151
|
Jiang R, Nilam M, Hennig A, Nau WM. Dual-Color Real-Time Chemosensing of a Compartmentalized Reaction Network Involving Enzyme-Induced Membrane Permeation of Peptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306922. [PMID: 37703578 DOI: 10.1002/adma.202306922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 09/15/2023]
Abstract
The design of synthetic systems with interrelated reaction sequences that model incipient biological complexity is limited by physicochemical tools that allow the direct monitoring of the individual processes in real-time. To mimic a simple digestion-resorption sequence, the authors have designed compartmentalized liposomal systems that incorporate extra- and intravesicular chemosensing ensembles. The extravesicular reporter pair consists of cucurbit[7]uril and methylene blue to monitor the enzymatic cleavage of short enkephalin-related peptides by thermolysin through a switch-off fluorescence response ("digestion"). Because the substrate is membrane-impermeable, but the dipeptide product is permeable, uptake of the latter into the pre-formed liposomes occurs as a follow-up process. The intravesicular chemosensing ensemble consists of i) cucurbit[8]uril, 2-anilinonaphthalene-6-sulfonic acid, and methyl viologen or ii) cucurbit[7]uril and berberine to monitor the uptake ("resorption") of the enzymatic products through the liposomal membranes by i) a switch-on or ii) a switch-off fluorescence response. The dyes are designed to allow selective optical excitation and read-out of the extra- and intravesicular dyes, which allow for dual-color chemosensing and, therefore, kinetic discrimination of the two sequential reactions.
Collapse
Affiliation(s)
- Ruixue Jiang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mohamed Nilam
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
152
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
153
|
Sakref Y, Muñoz-Basagoiti M, Zeravcic Z, Rivoire O. On Kinetic Constraints That Catalysis Imposes on Elementary Processes. J Phys Chem B 2023; 127:10950-10959. [PMID: 38091487 DOI: 10.1021/acs.jpcb.3c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Catalysis, the acceleration of product formation by a substance that is left unchanged, typically results from multiple elementary processes, including diffusion of the reactants toward the catalyst, chemical steps, and release of the products. While efforts to design catalysts are often focused on accelerating the chemical reaction on the catalyst, catalysis is a global property of the catalytic cycle that involves all processes. These are controlled by both intrinsic parameters such as the composition and shape of the catalyst and extrinsic parameters such as the concentration of the chemical species at play. We examine here the conditions that catalysis imposes on the different steps of a reaction cycle and the respective role of intrinsic and extrinsic parameters of the system on the emergence of catalysis by using an approach based on first-passage times. We illustrate this approach for various decompositions of a catalytic cycle into elementary steps, including non-Markovian decompositions, which are useful when the presence and nature of intermediate states are a priori unknown. Our examples cover different types of reactions and clarify the constraints on elementary steps and the impact of species concentrations on catalysis.
Collapse
Affiliation(s)
- Yann Sakref
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Maitane Muñoz-Basagoiti
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Zorana Zeravcic
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Olivier Rivoire
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
154
|
Amiri V, Asatryan R, Swihart M. Automated Generation of a Compact Chemical Kinetic Model for n-Pentane Combustion. ACS OMEGA 2023; 8:49098-49114. [PMID: 38162756 PMCID: PMC10753700 DOI: 10.1021/acsomega.3c07079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
We have employed automated mechanism generation tools to construct a detailed chemical kinetic model for combustion of n-pentane, as a step toward the generation of compact kinetic models for larger alkanes. Pentane is of particular interest as a prototype for combustion of alkanes and as the smallest paraffin employed as a hybrid rocket fuel, albeit at cryogenic conditions. A reaction mechanism for pentane combustion thus provides a foundation for modeling combustion of extra-large alkanes (paraffins) that are of more practical interest as hybrid rocket fuels, for which manual construction becomes infeasible. Here, an n-pentane combustion kinetic model is developed using the open-source software package Reaction Mechanism Generator (RMG). The model was generated and tested across a range of temperatures (650 to 1350 K) and equivalence ratios (0.5, 1.0, 2.0) at pressures of 1 and 10 atm. Available thermodynamic and kinetic databases were incorporated wherever possible. Predictions using the mechanism were validated against the published laminar burning velocities (Su) and ignition delay times (IDT) of n-pentane. To improve the model performance, a comprehensive analysis, including reaction path and sensitivity analyses of n-pentane oxidation, was performed, leading us to modify the thermochemistry and rate parameters for a few key species and reactions. These were combined as a separate data set, an RMG library, that was then used during mechanism generation. The resulting model predicted IDTs as accurately as the best manually constructed mechanisms, while remaining much more compact. It predicted flame speeds to within 10% of published experimental results. The degree of success of automated mechanism generation for this case suggests that it can be extended to construct reliable and compact models for combustion of larger n-alkanes, particularly when using this mechanism as a seed submodel.
Collapse
Affiliation(s)
- Venus Amiri
- Department of Chemical and Biological
Engineering, University at Buffalo, The
State University of New York, Buffalo, New York 14260, United States
| | - Rubik Asatryan
- Department of Chemical and Biological
Engineering, University at Buffalo, The
State University of New York, Buffalo, New York 14260, United States
| | - Mark Swihart
- Department of Chemical and Biological
Engineering, University at Buffalo, The
State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
155
|
Wang J, Abbas M, Wang J, Spruijt E. Selective amide bond formation in redox-active coacervate protocells. Nat Commun 2023; 14:8492. [PMID: 38129391 PMCID: PMC10739716 DOI: 10.1038/s41467-023-44284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Coacervate droplets are promising protocell models because they sequester a wide range of guest molecules and may catalyze their conversion. However, it remains unclear how life's building blocks, including peptides, could be synthesized from primitive precursor molecules inside such protocells. Here, we develop a redox-active protocell model formed by phase separation of prebiotically relevant ferricyanide (Fe(CN)63-) molecules and cationic peptides. Their assembly into coacervates can be regulated by redox chemistry and the coacervates act as oxidizing hubs for sequestered metabolites, like NAD(P)H and gluthathione. Interestingly, the oxidizing potential of Fe(CN)63- inside coacervates can be harnessed to drive the formation of new amide bonds between prebiotically relevant amino acids and α-amidothioacids. Aminoacylation is enhanced in Fe(CN)63-/peptide coacervates and selective for amino acids that interact less strongly with the coacervates. We finally use Fe(CN)63--containing coacervates to spatially control assembly of fibrous networks inside and at the surface of coacervate protocells. These results provide an important step towards the prebiotically relevant integration of redox chemistry in primitive cell-like compartments.
Collapse
Affiliation(s)
- Jiahua Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
156
|
Klippenstein SJ, Elliott SN. OH Roaming during the Ozonolysis of α-Pinene: A New Route to Highly Oxygenated Molecules? J Phys Chem A 2023; 127:10647-10662. [PMID: 38055299 DOI: 10.1021/acs.jpca.3c05179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The formation of low-volatility organic compounds in the ozonolysis of α-pinene, the dominant atmospheric monoterpene, provides an important route to aerosol formation. In this work, we consider a previously unexplored set of pathways for the formation of highly oxygenated molecules in α-pinene ozonolysis. Pioneering, direct experimental observations of Lester and co-workers have demonstrated a significant production of hydroxycarbonyl products in the dissociation of Criegee intermediates. Theoretical analyses indicate that this production arises from OH roaming-induced pathways during the OO fission of the vinylhydroperoxides (VHPs), which in turn come from internal H transfers in the Criegee intermediates. Ab initio kinetics computations are used here to explore the OH roaming-induced channels that arise from the ozonolysis of α-pinene. For computational reasons, the calculations consider a surrogate for α-pinene, where two spectator methyl groups are replaced with H atoms. Multireference electronic structure calculations are used to illustrate a variety of energetically accessible OH roaming pathways for the four VHPs arising from the ozonolysis of this α-pinene surrogate. Ab initio transition-state theory-based master equation calculations indicate that for the dissociation of stabilized VHPs, these OH roaming pathways are kinetically significant with a branching that generally increases from ∼20% at room temperature up to ∼70% at lower temperatures representative of the troposphere. For one of the VHPs, this branching already exceeds 60% at room temperature. For the overall ozonolysis process, these branching ratios would be greatly reduced by a limited branching to the stabilized VHP, although there would also be some modest roaming fraction for the nonthermal VHP dissociation process. The strong exothermicities of the roaming-induced isomerizations/additions and abstractions suggest new routes to fission of the cyclobutane rings. Such ring fissions would facilitate further autoxidation reactions, thereby providing a new route for producing highly oxygenated nonvolatile precursors to aerosol formation.
Collapse
Affiliation(s)
- Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
157
|
Kopp WA, Huang C, Zhao Y, Yu P, Schmalz F, Krep L, Leonhard K. Automatic Potential Energy Surface Exploration by Accelerated Reactive Molecular Dynamics Simulations: From Pyrolysis to Oxidation Chemistry. J Phys Chem A 2023; 127:10681-10692. [PMID: 38059461 DOI: 10.1021/acs.jpca.3c05253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Automatic potential energy surface (PES) exploration is important to a better understanding of reaction mechanisms. Existing automatic PES mapping tools usually rely on predefined knowledge or computationally expensive on-the-fly quantum-chemical calculations. In this work, we have developed the PESmapping algorithm for discovering novel reaction pathways and automatically mapping out the PES using merely one starting species is present. The algorithm explores the unknown PES by iteratively spawning new reactive molecular dynamics (RMD) simulations for species that it has detected within previous RMD simulations. We have therefore extended the RMD simulation tool ChemTraYzer2.1 (Chemical Trajectory Analyzer, CTY) for this PESmapping algorithm. It can generate new seed species, automatically start replica simulations for new pathways, and stop the simulation when a reaction is found, reducing the computational cost of the algorithm. To explore PESs with low-temperature reactions, we applied the acceleration method collective variable (CV)-driven hyperdynamics. This involved the development of tailored CV templates, which are discussed in this study. We validate our approach for known pathways in various pyrolysis and oxidation systems: hydrocarbon isomerization and dissociation (C4H7 and C8H7 PES), mostly dominant at high temperatures and low-temperature oxidation of n-butane (C4H9O2 PES) and cyclohexane (C6H11O2 PES). As a result, in addition to new pathways showing up in the simulations, common isomerization and dissociation pathways were found very fast: for example, 44 reactions of butenyl radicals including major isomerizations and decompositions within about 30 min wall time and low-temperature chemistry such as the internal H-shift of RO2 → QO2H within 1 day wall time. Last, we applied PESmapping to the oxidation of the recently proposed biohybrid fuel 1,3-dioxane and validated that the tool could be used to discover new reaction pathways of larger molecules that are of practical use.
Collapse
Affiliation(s)
- Wassja A Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Can Huang
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Yuqing Zhao
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Peiyang Yu
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Felix Schmalz
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
158
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
159
|
Insua I, Cardellini A, Díaz S, Bergueiro J, Capelli R, Pavan GM, Montenegro J. Self-assembly of cyclic peptide monolayers by hydrophobic supramolecular hinges. Chem Sci 2023; 14:14074-14081. [PMID: 38098728 PMCID: PMC10717465 DOI: 10.1039/d3sc03930g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Supramolecular polymerisation of two-dimensional (2D) materials requires monomers with non-covalent binding motifs that can control the directionality of both dimensions of growth. A tug of war between these propagation forces can bias polymerisation in either direction, ultimately determining the structure and properties of the final 2D ensemble. Deconvolution of the assembly dynamics of 2D supramolecular systems has been widely overlooked, making monomer design largely empirical. It is thus key to define new design principles for suitable monomers that allow the control of the direction and the dynamics of two-dimensional self-assembled architectures. Here, we investigate the sequential assembly mechanism of new monolayer architectures of cyclic peptide nanotubes by computational simulations and synthesised peptide sequences with selected mutations. Rationally designed cyclic peptide scaffolds are shown to undergo hierarchical self-assembly and afford monolayers of supramolecular nanotubes. The particular geometry, the rigidity and the planar conformation of cyclic peptides of alternating chirality allow the orthogonal orientation of hydrophobic domains that define lateral supramolecular contacts, and ultimately direct the propagation of the monolayers of peptide nanotubes. A flexible 'tryptophan hinge' at the hydrophobic interface was found to allow lateral dynamic interactions between cyclic peptides and thus maintain the stability of the tubular monolayer structure. These results unfold the potential of cyclic peptide scaffolds for the rational design of supramolecular polymerisation processes and hierarchical self-assembly across the different dimensions of space.
Collapse
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
- I+D Farma Group (GI-1645), Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Facultade de Farmacia, Universidade de Santiago de Compostela 15782 Spain
| | - Annalisa Cardellini
- Department of Applied Science and Technology, Politecnico di Torino 10129 Torino Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano 6962 Lugano-Viganello Switzerland
| | - Sandra Díaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Julian Bergueiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Riccardo Capelli
- Department of Biosciences, University of Milan 20133 Milano Italy
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino 10129 Torino Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano 6962 Lugano-Viganello Switzerland
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| |
Collapse
|
160
|
Dai K, Pol MD, Saile L, Sharma A, Liu B, Thomann R, Trefs JL, Qiu D, Moser S, Wiesler S, Balzer BN, Hugel T, Jessen HJ, Pappas CG. Spontaneous and Selective Peptide Elongation in Water Driven by Aminoacyl Phosphate Esters and Phase Changes. J Am Chem Soc 2023; 145:26086-26094. [PMID: 37992133 DOI: 10.1021/jacs.3c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.
Collapse
Affiliation(s)
- Kun Dai
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Mahesh D Pol
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Lenard Saile
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Arti Sharma
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bin Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Johanna L Trefs
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Sandra Moser
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Stefan Wiesler
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bizan N Balzer
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Thorsten Hugel
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Charalampos G Pappas
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
161
|
Dev D, Wagner N, Pramanik B, Sharma B, Maity I, Cohen-Luria R, Peacock-Lopez E, Ashkenasy G. A Peptide-Based Oscillator. J Am Chem Soc 2023; 145:26279-26286. [PMID: 37984498 DOI: 10.1021/jacs.3c09377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Living organisms are replete with rhythmic and oscillatory behavior at all levels, to the extent that oscillations have been termed as a defining attribute of life. Recent studies of synthetic oscillators that mimic such functions have shown decayed cycles in batch-mode reactions or sustained oscillatory kinetics under flow conditions. Considering the hypothesized functionality of peptides in early chemical evolution and their central role in current bio-nanotechnology, we now reveal a peptide-based oscillator. Oscillatory behavior was achieved by coupling coiled-coil-based replication processes as positive feedback to controlled initiation and inhibition pathways in a continuously stirred tank reactor (CSTR). Our results stress that assembly into the supramolecular structure and specific interactions with the replication substrates are crucial for oscillations. The replication-inhibition processes were first studied in batch mode, which produced a single damped cycle. Thereafter, combined experimental and theoretical characterization of the replication process in a CSTR under different flow and environmental (pH, redox) conditions demonstrated reasonably sustained oscillations. We propose that studies in this direction might pave the way to the design of robust oscillation networks that mimic the autonomous behavior of proteins in cells (e.g., in the cyanobacterial circadian clock) and hence hint at feasible pathways that accelerated the transition from simple peptides to extant enzymes.
Collapse
Affiliation(s)
- Dharm Dev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bhawna Sharma
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Indrajit Maity
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Centre for Nano and Material Sciences, Jain Global Campus, Bangalore, Karnataka 560070, India
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Enrique Peacock-Lopez
- Department of Chemistry, Williams College, Williamstown, Massachusetts 02167, United States
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
162
|
Hazra B, Prasad M, Das S, Mandal R, Sardar A, Dewangan N, Tarafdar PK. Phosphate-Based Amphiphile and Lipidated Lysine Assemble into Superior Protocellular Membranes over Carboxylate and Sulfate-Based Systems: A Potential Missing Link between Prebiotic and the Modern Era? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17031-17042. [PMID: 37984966 DOI: 10.1021/acs.langmuir.3c01617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Amphiphiles are among the most extensively studied building blocks that self-assemble into cell-like compartments. Most literature suggested that the building blocks/amphiphiles of early Earth (fatty acid-based membrane) were much simpler than today's phospholipids. To establish the bridge between the prebiotic fatty acid era and the modern phospholipid era, the investigation and characterization of alternate building blocks that form protocellular membranes are necessary. Herein, we report the potential prebiotic synthesis of alkyl phosphate, alkyl carboxylate, and alkyl sulfate amphiphiles (anionic) using dry-down reactions and demonstrate a more general role of cationic amino acid-based amphiphiles to recruit the anionic amphiphiles via ion-pair, hydrogen bonding, and hydrophobic interactions. The formation and self-assembly of the catanionic (mixed) amphiphilic system to vesicular morphology were characterized by turbidimetric, dynamic light scattering, transmission electron microscopy, fluorescence lifetime imaging microscopy, and glucose encapsulation experiments. Further experiments suggest that the phosphate-based vesicles were more stable than the alkyl sulfate and alkyl carboxylate-based systems. Moreover, the alkyl phosphate system can form vesicles at prebiotically relevant acidic pH (5.0), while alkyl carboxylate mainly forms cluster-type aggregates. An extended supramolecular polymer-type network formation via H-bonding and ion-pair interactions might order the membrane interface and stabilize the phosphate-based vesicles. The results suggest that phosphate-based amphiphiles might be a superior successor to fatty acids as early compartment building blocks. The work highlights the importance of previously unexplored building blocks that participate in protocellular membrane formation to encapsulate important precursors required for the functions of early life.
Collapse
Affiliation(s)
- Bibhas Hazra
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Mahesh Prasad
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Subrata Das
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Raki Mandal
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Avijit Sardar
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Nikesh Dewangan
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Pradip K Tarafdar
- Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| |
Collapse
|
163
|
Nobeyama T, Furuki T, Shiraki K. Phase-Diagram Observation of Liquid-Liquid Phase Separation in the Poly(l-lysine)/ATP System and a Proposal for Diagram-Based Application Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17043-17049. [PMID: 37967197 DOI: 10.1021/acs.langmuir.3c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) is essential to understanding the biomacromolecule compartmentalization in living cells and to developing soft-matter structures for chemical reactions and drug delivery systems. However, the importance of detailed experimental phase diagrams of modern LLPS systems tends to be overlooked in recent times. Even for the poly(l-lysine) (PLL)/ATP system, which is one of the most widely used LLPS models, any detailed phase diagram of LLPS has not been reported. Herein, we report the first phase diagram of the PLL/ATP system and demonstrate the feasibility of phase-diagram-based research design for understanding the physical properties of LLPS systems and realizing biophysical and medical applications. We established an experimentally handy model for the droplet formation-disappearance process by generating a concentration gradient in a chamber for extracting a suitable condition on the phase diagram, including the two-phase droplet region. As a proof of concept of pharmaceutical application, we added a human immunoglobulin G (IgG) solution to the PLL/ATP system. Using the knowledge from the phase diagram, we realized the formation of IgG/PLL droplets in a pharmaceutically required IgG concentration of ca. 10 mg/mL. Thus, this study provides guidance for using the phase diagram to analyze and utilize LLPS.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
164
|
Bergman MR, Hernandez SA, Deffler C, Yeo J, Deravi LF. Design and Characterization of Model Systems that Promote and Disrupt Transparency of Vertebrate Crystallins In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303279. [PMID: 37897315 PMCID: PMC10724405 DOI: 10.1002/advs.202303279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Indexed: 10/30/2023]
Abstract
Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely-packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding-induced turbidity in solution, is explored using combinations of spectrophotometry, hard-sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β-crystallins emerged as a principal component in all mixtures that enabled dense fluid-like packing and short-range order necessary for transparency. These findings helped inform the design of lens-like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Sophia A. Hernandez
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Caitlin Deffler
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace EngineeringCornell University413 Upson Hall, 124 Hoy RdIthacaNY14850USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| |
Collapse
|
165
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
166
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
167
|
Boigenzahn H, Gagrani P, Yin J. Enhancement of Prebiotic Peptide Formation in Cyclic Environments. ORIGINS LIFE EVOL B 2023; 53:157-173. [PMID: 37897620 DOI: 10.1007/s11084-023-09641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/30/2023]
Abstract
The dynamic behaviors of prebiotic reaction networks may be critically important to understanding how larger biopolymers could emerge, despite being unfavorable to form in water. We focus on understanding the dynamics of simple systems, prior to the emergence of replication mechanisms, and what role they may have played in biopolymer formation. We specifically consider the dynamics in cyclic environments using both model and experimental data. Cyclic environmental conditions prevent a system from reaching thermodynamic equilibrium, improving the chance of observing interesting kinetic behaviors. We used an approximate kinetic model to simulate the dynamics of trimetaphosphate (TP)-activated peptide formation from glycine in cyclic wet-dry conditions. The model predicts that environmental cycling allows trimer and tetramer peptides to sustain concentrations above the predicted fixed points of the model due to overshoot, a dynamic phenomenon. Our experiments demonstrate that oscillatory environments can shift product distributions in favor of longer peptides. However, experimental validation of certain behaviors in the kinetic model is challenging, considering that open systems with cyclic environmental conditions break many of the common assumptions in classical chemical kinetics. Overall, our results suggest that the dynamics of simple peptide reaction networks in cyclic environments may have been important for the formation of longer polymers on the early Earth. Similar phenomena may have also contributed to the emergence of reaction networks with product distributions determined not by thermodynamics, but rather by kinetics.
Collapse
Affiliation(s)
- Hayley Boigenzahn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| | - Praful Gagrani
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA.
| |
Collapse
|
168
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
169
|
Lu T, Javed S, Bonfio C, Spruijt E. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery. SMALL METHODS 2023; 7:e2300294. [PMID: 37354057 DOI: 10.1002/smtd.202300294] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Compartmentalization is crucial for the functioning of cells. Membranes enclose and protect the cell, regulate the transport of molecules entering and exiting the cell, and organize cellular machinery in subcompartments. In addition, membraneless condensates, or coacervates, offer dynamic compartments that act as biomolecular storage centers, organizational hubs, or reaction crucibles. Emerging evidence shows that phase-separated membraneless bodies in the cell are involved in a wide range of functional interactions with cellular membranes, leading to transmembrane signaling, membrane remodeling, intracellular transport, and vesicle formation. Such functional and dynamic interplay between phase-separated droplets and membranes also offers many potential benefits to artificial cells, as shown by recent studies involving coacervates and liposomes. Depending on the relative sizes and interaction strength between coacervates and membranes, coacervates can serve as artificial membraneless organelles inside liposomes, as templates for membrane assembly and hybrid artificial cell formation, as membrane remodelers for tubulation and possibly division, and finally, as cargo containers for transport and delivery of biomolecules across membranes by endocytosis or direct membrane crossing. Here, recent experimental examples of each of these functions are reviewed and the underlying physicochemical principles and possible future applications are discussed.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Sadaf Javed
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Claudia Bonfio
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg, 67083, France
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
170
|
Chen J, Wang H, Long F, Bai S, Wang Y. Dynamic supramolecular hydrogels mediated by chemical reactions. Chem Commun (Camb) 2023; 59:14236-14248. [PMID: 37964743 DOI: 10.1039/d3cc04353c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Supramolecular self-assembly in a biological system is usually dominated by sophisticated metabolic processes (chemical reactions) such as catalysis of enzymes and consumption of high energy chemicals, leading to groups of biomolecules with unique dynamics and functions in an aqueous environment. In recent years, increasing efforts have been made to couple chemical reactions to molecular self-assembly, with the aim of creating supramolecular materials with lifelike properties and functions. In this feature article, after summarising the work of chemical reaction mediated supramolecular hydrogels, we first focus on a typical example where dynamic self-assembly of molecular hydrogels is activated by in situ formation of a hydrazone bond in water. We discuss how the formation of the hydrazone-based supramolecular hydrogels can be controlled in time and space. After that, we describe transient assembly of supramolecular hydrogels powered by out-of-equilibrium chemical reaction networks regulated by chemical fuels, which show unique properties such as finite lifetime, dynamic structures, and regenerative capabilities. Finally, we provide a perspective on the future investigations that need to be done urgently, which range from fundamental research to real-life applications of dynamic supramolecular hydrogels.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Feng Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
171
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
172
|
Patel VK, Busupalli B. Light-modulated colour transformation in highly intertwined vertically growing silver tungstate tubes. Phys Chem Chem Phys 2023; 25:30727-30734. [PMID: 37934461 DOI: 10.1039/d3cp04329k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Achieving control over growth kinetics in chemical garden architectures is challenging due to the nonequilibrium conditions. In this study, we demonstrate the vertical growth of silver tungstate chemical garden tubes under both illuminated and dark conditions, a phenomenon not observed in a comparable silver-based system, specifically silver silicate, under light exposure. Physicochemical factors, viz. thermo chemical radius of the tungstate anion, its density-buoyancy relation, the osmotic pressure gradient, and the hydration enthalpy, contributed to the tube appearance in silver tungstate even in light. Tubes grown in light illumination were greyish black, while dark-grown tubes were creamy white, and both tubes appeared twisted and highly intertwined. The colour of the as obtained silver tungstate tubes could be transformed via exposure to light. In the presence of a strong oxidizing agent, the growing tubes retain the original creamy white colour even under illumination. Colour transformation in chemical garden tubes has not yet been observed, and this report could lead the way.
Collapse
Affiliation(s)
- Vipul Kirtikumar Patel
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India.
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
173
|
Chen X, Soria-Carrera H, Zozulia O, Boekhoven J. Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle. Chem Sci 2023; 14:12653-12660. [PMID: 38020366 PMCID: PMC10646924 DOI: 10.1039/d3sc04281b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
In biology, cells regulate the function of molecules using catalytic reaction cycles that convert reagents with high chemical potential (fuel) to waste molecules. Inspired by biology, synthetic analogs of such chemical reaction cycles have been devised, and a widely used catalytic reaction cycle uses carboxylates as catalysts to accelerate the hydration of carbodiimides. The cycle is versatile and easy to use, so it is widely applied to regulate motors, pumps, self-assembly, and phase separation. However, the cycle suffers from side reactions, especially the formation of N-acylurea. In catalytic reaction cycles, side reactions are disastrous as they decrease the fuel's efficiency and, more importantly, destroy the molecular machinery or assembling molecules. Therefore, this work tested how to suppress N-acylurea by screening precursor concentration, its structure, carbodiimide structure, additives, temperature, and pH. It turned out that the combination of low temperature, low pH, and 10% pyridine as a fraction of the fuel could significantly suppress the N-acylurea side product and keep the reaction cycle highly effective to regulate successful assembly. We anticipate that our work will provide guidelines for using carbodiimide-fueled reaction cycles to regulate molecular function and how to choose optimal conditions.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Héctor Soria-Carrera
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Oleksii Zozulia
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| |
Collapse
|
174
|
Dissanayake TU, Hughes J, Woehl TJ. Dynamic surface chemistry and interparticle interactions mediating chemically fueled dissipative assembly of colloids. J Colloid Interface Sci 2023; 650:972-982. [PMID: 37453321 DOI: 10.1016/j.jcis.2023.06.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
HYPOTHESIS Dissipative assembly of colloids involves using a chemical fuel to temporarily activate organic colloid surface ligands to an assembly prone state. Colloids assemble into transient aggregates that disintegrate after the fuel is consumed. The underlying colloidal interactions controlling dissipative assembly have not been rigorously identified or quantified. We expect that fuel concentration dependent dissipative assembly behavior can be reconciled with measurements of dynamic colloid surface chemistry and colloidal interactions. EXPERIMENTS Carbodiimide chemistry was utilized to induce dissipative assembly of carboxylic acid functionalized polystyrene colloids. We measured aggregation kinetics, colloid surface hydrophobicity, and zeta potential as a function of time, which established that colloids underwent dissipative assembly for fuel concentrations between 5 and 12.5 mM and irreversible aggregation at higher fuel concentrations due to transient changes in surface chemistry. FINDINGS We formulated a pairwise colloidal interaction potential model including hydrophobic interactions quantified by fluorescence binding experiments. Fuel concentrations causing dissipative assembly displayed a transient increase in secondary minimum depth and a primary maximum much larger than the thermal potential. Fuel concentrations leading to irreversible aggregation displayed a primary maximum smaller than the thermal potential. This is the first study to quantify surface chemistry and interparticle interactions during dissipative colloid assembly and represents a foundational step in rationally designing more complex dissipative assembly systems.
Collapse
Affiliation(s)
- Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Justin Hughes
- Department of Material Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
175
|
Cvjetan N, Schuler LD, Ishikawa T, Walde P. Optimization and Enhancement of the Peroxidase-like Activity of Hemin in Aqueous Solutions of Sodium Dodecylsulfate. ACS OMEGA 2023; 8:42878-42899. [PMID: 38024761 PMCID: PMC10652838 DOI: 10.1021/acsomega.3c05915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Iron porphyrins play several important roles in present-day living systems and probably already existed in very early life forms. Hemin (= ferric protoporphyrin IX = ferric heme b), for example, is the prosthetic group at the active site of heme peroxidases, catalyzing the oxidation of a number of different types of reducing substrates after hemin is first oxidized by hydrogen peroxide as the oxidizing substrate of the enzyme. The active site of heme peroxidases consists of a hydrophobic pocket in which hemin is embedded noncovalently and kept in place through coordination of the iron atom to a proximal histidine side chain of the protein. It is this partially hydrophobic local environment of the enzyme which determines the efficiency with which the sequential reactions of the oxidizing and reducing substrates proceed at the active site. Free hemin, which has been separated from the protein moiety of heme peroxidases, is known to aggregate in an aqueous solution and exhibits low catalytic activity. Based on previous reports on the use of surfactant micelles to solubilize free hemin in a nonaggregated state, the peroxidase-like activity of hemin in the presence of sodium dodecyl sulfate (SDS) at concentrations below and above the critical concentration for SDS micelle formation (critical micellization concentration (cmc)) was systematically investigated. In most experiments, 3,3',5,5'-tetramethylbenzidine (TMB) was applied as a reducing substrate at pH = 7.2. The presence of SDS clearly had a positive effect on the reaction in terms of initial reaction rate and reaction yield, even at concentrations below the cmc. The highest activity correlated with the cmc value, as demonstrated for reactions at three different HEPES concentrations. The 4-(2-hydroxyethyl)-1-piperazineethanesulfonate salt (HEPES) served as a pH buffer substance and also had an accelerating effect on the reaction. At the cmc, the addition of l-histidine (l-His) resulted in a further concentration-dependent increase in the peroxidase-like activity of hemin until a maximal effect was reached at an optimal l-His concentration, probably corresponding to an ideal mono-l-His ligation to hemin. Some of the results obtained can be understood on the basis of molecular dynamics simulations, which indicated the existence of intermolecular interactions between hemin and HEPES and between hemin and SDS. Preliminary experiments with SDS/dodecanol vesicles at pH = 7.2 showed that in the presence of the vesicles, hemin exhibited similar peroxidase-like activity as in the case of SDS micelles. This supports the hypothesis that micelle- or vesicle-associated ferric or ferrous iron porphyrins may have played a role as primitive catalysts in membranous prebiotic compartment systems before cellular life emerged.
Collapse
Affiliation(s)
- Nemanja Cvjetan
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | | | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer Institute and Department of
Biology, ETH-Zürich, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
176
|
Ravanbodshirazi S, Boutfol T, Safaridehkohneh N, Finkler M, Mohammadi-Kambs M, Ott A. The Nature of the Spark Is a Pivotal Element in the Design of a Miller-Urey Experiment. Life (Basel) 2023; 13:2201. [PMID: 38004341 PMCID: PMC10672138 DOI: 10.3390/life13112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Miller and Urey applied electric sparks to a reducive mixture of CH4, NH3, and water to obtain a complex organic mixture including biomolecules. In this study, we examined the impact of temperature, initial pressure, ammonia concentration, and the spark generator on the chemical profile of a Miller-Urey-type prebiotic broth. We analyzed the broth composition using Gas Chromatography combined with Mass Spectroscopy (GC/MS). The results point towards strong compositional changes with the nature of the spark. Ammonia exhibited catalytic properties even with non-nitrogen-containing compounds. A more elevated temperature led to a higher variety of substances. We conclude that to reproduce such a broth as well as possible, all the studied parameters need to be tightly controlled, the most difficult and important being spark generation.
Collapse
Affiliation(s)
| | | | | | | | | | - Albrecht Ott
- Biological Experimental Physics, Center for Biophysics, Faculity of Natural Sciences and Technology, Saarland University, Campus B2 1, 66123 Saarbrücken, Germany; (S.R.)
| |
Collapse
|
177
|
Hu Y, Gao S, Lu H, Tan S, Chen F, Ke Y, Ying JY. A Self-Immolative DNA Nanogel Vaccine toward Cancer Immunotherapy. NANO LETTERS 2023; 23:9778-9787. [PMID: 37877690 DOI: 10.1021/acs.nanolett.3c02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The development of precisely engineered vehicles for intracellular delivery and the controlled release of payloads remains a challenge. DNA-based nanomaterials offer a promising solution based on the A-T-G-C alphabet-dictated predictable assembly and high programmability. Herein, we present a self-immolative DNA nanogel vaccine, which can be tracelessly released in the intracellular compartments and activate the immune response. Three building blocks with cytosine-rich overhang domains are designed to self-assemble into a DNA nanogel framework with a controlled size. Two oligo agonists and one antigen peptide are conjugated to the building blocks via an acid-labile chemical linker. Upon internalization into acidic endosomes, the formation of i-motif configurations leads to dissociation of the DNA nanogel vaccine. The acid-labile chemical linker is cleaved, releasing the agonists and antigen in their traceless original form to activate antigen-presenting cells and an immune response. This study presents a novel strategy for constructing delivery platforms for intracellularly stimuli-triggered traceless release of therapeutics.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Shujun Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Hongfang Lu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Susi Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jackie Y Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Bioengineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
178
|
Xu H, Liang X, Lu S, Gao M, Wang S, Li Y. Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide. Molecules 2023; 28:7463. [PMID: 38005186 PMCID: PMC10673190 DOI: 10.3390/molecules28227463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
To disperse fatty acids in aqueous solution, choline, a quaternary ammonium ion, has been used recently. So far, only the self-assembly of myristic acid (MA) in the presence of choline hydroxide as a function of the molar ratio has been investigated, and, thus, the current understanding of these fatty acid systems is still limited. We investigated the self-assembly of palmitic acid (PA) in the presence of choline hydroxide (ChOH) as a function of the molar ratio (R) between ChOH and PA. The self-assemblies were characterized by phase contrast microscopy, cryo-TEM, small-angle X-ray scattering, and 2H NMR. The ionization state of PA was determined by pH, conductivity, and FT-IR measurements. With increase in R, various self-assembled structures, including vesicles, lamellar phase, rigid membranes (large sheets, tubules, cones, and polyhedrals), and micelles, form in the PA/ChOH system, different from those of the MA/ChOH system. The change in R induces pH variation and, consequently, a change in the PA ionization state, which, in turn, regulates the molecular interactions, including hydrogen bonding and electrostatic interaction, leading to various self-assemblies. Temperature is an important factor used to tune the self-assembly transitions. The fatty acid choline systems studied here potentially may be applicable in medicine, chemical engineering, and biotechnology.
Collapse
Affiliation(s)
- Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Xin Liang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Song Lu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Meihua Gao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Sijia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Yuanyuan Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| |
Collapse
|
179
|
Wang J, Abbas M, Huang Y, Wang J, Li Y. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs. Commun Chem 2023; 6:243. [PMID: 37935871 PMCID: PMC10630460 DOI: 10.1038/s42004-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Proteinous drugs are highly promising therapeutics to treat various diseases. However, they suffer from limited circulation times and severe off-target side effects. Inspired by active membraneless organelles capable of dynamic recruitment and releasing of specific proteins, here, we present the design of coacervates as therapeutic protocells, made from small metabolites (anionic molecules) and simple arginine-rich peptides (cationic motif) through liquid-liquid phase separation. These complex coacervates demonstrate that their assembly and disassembly can be regulated by redox chemistry, which helps to control the release of the therapeutic protein. A model proteinous drugs, tissue plasminogen activator (tPA), can rapidly compartmentalize inside the complex coacervates, and the coacervates formed from peptides conjugated with arginine-glycine-aspartic acid (RGD) motif (a fibrinogen-derived peptide sequence), show selective binding to the thrombus site and thus enhance on-target efficacy of tPA. Furthermore, the burst release of tPA can be controlled by the redox-induced dissolution of the coacervates. Our proof-of-principle complex coacervate system provides insights into the sequestration and release of proteinous drugs from advanced drug delivery systems and represents a step toward the construction of synthetic therapeutic protocells for biomedical applications.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Yu Huang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
180
|
Tiwari AK, Sen D, Das A, Bahadur J. Evidence of Size Stratification in Colloidal Glass Microgranules Realized by Rapid Evaporative Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15572-15586. [PMID: 37882047 DOI: 10.1021/acs.langmuir.3c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Evaporation is a ubiquitous phenomenon. Rapid evaporation of the continuous phase from micrometric colloidal droplets can be used to realize nanostructured microgranules, constituting the assembled nanoparticles. One of the important aspects of such nonequilibrium assembly is the nature of the packing of nanoparticles in the microgranules. The present work demonstrates the evidence of size stratification of the nanoparticles in such far-from-equilibrium configurations. Small-angle X-ray scattering, in combination with particle packing simulation, reveals the "large on top"-type stratification in such assembled microgranules, where the larger particles get concentrated at the outer shell of the granules while the smaller particles reside in the core region. It also reveals the presence of local clusters in such a rapid evaporative assembly in aerosolized colloidal droplets.
Collapse
Affiliation(s)
- Anand Kumar Tiwari
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Avik Das
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
181
|
Feng K, Chen L, Zhang X, Gong J, Qu J, Niu R. Collective Behaviors of Isotropic Micromotors: From Assembly to Reconstruction and Motion Control under External Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2900. [PMID: 37947744 PMCID: PMC10650937 DOI: 10.3390/nano13212900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Swarms of self-propelled micromotors can mimic the processes of natural systems and construct artificial intelligent materials to perform complex collective behaviors. Compared to self-propelled Janus micromotors, the isotropic colloid motors, also called micromotors or microswimmers, have advantages in self-assembly to form micromotor swarms, which are efficient in resistance to external disturbance and the delivery of large quantity of cargos. In this minireview, we summarize the fundamental principles and interactions for the assembly of isotropic active particles to generate micromotor swarms. Recent discoveries based on either catalytic or external physical field-stimulated micromotor swarms are also presented. Then, the strategy for the reconstruction and motion control of micromotor swarms in complex environments, including narrow channels, maze, raised obstacles, and high steps/low gaps, is summarized. Finally, we outline the future directions of micromotor swarms and the remaining challenges and opportunities.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Xinle Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Ministry of Education, Guangzhou 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| |
Collapse
|
182
|
Kandola T, Venkatesan S, Zhang J, Lerbakken BT, Von Schulze A, Blanck JF, Wu J, Unruh JR, Berry P, Lange JJ, Box AC, Cook M, Sagui C, Halfmann R. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal. eLife 2023; 12:RP86939. [PMID: 37921648 PMCID: PMC10624427 DOI: 10.7554/elife.86939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
A long-standing goal of amyloid research has been to characterize the structural basis of the rate-determining nucleating event. However, the ephemeral nature of nucleation has made this goal unachievable with existing biochemistry, structural biology, and computational approaches. Here, we addressed that limitation for polyglutamine (polyQ), a polypeptide sequence that causes Huntington's and other amyloid-associated neurodegenerative diseases when its length exceeds a characteristic threshold. To identify essential features of the polyQ amyloid nucleus, we used a direct intracellular reporter of self-association to quantify frequencies of amyloid appearance as a function of concentration, conformational templates, and rational polyQ sequence permutations. We found that nucleation of pathologically expanded polyQ involves segments of three glutamine (Q) residues at every other position. We demonstrate using molecular simulations that this pattern encodes a four-stranded steric zipper with interdigitated Q side chains. Once formed, the zipper poisoned its own growth by engaging naive polypeptides on orthogonal faces, in a fashion characteristic of polymer crystals with intramolecular nuclei. We further show that self-poisoning can be exploited to block amyloid formation, by genetically oligomerizing polyQ prior to nucleation. By uncovering the physical nature of the rate-limiting event for polyQ aggregation in cells, our findings elucidate the molecular etiology of polyQ diseases.
Collapse
Affiliation(s)
- Tej Kandola
- Stowers Institute for Medical ResearchKansas CityUnited States
- The Open UniversityMilton KeynesUnited Kingdom
| | | | - Jiahui Zhang
- Department of Physics, North Carolina State UniversityRaleighUnited States
| | | | | | | | - Jianzheng Wu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Paula Berry
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Andrew C Box
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Malcolm Cook
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Celeste Sagui
- Department of Physics, North Carolina State UniversityRaleighUnited States
| | - Randal Halfmann
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
183
|
Foote S, Sinhadc P, Mathis C, Walker SI. False Positives and the Challenge of Testing the Alien Hypothesis. ASTROBIOLOGY 2023; 23:1189-1201. [PMID: 37962842 DOI: 10.1089/ast.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The origin of life and the detection of alien life have historically been treated as separate scientific research problems. However, they are not strictly independent. Here, we discuss the need for a better integration of the sciences of life detection and origins of life. Framing these dual problems within the formalism of Bayesian hypothesis testing, we demonstrate via simple examples how high confidence in life detection claims require either (1) a strong prior hypothesis about the existence of life in a particular alien environment, or conversely, (2) signatures of life that are not susceptible to false positives. As a case study, we discuss the role of priors and hypothesis testing in recent results reporting potential detection of life in the venusian atmosphere and in the icy plumes of Enceladus. While many current leading biosignature candidates are subject to false positives because they are not definitive of life, our analyses demonstrate why it is necessary to shift focus to candidate signatures that are definitive. This indicates a necessity to develop methods that lack substantial false positives, by using observables for life that rely on prior hypotheses with strong theoretical and empirical support in identifying defining features of life. Abstract theories developed in pursuit of understanding universal features of life are more likely to be definitive and to apply to life-as-we-don't-know-it. We discuss Molecular Assembly theory as an example of such an observable which is applicable to life detection within the solar system. In the absence of alien examples these are best validated in origin of life experiments, substantiating the need for better integration between origins of life and biosignature science research communities. This leads to a conclusion that extraordinary claims in astrobiology (e.g., definitive detection of alien life) require extraordinary explanations, whereas the evidence itself could be quite ordinary.
Collapse
Affiliation(s)
- Searra Foote
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Pritvik Sinhadc
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Dubai College, Dubai, UAE
| | - Cole Mathis
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Sara Imari Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
184
|
Belluati A, Harley I, Lieberwirth I, Bruns N. An Outer Membrane-Inspired Polymer Coating Protects and Endows Escherichia coli with Novel Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303384. [PMID: 37452438 DOI: 10.1002/smll.202303384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Indexed: 07/18/2023]
Abstract
A bio-inspired membrane made of Pluronic L-121 is produced around Escherichia coli thanks to the simple co-extrusion of bacteria and polymer vesicles. The block copolymer-coated bacteria can withstand various harsh shocks, for example, temperature, pressure, osmolarity, and chemical agents. The polymer membrane also makes the bacteria resistant to enzymatic digestion and enables them to degrade toxic compounds, improving their performance as whole-cell biocatalysts. Moreover, the polymer membrane acts as an anchor layer for the surface modification of the bacteria. Being decorated with α-amylase or lysozyme, the cells are endowed with the ability to digest starch or self-predatory bacteria are created. Thus, without any genetic engineering, the phenotype of encapsulated bacteria is changed as they become sturdier and gain novel metabolic functionalities.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Iain Harley
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ingo Lieberwirth
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Nico Bruns
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
185
|
Bhatia T. Stability of multilamellar lipid tubules in excess water. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:749-756. [PMID: 37882815 DOI: 10.1007/s00249-023-01686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/26/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
In the lyotropic phase of lipids with excess water, multilamellar tubules (MLTs) grow from defects. A phenomenological model for the stability of MLTs is developed that is universal and independent of the underlying growth mechanisms of MLTs. The stability of MLTs implies that they are in hydrostatic equilibrium and stable as elastic objects that have compression and bending elasticity. The results show that even with solvent pressure differences of 0.1 atm, the density profile is not significantly altered, so suggesting the stability is due to the trapped solvent. The results are of sufficient value in relation to lamellar stability models and may have implications beyond the described MLT models, especially in other models of membrane systems.
Collapse
Affiliation(s)
- Tripta Bhatia
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
186
|
Baum DA, Peng Z, Dolson E, Smith E, Plum AM, Gagrani P. The ecology-evolution continuum and the origin of life. J R Soc Interface 2023; 20:20230346. [PMID: 37907091 PMCID: PMC10618062 DOI: 10.1098/rsif.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Prior research on evolutionary mechanisms during the origin of life has mainly assumed the existence of populations of discrete entities with information encoded in genetic polymers. Recent theoretical advances in autocatalytic chemical ecology establish a broader evolutionary framework that allows for adaptive complexification prior to the emergence of bounded individuals or genetic encoding. This framework establishes the formal equivalence of cells, ecosystems and certain localized chemical reaction systems as autocatalytic chemical ecosystems (ACEs): food-driven (open) systems that can grow due to the action of autocatalytic cycles (ACs). When ACEs are organized in meta-ecosystems, whether they be populations of cells or sets of chemically similar environmental patches, evolution, defined as change in AC frequency over time, can occur. In cases where ACs are enriched because they enhance ACE persistence or dispersal ability, evolution is adaptive and can build complexity. In particular, adaptive evolution can explain the emergence of self-bounded units (e.g. protocells) and genetic inheritance mechanisms. Recognizing the continuity between ecological and evolutionary change through the lens of autocatalytic chemical ecology suggests that the origin of life should be seen as a general and predictable outcome of driven chemical ecosystems rather than a phenomenon requiring specific, rare conditions.
Collapse
Affiliation(s)
- David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Zhen Peng
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
| | - Emily Dolson
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Smith
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Alex M. Plum
- Department of Physics, University of California, San Diego, CA 92093, USA
| | - Praful Gagrani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
187
|
Netzer A, Katzir I, Baruch Leshem A, Weitman M, Lampel A. Emergent properties of melanin-inspired peptide/RNA condensates. Proc Natl Acad Sci U S A 2023; 120:e2310569120. [PMID: 37871222 PMCID: PMC10622964 DOI: 10.1073/pnas.2310569120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Most biocatalytic processes in eukaryotic cells are regulated by subcellular microenvironments such as membrane-bound or membraneless organelles. These natural compartmentalization systems have inspired the design of synthetic compartments composed of a variety of building blocks. Recently, the emerging field of liquid-liquid phase separation has facilitated the design of biomolecular condensates composed of proteins and nucleic acids, with controllable properties including polarity, diffusivity, surface tension, and encapsulation efficiency. However, utilizing phase-separated condensates as optical sensors has not yet been attempted. Here, we were inspired by the biosynthesis of melanin pigments, a key biocatalytic process that is regulated by compartmentalization in organelles, to design minimalistic biomolecular condensates with emergent optical properties. Melanins are ubiquitous pigment materials with a range of functionalities including photoprotection, coloration, and free radical scavenging activity. Their biosynthesis in the confined melanosomes involves oxidation-polymerization of tyrosine (Tyr), catalyzed by the enzyme tyrosinase. We have now developed condensates that are formed by an interaction between a Tyr-containing peptide and RNA and can serve as both microreactors and substrates for tyrosinase. Importantly, partitioning of Tyr into the condensates and subsequent oxidation-polymerization gives rise to unique optical properties including far-red fluorescence. We now demonstrate that individual condensates can serve as sensors to detect tyrosinase activity, with a limit of detection similar to that of synthetic fluorescent probes. This approach opens opportunities to utilize designer biomolecular condensates as diagnostic tools for various disorders involving abnormal enzymatic activity.
Collapse
Affiliation(s)
- Amit Netzer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Itai Katzir
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Michal Weitman
- Department of Chemistry Materials, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
188
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
189
|
Wang H, Cheng Z, Yuan L, Ren L, Pan C, Epstein IR, Gao Q. Role of Fast and Slow Inhibitors in Oscillatory Rhythm Design. J Am Chem Soc 2023; 145:23152-23159. [PMID: 37844139 DOI: 10.1021/jacs.3c07076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In biological or abiotic systems, rhythms occur, owing to the coupling between positive and negative feedback loops in a reaction network. Using the Semenov-Whitesides oscillatory network for thioester hydrolysis as a prototype, we experimentally and theoretically analyzed the role of fast and slow inhibitors in oscillatory reaction networks. In the presence of positive feedback, a single fast inhibitor generates a time delay, resulting in two saddle-node bifurcations and bistability in a continuously stirred tank reactor. A slow inhibitor produces a node-focus bifurcation, resulting in damped oscillations. With both fast and slow inhibitors present, the node-focus bifurcation repeatedly modulates the saddle-node bifurcations, producing stable periodic oscillations. These fast and slow inhibitions result in a pair of time delays between steeply ascending and descending dynamics, which originate from the positive and negative feedbacks, respectively. This pattern can be identified in many chemical relaxation oscillators and oscillatory models, e.g., the bromate-sulfite pH oscillatory system, the Belousov-Zhabotinsky reaction, the trypsin oscillatory system, and the Boissonade-De Kepper model. This study provides a novel understanding of chemical and biochemical rhythms and suggests an approach to designing such behavior.
Collapse
Affiliation(s)
- Hongzhang Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Zhenfang Cheng
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| |
Collapse
|
190
|
Peng Z, Adam ZR, Fahrenbach AC, Kaçar B. Assessment of Stoichiometric Autocatalysis across Element Groups. J Am Chem Soc 2023; 145:22483-22493. [PMID: 37722081 PMCID: PMC10591316 DOI: 10.1021/jacs.3c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 09/20/2023]
Abstract
Autocatalysis has been proposed to play critical roles during abiogenesis. These proposals are at odds with a limited number of known examples of abiotic (and, in particular, inorganic) autocatalytic systems that might reasonably function in a prebiotic environment. In this study, we broadly assess the occurrence of stoichiometries that can support autocatalytic chemical systems through comproportionation. If the product of a comproportionation reaction can be coupled with an auxiliary oxidation or reduction pathway that furnishes a reactant, then a Comproportionation-based Autocatalytic Cycle (CompAC) can exist. Using this strategy, we surveyed the literature published in the past two centuries for reactions that can be organized into CompACs that consume some chemical species as food to synthesize more autocatalysts. 226 CompACs and 44 Broad-sense CompACs were documented, and we found that each of the 18 groups, lanthanoid series, and actinoid series in the periodic table has at least two CompACs. Our findings demonstrate that stoichiometric relationships underpinning abiotic autocatalysis could broadly exist across a range of geochemical and cosmochemical conditions, some of which are substantially different from the modern Earth. Meanwhile, the observation of some autocatalytic systems requires effective spatial or temporal separation between the food chemicals while allowing comproportionation and auxiliary reactions to proceed, which may explain why naturally occurring autocatalytic systems are not frequently observed. The collated CompACs and the conditions in which they might plausibly support complex, "life-like" chemical dynamics can directly aid an expansive assessment of life's origins and provide a compendium of alternative hypotheses concerning false-positive biosignatures.
Collapse
Affiliation(s)
- Zhen Peng
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Zachary R. Adam
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Geoscience, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Albert C. Fahrenbach
- School
of Chemistry, Australian Centre for Astrobiology and the UNSW RNA
Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Betül Kaçar
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
191
|
McKenzie DM, Wirth D, Pogorelov TV, Hristova K. Utility of FRET in studies of membrane protein oligomerization: The concept of the effective dissociation constant. Biophys J 2023; 122:4113-4120. [PMID: 37735871 PMCID: PMC10598290 DOI: 10.1016/j.bpj.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
The activity of many membrane receptors is controlled through their lateral association into dimers or higher-order oligomers. Although Förster resonance energy transfer (FRET) measurements have been used extensively to characterize the stability of receptor dimers, the utility of FRET in studies of larger oligomers has been limited. Here we introduce an effective equilibrium dissociation constant that can be extracted from FRET measurements for EphA2, a receptor tyrosine kinase (RTK) known to form active oligomers of heterogeneous distributions in response to its ligand ephrinA1-Fc. The newly introduced effective equilibrium dissociation constant has a well-defined physical meaning and biological significance. It denotes the receptor concentration for which half of the receptors are monomeric and inactive, and the other half are associated into oligomers and are active, irrespective of the exact oligomer size. This work introduces a new dimension to the utility of FRET in studies of membrane receptor association and signaling in the plasma membrane.
Collapse
Affiliation(s)
- Daniel M McKenzie
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, School of Chemical Sciences, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland.
| |
Collapse
|
192
|
Testa A, Spanke HT, Jambon-Puillet E, Yasir M, Feng Y, Küffner AM, Arosio P, Dufresne ER, Style RW, Rebane AA. Surface Passivation Method for the Super-repellence of Aqueous Macromolecular Condensates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14626-14637. [PMID: 37797324 PMCID: PMC10586374 DOI: 10.1021/acs.langmuir.3c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.
Collapse
Affiliation(s)
- Andrea Testa
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Etienne Jambon-Puillet
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- LadHyX,
CNRS, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau 91120, France
| | - Mohammad Yasir
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanxia Feng
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas M. Küffner
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Robert W. Style
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksander A. Rebane
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Life
Molecules and Materials Laboratory, Programs in Chemistry and in Physics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
193
|
Gaash D, Dewan S, Leshem AB, Jaiswal KS, Jelinek R, Lampel A. Modulating the optical properties of carbon dots by peptide condensates. Chem Commun (Camb) 2023; 59:12298-12301. [PMID: 37752864 DOI: 10.1039/d3cc03945e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Here, we utilized designed condensates formed by liquid-liquid phase separation (LLPS) of cationic and aromatic peptide to sequester tyrosine-based carbon dots (C-dots). The C-dots fluorescence is quenched and retrieved upon partitioning and release from condensates, allowing a spatial regulation of C-dots fluorescence which can be utilized for biosensing applications.
Collapse
Affiliation(s)
- Dor Gaash
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Simran Dewan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Kumar Sagar Jaiswal
- Department of Chemistry, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben Gurion University of the Negen, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben Gurion University of the Negen, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
194
|
Sloboda D, Weber CC, Bakis E. A kinetics study of copper-catalysed click reactions in ionic liquids. Org Biomol Chem 2023; 21:7984-7993. [PMID: 37755136 DOI: 10.1039/d3ob00237c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions are of extensive interest in chemical synthesis. While the use of ionic liquids (ILs) as solvents for synthesis has been widely explored in recent years, the understanding of their influence on the mechanism and reactivity of CuAAC reactions remains poorly understood. Here, we investigate the kinetics of a phenylacetylene-benzylazide and acetylene-benzylazide CuAAC reaction to probe the influence of IL structure, including the role of the base used to promote the reaction and the importance of water content. The use of 'wet' ILs led to remarkable changes in the kinetic profile of the reaction by eliminating the initial induction period. The reaction rate was found to be dependent on the copper(I) source. The effect of an added base was also studied, with the use of a tertiary amine-bearing IL leading to high conversions in under 5 min at ambient temperature. The results of this study highlight the nature and complexity of CuAAC reactions in ILs. As more ILs are getting involved in industrial processes, the data obtained from this study are valuable for better understanding processes that affect the CuAAC reaction in IL media and for creating customized systems for organic synthesis, thus improving the efficiency and sustainability of such processes.
Collapse
Affiliation(s)
- Diana Sloboda
- Faculty of Chemistry, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia.
| | - Cameron C Weber
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Eduards Bakis
- Faculty of Chemistry, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia.
| |
Collapse
|
195
|
Beliktay G, Shaikh T, Koca E, Cingil HE. Effect of UV Irradiation Time and Headgroup Interactions on the Reversible Colorimetric pH Response of Polydiacetylene Assemblies. ACS OMEGA 2023; 8:37213-37224. [PMID: 37841112 PMCID: PMC10568583 DOI: 10.1021/acsomega.3c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Polydiacetylenes are chromatic conjugated polymers formed upon the photopolymerization of self-assembled diacetylenes. They exhibit conformation-dependent colorimetric responses, usually irreversible, to external triggers. Here, we presented an approach to obtain a reversible colorimetric response to a pH change through structural modifications on the monomer and extended photopolymerization time. Both factors, enhanced hydrogen bond forming headgroups and longer UV exposure, impacted the rotational freedom of polydiacetylene conformation. Such a restricted conformation state reduced colorimetric response efficiency but enabled reversible colorimetric response to a pH change. These results highlight the possibility of obtaining a reversible colorimetric pH response of polydiacetylenes for customized sensing applications through monomer-level tailoring combined with tuning the photopolymerization time.
Collapse
Affiliation(s)
- Gizem Beliktay
- Sabanci
University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkiye
| | - Tayyaba Shaikh
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkiye
| | - Emirhan Koca
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkiye
| | - Hande E. Cingil
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkiye
| |
Collapse
|
196
|
Späth F, Maier AS, Stasi M, Bergmann AM, Halama K, Wenisch M, Rieger B, Boekhoven J. The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervate Droplets. Angew Chem Int Ed Engl 2023; 62:e202309318. [PMID: 37549224 DOI: 10.1002/anie.202309318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Complex coacervation describes the liquid-liquid phase separation of oppositely charged polymers. Active coacervates are droplets in which one of the electrolyte's affinity is regulated by chemical reactions. These droplets are particularly interesting because they are tightly regulated by reaction kinetics. For example, they serve as a model for membraneless organelles that are also often regulated by biochemical transformations such as post-translational modifications. They are also a great protocell model or could be used to synthesize life-they spontaneously emerge in response to reagents, compete, and decay when all nutrients have been consumed. However, the role of the unreactive building blocks, e.g., the polymeric compounds, is poorly understood. Here, we show the important role of the chemically innocent, unreactive polyanion of our chemically fueled coacervation droplets. We show that the polyanion drastically influences the resulting droplets' life cycle without influencing the chemical reaction cycle-either they are very dynamic or have a delayed dissolution. Additionally, we derive a mechanistic understanding of our observations and show how additives and rational polymer design help to create the desired coacervate emulsion life cycles.
Collapse
Affiliation(s)
- Fabian Späth
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Anton S Maier
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Kerstin Halama
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Monika Wenisch
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
197
|
Häfner G, Müller M. Reaction-driven assembly: controlling changes in membrane topology by reaction cycles. SOFT MATTER 2023; 19:7281-7292. [PMID: 37605887 DOI: 10.1039/d3sm00876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Chemical reaction cycles are prototypical examples how to drive systems out of equilibrium and introduce novel, life-like properties into soft-matter systems. We report simulations of amphiphilic molecules in aqueous solution. The molecule's head group is permanently hydrophilic, whereas the reaction cycle switches the molecule's tail from hydrophilic (precursor) to hydrophobic (amphiphile) and vice versa. The reaction cycle leads to an arrest in coalescence and results in uniform vesicle sizes that can be controlled by the reaction rate. Using a continuum description and particle-based simulation, we study the scaling of the vesicle size with the reaction rate. The chemically active vesicles are inflated by precursor, imparting tension onto the membrane and, for specific parameters, stabilize pores.
Collapse
Affiliation(s)
- Gregor Häfner
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
198
|
Milster S, Darwish A, Göth N, Dzubiella J. Synergistic chemomechanical dynamics of feedback-controlled microreactors. Phys Rev E 2023; 108:L042601. [PMID: 37978612 DOI: 10.1103/physreve.108.l042601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023]
Abstract
The experimental control of synergistic chemomechanical dynamics of catalytically active microgels (microreactors) is a key prerequisite for the design of adaptive and biomimetic materials. Here, we report a minimalistic model of feedback-controlled microreactors based on the coupling between the hysteretic polymer volume phase transition and a volume-controlled permeability for the internal chemical conversion. We categorize regimes of mono- and bistability, excitability, damped oscillations, as well as sustained oscillatory states with tunable amplitude, as indicated by experiments and representable by the FitzHugh-Nagumo dynamics for neurons. We summarize the features of such a "colloidal neuron" in bifurcation diagrams with respect to microgel design parameters, such as permeability and relaxation times, as a guide for experimental synthesis.
Collapse
Affiliation(s)
- Sebastian Milster
- Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Abeer Darwish
- Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Nils Göth
- Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
199
|
Lantos E, Tóth Á, Horváth D. Oscillatory dynamics in a reaction network based on imine hydrolysis. CHAOS (WOODBURY, N.Y.) 2023; 33:103104. [PMID: 37782830 DOI: 10.1063/5.0169860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
We have built an autocatalytic reaction network, based on the hydrolysis of certain imines, which exhibits bistability in an open system. The positive feedback originates from the interplay of fast acid-base equilibria, leading to hydroxide ion production, and pH-dependent hydrolysis rates. The addition of a first-order removal of the autocatalyst can result in sustained pH oscillations close to physiological conditions. The unit-amplitude pH oscillations are accompanied by the stoichiometric conversion of imine into amine back and forth. A systematic parameter search is carried out to characterize the rich observable dynamics and identify the evolving bifurcations.
Collapse
Affiliation(s)
- Emese Lantos
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| |
Collapse
|
200
|
Linsenmeier M, Faltova L, Morelli C, Capasso Palmiero U, Seiffert C, Küffner AM, Pinotsi D, Zhou J, Mezzenga R, Arosio P. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat Chem 2023; 15:1340-1349. [PMID: 37749234 PMCID: PMC10533390 DOI: 10.1038/s41557-023-01289-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/05/2023] [Indexed: 09/27/2023]
Abstract
The maturation of liquid-like protein condensates into amyloid fibrils has been associated with several neurodegenerative diseases. However, the molecular mechanisms underlying this liquid-to-solid transition have remained largely unclear. Here we analyse the amyloid formation mediated by condensation of the low-complexity domain of hnRNPA1, a protein involved in amyotrophic lateral sclerosis. We show that phase separation and fibrillization are connected but distinct processes that are modulated by different regions of the protein sequence. By monitoring the spatial and temporal evolution of amyloid formation we demonstrate that the formation of fibrils does not occur homogeneously inside the droplets but is promoted at the interface of the condensates. We further show that coating the interface of the droplets with surfactant molecules inhibits fibril formation. Our results reveal that the interface of biomolecular condensates of hnRNPA1 promotes fibril formation, therefore suggesting interfaces as a potential novel therapeutic target against the formation of aberrant amyloids mediated by condensation.
Collapse
Affiliation(s)
- Miriam Linsenmeier
- Department of Chemistry and Applied Sciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied Sciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Chiara Morelli
- Department of Chemistry and Applied Sciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Sciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Charlotte Seiffert
- Department of Chemistry and Applied Sciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Andreas M Küffner
- Department of Chemistry and Applied Sciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
| | - Jiangtao Zhou
- Department for Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department for Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Sciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|