151
|
Li K, Lv C, Feng XQ. Curvature-dependent adhesion of vesicles. Phys Rev E 2023; 107:024405. [PMID: 36932565 DOI: 10.1103/physreve.107.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
The morphology and motion behavior of a cell are highly influenced by its external biological, chemical, and physical stimuli, and geometric confinement. In this paper, it is revealed that the mean curvature of the substrate significantly influences the adhesion of vesicles. By employing the variational method and investigating the Helfrich free energy, the configuration of axisymmetric vesicles adhered to curved spherical substrates is obtained theoretically. Moreover, numerical simulations based on the finite element method are also carried out to investigate the adhesion of vesicles on curved substrates with complex shapes. It is found that for a fixed area of a vesicle, its total free energy depends mainly on the mean curvature of the adhesion region but is insensitive to the specific shape of the substrate, and the total free energy monotonically decreases with the increase in the mean curvature. In addition, possible biological significances of the curvature-dependent adhesion, such as the shape of the cell and antibiofouling, are discussed. This study may deepen our understanding of the underlying mechanisms of adhesion in cellular activities.
Collapse
Affiliation(s)
- Kun Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cunjing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.,Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
152
|
Asif M, Inam A, Adamowski J, Shoaib M, Tariq H, Ahmad S, Alizadeh MR, Nazeer A. Development of methods for the simplification of complex group built causal loop diagrams: A case study of the Rechna doab. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
153
|
Escoda-Torroella M, Moya C, Ruiz-Torres JA, Fraile Rodríguez A, Labarta A, Batlle X. Selective anisotropic growth of Bi 2S 3 nanoparticles with adjustable optical properties. Phys Chem Chem Phys 2023; 25:3900-3911. [PMID: 36648114 DOI: 10.1039/d2cp05437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report on the controlled synthesis and functionalization in two steps of elongated Bi2S3 nanoparticles within a wide range of sizes. First, we show the effect of the temperature and reaction time on the synthesis of two series of nanoparticles by the reaction of thioacetamide with bismuth(III) neodecanoate in the presence of organic surfactants. At 105 °C and long reaction times, nanoneedles of about 45 nm in length containing larger crystallites are obtained, while highly crystalline nanorods of about 30 nm in length are dominant at 165 °C, regardless of the reaction time. The optical properties of both types of nanoparticles show an enhancement of the band gap compared to bulk Bi2S3. This is likely to arise from quantum confinement effects caused by the small particle dimensions relative to the typical exciton size, together with an increase in near-infrared absorption due to the anisotropic particle shape. Second, a ligand exchange approach has been developed to transfer the Bi2S3 nanoparticles to aqueous solutions by grafting dimercaptosuccinic acid onto the surface of the particles. The as-prepared coated nanoparticles show good stability in water, in a wide biological pH range, and in phosphate-buffered saline solutions. Overall, this work highlights the controlled design at all levels - from the inorganic core to the organic surface coating - of elongated Bi2S3 nanoparticles, leading to a tunable optical response by tuning their morphology and size.
Collapse
Affiliation(s)
- Mariona Escoda-Torroella
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Carlos Moya
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - José A Ruiz-Torres
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Arantxa Fraile Rodríguez
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Amílcar Labarta
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Xavier Batlle
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
154
|
Santos LF. Quantum avalanches wipe out the effects of disorder in interacting systems. Nature 2023; 614:419-420. [PMID: 36702962 DOI: 10.1038/d41586-023-00143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
155
|
Besara T, Ramirez DC, Sun J, Falb NW, Lan W, Whalen JB, Singh DJ, Siegrist T. Locating anionic hydrogen in Ba3(Yb,Lu)2O5H2: A combined approach of X-ray diffraction, crystal chemistry, and DFT calculations. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
156
|
Naik S, Sarangi SN, Samal D, Samal SL. Effect of an inner-transition metal (Dy) intercalation on the structure and magnetic properties of 1T–TiSe2. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
157
|
Acikgoz M, Mollabashi L, Rahimi S, Jalali-Asadabadi S, Rudowicz C. DFT computations combined with semiempirical modeling of variations with temperature of spectroscopic and magnetic properties of Gd 3+-doped PbTiO 3. Phys Chem Chem Phys 2023; 25:3986-4004. [PMID: 36648488 DOI: 10.1039/d2cp03098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rare-earth or 3d transition metal dopants in perovskites have potential to induce interesting features, thus opening opportunities for investigations and applications. Hence, understanding some features, i.e., defect structure, site of incorporation, valence state, and mechanism of charge compensation, in a wide range of temperature is crucial for their technological applications. A comprehensive understanding of the mechanism of structural changes in PbTiO3 doped with trivalent rare-earths is significant for their potential applications in photonics. To unravel the structural changes, we utilize the density functional theory (DFT) to optimize structural data, which then serve as input for the semiempirical superposition model (SPM) analysis of spectroscopic and magnetic properties of Gd3+-doped PbTiO3. We compute the formation energies of the doped compounds with and without O-vacancy to determine the stable composition. Analysis of the Bader electron charges computed using DFT plus quantum theory of atoms in molecules enables elucidating the effects of the Gd dopant and O-vacancy on the ionic and covalent bonds and, thereby, chemical stability of the compositions. To explain and corroborate the zero-field splitting parameters (ZFSPs) measured by EMR and the lattice parameter changes obtained from XRD, we employ SPM. The optimized structures obtained from ab initio computations for various structural models of Gd3+ doped PbTiO3 are utilized as input data for SPM calculations of ZFPs. This enables theoretical analysis of variations of ZFSPs from 5 to 780 K. The results were fine-tuned by matching with available experimental EMR data for Gd3+ probes in PbTiO3 nanoparticles. Modeling has been carried out considering several possible structural models and the role of an O-vacancy around Gd3+ centers. The results show that the two-fold modeling approach, combining DFT and SPM, provides a reliable description of experimental data. Comparative analysis indicates that the Ti-site is less favorable for being replaced by Gd3+ with/without O-vacancy. This analysis confirms the plausibility of the Pb2+ site for Gd3+ dopants and sheds light on the changes of crystal structure during the phase transitions occurring in PbTiO3 with decreasing temperature.
Collapse
Affiliation(s)
- Muhammed Acikgoz
- Department of Science, The State University of New York (SUNY) Maritime College, New York 10465, USA.
| | - Leila Mollabashi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan 81746-73441, Iran.
| | - Shahrbano Rahimi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan 81746-73441, Iran.
| | - Saeid Jalali-Asadabadi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan 81746-73441, Iran.
| | - Czesław Rudowicz
- Faculty of Chemistry, A. Mickiewicz University (AMU), 61-614 Poznań, Poland
| |
Collapse
|
158
|
The impact of flash sintering on densification and plasticity of strontium titanate: high heating rates, dislocation nucleation and plastic flow. Ann Ital Chir 2023. [DOI: 10.1016/j.jeurceramsoc.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
159
|
Tian H, Gao X, Zhang Y, Che S, Xu T, Cheung P, Watanabe K, Taniguchi T, Randeria M, Zhang F, Lau CN, Bockrath MW. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 2023; 614:440-444. [PMID: 36792742 DOI: 10.1038/s41586-022-05576-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/18/2022] [Indexed: 02/17/2023]
Abstract
In a flat band superconductor, the charge carriers' group velocity vF is extremely slow. Superconductivity therein is particularly intriguing, being related to the long-standing mysteries of high-temperature superconductors1 and heavy-fermion systems2. Yet the emergence of superconductivity in flat bands would appear paradoxical, as a small vF in the conventional Bardeen-Cooper-Schrieffer theory implies vanishing coherence length, superfluid stiffness and critical current. Here, using twisted bilayer graphene3-7, we explore the profound effect of vanishingly small velocity in a superconducting Dirac flat band system8-13. Using Schwinger-limited non-linear transport studies14,15, we demonstrate an extremely slow normal state drift velocity vn ≈ 1,000 m s-1 for filling fraction ν between -1/2 and -3/4 of the moiré superlattice. In the superconducting state, the same velocity limit constitutes a new limiting mechanism for the critical current, analogous to a relativistic superfluid16. Importantly, our measurement of superfluid stiffness, which controls the superconductor's electrodynamic response, shows that it is not dominated by the kinetic energy but instead by the interaction-driven superconducting gap, consistent with recent theories on a quantum geometric contribution8-12. We find evidence for small Cooper pairs, characteristic of the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover17-19, with an unprecedented ratio of the superconducting transition temperature to the Fermi temperature exceeding unity and discuss how this arises for ultra-strong coupling superconductivity in ultra-flat Dirac bands.
Collapse
Affiliation(s)
- Haidong Tian
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Xueshi Gao
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Yuxin Zhang
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Shi Che
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Tianyi Xu
- Department of Physics, The University of Texas at Dallas, Richardson, TX, USA
| | - Patrick Cheung
- Department of Physics, The University of Texas at Dallas, Richardson, TX, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Mohit Randeria
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Fan Zhang
- Department of Physics, The University of Texas at Dallas, Richardson, TX, USA
| | - Chun Ning Lau
- Department of Physics, The Ohio State University, Columbus, OH, USA.
| | - Marc W Bockrath
- Department of Physics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
160
|
An Exception to Linearity in EACN Framework: Twin-Tail Lipophiles and n-Alkanes Interactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
161
|
Aurzada F, Mukherjee S. Persistence probabilities of weighted sums of stationary Gaussian sequences. Stoch Process Their Appl 2023. [DOI: 10.1016/j.spa.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
162
|
Liu Y, Yang S, Sui F, Qi R, Dong S, Yang P, Yue F. Abnormal vibrational anisotropy and thermal properties of a two-dimensional GeAs semiconductor. Phys Chem Chem Phys 2023; 25:3745-3751. [PMID: 36644899 DOI: 10.1039/d2cp05264d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anisotropy in a crystal structure plays a striking role in determining the optical, electrical and thermal properties of the condensed matter. Here, we investigated in-plane vibrational anisotropy in a two-dimensional (2D) van der Waals (vdW)-layered GeAs narrow-gap semiconductor by combining microstructural characterization and polarization Raman spectroscopy. Interestingly, not only the intensities but also the Raman shifts in all modes evolved periodically with different symmetries as the polarization angle changed continuously, which could be well-analyzed using the Raman tensors and further interpreted from the phonon dispersion relations. More importantly, the temperature-dependent Raman intensities of the Raman modes in the range from 83 K to 823 K gave a thermal-related uniform constant, based on which key parameters, including the thermal expansion coefficient, Grüneisen constant and quasi-particle lifetime, could be directly derived, which were in line with the calculated predictions. This investigation provides a comprehensive understanding of structure-dependent optical anisotropy in 2D vdW-layered GeAs and suggests a new idea for exploring the thermal properties of related materials using temperature-dependent Raman spectroscopy.
Collapse
Affiliation(s)
- Yucheng Liu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Shuai Yang
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Fengrui Sui
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China. .,State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shangwei Dong
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Pingxiong Yang
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Fangyu Yue
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
163
|
Liu J, Amaral LAN, Keten S. A new approach for extracting information from protein dynamics. Proteins 2023; 91:183-195. [PMID: 36094321 PMCID: PMC9844508 DOI: 10.1002/prot.26421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023]
Abstract
Increased ability to predict protein structures is moving research focus towards understanding protein dynamics. A promising approach is to represent protein dynamics through networks and take advantage of well-developed methods from network science. Most studies build protein dynamics networks from correlation measures, an approach that only works under very specific conditions, instead of the more robust inverse approach. Thus, we apply the inverse approach to the dynamics of protein dihedral angles, a system of internal coordinates, to avoid structural alignment. Using the well-characterized adhesion protein, FimH, we show that our method identifies networks that are physically interpretable, robust, and relevant to the allosteric pathway sites. We further use our approach to detect dynamical differences, despite structural similarity, for Siglec-8 in the immune system, and the SARS-CoV-2 spike protein. Our study demonstrates that using the inverse approach to extract a network from protein dynamics yields important biophysical insights.
Collapse
Affiliation(s)
- Jenny Liu
- Department of Mechanical Engineering, Northwestern University
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University
| |
Collapse
|
164
|
Wang D, Wen X, Zhang D, Tan X, Tang J. Single-polymer dynamics of starch-like branched ring polymers in steady shear flow. Int J Biol Macromol 2023; 227:173-181. [PMID: 36535348 DOI: 10.1016/j.ijbiomac.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The stretching dynamics and dynamical behaviors of individual branched ring polymer (BRP), a coarse-grained model for some types of the starch, in steady shear flow are studied by using a hybrid mesoscale simulation approach that combines multiparticle collision dynamics with standard molecular dynamics. By analyzing the stretched configuration of BRPs, we find the polymer size increases nonmonotonically with increasing branch length. Meanwhile, the decrease of the alignment angle of the stretched configuration of BRPs follows a universal power law during the first downward phase as the shear rate increases. Constructing the three-dimensional surface of the polymer's ring backbone and tracing the temporal fluctuations of the surface's normal vector along the simulation trajectory, the tumbling and tank-treading motion are clearly reflected by periodic and non-periodic changes of the normal vector. Interestingly, these temporal changes are much more regular than that of the gyration tensor. Thus, a novel cross-correlation function, which is the correlation between fluctuations of the normal vector along the flow direction and the velocity-gradient direction, is proposed to analyze the tumbling motion that usually coexists with the tank-treading motion. This function can naturally address the fails of traditional method that analyzing the tumbling motion by determining the correlation of temporal fluctuations of the gyration tensor Gαα. By analyzing the dynamical behaviors of BRPs, diverse dependences of the tumbling frequency ωTB and tank-treading frequency ωTT on the shear rate γ̇ are observed at a wide range of shear rates and polymer sizes. Furthermore, our simulations also reveal that the tank-treading motion is more stable than the tumbling motion for small-branch-size BRPs but the tumbling motion is more stable than the tank-treading motion for large-branch-size BRPs.
Collapse
Affiliation(s)
- Deyin Wang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Xiaohui Wen
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China.
| | - Dong Zhang
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xinguan Tan
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Jiajun Tang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
165
|
Tang C, Zhang L, Sanvito S, Du A. Enabling Room-Temperature Triferroic Coupling in Dual Transition-Metal Dichalcogenide Monolayers Via Electronic Asymmetry. J Am Chem Soc 2023; 145:2485-2491. [PMID: 36657156 DOI: 10.1021/jacs.2c11862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triferroic compounds are the ideal platform for multistate information devices but are rare in the two-dimensional (2D) form, and none of them can maintain macroscopic order at room temperature. Herein, we propose a general strategy for achieving 2D triferroicity by imposing electric polarization into a ferroelastic magnet. Accordingly, dual transition-metal dichalcogenides, for example, 1T'-CrCoS4, are demonstrated to display room-temperature triferroicity. The magnetic order of 1T'-CrCoS4 undergoes a magnetic transition during the ferroic switching, indicating robust triferroic magnetoelectric coupling. In addition, the negative out-of-plane piezoelectricity and strain-tunable magnetic anisotropy make the 1T'-CrCoS4 monolayer a strong candidate for practical applications. Following the proposed scheme, a new class of 2D room-temperature triferroic materials is introduced, providing a promising platform for advanced spintronics.
Collapse
Affiliation(s)
- Cheng Tang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD4000, Australia
| | - Lei Zhang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD4000, Australia
| | - Stefano Sanvito
- School of Physics and CRANN Institute, Trinity College, Dublin2, Ireland
| | - Aijun Du
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD4000, Australia
| |
Collapse
|
166
|
Topological Structure of the Order Parameter of Unconventional Superconductors Based on d- and f- Elements. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The superconducting order parameter (SOP) of a triplet superconductor UTe2 was constructed using the topological space group approach, in which, in contrast to phenomenological and topological approaches, the single pair function and phase winding in condensate are different quantities. The connection between them is investigated for the D2h point group and the m′m′m magnetic group. It is shown how a non-unitary pair function of UTe2 can be constructed using one-dimensional real irreducible representations and Ginzburg–Landau phase winding. It is also shown that the total phase winding is non-zero in magnetic symmetry only. Experimental data on the superconducting order parameter of topological superconductors UPt3, Sr2RuO4, LaPt3P, and UTe2 are considered and peculiarities of their nodal structures are connected with the theoretical results of the topological space group approach.
Collapse
|
167
|
Domain-wall magnetoelectric coupling in multiferroic hexagonal YbFeO 3 films. Sci Rep 2023; 13:1755. [PMID: 36720991 PMCID: PMC9889801 DOI: 10.1038/s41598-023-28365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3 thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.
Collapse
|
168
|
Cheng Y, Qin M, Li P, Yang L. Solvent-driven biotoxin into nano-units as a versatile and sensitive SERS strategy. RSC Adv 2023; 13:4584-4589. [PMID: 36760288 PMCID: PMC9897048 DOI: 10.1039/d2ra07216e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In recent years, marine biotoxins have posed a great threat to fishermen, human security and military prevention and control due to their diverse, complex, toxic and widespread nature, and the development of rapid and sensitive methods is essential. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for the rapid and sensitive in situ detection of marine biotoxins due to its advantages of rapid, high sensitivity, and fingerprinting information. However, the complex structure of toxin molecules, small Raman scattering cross-section and low affinity to conventional substrates make it difficult to achieve direct and sensitive SERS detection. Here, we generate a large number of active hotspot structures by constructing monolayer nanoparticle films with high density hotspots, which have good target molecules that can actively access the hotspot structures using nanocapillaries. In addition, the efficient and stable signal can be achieved during dynamic detection, increasing the practicality and operability of the method. This versatile SERS method achieves highly sensitive detection of marine biotoxins GTX and NOD, providing good prospects for convenient, rapid and sensitive SERS detection of marine biotoxins.
Collapse
Affiliation(s)
- Yizhuang Cheng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- University of Science & Technology of China Hefei 230026 Anhui China
- Hefei Cancer Hospital, Chinese Academy of Sciences Hefei 230031 Anhui China
| | - Miao Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- University of Science & Technology of China Hefei 230026 Anhui China
| |
Collapse
|
169
|
Influence of holmium doping and oxygen nonstoichiometry on the transport properties of perovskite-type Ca0.6−xSr0.4HoxMnO3−δ. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
170
|
Charge instability of topological Fermi arcs in chiral crystal CoSi. Sci Bull (Beijing) 2023; 68:165-172. [PMID: 36653217 DOI: 10.1016/j.scib.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/09/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron-electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron-electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.
Collapse
|
171
|
Goldt S, Krzakala F, Zdeborová L, Brunel N. Bayesian reconstruction of memories stored in neural networks from their connectivity. PLoS Comput Biol 2023; 19:e1010813. [PMID: 36716332 PMCID: PMC9910750 DOI: 10.1371/journal.pcbi.1010813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/09/2023] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
The advent of comprehensive synaptic wiring diagrams of large neural circuits has created the field of connectomics and given rise to a number of open research questions. One such question is whether it is possible to reconstruct the information stored in a recurrent network of neurons, given its synaptic connectivity matrix. Here, we address this question by determining when solving such an inference problem is theoretically possible in specific attractor network models and by providing a practical algorithm to do so. The algorithm builds on ideas from statistical physics to perform approximate Bayesian inference and is amenable to exact analysis. We study its performance on three different models, compare the algorithm to standard algorithms such as PCA, and explore the limitations of reconstructing stored patterns from synaptic connectivity.
Collapse
Affiliation(s)
- Sebastian Goldt
- International School of Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| | - Florent Krzakala
- IdePHICS laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lenka Zdeborová
- SPOC laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Department of Physics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
172
|
Zhang ZQ, Liu H, Liu H, Jiang H, Xie XC. Bulk-boundary correspondence in disordered non-Hermitian systems. Sci Bull (Beijing) 2023; 68:157-164. [PMID: 36653216 DOI: 10.1016/j.scib.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
The bulk-boundary correspondence (BBC) refers to the consistency between eigenvalues calculated under open and periodic boundary conditions. This consistency can be destroyed in systems with non-Hermitian skin effect (NHSE). In spite of the great success of the generalized Brillouin zone (GBZ) theory in clean non-Hermitian systems, the applicability of GBZ theory is questionable when the translational symmetry is broken. Thus, it is of great value to rebuild the BBC for disordered samples, which extends the application of GBZ theory in non-Hermitian systems. Here, we propose a scheme to reconstruct BBC, which can be regarded as the solution of an optimization problem. By solving the optimization problem analytically, we reconstruct the BBC and obtain the modified GBZ theory in several prototypical disordered non-Hermitian models. The modified GBZ theory provides a precise description of the fantastic NHSE, which predicts the asynchronous-disorder-reversed NHSE's directions.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China; Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - Hongfang Liu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China; Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Hua Jiang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China; Institute for Advanced Study, Soochow University, Suzhou 215006, China.
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
173
|
Ale Crivillero MV, Rößler S, Granovsky S, Doerr M, Cook MS, Rosa PFS, Müller J, Wirth S. Magnetic and electronic properties unveil polaron formation in Eu[Formula: see text]In[Formula: see text]Sb[Formula: see text]. Sci Rep 2023; 13:1597. [PMID: 36709384 PMCID: PMC9884272 DOI: 10.1038/s41598-023-28711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
The intermetallic compound Eu[Formula: see text]In[Formula: see text]Sb[Formula: see text], an antiferromagnetic material with nonsymmorphic crystalline structure, is investigated by magnetic, electronic transport and specific heat measurements. Being a Zintl phase, insulating behavior is expected. Our thermodynamic and magnetotransport measurements along different crystallographic directions strongly indicate polaron formation well above the magnetic ordering temperatures. Pronounced anisotropies of the magnetic and transport properties even above the magnetic ordering temperature are observed despite the Eu[Formula: see text] configuration which testify to complex and competing magnetic interactions between these ions and give rise to intricate phase diagrams discussed in detail. Our results provide a comprehensive framework for further detailed study of this multifaceted compound with possible nontrivial topology.
Collapse
Affiliation(s)
| | - Sahana Rößler
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - S. Granovsky
- Institute for Solid State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany
| | - M. Doerr
- Institute for Solid State and Materials Physics, Technical University Dresden, 01062 Dresden, Germany
| | - M. S. Cook
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | | | - J. Müller
- Institute of Physics, Goethe-University Frankfurt, 60438 Frankfurt (M), Germany
| | - S. Wirth
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| |
Collapse
|
174
|
Sharma AK, Escobedo FA. Effect of particle anisotropy on the thermodynamics and kinetics of ordering transitions in hard faceted particles. J Chem Phys 2023; 158:044502. [PMID: 36725523 DOI: 10.1063/5.0135461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Monte Carlo simulations were used to study the influence of particle aspect ratio on the kinetics and phase behavior of hard gyrobifastigia (GBF). First, the formation of a highly anisotropic nucleus shape in the isotropic-to-crystal transition in regular GBF is explained by the differences in interfacial free energies of various crystal planes and the nucleus geometry predicted by the Wulff construction. GBF-related shapes with various aspect ratios were then studied, mapping their equations of state, determining phase coexistence conditions via interfacial pinning, and computing nucleation free-energy barriers via umbrella sampling using suitable order parameters. Our simulations reveal a reduction of the kinetic barrier for isotropic-crystal transition upon an increase in aspect ratio, and that for highly oblate and prolate aspect ratios, an intermediate nematic phase is stabilized. Our results and observations also support two conjectures for the formation of the crystalline state from the isotropic phase: that low phase free energies at the ordering phase transition correlate with low transition barriers and that the emergence of a mesophase provides a steppingstone that expedites crystallization.
Collapse
Affiliation(s)
- Abhishek K Sharma
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Fernando A Escobedo
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
175
|
Traytak SD. Accurate analytical calculation of the rate coefficient for the diffusion-controlled reactions due to hyperbolic diffusion. J Chem Phys 2023; 158:044104. [PMID: 36725528 DOI: 10.1063/5.0134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using an approach based on the diffusion analog of the Cattaneo-Vernotte differential model, we find the exact analytical solution to the corresponding time-dependent linear hyperbolic initial boundary value problem, describing irreversible diffusion-controlled reactions under Smoluchowski's boundary condition on a spherical sink. By means of this solution, we extend exact analytical calculations for the time-dependent classical Smoluchowski rate coefficient to the case that includes the so-called inertial effects, occurring in the host media with finite relaxation times. We also present a brief survey of Smoluchowski's theory and its various subsequent refinements, including works devoted to the description of the short-time behavior of Brownian particles. In this paper, we managed to show that a known Rice's formula, commonly recognized earlier as an exact reaction rate coefficient for the case of hyperbolic diffusion, turned out to be only its approximation being a uniform upper bound of the exact value. Here, the obtained formula seems to be of great significance for bridging a known gap between an analytically estimated rate coefficient on the one hand and molecular dynamics simulations together with experimentally observed results for the short times regime on the other hand. A particular emphasis has been placed on the rigorous mathematical treatment and important properties of the relevant initial boundary value problems in parabolic and hyperbolic diffusion theories.
Collapse
Affiliation(s)
- Sergey D Traytak
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119991 Moscow, Russian Federation
| |
Collapse
|
176
|
Janković V, Vučičević J. Fermionic-propagator and alternating-basis quantum Monte Carlo methods for correlated electrons on a lattice. J Chem Phys 2023; 158:044108. [PMID: 36725525 DOI: 10.1063/5.0133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ultracold-atom simulations of the Hubbard model provide insights into the character of charge and spin correlations in and out of equilibrium. The corresponding numerical simulations, on the other hand, remain a significant challenge. We build on recent progress in the quantum Monte Carlo (QMC) simulation of electrons in continuous space and apply similar ideas to the square-lattice Hubbard model. We devise and benchmark two discrete-time QMC methods, namely the fermionic-propagator QMC (FPQMC) and the alternating-basis QMC (ABQMC). In FPQMC, the time evolution is represented by snapshots in real space, whereas the snapshots in ABQMC alternate between real and reciprocal space. The methods may be applied to study equilibrium properties within the grand-canonical or canonical ensemble, external field quenches, and even the evolution of pure states. Various real-space/reciprocal-space correlation functions are also within their reach. Both methods deal with matrices of size equal to the number of particles (thus independent of the number of orbitals or time slices), which allows for cheap updates. We benchmark the methods in relevant setups. In equilibrium, the FPQMC method is found to have an excellent average sign and, in some cases, yields correct results even with poor imaginary-time discretization. ABQMC has a significantly worse average sign, but also produces good results. Out of equilibrium, FPQMC suffers from a strong dynamical sign problem. On the contrary, in ABQMC, the sign problem is not time-dependent. Using ABQMC, we compute survival probabilities for several experimentally relevant pure states.
Collapse
Affiliation(s)
- Veljko Janković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Jakša Vučičević
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
177
|
Lee YB, Kang MH, Choi PK, Kim SH, Kim TS, Lee SY, Yoon JB. Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory. Nat Commun 2023; 14:460. [PMID: 36709346 PMCID: PMC9884203 DOI: 10.1038/s41467-023-36076-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
With the exponential growth of the semiconductor industry, radiation-hardness has become an indispensable property of memory devices. However, implementation of radiation-hardened semiconductor memory devices inevitably requires various radiation-hardening technologies from the layout level to the system level, and such technologies incur a significant energy overhead. Thus, there is a growing demand for emerging memory devices that are energy-efficient and intrinsically radiation-hard. Here, we report a nanoelectromechanical non-volatile memory (NEM-NVM) with an ultra-low energy consumption and radiation-hardness. To achieve an ultra-low operating energy of less than 10 [Formula: see text], we introduce an out-of-plane electrode configuration and electrothermal erase operation. These approaches enable the NEM-NVM to be programmed with an ultra-low energy of 2.83 [Formula: see text]. Furthermore, due to its mechanically operating mechanisms and radiation-robust structural material, the NEM-NVM retains its superb characteristics without radiation-induced degradation such as increased leakage current, threshold voltage shift, and unintended bit-flip even after 1 Mrad irradiation.
Collapse
Affiliation(s)
- Yong-Bok Lee
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141 Republic of Korea
| | - Min-Ho Kang
- grid.496766.c0000 0004 0546 0225National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu Daejeon, 34141 Republic of Korea
| | - Pan-Kyu Choi
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141 Republic of Korea ,Taiwan Semiconductor Manufacturing Company (TSMC) Ltd, Fab 21 Phoenix, AZ USA
| | - Su-Hyun Kim
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141 Republic of Korea ,grid.419666.a0000 0001 1945 5898SAMSUNG ELECTRONICS Co., Ltd, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448 Republic of Korea
| | - Tae-Soo Kim
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141 Republic of Korea
| | - So-Young Lee
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141 Republic of Korea
| | - Jun-Bo Yoon
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141 Republic of Korea
| |
Collapse
|
178
|
Sathee NMB, Khatun MM, Rani A, Billah MM, Abdullah MNA, Khandker MH, Watabe H, Haque AKF, Uddin MA. Scattering of e ± by C 2H 6 Molecule over a Wide Range of Energy: A Theoretical Investigation. Molecules 2023; 28:1255. [PMID: 36770921 PMCID: PMC9919837 DOI: 10.3390/molecules28031255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/31/2023] Open
Abstract
The present work reports the theoretical investigation of the scattering of electrons and positrons by the ethane (C2H6) molecule over the energy range 1 eV-1 MeV. The investigation was carried out by taking into account the screening correction arising from a semiclassical analysis of the atomic geometrical overlapping of the scattering observables calculated in the independent atom approximation. The study is presented through the calculations of a broad spectrum of observable quantities, namely differential, integrated elastic, momentum transfer, viscosity, inelastic, grand total, and total ionization cross-sections and the Sherman functions. A comparative study was carried out between scattering observables for electron impact with those for positron impact to exhibit the similarity and dissimilarity arising out of the difference of the collisions of impinging projectiles with the target. Partial-wave decomposition of the scattering states within the Dirac relativistic framework employing a free-atom complex optical model potential was used to calculate the corresponding observable quantities of the constituent atoms. The results, calculated using our recipe, were compared with the experimental and theoretical works available in the literature. The Sherman function for a e±-C2H6 scattering system is presented for the first time in the literature. The addition of the screening correction to the independent atom approximation method was found to substantially reduce the scattering cross-sections, particularly at forward angles for lower incident energies.
Collapse
Affiliation(s)
- N. M. B. Sathee
- Atomic and Molecular Physics Research Laboratory, Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M. Mousumi Khatun
- Atomic and Molecular Physics Research Laboratory, Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Anita Rani
- Atomic and Molecular Physics Research Laboratory, Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M. Masum Billah
- Atomic and Molecular Physics Research Laboratory, Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | | | - Mahmudul H. Khandker
- Atomic and Molecular Physics Research Laboratory, Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan
| | - A. K. Fazlul Haque
- Atomic and Molecular Physics Research Laboratory, Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan
| | - M. Alfaz Uddin
- Atomic and Molecular Physics Research Laboratory, Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
179
|
Sarkar P, Biswas A, Kumar R, Rai S, Jha SN, Bhattacharyya D. Role of C and B 4C barrier layers in controlling diffusion propagation across the interface of Cr/Sc multilayers. Phys Chem Chem Phys 2023; 25:3072-3082. [PMID: 36620902 DOI: 10.1039/d2cp03785h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The optical performance of low-bilayer-thickness metallic multilayers (ML) can be improved significantly by limiting the intermixing of consecutive layers at the interfaces. Barrier layers are supposed to exhibit a decisive role in controlling diffusion across the interfaces. The element-specific grazing incidence extended X-ray absorption fine structure technique using synchrotron radiation has been used in conjunction with grazing incidence X-ray reflectivity and diffuse X-ray scattering measurements to study the impact of the two most common barrier layers, viz., C and B4C, at the interfaces of Cr/Sc MLs. The diffusion propagation is reduced by both the barrier layers; however, it is found that the improvement is more significant with the B4C barrier layer. It is seen that C forms an intermixed layer with Sc and leads to carbide formation at the interface, which then acts as shielding and prevents further interdiffusion, while B4C hardly penetrates into Sc and stops the overlap between Sc and Cr directly by wetting the corresponding interface. Thus, the above measurements reveal crucial and precise information regarding the elemental diffusion kinetics at the interfaces of Cr/Sc MLs in a non-destructive way, which is very important for technological applications of these MLs as X-ray optical devices.
Collapse
Affiliation(s)
- P Sarkar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - A Biswas
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - S Rai
- Synchrotron Utilisation Section, Raja Ramnna Centre for Advanced Technology, Indore 752013, India
| | - S N Jha
- Beamline Development & Applications Section Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - D Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
180
|
Fiedler J, Berland K, Borchert JW, Corkery RW, Eisfeld A, Gelbwaser-Klimovsky D, Greve MM, Holst B, Jacobs K, Krüger M, Parsons DF, Persson C, Presselt M, Reisinger T, Scheel S, Stienkemeier F, Tømterud M, Walter M, Weitz RT, Zalieckas J. Perspectives on weak interactions in complex materials at different length scales. Phys Chem Chem Phys 2023; 25:2671-2705. [PMID: 36637007 DOI: 10.1039/d2cp03349f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties.
Collapse
Affiliation(s)
- J Fiedler
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - K Berland
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, Campus Ås Universitetstunet 3, 1430 Ås, Norway
| | - J W Borchert
- 1st Institute of Physics, Georg-August-University, Göttingen, Germany
| | - R W Corkery
- Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - A Eisfeld
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - D Gelbwaser-Klimovsky
- Schulich Faculty of Chemistry and Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - M M Greve
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - B Holst
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - K Jacobs
- Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.,Max Planck School Matter to Life, 69120 Heidelberg, Germany
| | - M Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - D F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - C Persson
- Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo, Norway.,Department of Materials Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - M Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - T Reisinger
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - S Scheel
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - M Tømterud
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - M Walter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - R T Weitz
- 1st Institute of Physics, Georg-August-University, Göttingen, Germany
| | - J Zalieckas
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| |
Collapse
|
181
|
Bause R, Christianen A, Schindewolf A, Bloch I, Luo XY. Ultracold Sticky Collisions: Theoretical and Experimental Status. J Phys Chem A 2023; 127:729-741. [PMID: 36624934 PMCID: PMC9884084 DOI: 10.1021/acs.jpca.2c08095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Collisional complexes, which are formed as intermediate states in molecular collisions, are typically short-lived and decay within picoseconds. However, in ultracold collisions involving bialkali molecules, complexes can live for milliseconds, completely changing the collision dynamics. This can lead to unexpected two-body loss in samples of nonreactive molecules. During the past decade, such "sticky" collisions have been a major hindrance in the preparation of dense and stable molecular samples, especially in the quantum-degenerate regime. Currently, the behavior of the complexes is not fully understood. For example, in some cases, their lifetime has been measured to be many orders of magnitude longer than recent models predict. This is not only an intriguing problem in itself but also practically relevant, since understanding molecular complexes may help to mitigate their detrimental effects. Here, we review the recent experimental and theoretical progress in this field. We treat the case of molecule-molecule as well as molecule-atom collisions.
Collapse
Affiliation(s)
- Roman Bause
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Arthur Christianen
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Andreas Schindewolf
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Immanuel Bloch
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
- Fakultät
für Physik, Ludwig-Maximilians-Universität, 80799München, Germany
| | - Xin-Yu Luo
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| |
Collapse
|
182
|
Pham DQH, Chwastyk M, Cieplak M. The coexistence region in the Van der Waals fluid and the liquid-liquid phase transitions. Front Chem 2023; 10:1106599. [PMID: 36760519 PMCID: PMC9905123 DOI: 10.3389/fchem.2022.1106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Cellular membraneless organelles are thought to be droplets formed within the two-phase region corresponding to proteinaceous systems endowed with the liquid-liquid transition. However, their metastability requires an additional constraint-they arise in a certain region of density and temperature between the spinodal and binodal lines. Here, we consider the well-studied van der Waals fluid as a test model to work out criteria to determine the location of the spinodal line for situations in which the equation of state is not known. Our molecular dynamics studies indicate that this task can be accomplished by considering the specific heat, the surface tension and characteristics of the molecular clusters, such as the number of component chains and radius of gyration.
Collapse
Affiliation(s)
| | - Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
183
|
Durán-Olivencia FJ, Gannoun R, Pérez AT, Valverde JM. Efficacy of Nanosilica Coatings in Calcium Looping Reactors. Ind Eng Chem Res 2023; 62:1373-1389. [PMID: 36719300 PMCID: PMC9881237 DOI: 10.1021/acs.iecr.2c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Nanosilica coatings are considered a simple physical treatment to alleviate the effect of cohesion on powder flowability. In limestone powders, these coatings buffer the rise in cohesion at high temperatures. Here, we investigate the role of particle size in the efficiency (and resilience) of these layers. To this end, this work examines a series of four limestone powders with very sharp particle size distributions: average particle size ranged from 15 to 60 μm. All the samples were treated with nanosilica at different concentrations from 0 to 0.82 wt %. Powders were subjected to short- and long-term storage conditions in calcium looping based systems: temperatures that vary from 25 to 500 °C and moderate consolidations (up to 2 kPa). Experiments monitored powder cohesion and its ability to flow by tracking the tensile strength of different samples while fluidized freely. Fluidization profiles were also used to infer variation in packings and the internal friction of the powder bed. Interestingly, for particle sizes below 50 μm, the nanosilica treatment mitigated cohesion significantly-the more nanosilica content, the better the flowability performance. However, at high temperatures, the efficiency of nanosilica coatings declined in 60 μm samples. Scanning electron microscopy images confirmed that only 60 μm samples presented surfaces barely coated after the experiments. In conclusion, nanosilica coatings on limestone are not stable beyond the 50 μm threshold. This is a critical finding for thermochemical systems based on the calcium looping process, since larger particles can still exhibit a significant degree of cohesion at high temperatures.
Collapse
Affiliation(s)
- F. J. Durán-Olivencia
- Dpto.
de Ingeniería, Universidad Loyola
Andalucía, Avda.
de Las Universidades s/n, 41704, Seville, Spain
| | - R. Gannoun
- Facultad
de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012Seville, Spain
| | - A. T. Pérez
- Facultad
de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012Seville, Spain
| | - J. M. Valverde
- Facultad
de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012Seville, Spain
| |
Collapse
|
184
|
The Role of Molecular Structure in Monte Carlo Simulations of the Secondary Electron Yield and Backscattering Coefficient from Methacrylic Acid. Molecules 2023; 28:molecules28031126. [PMID: 36770793 PMCID: PMC9919984 DOI: 10.3390/molecules28031126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
In this paper, we show the influence of the chemical structure of four different conformers on the secondary electron emission and backscattering of an electron beam from a gel of methacrylic acid. The conformers have different permanent dipole moments, which determines the cross sections for elastic collisions with electrons. The cross sections are used in Monte Carlo simulations of an electron beam, which enters the gel of methacrylic acid. The secondary electron yield and the backscattering coefficient are computed as a function of the beam energy.
Collapse
|
185
|
Ladera A, Kashikar R, Lisenkov S, Ponomareva I. Machine Learning Reveals Memory of the Parent Phases in Ferroelectric Relaxors Ba(Ti1−x$_{1-x}$,Zr
x
)O
3. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Adriana Ladera
- Department of Computer Science and Engineering University of South Florida Tampa FL 33620 USA
| | - Ravi Kashikar
- Department of Physics University of South Florida Tampa FL 33620 USA
| | - S. Lisenkov
- Department of Physics University of South Florida Tampa FL 33620 USA
| | - I. Ponomareva
- Department of Physics University of South Florida Tampa FL 33620 USA
| |
Collapse
|
186
|
Coe MK, Evans R, Wilding NB. Understanding the physics of hydrophobic solvation. J Chem Phys 2023; 158:034508. [PMID: 36681639 DOI: 10.1063/5.0134060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Simulations of water near extended hydrophobic spherical solutes have revealed the presence of a region of depleted density and accompanying enhanced density fluctuations. The physical origin of both phenomena has remained somewhat obscure. We investigate these effects employing a mesoscopic binding potential analysis, classical density functional theory (DFT) calculations for a simple Lennard-Jones solvent, and Grand Canonical Monte Carlo (GCMC) simulations of a monatomic water (mw) model. We argue that the density depletion and enhanced fluctuations are near-critical phenomena. Specifically, we show that they can be viewed as remnants of the critical drying surface phase transition that occurs at bulk liquid-vapor coexistence in the macroscopic planar limit, i.e., as the solute radius Rs → ∞. Focusing on the radial density profile ρ(r) and a sensitive spatial measure of fluctuations, the local compressibility profile χ(r), our binding potential analysis provides explicit predictions for the manner in which the key features of ρ(r) and χ(r) scale with Rs, the strength of solute-water attraction ɛsf, and the deviation from liquid-vapor coexistence of the chemical potential, δμ. These scaling predictions are confirmed by our DFT calculations and GCMC simulations. As such, our theory provides a firm basis for understanding the physics of hydrophobic solvation.
Collapse
Affiliation(s)
- Mary K Coe
- H. H. Wills Physics Laboratory, Royal Fort, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Robert Evans
- H. H. Wills Physics Laboratory, Royal Fort, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Nigel B Wilding
- H. H. Wills Physics Laboratory, Royal Fort, University of Bristol, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
187
|
Andrews DL. Symmetry-based identification and enumeration of independent tensor properties in nonlinear and chiral optics. J Chem Phys 2023; 158:034101. [PMID: 36681645 DOI: 10.1063/5.0129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many laser-based methods of material characterization and analysis, a tensor formulation of theory is necessary, especially in techniques that exploit nonlinear or chiral optics. The fundamental interactions that underpin such methods offer various levels of approach to theory, but the most rigorous often lead to equations of considerable complexity. To compute the values for individual material parameters frequently demands making assumptions of extreme simplicity, overly dependent on calculational method, yet still providing unsatisfactory results. A pragmatic and entirely rigorous symmetry-based approach to the irreducible tensorial structures circumvents many of these problems, securing reliable results and guiding the pathway to applications. Instead of focusing on individual tensor components, such an approach can rapidly determine the number of linearly independent quantities-and hence the number of operationally different setups necessary for full characterization. By such means, one can directly ascertain how variations of optical polarization and beam geometry can reliably capture the response of any material system. The use of an irreducible tensor method operates independently of any means that might be chosen to calculate material properties. It removes the need for common simplifying assumptions, such as the approximation of tensorial structure by a scalar representation, adoption of a two-state model, or disregarding near-resonance damping. It also obviates any dependence on a choice of simulation package or quantum-calculational software. In this paper, the principles are set down and illustrated by application to experiments of varying degrees of complexity, including interactions of growing significance in the realm of chiral nonlinear optics. Limitations of this approach are also critically assessed.
Collapse
Affiliation(s)
- David L Andrews
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
188
|
Talha-Dean T, Chen K, Mastroianni G, Gesuele F, Mol J, Palma M. Nanoscale Control of DNA-Linked MoS 2-Quantum Dot Heterostructures. Bioconjug Chem 2023; 34:78-84. [PMID: 35969686 PMCID: PMC9853502 DOI: 10.1021/acs.bioconjchem.2c00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Indexed: 01/24/2023]
Abstract
The ability to control the assembly of mixed-dimensional heterostructures with nanoscale control is key for the fabrication of novel nanohybrid systems with new functionalities, particularly for optoelectronics applications. Herein we report a strategy to control the assembly of heterostructures and tune their electronic coupling employing DNA as a linker. We functionalized MoS2 nanosheets (NSs) with biotin-terminated dsDNA employing three different chemical strategies, namely, thiol, maleimide, and aryl diazonium. This allowed us to then tether streptavidinated quantum dots (QDs) to the DNA functionalized MoS2 surface via biotin-avidin recognition. Nanoscale control over the separation between QDs and NSs was achieved by varying the number of base pairs (bp) constituting the DNA linker, between 10, 20, and 30 bp, corresponding to separations of 3.4, 6.8, and 13.6 nm, respectively. Spectroscopic data confirmed the successful functionalization, while atomic force and transmission electron microscopy were employed to image the nanohybrids. In solution steady-state and time-resolved photoluminescence demonstrated the electronic coupling between the two nanostructures, that in turn was observed to progressively scale as a function of DNA linker employed and hence distance between the two nanomoieties in the hybrids.
Collapse
Affiliation(s)
- Teymour Talha-Dean
- Department
of Physics and Astronomy, Queen Mary University
of London, London, E1 4NS, United Kingdom
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| | - Kai Chen
- Department
of Chemistry, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Giulia Mastroianni
- School
of Biological and Behavioral Sciences, Queen
Mary University of London, London, E1 4NS, United Kingdom
| | - Felice Gesuele
- Department
of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 21 Ed. 6, 80126 Napoli, Italy
| | - Jan Mol
- Department
of Physics and Astronomy, Queen Mary University
of London, London, E1 4NS, United Kingdom
| | - Matteo Palma
- Department
of Chemistry, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
189
|
Salje EKH, Kustov S. Dynamic domain boundaries: chemical dopants carried by moving twin walls. Phys Chem Chem Phys 2023; 25:1588-1601. [PMID: 36602278 DOI: 10.1039/d2cp04908b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Domain walls and specifically ferroelastic twin boundaries are depositaries and fast diffusion pathways for chemical dopants and intrinsic lattice defects. Ferroelastic domain patterns act as templates for chemical structures where the walls are the device and not the bulk. Several examples of such engineered domain boundaries are given. Moving twin boundaries are shown to carry with them the dopants, although the activation of this mechanism depends sensitively on the applied external force. If the force is too weak, the walls remain pinned while too strong forces break the walls free of the dopants and move them independently. Several experimental methods and approaches are discussed.
Collapse
Affiliation(s)
- E K H Salje
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - S Kustov
- Department of Physics, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|
190
|
Huang H, Liu H, Ding M, Wang W, Zhang S. Polarization-resolved and helicity-resolved Raman spectra of monolayer XP 3 (X = Ge and In). Phys Chem Chem Phys 2023; 25:2366-2376. [PMID: 36598003 DOI: 10.1039/d2cp03925g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monolayer XP3 (X = Ge, In) is a theoretically predicted two-dimensional (2D) material with fascinating adsorption efficiency, foreshadowing its potential applications in the photovoltaic and optoelectronic communities. To achieve a comprehensive understanding of its optical properties and to further boost quickly identifying its specific applications, in this paper we systematically investigated the polarization-resolved and helicity-resolved Raman spectra excited by two commonly used laser lines (532 nm and 633 nm) through density functional theory. The dynamical stability of monolayer XP3 is demonstrated by phonon dispersion. Monolayer GeP3 and InP3 are found to exhibit significantly different point group symmetries and thereby Raman properties due to the big difference in atomic size and electronic configurations between the Ge atom and In atom. Raman anisotropy of monolayer XP3 has been found when the wave vector of linear polarized incident light is parallel to the monolayer, and all the anisotropic Raman active phonons are categorized in terms of the locations of two (four) maxima in polarization angle dependent Raman intensities of the parallel (perpendicular) configuration. The polarization direction averaged Raman spectra have been further discussed according to the characteristics of light absorbance. The calculations of helicity-resolved Raman spectra indicate a stronger helicity selection rule under helical excitation with the wave vector normal to the monolayer. The present work paves the way for the suitable design, characterization and exploitation of the proposed 2D material with controllable surface properties for applications in electronics and optoelectronics.
Collapse
Affiliation(s)
- Haiming Huang
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510555, China. .,Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Huijun Liu
- Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Mingquan Ding
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510555, China. .,Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Weiliang Wang
- School of Physics, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaolin Zhang
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510555, China. .,Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
191
|
Khoromskaia D, Salbreux G. Active morphogenesis of patterned epithelial shells. eLife 2023; 12:75878. [PMID: 36649186 PMCID: PMC9844985 DOI: 10.7554/elife.75878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/18/2022] [Indexed: 01/11/2023] Open
Abstract
Shape transformations of epithelial tissues in three dimensions, which are crucial for embryonic development or in vitro organoid growth, can result from active forces generated within the cytoskeleton of the epithelial cells. How the interplay of local differential tensions with tissue geometry and with external forces results in tissue-scale morphogenesis remains an open question. Here, we describe epithelial sheets as active viscoelastic surfaces and study their deformation under patterned internal tensions and bending moments. In addition to isotropic effects, we take into account nematic alignment in the plane of the tissue, which gives rise to shape-dependent, anisotropic active tensions and bending moments. We present phase diagrams of the mechanical equilibrium shapes of pre-patterned closed shells and explore their dynamical deformations. Our results show that a combination of nematic alignment and gradients in internal tensions and bending moments is sufficient to reproduce basic building blocks of epithelial morphogenesis, including fold formation, budding, neck formation, flattening, and tubulation.
Collapse
Affiliation(s)
| | - Guillaume Salbreux
- The Francis Crick InstituteLondonUnited Kingdom
- University of GenevaGenevaSwitzerland
| |
Collapse
|
192
|
Conductive double-network hydrogel composed of sodium alginate, Polyacrylamide, and reduced graphene oxide. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
193
|
Tsai C, Mullins MJ, Chang C, Sue H. Highly conductive polypropylene nanocomposites containing copper nanowire. J Appl Polym Sci 2023. [DOI: 10.1002/app.53615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chia‐Ying Tsai
- Polymer Technology Center, Department of Materials Science and Engineering Texas A&M University Texas USA
| | - Michael J. Mullins
- Polymer Technology Center, Department of Materials Science and Engineering Texas A&M University Texas USA
| | - Chao‐Shun Chang
- Technical Department of Polypropylene Division Formosa Plastics Corporation Kaohsiung Taiwan
| | - Hung‐Jue Sue
- Polymer Technology Center, Department of Materials Science and Engineering Texas A&M University Texas USA
| |
Collapse
|
194
|
Frankenstein L, Glomb P, Ramirez‐Rico J, Winter M, Placke T, Gomez‐Martin A. Revealing the Impact of Different Iron‐Based Precursors on the ‘Catalytic’ Graphitization for Synthesis of Anode Materials for Lithium Ion Batteries. ChemElectroChem 2023. [DOI: 10.1002/celc.202201073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lars Frankenstein
- University of Münster MEET Battery Research Center Institute of Physical Chemistry Corrensstr. 46 48149 Münster Germany
| | - Pascal Glomb
- University of Münster MEET Battery Research Center Institute of Physical Chemistry Corrensstr. 46 48149 Münster Germany
| | - Joaquin Ramirez‐Rico
- Dpto. Física de la Materia Condensada and Instituto de Ciencia de Materiales de Sevilla Universidad de Sevilla, Consejo Superior de Investigaciones Científicas Avda. Américo Vespucio 49 41092 Sevilla Spain
| | - Martin Winter
- University of Münster MEET Battery Research Center Institute of Physical Chemistry Corrensstr. 46 48149 Münster Germany
- Helmholtz Institute Münster, IEK-12 Forschungszentrum Jülich GmbH Corrensstr. 46 48149 Münster Germany
| | - Tobias Placke
- University of Münster MEET Battery Research Center Institute of Physical Chemistry Corrensstr. 46 48149 Münster Germany
| | - Aurora Gomez‐Martin
- University of Münster MEET Battery Research Center Institute of Physical Chemistry Corrensstr. 46 48149 Münster Germany
| |
Collapse
|
195
|
Robin P, Emmerich T, Ismail A, Niguès A, You Y, Nam GH, Keerthi A, Siria A, Geim AK, Radha B, Bocquet L. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023; 379:161-167. [PMID: 36634187 DOI: 10.1126/science.adc9931] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fine-tuned ion transport across nanoscale pores is key to many biological processes, including neurotransmission. Recent advances have enabled the confinement of water and ions to two dimensions, unveiling transport properties inaccessible at larger scales and triggering hopes of reproducing the ionic machinery of biological systems. Here we report experiments demonstrating the emergence of memory in the transport of aqueous electrolytes across (sub)nanoscale channels. We unveil two types of nanofluidic memristors depending on channel material and confinement, with memory ranging from minutes to hours. We explain how large time scales could emerge from interfacial processes such as ionic self-assembly or surface adsorption. Such behavior allowed us to implement Hebbian learning with nanofluidic systems. This result lays the foundation for biomimetic computations on aqueous electrolytic chips.
Collapse
Affiliation(s)
- P Robin
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - T Emmerich
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - A Ismail
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - A Niguès
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Y You
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - G-H Nam
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - A Keerthi
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Chemistry, The University of Manchester, Manchester, UK
| | - A Siria
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - A K Geim
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - B Radha
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - L Bocquet
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
196
|
Universality of temperature behavior of dielectric dispersion characteristic for hopping conductivity in solids in the frame of model of thermally activated effective dipoles. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-022-02755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
197
|
Akbari-Moghanjoughi M. Photo-plasmonic effect as the hot electron generation mechanism. Sci Rep 2023; 13:589. [PMID: 36631539 PMCID: PMC9834300 DOI: 10.1038/s41598-023-27775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Based on the effective Schrödinger-Poisson model a new physical mechanism for resonant hot-electron generation at irradiated half-space metal-vacuum interface of electron gas with arbitrary degree of degeneracy is proposed. The energy dispersion of undamped plasmons in the coupled Hermitian Schrödinger-Poisson system reveals an exceptional point coinciding the minimum energy of plasmon conduction band. Existence of such exceptional behavior is a well-know character of damped oscillation which in this case refers to resonant wave-particle interactions analogous to the collisionless Landau damping effect. The damped Schrödinger-Poisson system is used to model the collective electron tunneling into the vacuum. The damped plasmon energy dispersion is shown to have a full-featured exceptional point structure with variety of interesting technological applications. In the band gap of the damped collective excitation,depending on the tunneling parameter value, there is a resonant energy orbital for which the wave-like growing of collective excitations cancels the damping of the single electron tunneling wavefunction. This important feature is solely due to dual-tone wave-particle oscillations, characteristics of the collective excitations in the quantum electron system leading to a resonant photo-plasmonic effect, as a collective analog of the well-known photo-electric effect. The few nanometer wavelengths high-energy collective photo-electrons emanating from the metallic surfaces can lead to a much higher efficiency of plasmonic solar cell devices, as compared to their semiconductor counterpart of electron-hole excitations at the Fermi energy level. The photo-plasmonic effect may also be used to study the quantum electron tunneling and electron spill-out at metallic surfaces. Current findings may help to design more efficient spasers by using the feature-rich plasmonic exceptional point structure.
Collapse
Affiliation(s)
- M. Akbari-Moghanjoughi
- grid.411468.e0000 0004 0417 5692Faculty of Sciences, Department of Physics, Azarbaijan Shahid Madani University, 51745-406 Tabriz, Iran
| |
Collapse
|
198
|
Schiettecatte P, Hens Z, Geiregat P. A roadmap to decipher ultrafast photophysics in two-dimensional nanomaterials. J Chem Phys 2023; 158:014202. [PMID: 36610952 DOI: 10.1063/5.0134962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Atomically thin two-dimensional (2D) semiconductors are extensively investigated for optoelectronic applications that require strong light-matter interactions. In view of such applications, it is essential to understand how (photo)excitation alters the non-linear optical response of these materials under high carrier density conditions. Broadband transient absorption (TA) spectroscopy is by now a widely used tool to study the semiconductor physics in such highly excited systems. However, the complex interplay between different many-body interactions in 2D materials produces highly congested spectral information and an ensuing non-trivial non-linear photo-response, thereby masking the desired intrinsic photophysics. Herein, we outline a concise roadmap for analyzing such congested datasets based on examples of TA analysis of various 2D materials. In particular, we emphasize the synergy between an initial qualitative understanding of the transient photo-response based on line shapes and their derivatives and a consequent quantitative spectral deconvolution backed by such insights.
Collapse
Affiliation(s)
- Pieter Schiettecatte
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
199
|
Borges DGF, Carvalho DS, Bomfim GC, Ramos PIP, Brzozowski J, Góes-Neto A, F. S. Andrade R, El-Hani C. On the origin of mitochondria: a multilayer network approach. PeerJ 2023; 11:e14571. [PMID: 36632145 PMCID: PMC9828282 DOI: 10.7717/peerj.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/28/2022] [Indexed: 01/08/2023] Open
Abstract
Backgound The endosymbiotic theory is widely accepted to explain the origin of mitochondria from a bacterial ancestor. While ample evidence supports the intimate connection of Alphaproteobacteria to the mitochondrial ancestor, pinpointing its closest relative within sampled Alphaproteobacteria is still an open evolutionary debate. Many different phylogenetic methods and approaches have been used to answer this challenging question, further compounded by the heterogeneity of sampled taxa, varying evolutionary rates of mitochondrial proteins, and the inherent biases in each method, all factors that can produce phylogenetic artifacts. By harnessing the simplicity and interpretability of protein similarity networks, herein we re-evaluated the origin of mitochondria within an enhanced multilayer framework, which is an extension and improvement of a previously developed method. Methods We used a dataset of eight proteins found in mitochondria (N = 6 organisms) and bacteria (N = 80 organisms). The sequences were aligned and resulting identity matrices were combined to generate an eight-layer multiplex network. Each layer corresponded to a protein network, where nodes represented organisms and edges were placed following mutual sequence identity. The Multi-Newman-Girvan algorithm was applied to evaluate community structure, and bifurcation events linked to network partition allowed to trace patterns of divergence between studied taxa. Results In our network-based analysis, we first examined the topology of the 8-layer multiplex when mitochondrial sequences disconnected from the main alphaproteobacterial cluster. The resulting topology lent firm support toward an Alphaproteobacteria-sister placement for mitochondria, reinforcing the hypothesis that mitochondria diverged from the common ancestor of all Alphaproteobacteria. Additionally, we observed that the divergence of Rickettsiales was an early event in the evolutionary history of alphaproteobacterial clades. Conclusion By leveraging complex networks methods to the challenging question of circumscribing mitochondrial origin, we suggest that the entire Alphaproteobacteria clade is the closest relative to mitochondria (Alphaproteobacterial-sister hypothesis), echoing recent findings based on different datasets and methodologies.
Collapse
Affiliation(s)
| | - Daniel S. Carvalho
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gilberto C. Bomfim
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Jerzy Brzozowski
- Philosophy Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto F. S. Andrade
- Institute of Physics, Federal University of Bahia, Salvador, Bahia, Brazil,National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Salvador, Bahia, Brazil
| | - Charbel El-Hani
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil,National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Salvador, Bahia, Brazil
| |
Collapse
|
200
|
Liu J, Liu R, Cao Y, Chen M. Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: a study by deep potential molecular dynamics. Phys Chem Chem Phys 2023; 25:983-993. [PMID: 36519362 DOI: 10.1039/d2cp04105g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The solvation structures of calcium (Ca2+) and magnesium (Mg2+) ions with the presence of hydroxide (OH-) ion in water are essential for understanding their roles in biological and chemical processes but have not been fully explored. Ab initio molecular dynamics (AIMD) is an important tool to address this issue, but two challenges exist. First, an accurate description of OH- from AIMD needs an appropriate exchange-correlation functional. Second, a long trajectory is needed to reach an equilibrium state for the Ca2+-OH- and Mg2+-OH- ion pairs in aqueous solutions. Herein, we adopt a deep potential molecular dynamics (DPMD) method to simulate 1 ns trajectories for the Ca2+-OH- and Mg2+-OH- ion pairs in water; the DPMD method provides efficient machine-learning-based models that have the accuracy of the SCAN exchange-correlation functional within the framework of density functional theory. The solvation structures of the cations and the OH- in terms of three different species have been systematically investigated. On the one hand, we find that OH- have more significant effects on the solvation structure of Ca2+ than that of Mg2+. We observe that the OH- substantially affects the orientation angles of water molecules surrounding the cation. Through the time correlation functions, we conclude that the water molecules in the first solvation shell of Ca2+ change their preferred orientation faster than those of Mg2+. On the other hand, with the presence of the cation in the first solvation shell of OH-, we find that the hydrogen bonds of OH- are severely altered, and the adjacent water molecules of OH- are squeezed. The two cations have substantially different effects on the solvation structure of OH-. Our work provides new insight into the solvation structures of Ca2+ and Mg2+ in water with the presence of OH-.
Collapse
Affiliation(s)
- Jianchuan Liu
- HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing, 100871, China.
| | - Renxi Liu
- HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yu Cao
- HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing, 100871, China.
| | - Mohan Chen
- HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|