151
|
Abstract
Neutrophils are the most abundant leukocytes in the circulation, and have been regarded as first line of defense in the innate arm of the immune system. They capture and destroy invading microorganisms, through phagocytosis and intracellular degradation, release of granules, and formation of neutrophil extracellular traps after detecting pathogens. Neutrophils also participate as mediators of inflammation. The classical view for these leukocytes is that neutrophils constitute a homogenous population of terminally differentiated cells with a unique function. However, evidence accumulated in recent years, has revealed that neutrophils present a large phenotypic heterogeneity and functional versatility, which place neutrophils as important modulators of both inflammation and immune responses. Indeed, the roles played by neutrophils in homeostatic conditions as well as in pathological inflammation and immune processes are the focus of a renovated interest in neutrophil biology. In this review, I present the concept of neutrophil phenotypic and functional heterogeneity and describe several neutrophil subpopulations reported to date. I also discuss the role these subpopulations seem to play in homeostasis and disease.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
152
|
Manohar M, Verma AK, Venkateshaiah SU, Mishra A. Role of eosinophils in the initiation and progression of pancreatitis pathogenesis. Am J Physiol Gastrointest Liver Physiol 2018; 314:G211-G222. [PMID: 28935682 PMCID: PMC5866419 DOI: 10.1152/ajpgi.00210.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
Abstract
Eosinophilic pancreatitis (EP) is reported in humans; however, the etiology and role of eosinophils in EP pathogenesis are poorly understood and not well explored. Therefore, it is interesting to examine the role of eosinophils in the initiation and progression of pancreatitis pathogenesis. Accordingly, we performed anti-major basic protein immunostaining, chloroacetate esterase, and Masson's trichrome analyses to detect eosinophils, mast cells, and collagen in the tissue sections of mouse and human pancreas. Induced eosinophils accumulation and degranulation were observed in the tissue sections of human pancreatitis, compared with no eosinophils in the normal pancreatic tissue sections. Similarly, we observed induced tissue eosinophilia along with mast cells and acinar cells atrophy in cerulein-induced mouse model of chronic pancreatitis. Additionally, qPCR and ELISA analyses detected induced transcript and protein levels of proinflammatory and profibrotic cytokines, chemokines like IL 5, IL-18, eotaxin-1, eotaxin-2, TGF-β1, collagen-1, collagen-3, fibronectin, and α-SMA in experimental pancreatitis. Mechanistically, we show that eosinophil-deficient GATA1 and endogenous IL-5-deficient mice were protected from the induction of proinflammatory and profibrotic cytokines, chemokines, tissue eosinophilia, and mast cells in a cerulein-induced murine model of pancreatitis. These human and experimental data indicate that eosinophil accumulation and degranulation may have a critical role in promoting pancreatitis pathogenesis including fibrosis. Taken together, eosinophil tissue accumulation needs appropriate attention to understand and restrict the progression of pancreatitis pathogenesis in humans. NEW & NOTEWORTHY The present study for the first time shows that eosinophils accumulate in the pancreas and promote disease pathogenesis, including fibrosis in earlier reported cerulein-induced experimental models of pancreatitis. Importantly, we show that GATA-1 and IL-5 deficiency protects mice form the induction of eosinophil active chemokines, and profibrotic cytokines, including accumulation of tissue collagen in an experimental model of pancreatitis. Additionally, we state that cerulein-induced chronic pancreatitis is independent of blood eosinophilia.
Collapse
Affiliation(s)
- Murli Manohar
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorders Centre, Tulane University School of Medicine , New Orleans, Louisiana
| | - Alok K Verma
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorders Centre, Tulane University School of Medicine , New Orleans, Louisiana
| | - Sathisha Upparahalli Venkateshaiah
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorders Centre, Tulane University School of Medicine , New Orleans, Louisiana
| | - Anil Mishra
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinophilic Disorders Centre, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
153
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018. [PMID: 29467962 DOI: 10.1832/oncotarget.23208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
154
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9:7204-7218. [PMID: 29467962 PMCID: PMC5805548 DOI: 10.18632/oncotarget.23208] [Citation(s) in RCA: 2774] [Impact Index Per Article: 396.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
155
|
Effect of Endotoxemia in Suckling Rats on Pancreatic Integrity and Exocrine Function in Adults: A Review Report. Gastroenterol Res Pract 2018; 2018:6915059. [PMID: 29576768 PMCID: PMC5821989 DOI: 10.1155/2018/6915059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Endotoxin (LPS), the component of Gram-negative bacteria, is responsible for sepsis and neonatal mortality, but low concentrations of LPS produced tissue protection in experimental studies. The effects of LPS applied to the suckling rats on the pancreas of adult animals have not been previously explored. We present the impact of neonatal endotoxemia on the pancreatic exocrine function and on the acute pancreatitis which has been investigated in the adult animals. Endotoxemia was induced in suckling rats by intraperitoneal application of LPS from Escherichia coli or Salmonella typhi. In the adult rats, pretreated in the early period of life with LPS, histological manifestations of acute pancreatitis have been reduced. Pancreatic weight and plasma lipase activity were decreased, and SOD concentration was reversed and accompanied by a significant reduction of lipid peroxidation products (MDA + 4 HNE) in the pancreatic tissue. In the pancreatic acini, the significant increases in protein signals for toll-like receptor 4 and for heat shock protein 60 were found. Signal for the CCK1 receptor was reduced and pancreatic secretory responses to caerulein were diminished, whereas basal enzyme secretion was unaffected. These pioneer studies have shown that exposition of suckling rats to endotoxin has an impact on the pancreas in the adult organism.
Collapse
|
156
|
Li H, Xiu M, Wang S, Brigstock DR, Sun L, Qu L, Gao R. Role of Gut-Derived Endotoxin on Type I Collagen Production in the Rat Pancreas After Chronic Alcohol Exposure. Alcohol Clin Exp Res 2017; 42:306-314. [PMID: 29121396 DOI: 10.1111/acer.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Hongyan Li
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Ming Xiu
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Shuhua Wang
- Department of Surgical Gastroenterolog; First Hospital of Jilin University; Changchun China
| | | | - Li Sun
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Limei Qu
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Runping Gao
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| |
Collapse
|
157
|
Kuuliala K, Penttilä AK, Kaukonen KM, Mustonen H, Kuuliala A, Oiva J, Hämäläinen M, Moilanen E, Pettilä V, Puolakkainen P, Kylänpää L, Repo H. Signalling Profiles of Blood Leucocytes in Sepsis and in Acute Pancreatitis in Relation to Disease Severity. Scand J Immunol 2017; 87:88-98. [DOI: 10.1111/sji.12630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. Kuuliala
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. K. Penttilä
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - K.-M. Kaukonen
- Department of Anesthesiology, Intensive Care and Pain Medicine; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - H. Mustonen
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. Kuuliala
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - J. Oiva
- Department of Surgery; Kuopio University Hospital; Kuopio Finland
| | - M. Hämäläinen
- The Immunopharmacology Research Group; Faculty of Medicine and Life Sciences; University of Tampere and Tampere University Hospital; Tampere Finland
| | - E. Moilanen
- The Immunopharmacology Research Group; Faculty of Medicine and Life Sciences; University of Tampere and Tampere University Hospital; Tampere Finland
| | - V. Pettilä
- Department of Anesthesiology, Intensive Care and Pain Medicine; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - P. Puolakkainen
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - L. Kylänpää
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - H. Repo
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
158
|
Manohar M, Verma AK, Upparahalli Venkateshaiah S, Goyal H, Mishra A. Food-Induced Acute Pancreatitis. Dig Dis Sci 2017; 62:3287-3297. [PMID: 29086330 PMCID: PMC5718054 DOI: 10.1007/s10620-017-4817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022]
Abstract
Food allergy, a commonly increasing problem worldwide, defined as an adverse immune response to food. A variety of immune-related effector cells such as mast cells, eosinophils, neutrophils, and T cells are involved in food-related allergic responses categorized as IgE mediated, non-IgE mediated, and mixed (IgE and non-IgE) depending upon underlying immunological mechanisms. The dietary antigens mainly target the gastrointestinal tract including pancreas that gets inflamed due to food allergy and leads acute pancreatitis. Reports indicate several food proteins induce pancreatitis; however, detailed underlying mechanism of food-induced pancreatitis is unexplored. The aim of the review is to understand and update the current scenario of food-induced pancreatitis. A comprehensive literature search of relevant research articles has been performed through PubMed, and articles were chosen based on their relevance to food allergen-mediated pancreatitis. Several cases in the literature indicate that acute pancreatitis has been provoked after the consumption of mustard, milk, egg, banana, fish, and kiwi fruits. Food-induced pancreatitis is an ignored and unexplored area of research. The review highlights the significance of food in the development of pancreatitis and draws the attention of physicians and scientists to consider food allergies as a possible cause for initiation of pancreatitis pathogenesis.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hemant Goyal
- Department of Internal Medicine, Mercer University School of Medicine, 707 Pine St., Macon, GA, 31201, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
159
|
Wu Q, Tian Y, Zhang J, Zhang H, Gu F, Lu Y, Zou S, Chen Y, Sun P, Xu M, Sun X, Xia C, Chi H, Ying Zhu A, Tang D, Wang D. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma. Oncotarget 2017; 8:102721-102738. [PMID: 29254283 PMCID: PMC5731993 DOI: 10.18632/oncotarget.21970] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer with poor prognosis because it is highly resistant to traditional chemotherapy and radiotherapy and it has a low rate of surgical resection eligibility. Pancreatic stellate cells (PSC) have become a research hotspot in recent years, and play a vital role in PDAC microenvironment by secreting soluble factors such as transforming growth factor β, interleukin-6, stromal cell-derived factor-1, hepatocyte growth factor and galectin-1. These PSC-derived cytokines and proteins contribute to PSC activation, participating in PDAC cell proliferation, migration, fibrosis, angiogenesis, immunosuppression, epithelial-mesenchymal transition, and chemoradiation resistance, leading to malignant outcome. Consequently, targeting these cytokines and proteins or their downstream signaling pathways is promising for treating PDAC.
Collapse
Affiliation(s)
- Qi Wu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Ying Tian
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Hongpeng Zhang
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Fengming Gu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Yongdie Lu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Shengnan Zou
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Yuji Chen
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Pengxiang Sun
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Mengyue Xu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Xiaoming Sun
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Chao Xia
- Nanjing Medical University, Nanjing, P.R. China
| | - Hao Chi
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - A Ying Zhu
- Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
160
|
Xue R, Yang J, Wu J, Meng Q, Hao J. Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway. Oncotarget 2017; 8:92300-92311. [PMID: 29190916 PMCID: PMC5696182 DOI: 10.18632/oncotarget.21247] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
AIM Pancreatic stellate cells (PSCs) have a vital role in pancreatic fibrosis accompanied by pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Any agents which can affect the activation of PSCs could become potential candidates for treatment strategies in PDAC and CP. Our aim was to explore the effect of Coenzyme Q10 (CoQ10) in the process of PSCs activation. METHODS Isolated PSCs from C57BL/6 mice were treated with various dosages of CoQ10 (1, 10, and 100μM) and different time (24h, 48h, and 72 h). Effect of CoQ10 on autophagy, apoptosis, senescence and oxidative stress, as well as the activation of PSCs were analyzed by immunocytofluorescent staining, quantitative real time RT-PCR, western blotting, SA-β-galactosidase staining, malondialdehyde and reactive oxygen species (ROS) assay. RESULTS Expression of α-smooth muscle actin, LC3II, Beclin1, Cleaved caspases-3 and Bax levels were significantly reduced in CoQ10 treatment groups. Meanwhile, compared with the control group, significant differences for the expression of desmin, P62, Bcl-2, p-PI3K, p-AKT and p-mTOR levels in CoQ10 treatment groups were found. Moreover, CoQ10 affected the secretion of extracellular matrix components for PSCs. Few SA-β-gal positive cells were found in CoQ10 treated groups. A significant decrease in ROS positive cells and malondialdehyde levels were observed after 72 h exposure to CoQ10. CONCLUSIONS Our finding suggests that CoQ10 inhibits the activation of PSCs by suppressing autophagy through activating the PI3K/AKT/mTOR signaling pathway. CoQ10 may act as a therapeutic agent in PSC-relating pathologies and/or anti-fibrotic approaches.
Collapse
Affiliation(s)
- Ran Xue
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Yang
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
161
|
Duan LF, Xu XF, Zhu LJ, Liu F, Zhang XQ, Wu N, Fan JW, Xin JQ, Zhang H. Dachaihu decoction ameliorates pancreatic fibrosis by inhibiting macrophage infiltration in chronic pancreatitis. World J Gastroenterol 2017; 23:7242-7252. [PMID: 29142471 PMCID: PMC5677205 DOI: 10.3748/wjg.v23.i40.7242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of macrophages in chronic pancreatitis (CP) and the effect of Dachaihu decoction (DCHD) on pancreatic fibrosis in mice. METHODS KunMing mice were randomly divided into a control group, CP group, and DCHD group. In the CP and DCHD groups, mice were intraperitoneally injected with 20% L-arginine (3 g/kg twice 1 d/wk for 6 wk). Mice in the DCHD group were administered DCHD intragastrically at a dose of 14 g/kg/d 1 wk after CP induction. At 2 wk, 4 wk and 6 wk post-modeling, the morphology of the pancreas was observed using hematoxylin and eosin, and Masson staining. Interleukin-6 (IL-6) serum levels were assayed using an enzyme-linked immunosorbent assay. Double immunofluorescence staining was performed to observe the co-expression of F4/80 and IL-6 in the pancreas. Inflammatory factors including monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and IL-6 were determined using real time-polymerase chain reaction. Western blot analysis was used to detect fibronectin levels in the pancreas. RESULTS Compared with the control group, mice with 20% L-arginine-induced CP had obvious macrophage infiltration and a higher level of fibrosis. IL-6 serum concentrations were significantly increased. Double immunofluorescence staining showed that IL-6 and F4/80 were co-expressed in the pancreas. With the administration of DCHD, the infiltration of macrophages and degree of fibrosis in the pancreas were significantly attenuated; IL-6, MCP-1 and MIP-1α mRNA, and fibronectin levels were reduced. CONCLUSION The dominant role of macrophages in the development of CP was mainly related to IL-6 production. DCHD was effective in ameliorating pancreatic fibrosis by inhibiting macrophage infiltration and inflammatory factor secretion in the pancreas.
Collapse
Affiliation(s)
- Li-Fang Duan
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Xiao-Fan Xu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Lin-Jia Zhu
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fang Liu
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Xiao-Qin Zhang
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Nan Wu
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Jian-Wei Fan
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Jia-Qi Xin
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Hong Zhang
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
162
|
Manohar M, Verma AK, Venkateshaiah SU, Mishra A. Significance of Eosinophils in Promoting Pancreatic malignancy. ACTA ACUST UNITED AC 2017; 5. [PMID: 29756031 DOI: 10.15226/2374-815x/5/1/001109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Several reports indicate that eosinophils are induced in chronic pancreatitis including patients with pancreatic malignancy. However, significance of eosinophilic pancreatitis (EP) is poorly understood and unexplored. Aim Accumulation and degranulation of eosinophils promote pancreatic fibrosis and malignancy. Method Human pancreatic tissue biopsy samples including chronic pancreatitis (n=3), malignant (n=4), non-malignant (n=3), and normal (n=3) were used for H&E, anti-MBP staining, anti-tryptase staining, anti-IgE staining and Mason's trichrome staining. Results We show induced eosinophils and degranulated eosinophils indicated by the presence of anti-MBP stained extracellular granules in the malignant pancreatic (pancreatic cancer) and non-malignant human pancreatic tissues. A comparable number of eosinophils were observed in non-malignant and malignant pancreatic tissue sections, but the sections differed in degranulated eosinophils and the presence of extracellular granules. Additionally, induced mast cells and tissue-specific IgE positive cells were also detected in the tissue sections of malignant pancreatitis patients compared to non-malignant human pancreatic patients. Tissue-specific IgE induction is critical for the degranulation of eosinophils and mast cells that may lead to increased accumulation of collagen in malignant compared to non-malignant human pancreatic tissue samples. We show a large number of anti-tryptase stained extracellular granules in the tissue sections of malignant pancreatic cancer patients. Both IgE and eosinophil major basic proteins (MBP) are reported for the activation and degranulation of mast cells in tissues. Conclusion Taken together, our investigation concludes that eosinophils and mast cells accumulation and degranulation are critical in promoting pancreatitis pathogenesis that may lead to the development of pancreatic fibrosis and malignancy.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, USA
| | - Alok K Verma
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, USA
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, USA
| |
Collapse
|
163
|
Verma AK, Manohar M, Upparahalli Venkateshaiah S, Mishra A. Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. Cytokine Growth Factor Rev 2017; 38:37-48. [PMID: 28964637 DOI: 10.1016/j.cytogfr.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
Abstract
Worldwide increase incidences of allergic diseases have heightened the interest of clinicians and researchers to understand the role of neuroendocrine cells in the recruitment and activation of inflammatory cells. Several pieces of evidence revealed the association of neuropeptides in the pathogenesis of allergic diseases. Importantly, one such peptide that is secreted by neuronal cells and immune cells exerts a wide spectrum of immunological functions as cytokine/chemokine is termed as Vasoactive Intestinal Peptide (VIP). VIP mediates immunological function through interaction with specific receptors namely VPAC-1, VPAC-2, CRTH2 and PAC1 that are expressed on several immune cells such as eosinophils, mast cells, neutrophils, and lymphocytes; therefore, provide the basis for the action of VIP on the immune system. Additionally, VIP mediated action varies according to target organ depending upon the presence of specific VIP associated receptor, involved immune cells and the microenvironment of the organ. Herein, we present an integrative review of the current understanding on the role of VIP and associated receptors in allergic diseases, the presence of VIP receptors on various immune cells with particular emphasis on the role of VIP in the pathogenesis of allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. Being crucial signal molecule of the neuroendocrine-immune network, the development of stable VIP analogue and/or antagonist may provide the future therapeutic drug alternative for the better treatment of these allergic diseases. Taken together, our current review summarizes the current understandings of VIP biology and further explore the significance of neuroendocrine cells derived VIP in the recruitment of inflammatory cells in allergic diseases that may be helpful to the investigators for planning the experiments and accordingly predicting new therapeutic strategies for combating allergic diseases. Summarized graphical abstract will help the readers to understand the significance of VIP in allergic diseases.
Collapse
Affiliation(s)
- Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
164
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
165
|
Jaworek J, Leja-Szpak A, Nawrot-Porąbka K, Szklarczyk J, Kot M, Pierzchalski P, Góralska M, Ceranowicz P, Warzecha Z, Dembinski A, Bonior J. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis. Int J Mol Sci 2017; 18:ijms18051014. [PMID: 28481310 PMCID: PMC5454927 DOI: 10.3390/ijms18051014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N1-acetyl-N1-formyl-5-methoxykynuramine (AFMK). Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1) Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK) release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2) Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3) In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.
Collapse
Affiliation(s)
- Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Anna Leja-Szpak
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Katarzyna Nawrot-Porąbka
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Joanna Szklarczyk
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Michalina Kot
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Marta Góralska
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Kraków, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Kraków, Poland.
| | - Artur Dembinski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Kraków, Poland.
| | - Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| |
Collapse
|
166
|
Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Chronic Pancreatitis Associated Acute Respiratory Failure. MOJ IMMUNOLOGY 2017; 5:00149. [PMID: 29399623 PMCID: PMC5793936 DOI: 10.15406/moji.2017.05.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a condition characterized by parenchymal inflammation of the pancreas, which is often associated with lung injury due to low level of oxygen and the condition is termed as acute pancreatitis-associated lung injury (APALI). Clinical reports indicated that ~ 20% to 50% of patients from low oxygen levels in blood with acute respiratory distress syndrome (ARDS). ARDS is a severe form of acute lung injury (ALI), a pulmonary disease with impaired airflow making patients difficult to breathe. ALI is frequently observed in patients with severe acute pancreatitis. Approximately one third of severe pancreatitis patients develop acute lung injury and acute respiratory distress syndrome that account for 60% of all deaths within the first week. The major causes of ALI and ARDS are sepsis, trauma, aspiration, multiple blood transfusion, and most importantly acute pancreatitis. The molecular mechanisms of ALI and ARDS are still not well explored, but available reports indicate the involvement of several pro-inflammatory mediators including cytokines (TNF-α, IL-1β, IL-6) and chemokines [like interleukin-8 (IL-8) and macrophage inhibitory factor (MIF)], as well as macrophage polarization regulating the migration and pulmonary infiltration of neutrophils into the pulmonary interstitial tissue, causing injury to the pulmonary parenchyma. Acute lung injury and acute respiratory distress syndrome in acute pancreatitis remains an unsolved issue and needs more research and resources to develop effective treatments and therapies. However, recent efforts have tested several molecules in an experimental model and showed promising results as a treatment option. The current review summarized the mechanism that is operational in pancreatitis-associated acute respiratory failure and respiratory distress syndrome in patients and current treatment options.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | - Alok K Verma
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| | | | - Anil Mishra
- Department of Medicine and Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, Tulane University School of Medicine, USA
| |
Collapse
|