151
|
Fahmi MN, Hertapanndika IN, Kusuma F. The Prognostic Value of Cancer Stem Cell Markers in Cervical Cancer: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2021; 22:4057-4065. [PMID: 34967589 PMCID: PMC9080387 DOI: 10.31557/apjcp.2021.22.12.4057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Prognostic biomarkers in cervical cancer are widely investigated, including cancer stem cell (CSC) markers. However, their significance remains uncertain. This study aimed to determine the role of cervical cancer stem cell (CCSC) markers for survival. MATERIALS AND METHODS We conducted a systematic review and meta-analysis (PROSPERO CRD42021237072) of studies reporting CCSC markers as the prognostic predictor based on PRISMA guidelines. We included English articles investigating associations of CCSCs expression in tissue tumor with overall survival (OS) or disease-free survival (DFS) from PubMed, EBSCO, and The Cochrane Library databases. The quality of studies was analyzed based on Newcastle-Ottawa Quality Assessment Scale. RESULTS From 413 publications, after study selection with inclusion and exclusion criteria, 22 studies were included. High expressions of CCSC markers were associated with poor OS and DFS (HR= 1.05, 95% CI: 1.03 - 1.07, P <0.0001; HR= 1.31, 95% CI: 1.09 - 1.17, P <0.00001; respectively). Sub-analysis of individual CCSC markers indicated significant correlations between CD44 (HR= 1.14, 95% CI: 1.07 - 1.22, P 0.0001), SOX2 (HR= 1.58, 95% CI: 1.17 - 2.14, P 0.003), OCT4 (HR= 1.03, 95% CI: 1.01 - 1.06, P 0.008), ALDH1 (HR= 1.36, 95% CI: 1.13 - 1.64, P 0.001), and CD49f (HR= 3.02, 95% CI: 1.37 - 6.64, P 0.006) with worse OS; OCT4 (HR= 1.14, 95% CI 1.06 - 1.22, P 0.0003), SOX2 (HR= 1.11, 95% CI: 1.06 - 1.16, P <0.0001), and ALDH1 (HR= 1.22, 95% CI: 1.10 - 1.35, P 0.0002) with poor DFS. We did not conduct a meta-analysis for MSI-1 and CK17 because only one study investigated those markers. CONCLUSION Expressions of OCT4, SOX2, and ALDH1 were associated with poor OS and DFS in cervical cancer tissue. These markers might have potential roles as prognostic biomarkers to predict unfavorable survival.
Collapse
Affiliation(s)
- Moh Nailul Fahmi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia.
- Fellowship Gynecology Oncology Division, Department of Obstetrics and Gynecology, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Jakarta, Indonesia.
| | | | - Fitriyadi Kusuma
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Jakarta, Indonesia.
| |
Collapse
|
152
|
Wei W, Wang L, Xu L, Liang J, Teng L. MiR-199 Reverses the Resistance to Gemcitabine in Pancreatic Cancer by Suppressing Stemness through Regulating the Epithelial-Mesenchymal Transition. ACS OMEGA 2021; 6:31435-31446. [PMID: 34869970 PMCID: PMC8637594 DOI: 10.1021/acsomega.1c02945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE the present study aims to investigate the function of miR-199 on gemcitabine (GEM)-resistance in pancreatic cancer, as well as the underlying mechanism. METHODS the GEM-resistant SW1990 cell line (SW1990/SZ) was established. The CCK-8 assay was used to detect the cell viability. The self-renewal of SW1990/SZ cells was evaluated by sphere formation and the colony formation assay. The apoptosis was detected by flow cytometry and the migration ability was measured by the transwell assay. The dual-luciferase gene reporter assay was utilized to confirm the binding between miR-199 and Snail. The expression level of CD44, ALDH1, Nanog, E-cadherin, Vimentin, β-catenin, and Snail was determined by the Western blotting assay. RESULTS the cell sphere formation rate, number of spheres, and expression level of CD44, ALDH1, and Nanog in GEM-treated SW1990/SZ cells were significantly suppressed by miR-199, accompanied by declined proliferation ability, an increased apoptotic rate, inhibited migration ability, and suppressed EMT progression. The binding site between miR-199 and 3'-UTR of Snail was predicted and confirmed. The inhibitory effect of miR-199 on self-renewal of SW1990/GZ cells and the faciliating property of miR-199 on the inhibitory effect of GEM against the proliferation ability, migration ability, and EMT progression were abolished by overexpressing Snail. CONCLUSION MiR-199 reversed the resistance to GEM in pancreatic cancer by suppressing stemness through regulating the EMT.
Collapse
Affiliation(s)
- Weitian Wei
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liang Wang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liwei Xu
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Jinxiao Liang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Lisong Teng
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
153
|
Lee JW, Lee HY. Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment. Int J Stem Cells 2021; 14:386-399. [PMID: 34711702 PMCID: PMC8611309 DOI: 10.15283/ijsc21084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell-like properties, self-renewal potential, and differentiation capacity into multiple cell types. Critical genetic alterations or aberrantly activated signaling pathways associated with drug resistance and recurrence have been observed in multiple types of CSCs. In this context, CSCs are considered to be responsible for tumor initiation, growth, progression, therapeutic resistance, and metastasis. Therefore, to effectively eradicate CSCs, tremendous efforts have been devoted to identify specific target molecules that play a critical role in regulating their distinct functions and to develop novel therapeutics, such as proteins, monoclonal antibodies, selective small molecule inhibitors, and small antisense RNA (asRNA) drugs. Similar to other CSC types, oral CSCs can be characterized by certain pluripotency-associated markers, and oral CSCs can also survive and form 3D tumor spheres in suspension culture conditions. These oral CSC-targeting therapeutics selectively suppress specific surface markers or key signaling components and subsequently inhibit the stem-like properties of oral CSCs. A large number of new therapeutic candidates have been tested, and some products are currently in the pre-clinical or clinical development phase. In the present study, we review new oral CSC-targeted therapeutic strategies and discuss the various specific CSC surface markers and key signaling components involved in the stem-like properties, growth, drug resistance, and tumorigenicity of oral CSCs.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, Goesan, Korea.,Division of Science Education, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
154
|
Zhu H, You J, Wen Y, Jia L, Gao F, Ganesan K, Chen J. Tumorigenic risk of Angelica sinensis on ER-positive breast cancer growth through ER-induced stemness in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114415. [PMID: 34271113 DOI: 10.1016/j.jep.2021.114415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Angelica sinensis is widely used in traditional Chinese Medicine for relieving gynecological discomforts among the women population. However, its hormone-like effects have raised great attention on whether it is appropriate to use in breast cancer (BC) patients. Hence, this study aimed to investigate the tumorigenic effect of aqueous root extract of Angelica sinensis (AS) on estrogen receptor (ER)-positive BC growth through ER-induced stemness in-vitro and in-vivo. MATERIALS AND METHODS The chemical composition of the AS was characterized by HPLC. Cell viability was detected by MTS assay. The in-vivo effect of AS was investigated by xenograft model, immunohistochemistry, histology, Western blot, and self-renewal ability assay. Target verification was used by shRNA construction and transfection. Mammosphere formation assay was performed by flow cytometry. RESULTS AS significantly promoted the proliferation of MCF-7 cells and inhibited the growth of MDA-MB-231 cells. AS significantly induced tumor growth (2.5 mg/kg) in xenograft models and however tamoxifen treatment significantly suppressed the AS-induced tumor growth. AS induced ERα expression in both in-vivo and in-vitro and promoted cancer stem cell activity in ER-positive BC. CONCLUSION AS shows the tumorigenic potential on ER-positive BC growth through ERα induced stemness, suggesting that the usage of AS is not recommended for BC in terms of safety measures.
Collapse
Affiliation(s)
- Hongni Zhu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China.
| | - Jeishu You
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Yi Wen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Lei Jia
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Fei Gao
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen Virtual University Park, Nanshan, Shenzhen, China; Guangzhou University of Chinese Medicine, Daxuecheng Hongmian Road, Panyu District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
155
|
Tang C, Liu J, Hu Q, Zeng S, Yu L. Metastatic colorectal cancer: Perspectives on long non-coding RNAs and promising therapeutics. Eur J Pharmacol 2021; 908:174367. [PMID: 34303661 DOI: 10.1016/j.ejphar.2021.174367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
Metastatic colorectal cancer (mCRC) has long been lethal despite the continuous efforts of researchers worldwide to discover and improve therapeutic regimens. Thanks to the emergence of long non-coding RNAs (lncRNAs), which has strongly reshaped our inherent perspectives on the pathophysiological patterns of disease, research in the field has been reinvigorated. Here, we focus on current understanding of the modes of action of lncRNAs, and review their regulatory roles in metastatic colorectal cancer, and discuss correlated potential lncRNA-based therapeutics. All of the discussed studies share clear and promising perspectives on future diagnostic and therapeutic remedies for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
156
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
157
|
Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, Nugmanova A, Shaimerdenova M, Ayupova T, Tosi D. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11:19583. [PMID: 34599251 PMCID: PMC8486867 DOI: 10.1038/s41598-021-99099-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Increased level of CD44 protein in serum is observed in several cancers and is associated with tumor burden and metastasis. Current clinically used detection methods of this protein are time-consuming and use labeled reagents for analysis. Therefore exploring new label-free and fast methods for its quantification including its detection in situ is of importance. This study reports the first optical fiber biosensor for CD44 protein detection, based on a spherical fiber optic tip device. The sensor is easily fabricated from an inexpensive material (single-mode fiber widely used in telecommunication) in a fast and robust manner through a CO2 laser splicer. The fabricated sensor responded to refractive index change with a sensitivity of 95.76 dB/RIU. The spherical tip was further functionalized with anti-CD44 antibodies to develop a biosensor and each step of functionalization was verified by an atomic force microscope. The biosensor detected a target of interest with an achieved limit of detection of 17 pM with only minor signal change to two control proteins. Most importantly, concentrations tested in this work are very broad and are within the clinically relevant concentration range. Moreover, the configuration of the proposed biosensor allows its potential incorporation into an in situ system for quantitative detection of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhuldyz Myrkhiyeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aigerim Nugmanova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
158
|
Huang B, Yan X, Li Y. Cancer Stem Cell for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13194814. [PMID: 34638298 PMCID: PMC8508418 DOI: 10.3390/cancers13194814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although many methods have been applied in clinical treatment for tumors, they still always show a poor prognosis. Molecule targeted therapy has revolutionized tumor therapy, and a proper target must be found urgently. With a crucial role in tumor development, metastasis and recurrence, cancer stem cells have been found to be a feasible and potential target for tumor therapy. We list the unique biological characteristics of cancer stem cells and summarize the recent strategies to target cancer stem cells for tumor therapy, through which we hope to provide a comprehensive understanding of cancer stem cells and find a better combinational strategy to target cancer stem cells for tumor therapy. Abstract Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xin Yan
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-138-9361-5421
| |
Collapse
|
159
|
Saydé T, Manczak R, Saada S, Bégaud G, Bessette B, Lespes G, Le Coustumer P, Gaudin K, Dalmay C, Pothier A, Lalloué F, Battu S. Characterization of Glioblastoma Cancer Stem Cells Sorted by Sedimentation Field-Flow Fractionation Using an Ultrahigh-Frequency Range Dielectrophoresis Biosensor. Anal Chem 2021; 93:12664-12671. [PMID: 34491042 DOI: 10.1021/acs.analchem.1c02466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) appear to be an essential target for cancer therapies, in particular, in brain tumors such as Glioblastoma. Nevertheless, their isolation is made difficult by their low content in culture or tumors (<5% of the tumor mass) and is essentially based on the use of fluorescent or magnetic labeling techniques, increasing the risk of differentiation induction. The use of label-free separation methods such as sedimentation field-flow fractionation (SdFFF) is promising, but it becomes necessary to consider a coupling with a detection and characterization method for future identification and purification of CSCs from patient-derived tumors. In this study, we demonstrate for the first time the capability of using an ultrahigh-frequency range dielectrophoresis fluidic biosensor as a detector. This implies an important methodological adaptation of SdFFF cell sorting by the use of a new compatible carrier liquid DEP buffer (DEP-B). After SdFFF sorting, subpopulations derived from U87-MG and LN18 cell lines undergo biological characterization, demonstrating that using DEP-B as a carrier liquid, we sorted by SdFFF subpopulations with specific differentiation characteristics: F1 = differentiated cells/F2 = CSCs. These subpopulations presented high-frequency crossover (HFC) values similar to those measured for standard differentiated (around 110 MHz) and CSC (around 80 MHz) populations. This coupling appeared as a promising solution for the development of an online integration of these two complementary label-free separation/detection technologies.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France.,ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Rémi Manczak
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Sofiane Saada
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Gaelle Bégaud
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Barbara Bessette
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l'Adour (E2S/UPPA), 2 Avenue Pierre Angot, Pau 64053, France
| | - Philippe Le Coustumer
- Bordeaux Imaging Center, UMS 3420 CNRS-INSERM, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Claire Dalmay
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Arnaud Pothier
- XLIM-UMR CNRS 7252, Université de Limoges, 123, avenue Albert Thomas, Limoges 87060 LIMOGES CEDEX, France
| | - Fabrice Lalloué
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, Limoges 87025, France
| |
Collapse
|
160
|
Almeida GM, Pereira C, Park JH, Lemos C, Campelos S, Gullo I, Martins D, Gonçalves G, Leitão D, Neto JL, André A, Borges C, Almeida D, Lee HJ, Kong SH, Kim WH, Carneiro F, Almeida R, Yang HK, Oliveira C. CD44v6 High Membranous Expression Is a Predictive Marker of Therapy Response in Gastric Cancer Patients. Biomedicines 2021; 9:biomedicines9091249. [PMID: 34572441 PMCID: PMC8465138 DOI: 10.3390/biomedicines9091249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/27/2023] Open
Abstract
In gastric cancer (GC), biomarkers that define prognosis and predict treatment response remain scarce. We hypothesized that the extent of CD44v6 membranous tumor expression could predict prognosis and therapy response in GC patients. Two GC surgical cohorts, from Portugal and South Korea (n = 964), were characterized for the extension of CD44v6 membranous immuno-expression, clinicopathological features, patient survival, and therapy response. The value of CD44v6 expression in predicting response to treatment and its impact on prognosis was determined. High CD44v6 expression was associated with invasive features (perineural invasion and depth of invasion) in both cohorts and with worse survival in the Portuguese GC cohort (HR 1.461; 95% confidence interval 1.002–2.131). Patients with high CD44v6 tumor expression benefited from conventional chemotherapy in addition to surgery (p < 0.05), particularly those with heterogeneous CD44v6-positive and -negative populations (CD44v6_3+) (p < 0.007 and p < 0.009). Our study is the first to identify CD44v6 high membranous expression as a potential predictive marker of response to conventional treatment, but it does not clarify CD44v6 prognostic value in GC. Importantly, our data support selection of GC patients with high CD44v6-expressing tumors for conventional chemotherapy in addition to surgery. These findings will allow better stratification of GC patients for treatment, potentially improving their overall survival.
Collapse
Affiliation(s)
- Gabriela M Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Carla Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Doctoral Programme in Biomedicine, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ji-Hyeon Park
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
| | - Carolina Lemos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- UnIGENe, IBMC—Institute for Molecular and Cell Biology, 4200-135 Porto, Portugal
- ICBAS—Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia Campelos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Department of Pathology, Ipatimup Diagnostics, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Irene Gullo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Diana Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Department of Biomedical Laboratory Sciences, ESTeSC—Coimbra Health School, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
| | - Gilza Gonçalves
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
| | - Dina Leitão
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - João Luís Neto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Ana André
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
| | - Clara Borges
- Medical Oncology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal; (C.B.); (D.A.)
| | - Daniela Almeida
- Medical Oncology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal; (C.B.); (D.A.)
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Fátima Carneiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Raquel Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.-H.P.); (H.-J.L.); (S.-H.K.); (H.-K.Y.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Carla Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.A.); (C.P.); (C.L.); (S.C.); (I.G.); (D.M.); (A.A.); (F.C.); (R.A.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Correspondence: ; Tel.: +351-220-408-800
| |
Collapse
|
161
|
Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021; 9:biomedicines9091245. [PMID: 34572431 PMCID: PMC8468168 DOI: 10.3390/biomedicines9091245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
"Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
Collapse
Affiliation(s)
- Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Asma Abdullah Nurul
- School of Health Science, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre, UKM, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
162
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
163
|
Li Q, Li Y, Jiang H, Xiao Z, Wu X, Zhang H, Zhao Y, Du F, Chen Y, Wu Z, Li J, Hu W, Cho CH, Shen J, Li M. Vitamin D suppressed gastric cancer cell growth through downregulating CD44 expression in vitro and in vivo. Nutrition 2021; 91-92:111413. [PMID: 34450383 DOI: 10.1016/j.nut.2021.111413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Vitamin D deficiency was found to be associated with increased risk for gastric cancer (GC). We previously found that vitamin D inhibited GC cell growth in vitro. However, the in vivo antitumor effect of vitamin D in GC as well as the underlying mechanisms are not well understood. The aim of this study was to investigate the anticancer effect of vitamin D on GC both in vitro and in vivo. METHODS Human GC cells MKN45, MKN28, and KATO III were used. The expressions of vitamin D receptor (VDR) and CD44 were downregulated by using predesigned siRNA molecules. Cell viability was evaluated by methyl thiazolyl tetrazolium assay. Soft agar assay was used for colony formation of GC cells. Flow cytometry was used to assess CD44-positive cell population. CD44high cancer cells were enriched by using anti-CD44-conjugated magnetic microbeads. Quantitative real-time polymerase chain reaction and Western blot were performed to detect gene and protein expressions, respectively. Clinical samples were collected for evaluation of the correlation of VDR and CD44 expression. Orthotopic tumor-bearing mice were established to evaluate the antitumor effect of vitamin D. RESULTS The results showed that the active form of vitamin D, 1,25(OH)2D3, had a remarkable inhibitory effect in CD44-expressing human GC MKN45 and KATO III cells, but not in CD44-null MKN28 cells. The gene expressions of CD44 and VDR in GC cell lines and GC patient tissues were positively correlated. Furthermore, 1,25(OH)2D3 suppressed MKN45 and KATO III cell growth through VDR-induced suppression of CD44. Additionally, we demonstrated that 1,25(OH)2D3 inhibited Wnt/β-catenin signaling pathway, which might lead to the downregulation of CD44. In an orthotopic GC nude mice model, both oral intake of vitamin D and intraperitoneal injection with 1,25(OH)2D3 could significantly inhibit orthotopic GC growth and CD44 expression in vivo. CONCLUSION To our knowledge, this study provided the first evidence that vitamin D suppressed GC cell growth both in vitro and in vivo through downregulating CD44. The present study sheds light on repurposing vitamin D as a potential therapeutic agent for GC prevention and treatment.
Collapse
Affiliation(s)
- Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Houxiang Jiang
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wanna Medical College), Anhui, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Guangdong, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China.
| |
Collapse
|
164
|
Asano T, Kaneko MK, Kato Y. Development of a Novel Epitope Mapping System: RIEDL Insertion for Epitope Mapping Method. Monoclon Antib Immunodiagn Immunother 2021; 40:162-167. [PMID: 34424761 DOI: 10.1089/mab.2021.0023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To clarify the binding region of monoclonal antibodies (mAbs) to target molecules, it is very essential to understand the pharmacological function of each mAb. Although deletion mutants and point mutants are usefully utilized for epitope mapping, we often experience the difficulty of determining the mAb epitope against membrane proteins. We aimed to develop a novel method to determine the binding region of mAbs using epitope tag system. We first checked the reactivity of an anti-CD44 mAb (C44Mab-5) to several deletion mutants of CD44. We then employed the RIEDL tag system ("RIEDL" peptide and LpMab-7 mAb). We inserted the "RIEDL" peptide into the CD44 protein from the 21st to 41st amino acid (AA). The transfectants produced were stained by LpMab-7 and C44Mab-5 in flow cytometry. C44Mab-5 did not react with 30th-361st AA of the deletion mutant of CD44. Furthermore, the reaction of C44Mab-5 to RIEDL tag-inserted CD44 from 25th to 36th AA was lost, although LpMab-7 detected most of the RIEDL tag-inserted CD44 from 21st to 41st AA. The epitope of C44Mab-5 for CD44 was determined to be the peptide from 25th to 36th AA of CD44 using RIEDL insertion for epitope mapping (REMAP) method. The REMAP method might be useful for determining the critical epitope of functional mAbs against many target molecules.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
165
|
Zhang M, Dai Z, Zhao X, Wang G, Lai R. Anticarin β Inhibits Human Glioma Progression by Suppressing Cancer Stemness via STAT3. Front Oncol 2021; 11:715673. [PMID: 34408983 PMCID: PMC8366317 DOI: 10.3389/fonc.2021.715673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer. It is very difficult to cure malignant glioma because of the presence of glioma stem cells, which are a barrier to cure, have high tumorigenesis, associated with drug resistance, and responsible for relapse by regulating stemness genes. In this study, our results demonstrated that anticarin β, a natural compound from Antiaris toxicaria, can effectively and selectively suppress proliferation and cause apoptosis in glioma cells, which has an IC50 that is 100 times lower than that in mouse normal neural stem cells. Importantly, cell sphere formation assay and real time-quantitative analysis reveal that anticarin β inhibits cancer stemness by modulating related stemness gene expression. Additionally, anticarin β induces DNA damage to regulate the oncogene expression of signal transducer and activator of transcription 3 (STAT3), Akt, mitogen-activated protein kinases (MAPKs), and eventually leading to apoptosis. Furthermore, anticarin β effectively inhibits glioma growth and prolongs the lifts pan of tumor-bearing mice without systemic toxicity in the orthotopic xenograft mice model. These results suggest that anticarin β is a promising candidate inhibitor for malignant glioma.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
166
|
Yang P, Rhea PR, Conway T, Nookala S, Hegde V, Gagea M, Ajami NJ, Harribance SL, Ochoa J, Sastry JK, Cohen L. Human Biofield Therapy Modulates Tumor Microenvironment and Cancer Stemness in Mouse Lung Carcinoma. Integr Cancer Ther 2021; 19:1534735420940398. [PMID: 32975128 PMCID: PMC7522816 DOI: 10.1177/1534735420940398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies have demonstrated that purported biofield therapy emitted from humans can inhibit the proliferation of cancer cells and suppress tumor growth in various cancers. We explored the effects of biofield therapy on tumor growth in the Lewis lung carcinoma and expanded mechanistic outcomes. We found biofield therapy did not inhibit tumor growth. However, the experimental (Ex) condition exposed tumors had a significantly higher percentage of necrosis (24.4 ± 6.8%) compared with that of the Control condition (6.5 ± 2.7%; P < .02) and cleaved caspase-3 positive cells were almost 2.3-fold higher (P < .05). Similarly, tumor-infiltrating lymphocytes profiling showed that CD8+/CD45+ immune cell population was significantly increased by 2.7-fold in Ex condition (P < .01) whereas the number of intratumoral FoxP3+/CD4+ (T-reg cells) was 30.4% lower than that of the Control group (P = .01), leading to a significant 3.1-fold increase in the ratio of CD8+/T-reg cells (P < .01). Additionally, there was a 51% lower level of strongly stained CD68+ cells (P < .01), 57.9% lower level of F4/80high/CD206+ (M2 macrophages; P < .02) and a significant 1.8-fold increase of the ratio of M1/M2 macrophages (P < .02). Furthermore, Ex exposure resulted in a 15% reduction of stem cell marker CD44 and a significant 33% reduction of SOX2 compared with that of the Controls (P < .02). The Ex group also engaged in almost 50% less movement throughout the session than the Controls. These findings suggest that exposure to purported biofields from a human is capable of enhancing cancer cell death, in part mediated through modification of the tumor microenvironment and stemness of tumor cells in mouse Lewis lung carcinoma model. Future research should focus on defining the optimal treatment duration, replication with different biofield therapists, and exploring the mechanisms of action.
Collapse
Affiliation(s)
- Peiying Yang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrea R Rhea
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tara Conway
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sita Nookala
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Venkatesh Hegde
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim J Ajami
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jewel Ochoa
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Lorenzo Cohen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
167
|
Osawa Y, Kawai H, Tsunoda T, Komatsu H, Okawara M, Tsutsui Y, Yoshida Y, Yoshikawa S, Mori T, Yamazoe T, Yoshio S, Oide T, Inui A, Kanto T. Cluster of Differentiation 44 Promotes Liver Fibrosis and Serves as a Biomarker in Congestive Hepatopathy. Hepatol Commun 2021; 5:1437-1447. [PMID: 34430787 PMCID: PMC8369942 DOI: 10.1002/hep4.1721] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Congestive hepatopathy (CH) with chronic passive congestion is characterized by the progression of liver fibrosis without prominent inflammation and hepatocellular damage. Currently, the lack of reliable biomarkers for liver fibrosis in CH often precludes the clinical management of patients with CH. To explore fibrosis biomarkers, we performed proteome analysis on serum exosomes isolated from patients with CH after the Fontan procedure. Exosomal cluster of differentiation (CD)44 levels were increased in patients with CH compared to healthy volunteers and was accompanied by increases in serum levels of soluble CD44 and CD44 expression in the liver. To address the roles of CD44 in CH, we established a mouse model of chronic liver congestion by partial inferior vena cava ligation (pIVCL) that mimics CH by fibrosis progression with less inflammation and cellular damage. In the pIVCL mice, enhanced CD44 expression in hepatic stellate cells (HSCs) and deposition of its ligand hyaluronan were observed in the liver. Blood levels of soluble CD44 were correlated with liver fibrosis. The blockade of CD44 with specific antibody inhibited liver fibrosis in pIVCL mice and was accompanied by a reduction in S100 calcium-binding protein A4 expression following activation of HSCs. Conclusion: Chronic liver congestion promotes fibrosis through CD44. This identifies CD44 as a novel biomarker and therapeutic target of liver fibrosis in patients with CH.
Collapse
Affiliation(s)
- Yosuke Osawa
- Department of GastroenterologyInternational University of Health and Welfare HospitalNasushiobaraJapan.,Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Hironari Kawai
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Tomoyuki Tsunoda
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Haruki Komatsu
- Department of PediatricsToho University Medical CenterSakura HospitalSakuraJapan
| | - Miku Okawara
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuriko Tsutsui
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuichi Yoshida
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Shiori Yoshikawa
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taizo Mori
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taiji Yamazoe
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Sachiyo Yoshio
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Takashi Oide
- Department of Pathology and Laboratory MedicineKohnodai HospitalNational Center for Global Health and MedicineIchikawaJapan
| | - Ayano Inui
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Tatsuya Kanto
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| |
Collapse
|
168
|
Kumari M, Krishnamurthy PT, Sola P. Targeted Drug Therapy to Overcome Chemoresistance in Triple-negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:559-572. [PMID: 32370716 DOI: 10.2174/1568009620666200506110850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative Breast Cancer (TNBC) is the most aggressive and prevailing breast cancer subtype. The chemotherapeutics used in the treatment of TNBC suffer from chemoresistance, dose-limiting toxicities and off-target side effects. As a result, conventional chemotherapeutics are unable to prevent tumor growth, metastasis and result in failure of therapy. Various new targets such as BCSCs surface markers (CD44, CD133, ALDH1), signaling pathways (IL-6/JAK/STAT3, notch), pro and anti-apoptotic proteins (Bcl-2, Bcl-xL, DR4, DR5), hypoxic factors (HIF-1α, HIF-2α) and drug efflux transporters (ABCC1, ABCG2 and ABCB1) have been exploited to treat TNBC. Further, to improve the efficacy and safety of conventional chemotherapeutics, researchers have tried to deliver anticancer agents specifically to the TNBCs using nanocarrier based drug delivery. In this review, an effort has been made to highlight the various factors responsible for the chemoresistance in TNBC, novel molecular targets of TNBC and nano-delivery systems employed to achieve sitespecific drug delivery to improve efficacy and reduce off-target side effects.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| |
Collapse
|
169
|
Sukowati CHC, El-Khobar KE, Tiribelli C. Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: Importance of molecular variations, cellular heterogeneity, and cancer stem cells. World J Stem Cells 2021; 13:795-824. [PMID: 34367478 PMCID: PMC8316870 DOI: 10.4252/wjsc.v13.i7.795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy related to diverse etiological factors. Different oncogenic mechanisms and genetic variations lead to multiple HCC molecular classifications. Recently, an immune-based strategy using immune checkpoint inhibitors (ICIs) was presented in HCC therapy, especially with ICIs against the programmed death-1 (PD-1) and its ligand PD-L1. However, despite the success of anti-PD-1/PD-L1 in other cancers, a substantial proportion of HCC patients fail to respond. In this review, we gather current information on biomarkers of anti-PD-1/PD-L1 treatment and the contribution of HCC heterogeneity and hepatic cancer stem cells (CSCs). Genetic variations of PD-1 and PD-L1 are associated with chronic liver disease and progression to cancer. PD-L1 expression in tumoral tissues is differentially expressed in CSCs, particularly in those with a close association with the tumor microenvironment. This information will be beneficial for the selection of patients and the management of the ICIs against PD-1/PD-L1.
Collapse
Affiliation(s)
| | | | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| |
Collapse
|
170
|
Lin J, Chen Z, Li Z, Nong D, Li X, Huang G, Hao N, Liang J, Li W. Screening of hub genes and evaluation of the growth regulatory role of CD44 in metastatic prostate cancer. Oncol Rep 2021; 46:196. [PMID: 34296309 PMCID: PMC8317150 DOI: 10.3892/or.2021.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer type in men worldwide. Currently, the management of metastatic PCa (mPCa) remains a challenge to urologists. The analysis of hub genes and pathways may facilitate the understanding of the molecular mechanism of PCa. In the present study, to identify the hub genes in the mPCa, the three datasets GSE3325, GSE6919 and GSE38241 were downloaded from the platform of the Gene Expression Omnibus and function enrichment analysis of differentially expressed genes (DEGs) was performed. A total of 168 DEGs were obtained and the DEGs were significantly enriched in ‘cell junction’ and ‘cell adhesion’, among others. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that DEGs were enriched in three pathways including ‘focal adhesion’, ‘renal cell carcinoma’ and ‘Hippo signaling pathway’. The results of the protein-protein interaction network revealed that the hub genes in mPCa were separately PTEN, Rac GTPase-activating protein 1, protein regulator of cytokinesis 1, PDZ binding kinase, centromere-associated protein E, NUF2 component of NDC80 kinetochore complex, TPX2 microtubule nucleation factor, SOX2, CD44 and ubiquitin-like with PHD and ring finger domains 1. As a hub gene, CD44 was differentially expressed in PCa, as determined by Oncomine analysis. Further experiments in vivo demonstrated that SB-3CT, a selective matrix metalloproteinase inhibitor that has been reported to block CD44 cleavage and inhibit the downstream signaling pathway, suppressed the tumorigenicity of PCa cells by decreasing the expression levels of pyruvate dehydrogenase kinase 1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4. Moreover, the combination therapy with SB-3CT and docetaxel was more effective in inhibiting PCa compared with monotherapy. In conclusion, the identification of DEGs and the in vivo experimental results helped to elucidate the molecular mechanisms of PCa and provided a potential strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Junhao Lin
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi Chen
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zuan Li
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deyong Nong
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ximing Li
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guihai Huang
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Nan Hao
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianbo Liang
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei Li
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
171
|
Al-Hassan JM, Wei D, Chakraborty S, Conway T, Rhea P, Wei B, Tran M, Gagea M, Afzal M, Oommen S, Nair D, Paul BM, Yang P. Fraction B From Catfish Epidermal Secretions Kills Pancreatic Cancer Cells, Inhibits CD44 Expression and Stemness, and Alters Cancer Cell Metabolism. Front Pharmacol 2021; 12:659590. [PMID: 34349642 PMCID: PMC8326461 DOI: 10.3389/fphar.2021.659590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer related death in western countries. The successful treatment of PDAC remains limited. We investigated the effect of Fraction B, which is a fraction purified from catfish (Arius bilineatus, Val.) skin secretions containing proteins and lipids, on PDAC biology both in-vivo and in-vitro. We report here that Fraction B potently suppressed the proliferation of both human and mouse pancreatic cancer cells in vitro and significantly reduced the growth of their relevant xenograft (Panc02) and orthotopic tumors (human Panc-1 cells) (p < 0.05). The Reverse Phase Protein Array (RPPA) data obtained from the tumor tissues derived from orthotopic tumor bearing mice treated with Fraction B showed that Fraction B altered the cancer stem cells related pathways and regulated glucose and glutamine metabolism. The down-regulation of the cancer stem cell marker CD44 expression was further confirmed in Panc-1 cells. CBC and blood chemistry analyses showed no systemic toxicity in Fraction B treated Panc-1 tumor bearing mice compared to that of control group. Our data support that Fraction B is a potential candidate for PDAC treatment.
Collapse
Affiliation(s)
- Jassim M Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tara Conway
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Patrea Rhea
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bo Wei
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Megan Tran
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Sosamma Oommen
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Divya Nair
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Bincy M Paul
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
172
|
Asano T, Kaneko MK, Takei J, Tateyama N, Kato Y. Epitope Mapping of the Anti-CD44 Monoclonal Antibody (C 44Mab-46) Using the REMAP Method. Monoclon Antib Immunodiagn Immunother 2021; 40:156-161. [PMID: 34283655 DOI: 10.1089/mab.2021.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD44 functions as a major hyaluronan receptor on most cell types, with roles in cell adhesion, migration, proliferation, differentiation, and survival. The CD44 gene comprises 20 exons, with alternative splicing producing many different isoforms. CD44 variant isoforms exhibit tissue-specific expression patterns and have been studied as therapeutic targets for several cancers; therefore, anti-CD44 monoclonal antibodies (mAbs) are useful for investigating CD44 expression in various cancers. Previously, we established an anti-CD44 mAb, C44Mab-46 (IgG1, κ), by immunizing mice with the CD44v3-10 ectodomain. Although C44Mab-46 recognized all CD44 isoforms, the binding epitope of C44Mab-46 has not been determined. In this study, we first checked the reactivity of C44Mab-46 to several CD44v3-10 deletion mutants such as dN79, dN124, dN147, and dN224. We found the N-terminus of the C44Mab-46-binding epitope between residues 147 and 224 of CD44v3-10. We next investigated this epitope using a novel mapping system: RIEDL insertion for epitope mapping (REMAP) method. We constructed 31 CD44 standard (CD44s) mutants where the RIEDL tag was inserted into the expected epitope region in CD44s. We observed that the C44Mab-46 epitope constituted five amino acids: 174-TDDDV-178 of CD44s. Thus, the REMAP method could be used to determine mAb binding epitopes for membrane proteins.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
173
|
Guo W, Wang H, Chen P, Shen X, Zhang B, Liu J, Peng H, Xiao X. Identification and Characterization of Multiple Myeloma Stem Cell-Like Cells. Cancers (Basel) 2021; 13:cancers13143523. [PMID: 34298738 PMCID: PMC8306148 DOI: 10.3390/cancers13143523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However, the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem cell-like cells, MMSCs). Although there is no recognized standard for identification and classification, it is confirmed that they are closely related to the drug resistance and relapse of MM. This article therefore systematically summarizes the latest developments in MMSCs with possible markers of MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and discusses the active pathways that related to stemness of MM.
Collapse
Affiliation(s)
- Wancheng Guo
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Peng Chen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Xiaokai Shen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Boxin Zhang
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Correspondence: (H.P.); (X.X.); Tel.: +86-731-85295296 (H.P.); +86-731-84805449 (X.X.)
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Correspondence: (H.P.); (X.X.); Tel.: +86-731-85295296 (H.P.); +86-731-84805449 (X.X.)
| |
Collapse
|
174
|
De Capua A, Palladino A, Chino M, Attanasio C, Lombardi A, Vecchione R, Netti PA. Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules. RSC Adv 2021; 11:24487-24499. [PMID: 35481036 PMCID: PMC9036919 DOI: 10.1039/d1ra03322k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023] Open
Abstract
Selectivity in tumor targeting is one of the major issues in cancer treatment. Therefore, surface functionalization of drug delivery systems with active moieties, able to selectively target tumors, has become a worldwide-recognized strategy. The CD44 receptor is largely used as a biomarker, being overexpressed in several tumors, and consequently as a target thanks to the identification of the CD44 binding peptide. Here we implemented the CD44 binding peptide logic onto an oil core–polymer multilayer shell, taking into account and optimizing all relevant features of drug delivery systems, such as small size (down to 100 nm), narrow size distribution, drug loading capability, antifouling and biodegradability. Besides promoting active targeting, the oil core-based system enables the delivery of natural and synthetic therapeutic compounds. Biological tests, using curcumin as a bioactive compound and fluorescent tag, demonstrated that CD44 binding peptide-functionalized nanocapsules selectively accumulate and internalize in cancer cells, compared to the control, thanks to ligand–receptor binding. CD44 binding peptide was implemented onto an oil core–polymer multilayer shell of 100 nm size and completely biodegradable. Biological tests, demonstrated that the proposed nanocarrier selectively accumulates and internalizes in cancer cells.![]()
Collapse
Affiliation(s)
- A De Capua
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy .,Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II Naples 80125 Italy
| | - A Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II Via F. Delpino 1 80137 Naples Italy
| | - M Chino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo Via Cintia 45 80126 Naples Italy
| | - C Attanasio
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy .,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II Via F. Delpino 1 80137 Naples Italy
| | - A Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo Via Cintia 45 80126 Naples Italy
| | - R Vecchione
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy
| | - P A Netti
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy .,Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II Naples 80125 Italy.,Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II P. le Tecchio 80 80125 Naples Italy
| |
Collapse
|
175
|
Manzo G. Specific and Aspecific Molecular Checkpoints as Potential Targets for Dismantling Tumor Hierarchy and Preventing Relapse and Metastasis Through Shielded Cytolytic Treatments. Front Cell Dev Biol 2021; 9:665321. [PMID: 34295890 PMCID: PMC8291084 DOI: 10.3389/fcell.2021.665321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
I have recently theorized that several similarities exist between the tumor process and embryo development. Starting from an initial cancer stem cell (CSC0), similar to an embryonic stem cell (ESC), after implantation in a niche, primary self-renewing CSCs (CSC1s) would arise, which then generate secondary proliferating CSCs (CSC2s). From these epithelial CSCs, tertiary mesenchymal CSCs (CSC3s) would arise, which, under favorable stereotrophic conditions, by asymmetric proliferation, would generate cancer progenitor cells (CPCs) and then cancer differentiated cells (CDCs), thus giving a defined cell heterogeneity and hierarchy. CSC1s-CSC2s-CSC3s-CPCs-CDCs would constitute a defined "tumor growth module," able to generate new tumor modules, forming a spherical avascular mass, similar to a tumor sphere. Further growth in situ of this initial tumor would require implantation in the host and vascularization through the overexpression of some aspecific checkpoint molecules, such as CD44, ID, LIF, HSP70, and HLA-G. To expand and spread in the host tissues, this vascularized tumor would then carry on a real growth strategy based on other specific checkpoint factors, such as those contained in the extracellular vesicles (EVs), namely, microRNAs, messenger RNAs, long non-coding RNAs, and integrins. These EV components would be crucial in tumor progression because they can mediate intercellular communications in the surrounding microenvironment and systemically, dictating to recipient cells a new tumor-enslaved phenotype, thus determining pre-metastatic conditions. Moreover, by their induction properties, the EV contents could also frustrate in time the effects of cytolytic tumor therapies, where EVs released by killed CSCs might enter other cancer and non-cancer cells, thus giving chemoresistance, non-CSC/CSC transition (recurrence), and metastasis. Thus, antitumor cytotoxic treatments, "shielded" from the EV-specific checkpoints by suitable adjuvant agents, simultaneously targeting the aforesaid aspecific checkpoints should be necessary for dismantling the hierarchic tumor structure, avoiding recurrence and preventing metastasis.
Collapse
|
176
|
Dietz MS, Sutton TL, Walker BS, Gast CE, Zarour L, Sengupta SK, Swain JR, Eng J, Parappilly M, Limbach K, Sattler A, Burlingame E, Chin Y, Gower A, Mira JLM, Sapre A, Chiu YJ, Clayburgh DR, Pommier SJ, Cetnar JP, Fischer JM, Jaboin JJ, Pommier RF, Sheppard BC, Tsikitis VL, Skalet AH, Mayo SC, Lopez CD, Gray JW, Mills GB, Mitri Z, Chang YH, Chin K, Wong MH. Relevance of circulating hybrid cells as a non-invasive biomarker for myriad solid tumors. Sci Rep 2021; 11:13630. [PMID: 34211050 PMCID: PMC8249418 DOI: 10.1038/s41598-021-93053-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Metastatic progression defines the final stages of tumor evolution and underlies the majority of cancer-related deaths. The heterogeneity in disseminated tumor cell populations capable of seeding and growing in distant organ sites contributes to the development of treatment resistant disease. We recently reported the identification of a novel tumor-derived cell population, circulating hybrid cells (CHCs), harboring attributes from both macrophages and neoplastic cells, including functional characteristics important to metastatic spread. These disseminated hybrids outnumber conventionally defined circulating tumor cells (CTCs) in cancer patients. It is unknown if CHCs represent a generalized cancer mechanism for cell dissemination, or if this population is relevant to the metastatic cascade. Herein, we detect CHCs in the peripheral blood of patients with cancer in myriad disease sites encompassing epithelial and non-epithelial malignancies. Further, we demonstrate that in vivo-derived hybrid cells harbor tumor-initiating capacity in murine cancer models and that CHCs from human breast cancer patients express stem cell antigens, features consistent with the potential to seed and grow at metastatic sites. Finally, we reveal heterogeneity of CHC phenotypes reflect key tumor features, including oncogenic mutations and functional protein expression. Importantly, this novel population of disseminated neoplastic cells opens a new area in cancer biology and renewed opportunity for battling metastatic disease.
Collapse
Affiliation(s)
- Matthew S Dietz
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.,Department of Pediatrics, University of Utah, Salt Lake City, UT, 84113, USA
| | | | | | - Charles E Gast
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA
| | - Luai Zarour
- Department of Surgery, OHSU, Portland, OR, 97239, USA.,Department of General Surgery, Legacy Medical Group, Gresham, OR, 97030, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA
| | - John R Swain
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, OHSU, Portland, OR, 97239, USA
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA
| | | | - Ariana Sattler
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA
| | - Erik Burlingame
- Department of Biomedical Engineering, OHSU, Portland, OR, 97239, USA.,Computational Biology Program, OHSU, Portland, OR, 97239, USA
| | - Yuki Chin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA
| | - Austin Gower
- Cancer Early Detection Advanced Research Center, OHSU, Portland, OR, 97201, USA
| | - Jose L Montoya Mira
- Department of Biomedical Engineering, OHSU, Portland, OR, 97239, USA.,Cancer Early Detection Advanced Research Center, OHSU, Portland, OR, 97201, USA
| | - Ajay Sapre
- Cancer Early Detection Advanced Research Center, OHSU, Portland, OR, 97201, USA
| | - Yu-Jui Chiu
- Cancer Early Detection Advanced Research Center, OHSU, Portland, OR, 97201, USA
| | - Daniel R Clayburgh
- Department of Otolaryngology, OHSU, Portland, OR, 97239, USA.,Operative Care Division, Portland Veterans Affairs Medical Center, Portland, OR, 97239, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | | | - Jeremy P Cetnar
- The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.,Department of Medicine, OHSU, Portland, OR, 97239, USA
| | - Jared M Fischer
- Cancer Early Detection Advanced Research Center, OHSU, Portland, OR, 97201, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.,Department of Molecule and Medical Genetics, OHSU, Portland, OR, 97239, USA
| | - Jerry J Jaboin
- The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.,Department of Radiation Medicine, OHSU, Portland, OR, 97239, USA
| | - Rodney F Pommier
- Department of Surgery, OHSU, Portland, OR, 97239, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | - Brett C Sheppard
- Department of Surgery, OHSU, Portland, OR, 97239, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | | | - Alison H Skalet
- The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.,Casey Eye Institute, OHSU, Portland, OR, 97239, USA
| | - Skye C Mayo
- Department of Surgery, OHSU, Portland, OR, 97239, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | - Charles D Lopez
- The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.,Department of Medicine, OHSU, Portland, OR, 97239, USA
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU, Portland, OR, 97239, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | - Gordon B Mills
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | - Zahi Mitri
- The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.,Department of Medicine, OHSU, Portland, OR, 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, OHSU, Portland, OR, 97239, USA.,Computational Biology Program, OHSU, Portland, OR, 97239, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | - Koei Chin
- Department of Biomedical Engineering, OHSU, Portland, OR, 97239, USA.,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 S. Moody Ave., Mailcode KC-CDCB, Portland, OR, 97201, USA. .,The Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| |
Collapse
|
177
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
178
|
Lin S, Shen Z, Yang Y, Qiu Y, Wang Y, Wang X. Expression profiles of radio-resistant genes in colorectal cancer cells. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
179
|
Hu Y, Zhang Y, Gao J, Lian X, Wang Y. The clinicopathological and prognostic value of CD44 expression in bladder cancer: a study based on meta-analysis and TCGA data. Bioengineered 2021; 11:572-581. [PMID: 32434417 PMCID: PMC7250188 DOI: 10.1080/21655979.2020.1765500] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD44 is reported to be involved in tumor invasion and metastasis. However, the role of cancer stem cell marker CD44 in bladder cancer still remains controversial. Hence, the correlations between CD44 expression and the clinicopathological features and the prognosis of bladder cancer were investigated. Publications using immunohistochemical methods were identified. The Cancer Genome Atlas (TCGA) data were also analyzed. The odds ratios (ORs) or hazard ratios (HRs) with their 95% confidence intervals (95% CIs) were calculated. 14 studies involving 1107 tissue samples were included. CD44 expression in bladder cancer was lower than in non-tumor tissue samples (OR = 0.14, P = 0.005), which was consistent with TCGA data. CD44 expression was correlated with advanced T stage (OR = 1.76, P = 0.029) and lymph node metastasis (OR = 4.09, P < 0.001). Multivariate survival analysis showed that CD44 expression was not linked to tumor-specific survival, overall survival, and recurrence/relapse-free survival, but was associated with disease failure (HR = 2.912, 95% CI = 1.51-5.61). No relationships of CD44 expression with the clinicopathological features and overall survival were found from TCGA data. Our finding suggested that CD44 expression may be correlated with progression, metastasis, and disease failure of bladder cancer. However, further large-scale studies are needed.Abbreviations: CD44: Cluster of Differentiation 44; CIs: Confidence Intervals; CSCs: Cancer Stem Cells; EMT: Epithelial-mesenchymal Transition; HRs: Hazard Ratios; ORs: Odds Ratios; TCGA: The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yongrui Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jialin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Lian
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuantao Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
180
|
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13112535. [PMID: 34064074 PMCID: PMC8196790 DOI: 10.3390/cancers13112535] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. In September 2020, the first APC and laser system were conditionally approved for clinical use in Japan. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. These early trials have demonstrated that in addition to direct cell killing, there is a significant therapeutic host immune response that greatly contributes to the success of the therapy. Although the first clinical use of NIR-PIT targeted epidermal growth factor receptor (EGFR), many other targets are suitable for NIR-PIT. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT can be used in combination with other therapies, such as immune checkpoint inhibitors, to enhance the therapeutic effect. Thus, NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies.
Collapse
|
181
|
Hardas A, Suárez-Bonnet A, Beck S, Becker WE, Ramírez GA, Priestnall SL. Canine Gastric Carcinomas: A Histopathological and Immunohistochemical Study and Similarities with the Human Counterpart. Animals (Basel) 2021; 11:ani11051409. [PMID: 34069167 PMCID: PMC8156491 DOI: 10.3390/ani11051409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Gastric carcinoma (GC) continues to be one of the leading causes of death in humans and is the most common neoplasm in the stomachs of dogs. In both species, previous studies have demonstrated that the disease is heterogeneous, with genetic and environmental factors playing a quintessential role in disease pathogenesis. Compared to humans, the incidence of gastric carcinoma in dogs is low although, in a small number of breeds, a higher incidence has been reported. In dogs, the etiology and molecular pathways involved remain largely unknown. This retrospective study reviews current signalment data, evaluates the inflammatory component and association with Helicobacter spp. presence in various canine gastric carcinoma histological subtypes, and investigates potential molecular pathways involved in one of the largest study cohorts to date. The benefit of such a comparative study is to highlight the parallel histological features and molecular pathways between dogs and humans. Abstract Canine gastric carcinoma (CGC) affects both sexes in relatively equal proportions, with a mean age of nine years, and the highest frequency in Staffordshire bull terriers. The most common histological subtype in 149 CGC cases was the undifferentiated carcinoma. CGCs were associated with increased chronic inflammation parameters and a greater chronic inflammatory score when Helicobacter spp. were present. Understanding the molecular pathways of gastric carcinoma is challenging. All markers showed variable expression for each subtype. Expression of the cell cycle regulator 14-3-3σ was positive in undifferentiated, tubular and papillary carcinomas. This demonstrates that 14-3-3σ could serve as an immunohistochemical marker in routine diagnosis and that mucinous, papillary and signet-ring cell (SRC) carcinomas follow a 14-3-3σ independent pathway. p16, another cell cycle regulator, showed increased expression in mucinous and SRC carcinomas. Expression of the adhesion molecules E-cadherin and CD44 appear context-dependent, with switching within tumor emboli potentially playing an important role in tumor cell survival, during invasion and metastasis. Within neoplastic emboli, acinar structures lacked expression of all markers, suggesting an independent molecular pathway that requires further investigation. These findings demonstrate similarities and differences between dogs and humans, albeit further clinicopathological data and molecular analysis are required.
Collapse
Affiliation(s)
- Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (A.S.-B.); (W.E.B.); (S.L.P.)
- Correspondence:
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (A.S.-B.); (W.E.B.); (S.L.P.)
| | - Sam Beck
- VPG Histology, Horfield, Bristol BS7 0BJ, UK;
| | - William E. Becker
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (A.S.-B.); (W.E.B.); (S.L.P.)
| | - Gustavo A. Ramírez
- Department of Animal Science, School of Agriculture, Food Science and Veterinary Medicine (ETSEA), University of Lleida, 25198 Lleida, Spain;
| | - Simon L. Priestnall
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (A.S.-B.); (W.E.B.); (S.L.P.)
| |
Collapse
|
182
|
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of how GC develops is vague, and therapies are inefficient. The function of microRNAs (miRNAs) in tumorigenesis has attracted the attention from many scientists. During the development of GC, miRNAs function in the regulation of different phenotypes, such as proliferation, apoptosis, invasion and metastasis, drug sensitivity and resistance, and stem-cell-like properties. MiRNAs were evaluated for use in diagnostic and prognostic predictions and exhibited considerable accuracy. Although many problems exist for the application of therapy, current studies showed the antitumor effects of miRNAs. This paper reviews recent advances in miRNA mechanisms in the development of GC and the potential use of miRNAs in the diagnosis and treatment of GC.
Collapse
|
183
|
Therapeutic Strategies for Targeting Ovarian Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22105059. [PMID: 34064635 PMCID: PMC8151268 DOI: 10.3390/ijms22105059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a fatal gynecological malignancy. Although first-line chemotherapy and surgical operation are effective treatments for ovarian cancer, its clinical management remains a challenge owing to intrinsic or acquired drug resistance and relapse at local or distal lesions. Cancer stem cells (CSCs) are a small subpopulation of cells inside tumor tissues, and they can self-renew and differentiate. CSCs are responsible for the cancer malignancy involved in relapses as well as resistance to chemotherapy and radiation. These malignant properties of CSCs are regulated by cell surface receptors and intracellular pluripotency-associated factors triggered by internal or external stimuli from the tumor microenvironment. The malignancy of CSCs can be attenuated by individual or combined restraining of cell surface receptors and intracellular pluripotency-associated factors. Therefore, targeted therapy against CSCs is a feasible therapeutic tool against ovarian cancer. In this paper, we review the prominent roles of cell surface receptors and intracellular pluripotency-associated factors in mediating the stemness and malignancy of ovarian CSCs.
Collapse
|
184
|
Lin JX, Yoon C, Li P, Yu Q, Qiu SL, Zheng CH, Yoon SS, Huang CM. Increased CD44 Expression and MEK Activity Predict Worse Prognosis in Gastric Adenocarcinoma Patients Undergoing Gastrectomy. J Gastrointest Surg 2021; 25:1147-1155. [PMID: 32410176 DOI: 10.1007/s11605-020-04616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/16/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE We have shown that activation of the receptor tyrosine kinase (RTK)-RAS pathway in gastric adenocarcinoma (GA) promotes acquisition of cancer stem-like cell (CSC) phenotypes including metastasis and chemotherapy resistance. Here, we evaluated the prognostic value of the CSC marker CD44 and the RTK-RAS activation marker phosphorylated MEK (p-MEK) in patients with resectable GA. METHODS CD44 and p-MEK were measured in tumors from GA patients who underwent curative-intent gastrectomy at Fujian Medical University Union Hospital (FMUUH, n = 134) and Memorial Sloan Kettering Cancer Center (MSKCC, n = 56). Overall survival (OS) was estimated by the Kaplan-Meier method, and multivariate analysis was performed by Cox proportional hazards regression modeling. RESULTS Despite multiple significant differences in clinicopathologic characteristics between the FMUUH and MSKCC cohorts, high CD44 and high p-MEK expression were both independent negative prognostic factors for OS on univariate analysis in both cohorts (p < 0.05). Both factors were also significant on multivariate analysis when the cohorts were combined (p ≤ 0.003). On subgroup analysis, the 5-year OS of patients with both high CD44 and high p-MEK was 39.5-41.6% compared with 55.4-66.4% for patients with low CD44. High CD44 expression was associated with more advanced TNM stage in the FMUUH cohort and larger tumor size and undifferentiated histology in the MSKCC cohort. High p-MEK was associated with undifferentiated histology in the FMUUH cohort and larger tumor size in the MSKCC cohort. CONCLUSIONS Increased CD44 and p-MEK expression are predictive of worse OS in GA patients. Thus, targeting the RTK-RAS pathway may benefit patients with CD44-positive, RAS-activated GA by inhibiting metastasis and reversing chemotherapy resistance.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-1209, New York, NY, 10065, USA
| | - Changhwan Yoon
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-1209, New York, NY, 10065, USA
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Qian Yu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Sam S Yoon
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, H-1209, New York, NY, 10065, USA.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
185
|
Geskovski N, Matevska-Geshkovska N, Dimchevska Sazdovska S, Glavas Dodov M, Mladenovska K, Goracinova K. The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:375-401. [PMID: 33981532 PMCID: PMC8093552 DOI: 10.3762/bjnano.12.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 05/21/2023]
Abstract
Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of data related to the unique molecular signatures of each tumor subtype, have emerged as an important tool for detailed profiling of tumors. They provide an opportunity to develop targeting agents for early detection and diagnosis, and to select the most effective combinatorial treatment options. Alongside, the design of the nanoscale carriers needs to cope with novel trends of molecular screening. Also, multiple targeting ligands needed for robust and specific interactions with the targeted cell populations have to be introduced, which should result in substantial improvements in safety and efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future chemotherapeutic protocols.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Nadica Matevska-Geshkovska
- Center for Pharmaceutical Biomolecular Analyses, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- Department of Nanobiotechnology, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Kristina Mladenovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
186
|
Koshkin SA, Anatskaya OV, Vinogradov AE, Uversky VN, Dayhoff GW, Bystriakova MA, Pospelov VA, Tolkunova EN. Isolation and Characterization of Human Colon Adenocarcinoma Stem-Like Cells Based on the Endogenous Expression of the Stem Markers. Int J Mol Sci 2021; 22:4682. [PMID: 33925224 PMCID: PMC8124683 DOI: 10.3390/ijms22094682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.
Collapse
Affiliation(s)
- Sergei A. Koshkin
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA 19107, USA
| | - Olga V. Anatskaya
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Alexander E. Vinogradov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Margarita A. Bystriakova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Valery A. Pospelov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Elena N. Tolkunova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| |
Collapse
|
187
|
PKCα Inhibition as a Strategy to Sensitize Neuroblastoma Stem Cells to Etoposide by Stimulating Ferroptosis. Antioxidants (Basel) 2021; 10:antiox10050691. [PMID: 33924765 PMCID: PMC8145544 DOI: 10.3390/antiox10050691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a limited cell population inside a tumor bulk characterized by high levels of glutathione (GSH), the most important antioxidant thiol of which cysteine is the limiting amino acid for GSH biosynthesis. In fact, CSCs over-express xCT, a cystine transporter stabilized on cell membrane through interaction with CD44, a stemness marker whose expression is modulated by protein kinase Cα (PKCα). Since many chemotherapeutic drugs, such as Etoposide, exert their cytotoxic action by increasing reactive oxygen species (ROS) production, the presence of high antioxidant defenses confers to CSCs a crucial role in chemoresistance. In this study, Etoposide-sensitive and -resistant neuroblastoma CSCs were chronically treated with Etoposide, given alone or in combination with Sulfasalazine (SSZ) or with an inhibitor of PKCα (C2-4), which target xCT directly or indirectly, respectively. Both combined approaches are able to sensitize CSCs to Etoposide by decreasing intracellular GSH levels, inducing a metabolic switch from OXPHOS to aerobic glycolysis, down-regulating glutathione-peroxidase-4 activity and stimulating lipid peroxidation, thus leading to ferroptosis. Our results suggest, for the first time, that PKCα inhibition inducing ferroptosis might be a useful strategy with which to fight CSC chemoresistance.
Collapse
|
188
|
Windmöller BA, Beshay M, Helweg LP, Flottmann C, Beermann M, Förster C, Wilkens L, Greiner JFW, Kaltschmidt C, Kaltschmidt B. Novel Primary Human Cancer Stem-Like Cell Populations from Non-Small Cell Lung Cancer: Inhibition of Cell Survival by Targeting NF-κB and MYC Signaling. Cells 2021; 10:cells10051024. [PMID: 33925297 PMCID: PMC8145874 DOI: 10.3390/cells10051024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that cancer stem cells (CSCs), a small subpopulation of self-renewal cancer cells, are responsible for tumor growth, treatment resistance, and cancer relapse and are thus of enormous clinical interest. Here, we aimed to isolate new CSC-like cells derived from human primary non-small cell lung cancer (NSCLC) specimens and to analyze the influence of different inhibitors of NF-κB and MYC signaling on cell survival. CSC-like cells were established from three squamous cell carcinomas (SCC) and three adenocarcinomas (AC) of the lung and were shown to express common CSC markers such as Prominin-1, CD44-antigen, and Nestin. Further, cells gave rise to spherical cancer organoids. Inhibition of MYC and NF-κB signaling using KJ-Pyr-9, dexamethasone, and pyrrolidinedithiocarbamate resulted in significant reductions in cell survival for SCC- and AC-derived cells. However, inhibition of the protein–protein interaction of MYC/NMYC proto-oncogenes with Myc-associated factor X (MAX) using KJ-Pyr-9 revealed the most promising survival-decreasing effects. Next to the establishment of six novel in vitro models for studying NSCLC-derived CSC-like populations, the presented investigations might provide new insights into potential novel therapies targeting NF-κB/MYC to improve clinical outcomes in NSCLC patients. Nevertheless, the full picture of downstream signaling still remains elusive.
Collapse
Affiliation(s)
- Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Morris Beshay
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Department of General Thoracic Surgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617 Bielefeld, Germany
| | - Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Clara Flottmann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Miriam Beermann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
189
|
Hendawy H, Esmail AD, Zahani AMN, Elmahdi AH, Ibrahiem A. Clinicopathological correlation of stem cell markers expression in oral squamous cell carcinoma; relation to patients` outcome. J Immunoassay Immunochem 2021; 42:571-595. [PMID: 33896397 DOI: 10.1080/15321819.2021.1911814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Squamous cell carcinoma (OSCC) is the commonest oral malignancy.The overall 5 year survival of OSCC has remained at 50%, largely unchanged for 40 years. CSCs are important within the development, invasion, drug resistance, and prediction of carcinomas treatment outcome. ALDH1 and CD44 are commonly used epithelial tumors cancer stem-like cells surface markers. Materials: Our study aimed to judge CD44 and ALDH1 immunohistochemical expressions in 44 cases of OSCC and relates the expression to patients' survival. Results: High CD44 & ALDH1 expressions were significantly expressed in variable histologic grades of OSCCs, large sized carcinomas, presence lymph vascular invasion, presence of nodal and distant metastasis, advanced TNM clinical stage, recurrence and death during follow up period (P ≤ 0.05). Reduced DFS and three years overall survival were significantly recorded in cases with high CD44 expression, and high ALDH1 expression (p < 0.05). CD44 & ALDH1 expressions, histologic grade, tumor size were the independent predictors of DFS and three years OS. Conclusion: CD44 and ALDH1 expressions are valuable prognostic factors in OSCC and could be well considered predictors for patients' 3 years OS and DFS.
Collapse
Affiliation(s)
- Heba Hendawy
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - A Doaa Esmail
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - A M Nashwa Zahani
- Teaching Assistant, Northern Border University Faculty of Medicine, Arar, Saudi Arabia
| | - Al Hoda Elmahdi
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - Afaf Ibrahiem
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt.,Lecturer of pathology, Faculty medicine, Mansoura University , Egypt
| |
Collapse
|
190
|
Wang X, Cheng R, Zhong Z. Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel. Acta Biomater 2021; 125:280-289. [PMID: 33677162 DOI: 10.1016/j.actbio.2021.02.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/13/2023]
Abstract
It is highly tempting to develop high-efficacy targeted nanotherapeutics based on FDA approved polymers like PLGA. Herein, we describe facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked star-PLGA nanoparticles (HA-sPLGA XNPs) for targeted and reduction-triggered release of docetaxel (DTX), achieving markedly enhanced treatment of A549 lung tumor in vivo. HA-sPLGA XNPs carrying 5.2 wt.% DTX (DTX-HA-sPLGA XNPs) had a size of 105.5 ± 0.5 nm and great stability while almost completely released DTX under 10 mM glutathione. Confocal and flow cytometry experiments revealed fast cellular uptake of HA-sPLGA XNPs by CD44-overexpressing A549 cells. DTX-HA-sPLGA XNPs held much higher potency to A549 cells than DTX-loaded HA-surfaced and non-crosslinked star-PLGA nanoparticles (DTX-HA-sPLGA NPs), DTX-loaded HA-surfaced and non-crosslinked linear-PLGA nanoparticles (DTX-HA-lPLGA NPs), and free DTX (IC50 = 0.18 versus 0.38, 1.21 and 0.83 µg DTX equiv./mL). Intriguingly, DTX-HA-sPLGA XNPs revealed a prolonged elimination half-life of 4.18 h and notable accretion of 9.49%ID/g in A549 tumor after 8 h injection. Accordingly, DTX-HA-sPLGA XNPs demonstrated significantly better suppression of subcutaneous A549 lung tumor than DTX-HA-PLGA NPs, DTX-HA-lPLGA NPs, and free DTX controls. HA-sPLGA XNPs with low toxicity and multi-functionality appear to be a unique targeted vehicle for chemotherapy of CD44-overexpressing tumors. STATEMENT OF SIGNIFICANCE: PLGA nanoparticles with superior safety and biodegradability are among the most advanced vehicles for therapeutic delivery. The efficacy of nanomedicines based on PLGA is, however, suboptimal, due to poor tumor cell selectivity and uptake, drug leakage, and slow drug release at the pathological site. It is highly desired to develop functional PLGA nanoparticles to improve their tumor-targeting ability and therapeutic efficacy. The sophisticated fabrication and potential toxicity concerns of reported novel PLGA nanoformulations, nevertheless, preclude their clinical translation. Here, we developed hyaluronic acid-surfaced and disulfide-crosslinked star-PLGA nanoparticles (HA-sPLGA XNPs) that enabled stable encapsulation and targeted delivery of docetaxel (DTX) to CD44+ A549 lung cancer cells in vitro and in vivo, affording markedly improved tumor accumulation and repression and lower side effects compared with free DTX control. Importantly, HA-sPLGA XNPs are based on fully biocompatible materials and comparably simple to fabricate. The evident tumor targetability and safety makes HA-sPLGA XNPs a unique and potentially translatable platform for chemotherapy of CD44+ cancers.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
191
|
Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer. Int J Mol Sci 2021; 22:3953. [PMID: 33921242 PMCID: PMC8069142 DOI: 10.3390/ijms22083953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-day treatments have not shown real improvements in reducing the high mortality rate and the short survival of the disease. The average survival is less than 5% after 5 years. New innovative treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many authors. No ideal drug or drug combination for this targeting has been found as yet. With this goal in mind, here we have explored a different complementary treatment based on abundant previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell's proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway seems to have been bypassed by conventional mainstream oncological practice. There are existing drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The association of these three drugs has never been tested either in the laboratory or in the clinical setting. We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an additional weapon for treating pancreatic cancer.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| |
Collapse
|
192
|
Dastych M, Hubatka F, Turanek-Knotigova P, Masek J, Kroupa R, Raška M, Turanek J, Prochazka L. Overexpression of CD44v8-10 in Colon Polyps-A Possible Key to Early Diagnosis. Pathol Oncol Res 2021; 27:614281. [PMID: 34257584 PMCID: PMC8262190 DOI: 10.3389/pore.2021.614281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 01/10/2023]
Abstract
Background and aims: The majority of colorectal cancers arise from detectable adenomatous or serrated lesions. Here we demonstrate how deregulated alternative splicing of CD44 gene in diseased colon mucosa results in downregulation of standard isoform of CD44 gene (CD44s) and upregulation of variant isoform CD44v8-10. Our aim is to show that upregulation of CD44v8-10 isoform is a possible marker of precancerous lesion in human colon. Methods: We analysed pairs of fresh biopsy specimen of large intestine in a cohort of 50 patients. We studied and compared alternative splicing profile of CD44 gene in colon polyps and adjoined healthy colon mucosa. We performed end-point and qRT PCR, western blotting, IHC staining and flow cytometry analyses. Results: We detected more than five-fold overexpression of CD44v8-10 isoform and almost twenty-fold downregulation of standard isoform CD44s in colon polyps compared to adjoined healthy tissue with p = 0.018 and p < 0.001 in a cohort of 50 patients. Our results also show that aberrant splicing of CD44 occurs in both biologically distinct subtypes of colorectal adenoma possibly in ESRP-1 specific manner. Conclusion: 92% of the colon polyp positive patients overexpressed CD44v8-10 isoform in their colon polyps while only 36% of them had positive fecal occult blood test which is currently a standard non-invasive screening technique. Impact: We believe that our results are important for further steps leading to application of CD44v8-10 isoform as a biomarker of colorectal precancerosis in non-invasive detection. Early detection of colon precancerosis means successful prevention of colorectal carcinoma.
Collapse
Affiliation(s)
- Milan Dastych
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine Masaryk University Brno, Brno, Czech Republic
| | - Frantisek Hubatka
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic.,C2P NEXARS, Campus Science Park, Brno, Czech Republic
| | - Pavlina Turanek-Knotigova
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic.,C2P NEXARS, Campus Science Park, Brno, Czech Republic
| | - Josef Masek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Radek Kroupa
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine Masaryk University Brno, Brno, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic.,C2P NEXARS, Campus Science Park, Brno, Czech Republic.,Faculty of Medicine in Hradec Kralove, Institute of Hygiene and Preventive Medicine, Charles University, Hradec Kralove, Czech Republic.,Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic
| | - Lubomir Prochazka
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
193
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
194
|
Gomari MM, Farsimadan M, Rostami N, Mahmoudi Z, Fadaie M, Farhani I, Tarighi P. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108374. [PMID: 34083044 DOI: 10.1016/j.mrrev.2021.108374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Among cell surface markers, CD44 is considered the main marker for identifying and isolating the cancer stem cells (CSCs) among other cells and has attracted significant attention in a variety of research areas. Many studies have shown the essential roles of CD44 in initiation, metastasis, and tumorigenesis in different types of cancer; however, the validity of CD44 as a therapeutic or diagnostic target has not been fully confirmed in some other studies. Whereas the association of specific single nucleotide polymorphisms (SNPs) in the CD44 gene and related variants with cancer risk have been observed in clinical investigations, the significance of these findings remains controversial. Here, we aimed to provide an up-to-date overview of recent studies on the association of CD44 polymorphisms and its variants with different kinds of cancer to determine whether or not it can be used as an appropriate candidate for cancer tracking.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Zahra Mahmoudi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ibrahim Farhani
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
195
|
Single-cell sequencing technology in tumor research. Clin Chim Acta 2021; 518:101-109. [PMID: 33766554 DOI: 10.1016/j.cca.2021.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity is a key characteristic of malignant tumors and a significant obstacle in cancer treatment and research. Although bulk tissue sequencing has wide coverage and high accuracy, it can only represent the dominant cell signal information of each sample, while masking the unique gene expression of rare cells; therefore it cannot represent genes that are unstable within a subgroup, but unchanged in a majority of cells. With the progress of genomic technology, the emergence of single-cell sequencing (SCS) has effectively solved the above problem. Genetic, transcriptomic and epigenetic sequencing at the single-cell level provides an important basis for us to correctly classify the cell subsets of heterogeneous tumor populations and to reveal the process of complex changes in tumor cells at the molecular level. Single-cell sequencing technology has been applied to the field of cancer, revealing exciting discoveries in the potential mechanisms of tumor driver gene mutation, clonal evolution, invasion and metastasis. It also provides favorable conditions for developing new tumor biomarkers and providing more accurate and individualized targeted tumor therapy. Herein, we review the steps and methods of single-cell sequencing and highlight the application of SCS in tumor diagnosis and clinical treatment.
Collapse
|
196
|
Navarro-Marchal SA, Griñán-Lisón C, Entrena JM, Ruiz-Alcalá G, Tristán-Manzano M, Martin F, Pérez-Victoria I, Peula-García JM, Marchal JA. Anti-CD44-Conjugated Olive Oil Liquid Nanocapsules for Targeting Pancreatic Cancer Stem Cells. Biomacromolecules 2021; 22:1374-1388. [PMID: 33724003 DOI: 10.1021/acs.biomac.0c01546] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The latest trends in cancer research and nanomedicine focus on using nanocarriers to target cancer stem cells (CSCs). Specifically, lipid liquid nanocapsules are usually developed as nanocarriers for lipophilic drug delivery. Here, we developed olive oil liquid NCs (O2LNCs) functionalized by covalent coupling of an anti-CD44-fluorescein isothiocyanate antibody (αCD44). First, O2LNCs are formed by a core of olive oil surrounded by a shell containing phospholipids, a nonionic surfactant, and deoxycholic acid molecules. Then, O2LNCs were coated with an αCD44 antibody (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physicochemical characterization, as well as clear evidence of their efficacy in vitro and in vivo were demonstrated. Our results indicate the high targeted uptake of these αCD44-O2LNCs, and the increased antitumor efficacy (up to four times) of paclitaxel-loaded-αCD44-O2LNC compared to free paclitaxel in pancreatic CSCs (PCSCs). Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model.
Collapse
Affiliation(s)
- Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - José-Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain.,Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain
| | - Gloria Ruiz-Alcalá
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain
| | - José Manuel Peula-García
- Biocolloids and Fluids Physics Group, Faculty of Sciences, University of Granada, 18014 Granada, Spain.,Department of Applied Physics II, University of Málaga, 29071 Málaga, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
197
|
Xia H, Herrera J, Smith K, Yang L, Gilbertsen A, Benyumov A, Racila E, Bitterman PB, Henke CA. Hyaluronan/CD44 axis regulates S100A4-mediated mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L926-L941. [PMID: 33719561 DOI: 10.1152/ajplung.00456.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite modest improvement in patient outcomes from recent advances in pharmacotherapy targeting fibrogenic signaling pathways, idiopathic pulmonary fibrosis (IPF) remains a major unsolved clinical problem. One reason for this is that available antifibrotic agents slow down but do not arrest fibrotic progression. To arrest fibrotic progression, its obligatory drivers need to be identified. We previously discovered that fibrogenic mesenchymal progenitor cells (MPCs) are key drivers of fibrotic progression in IPF, serving as cells of origin for disease-mediating myofibroblasts. IPF MPCs have high levels of nuclear S100A4, which interacts with the proteasome to promote p53 degradation and self-renewal. However, the mechanism underlying S100A4 accumulation in the nucleus of IPF MPCs remains unknown. Here we show that hyaluronan (HA) is present in the fibroblastic focus together with CD44-expressing MPCs and that ligation of CD44 by HA triggers S100A4 nuclear translocation to support IPF MPC self-renewal. The mechanism involves HA-mediated formation of a CD44/S100A4/transportin 1 complex, which promotes S100A4 nuclear import. In a humanized mouse model of pulmonary fibrosis, IPF MPC fibrogenicity was significantly attenuated by 1) knockdown of CD44 or 2) introduction of an S100A4 mutant construct that prevents S100A4 nuclear import. These data indicate that signaling through the HA/CD44/S100A4 axis is an integral component of IPF MPC fibrogenicity.
Collapse
Affiliation(s)
- Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Herrera
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexy Benyumov
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Emilian Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
198
|
Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Azami N, Hamzehlou S, Farahani MV, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10030349. [PMID: 33652780 PMCID: PMC7996755 DOI: 10.3390/antiox10030349] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients. Therefore, experiments have been directed towards revealing underlying mechanisms responsible for DOX resistance and ameliorating its adverse effects. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is activated to increase levels of reactive oxygen species (ROS) in cells to protect them against oxidative stress. It has been reported that Nrf2 activation is associated with drug resistance. In cells exposed to DOX, stimulation of Nrf2 signaling protects cells against cell death. Various upstream mediators regulate Nrf2 in DOX resistance. Strategies, both pharmacological and genetic interventions, have been applied for reversing DOX resistance. However, Nrf2 induction is of importance for alleviating side effects of DOX. Pharmacological agents with naturally occurring compounds as the most common have been used for inducing Nrf2 signaling in DOX amelioration. Furthermore, signaling networks in which Nrf2 is a key player for protection against DOX adverse effects have been revealed and are discussed in the current review.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Mahdi Vasheghani Farahani
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
199
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
200
|
Du L, Cheng Q, Zheng H, Liu J, Liu L, Chen Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin Cancer Biol 2021; 82:150-161. [PMID: 33631296 DOI: 10.1016/j.semcancer.2021.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer initiating/ stem cells (CSCs) undergo self-renewal and differentiation that contributes to tumor initiation, recurrence and metastasis in colorectal cancer (CRC). Targeting of colorectal cancer stem cells (CCSCs) holds significant promise in eradicating cancer cells and ultimately curing patients with cancer. In this review, we will introduce the current progress of CCSC studies, including the specific surface markers of CCSCs, the intrinsic signaling pathways that regulate the stemness and differentiation characteristics of CCSCs, and the tumor organoid model for CCSC research. We will focus on how these studies will lead to the progress in targeting specific surface markers or signaling pathways on CCSCs by monoclonal antibodies, or by natural or synthetic compounds, or by immunotherapy. As CSCs are highly heterogeneous and plastic, we suggest that combinatory approaches that target the stemness network may represent an important strategy for eradicating cancers.
Collapse
Affiliation(s)
- Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China.
| | - Qi Cheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The Graduate University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Hao Zheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|