Sena Madureira, 1500-Vila Clementino, São Paulo, SP 04021-001, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biofunction, Institute of Health Sciences, Federal University of Bahia (UFBA), Reitor Miguel Calmon Avenue, 1272-Canela, Salvador, BA 40231-300, Brazil.
| | - Eudes da Silva Velozo
- Laboratory of Research in Materia Medica, Department of Medicament, Faculty of Pharmacy, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Ronan Batista
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| | - Suzana Telles da Cunha Lima
- Laboratory of Bioprospection and Biotechnology (LaBBiotec), Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, 147-Ondina, Salvador, BA 40170-115, Brazil.
| |
Collapse
|
188
|
Fabio DSM, Antonio FSC, Elismar DCM, Rachel MR, Antonio CRB, Marilene ODRB. Antidiarrhoeal and antispasmodic activity of leaves of Syzygium cumini L. (Myrtaceae) mediated through calcium channel blockage. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajpp2017.4868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
189
|
Lu PS, Inbaraj BS, Chen BH. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:51-63. [PMID: 28516478 DOI: 10.1002/jsfa.8437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/10/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Curcuminoid from Curcuma longa Linnaeus has been demonstrated to be effective in anti-cancer and anti-inflammation. The objectives of the present study were to prepare curcuminoid dispersion and nanoemulsion from C. longa and determine their oral bioavailabilities in rats. RESULTS After curcuminoid extraction using 99.5% ethanol, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin were separated within 10 min by high-performance liquid chromatography using an Eclipse XDB-C18 column (Agilent, Palo Alto, CA, USA) and a gradient mobile phase of 0.1% aqueous formic acid and acetonitrile, with a flow rate of 1 mL min-1 , column temperature of 35 °C and detection wavelength of 425 nm. Curcuminoid nanoemulsion at a particle size of 12.1 nm and encapsulation efficiency 98.8% was prepared using lecithin, Tween 80 and water. A pharmacokinetic study in rats revealed that the parameters including Tmax , Cmax , t1/2 and the area under the curve were higher for curcuminoid nanoemulsions than for curcuminoid dispersion at the same dose employed for gavage administration, whereas, for intravenous injection, an opposite trend was shown. The oral bioavailabilities of BDMC, DMC, curcumin and total curcuminoids in nanoemulsion and dispersion were 34.39 and 4.65%, 39.93 and 5.49%, 47.82 and 9.38%, and 46 and 8.7%, respectively. CONCLUSION The results of the present study demonstrate a higher oral bioavailability after incorporation of curcuminoid into nanoemulsion, facilitating its application as a botanic drug. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei Shan Lu
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Bing Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
190
|
Kachingwe BH, Uang YS, Huang TJ, Wang LH, Lin SJ. Development and validation of an LC–MS/MS method for quantification of NC-8 in rat plasma and its application to pharmacokinetic studies. J Food Drug Anal 2018; 26:401-408. [PMID: 29389580 PMCID: PMC9332635 DOI: 10.1016/j.jfda.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 08/24/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023] Open
Abstract
ent-16-Oxobeyeran-19-N-methylureido (NC-8) is a recently synthesized derivative of iso-steviol that showed anti-hepatitis B virus (HBV) activity by disturbing replication and gene expression of the HBV and by inhibiting the host toll-like receptor 2/nuclear factor-κB signaling pathway. To study its pharmacokinetics as a part of the drug development process, a highly sensitive, rapid, and reliable liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed and validated for determining NC-8 in rat plasma. After protein precipitation extraction, the chromatographic separation of the analyte and internal standard (IS; diclofenac sodium) was performed on a reverse-phase Luna C18 column coupled with a Quattro Ultima triple quadruple mass spectrometer in the multiple-reaction monitoring mode using the transitions, m/z 347.31 → 75.09 for NC-8 and m/z 295.89 → 214.06 for the IS. The lower limit of quantitation was 0.5 ng/mL. The linear scope of the standard curve was between 0.5 and 500 ng/mL. Both the precision (coefficient of variation; %) and accuracy (relative error; %) were within acceptable criteria of <15%. Recoveries ranged from 104% to 113.4%, and the matrix effects (absolute) were nonsignificant (CV ≤ 6%). The validated method was successfully applied to investigate the pharmacokinetics of NC-8 in male Sprague–Dawley rats. The present methodology provides an analytical means to better understand the preliminary pharmacokinetics of NC-8 for investigations on further drug development.
Collapse
Affiliation(s)
| | - Yow-Shieng Uang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031,
Taiwan
- Rosetta Pharmamate Co., Ltd, Taipei 231,
Taiwan
| | | | - Li-Hsuan Wang
- School of Pharmacy, Taipei Medical University, Taipei 11031,
Taiwan
- Corresponding authors. School of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan. E-mail addresses: (L.-H. Wang), (S.-J. Lin)
| | - Shwu-Jiuan Lin
- School of Pharmacy, Taipei Medical University, Taipei 11031,
Taiwan
- Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei 11031,
Taiwan
- Corresponding authors. School of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan. E-mail addresses: (L.-H. Wang), (S.-J. Lin)
| |
Collapse
|
191
|
Kukuia KKE, Mensah JA, Amoateng P, Amponsah SK, N'Guessan BB, Asiedu-Gyekye IJ. Antidepressant Potentials of Components from Trichilia monadelpha (Thonn.) J.J. de Wilde in Murine Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:6863973. [PMID: 29849723 PMCID: PMC5937582 DOI: 10.1155/2018/6863973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/28/2018] [Indexed: 02/05/2023]
Abstract
Trichilia monadelpha is a common medicinal plant used traditionally in treating central nervous system conditions such as epilepsy, depression, pain, and psychosis. In this study, the antidepressant-like effect of crude extracts of the stem bark of T. monadelpha was investigated using two classical murine models, forced swimming test (FST) and tail suspension test (TST). The extracts, petroleum ether, ethyl acetate, and hydroethanolic extracts (30-300 mg/kg, p.o.), standard drug (imipramine; fluoxetine, 3-30 mg/kg, p.o.), and saline (vehicle) were given to mice one hour prior to the acute study. In a separate experiment the components (flavonoids, saponins, alkaloids, tannins, and terpenoids; 30-300 mg/kg, p.o.) from the most efficacious extract fraction were screened to ascertain which components possessed the antidepressant effect. All the extracts and components significantly induced a decline in immobility in the FST and TST, indicative of an antidepressant-like activity. The extracts and some components showed increase in swimming and climbing in the FST as well as a significant enhancement in swinging and/or curling scores in the TST, suggesting a possible involvement of monoaminergic and/or opioidergic activity. This study reveals the antidepressant-like potential of the stem bark extracts and components of T. monadelpha.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jeffrey Amoako Mensah
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Patrick Amoateng
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Seth Kwabena Amponsah
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benoit Banga N'Guessan
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
192
|
Assunção J, Guedes AC, Malcata FX. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar Drugs 2017; 15:E393. [PMID: 29261163 PMCID: PMC5742853 DOI: 10.3390/md15120393] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale-with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth-even though shearing-related issues remain a major challenge.
Collapse
Affiliation(s)
- Joana Assunção
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| | - A Catarina Guedes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, P-4450-208 Matosinhos, Portugal.
| | - F Xavier Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| |
Collapse
|
193
|
Amin Jaradat N, Al-Masri M, Hussen F, Zaid AN, Ali I, Tammam A, Mostafa Odeh D, Hussein Shakarneh O, Rajabi A. Preliminary Phytochemical and Biological Screening of Cyclamen coum a Member of Palestinian Flora. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
194
|
Jaradat NA, Al-Masri M, Zaid AN, Hussein F, Al-Rimawi F, Mokh AA, Mokh JA, Ghonaim S. Phytochemical, antimicrobial and antioxidant preliminary screening of a traditional Palestinian medicinal plant, Ononis pubescens L. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2017.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
195
|
Park BG, Shin WS, Oh S, Park GM, Kim NI, Lee S. A novel antihypertension agent, sargachromenol D from marine brown algae, Sargassum siliquastrum, exerts dual action as an L-type Ca 2+ channel blocker and endothelin A/B 2 receptor antagonist. Bioorg Med Chem 2017; 25:4649-4655. [PMID: 28720331 DOI: 10.1016/j.bmc.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
We isolated the novel vasoactive marine natural products, (5E,10E)-14-hydroxy-2,6,10-trimethylpentadeca-5,10-dien-4-one (4) and sargachromenol D (5), from Sargassum siliquastrum collected from the coast of the East Sea in South Korea by using activity-guided HPLC purification. The compounds effectively dilated depolarization (50mMK+)-induced basilar artery contraction with EC50 values of 3.52±0.42 and 1.62±0.63μM, respectively, but only sargachromenol D (5) showed a vasodilatory effect on endothelin-1 (ET-1)-induced basilar artery contraction (EC50=9.8±0.6μM). These results indicated that sargachromenol D (5) could act as a dual antagonist of l-type Ca2+ channel and endothelin A/B2 receptors. Moreover, sargachromenol D (5) lowered blood pressure in spontaneous hypertensive rats (SHRs) 2h after oral treatment at a dose of 80mg/kg dose and the effect was maintained for 24h. Based on our ex vivo and in vivo experiments, we propose that sargachromenol D (5) is a strong candidate for the treatment of hypertension that is not controlled by conventional drugs, in particular, severe-, type II diabetes-, salt-sensitive, and metabolic disease-induced hypertension.
Collapse
Affiliation(s)
- Byong-Gon Park
- Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea; Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Woon-Seob Shin
- Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea; Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Sangtae Oh
- Department of Basic Science, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Gab-Man Park
- Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea; Department of Environmental Medical Biology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Nam Ik Kim
- Department of Physical Education, Catholic Kwandong University College of Education, Gangneung 25601, Republic of Korea
| | - Seokjoon Lee
- Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea; Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea.
| |
Collapse
|
196
|
Wong ZW, Thanikachalam PV, Ramamurthy S. Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomed Pharmacother 2017; 94:1145-1166. [PMID: 28826162 DOI: 10.1016/j.biopha.2017.08.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/09/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Modern medicine has been used to treat myocardial infarction, a subset of cardiovascular diseases, and have been relatively effective but not without adverse effects. Consequently, this issue has stimulated interest in the use of natural products, which may be equally effective and better tolerated. Many studies have investigated the cardioprotective effect of natural products, such as plant-derived phytochemicals, against isoproterenol (ISO)-induced myocardial damage; these have produced promising results on the basis of their antioxidant, anti-atherosclerotic, anti-apoptotic and anti-inflammatory activities. This review briefly introduces the pathophysiology of myocardial infarction (MI) and then addresses the progress of natural product research towards its treatment. We highlight the promising applications and mechanisms of action of plant extracts, phytochemicals and polyherbal formulations towards the treatment of ISO-induced myocardial damage. Most of the products displayed elevated antioxidant levels with decreased oxidative stress and lipid peroxidation, along with restoration of ionic balance and lowered expression of myocardial injury markers, pro-inflammatory cytokines, and apoptotic parameters. Likewise, lipid profiles were positively altered and histopathological improvements could be seen from, for example, the better membrane integrity, decreased necrosis, edema, infarct size, and leukocyte infiltration. This review highlights promising results towards the amelioration of ISO-induced myocardial damage, which suggest the direction for future research on natural products that could be used to treat MI.
Collapse
Affiliation(s)
- Zheng Wei Wong
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | | | - Srinivasan Ramamurthy
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia.
| |
Collapse
|
197
|
Hwang HY, Cho SM, Kwon HJ. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin Drug Discov 2017; 12:909-923. [PMID: 28758515 DOI: 10.1080/17460441.2017.1349751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, development of novel bioactive small molecules targeting autophagy has been implicated for autophagy-related disease treatment. Screening new small molecules regulating autophagy allows for the discovery of novel autophagy machinery and therapeutic agents. Areas covered: Two major screening methods for novel autophagy modulators are introduced in this review, namely target based screening and phenotype based screening. With increasing attention focused on chemical compound libraries, coupled with the development of new assay systems, this review attempts to provide an efficient strategy to explore autophagy biology and discover small molecules for the treatment of autophagy-related diseases. Expert opinion: Adopting an appropriate autophagy screening strategy is important for developing small molecules capable of treating neurodegenerative diseases and cancers. Phenotype based screening and target based screening were both used for developing effective small molecules. However, each of these methods has many pros and cons. An efficient approach is suggested to screen for novel lead compounds targeting autophagy, which could provide new hits with better efficiency and rapidity.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Sung Min Cho
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Ho Jeong Kwon
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
198
|
Subramani R, Narayanasamy M, Feussner KD. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 2017; 7:172. [PMID: 28660459 PMCID: PMC5489455 DOI: 10.1007/s13205-017-0848-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
Antibiotic resistance is becoming a pivotal concern for public health that has accelerated the search for new antimicrobial molecules from nature. Numbers of human pathogens have inevitably evolved to become resistant to various currently available drugs causing considerable mortality and morbidity worldwide. It is apparent that novel antibiotics are urgently warranted to combat these life-threatening pathogens. In recent years, there have been an increasing number of studies to discover new bioactive compounds from plant origin with the hope to control antibiotic-resistant bacteria. This review attempts to focus and record the plant-derived compounds and plant extracts against multi-drug-resistant (MDR) pathogens including methicillin-resistant Staphylococcus aureus (MRSA), MDR-Mycobacterium tuberculosis and malarial parasites Plasmodium spp. reported between 2005 and 2015. During this period, a total of 110 purified compounds and 60 plant extracts were obtained from 112 different plants. The plants reviewed in this study belong to 70 different families reported from 36 countries around the world. The present review also discusses the drug resistance in bacteria and emphasizes the urge for new drugs.
Collapse
Affiliation(s)
- Ramesh Subramani
- Department of Biology, School of Sciences, College of Engineering, Science and Technology, Fiji National University, Natabua Campus, Lautoka, Fiji.
| | | | - Klaus-D Feussner
- Centre for Drug Discovery and Conservation, Institute of Applied Sciences, The University of the South Pacific, Laucala Campus, Suva, Fiji
| |
Collapse
|
199
|
Pires FB, Dolwitsch CB, Dal Prá V, Faccin H, Monego DL, Carvalho LMD, Viana C, Lameira O, Lima FO, Bressan L, Rosa MBD. Qualitative and quantitative analysis of the phenolic content of Connarus var. angustifolius , Cecropia obtusa , Cecropia palmata and Mansoa alliacea based on HPLC-DAD and UHPLC-ESI-MS/MS. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
200
|
Frank A, Abu-Lafi S, Adawi A, Schwed JS, Stark H, Rayan A. From medicinal plant extracts to defined chemical compounds targeting the histamine H 4 receptor: Curcuma longa in the treatment of inflammation. Inflamm Res 2017. [PMID: 28647836 DOI: 10.1007/s00011-017-1075-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES The aim was to evaluate the activity of seven medicinal, anti-inflammatory plants at the hH4R with focus on defined chemical compounds from Curcuma longa. MATERIALS Activities were analyzed with membrane preparations from Sf9 cells, transiently expressing the hH4R, Gαi2 and Gβ1γ2 subunits. METHODS From the methanolic extract of C. longa curcumin (1), demethoxycurcumin (2) and bis(4-hydroxy-cinnamoyl)methane (3) were isolated, purified with HPLC (elution-time 10.20, 9.66, 9.20 min, respectively) and together with six additional extracts, were characterized via radioligand binding studies at the hH4R. RESULTS Compounds from C. longa were the most potent ligands at the hH4R. They exhibited estimated K i values of 4.26-6.26 µM (1.57-2.31 µg/mL) (1); 6.66--8.97 µM (2.26-3.04 µg/mL) (2) and 10.24-14.57 µM (3.16-4.49 µg/mL) (3) (95% CI). The estimated K i value of the crude extract of curcuma was 0.50-0.81 µg/mL. Fractionated curcumin and the crude extract surpassed the effect of pure curcumin with a K i value of 5.54 µM or 2.04 µg/mL [95% CI (4.47-6.86 µM), (1.65-2.53 µg/mL)]. CONCLUSION Within this study, defined compounds of C. longa were recognized as potential ligands and reasonable lead structures at the hH4R. The mode of anti-inflammatory action of curcumin was further elucidated and the role of extracts in traditional phytomedicine was strengthened.
Collapse
Affiliation(s)
- Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Saleh Abu-Lafi
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002, Abu-Dies, Palestine
| | - Azmi Adawi
- Institute of Applied Research, The Galilee Society, P.O. Box 437, 20200, Shefa-'Amr, Israel
| | - Johannes S Schwed
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Anwar Rayan
- Institute of Applied Research, The Galilee Society, P.O. Box 437, 20200, Shefa-'Amr, Israel.,Drug Discovery Informatics Lab, Qasemi Research Center, Al-Qasemi Academic College, P.O. Box 124, 30100, Baka EL-Garbya, Israel
| |
Collapse
|