2051
|
Bashar AE, Metcalfe AL, Viringipurampeer IA, Yanai A, Gregory-Evans CY, Gregory-Evans K. An ex vivo gene therapy approach in X-linked retinoschisis. Mol Vis 2016; 22:718-33. [PMID: 27390514 PMCID: PMC4919093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 10/28/2022] Open
Abstract
PURPOSE X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. METHODS MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. RESULTS Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the area of the schisis cavities was reduced by 65% with constitutive MSCs and by 83% with inducible MSCs, demonstrating improved inner nuclear layer architecture. This benefit was maintained up to 8 weeks post-injection and corresponded to a significant improvement in the electroretinogram (ERG) b-/a-wave ratio at 8 weeks (2.6 inducible MSCs; 1.4 untreated eyes, p<0.05). At 4 months after multiple injections, the schisis cavity areas were reduced by 78% for inducible MSCs and constitutive MSCs, more photoreceptor nuclei were present (700/µm constitutive MSC; 750/µm inducible MSC; 383/µm untreated), and the ERG b-wave was significantly improved (threefold higher with constitutive MSCs and twofold higher with inducible MSCs) compared to the untreated control group. CONCLUSIONS These results establish that extracellular delivery of RS1 rescues the structural and functional deficits in the Rs1h knockout mouse model and that this ex vivo gene therapy approach can inhibit progression of disease. This proof-of-principle work suggests that other inherited retinal degenerations caused by a deficiency of extracellular matrix proteins could be targeted by this strategy.
Collapse
|
2052
|
The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering. Sci Rep 2016; 6:28126. [PMID: 27324079 PMCID: PMC4914939 DOI: 10.1038/srep28126] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/27/2016] [Indexed: 01/05/2023] Open
Abstract
Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.
Collapse
|
2053
|
Shirley Ding SL, Leow SN, Munisvaradass R, Koh EH, Bastion MLC, Then KY, Kumar S, Mok PL. Revisiting the role of erythropoietin for treatment of ocular disorders. Eye (Lond) 2016; 30:1293-1309. [PMID: 27285322 DOI: 10.1038/eye.2016.94] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein hormone conventionally thought to be responsible only in producing red blood cells in our body. However, with the discovery of the presence of EPO and EPO receptors in the retinal layers, the EPO seems to have physiological roles in the eye. In this review, we revisit the role of EPO in the eye. We look into the biological role of EPO in the development of the eye and the physiologic roles that it has. Apart from that, we seek to understand the mechanisms and pathways of EPO that contributes to the therapeutic and pathological conditions of the various ocular disorders such as diabetic retinopathy, retinopathy of prematurity, glaucoma, age-related macular degeneration, optic neuritis, and retinal detachment. With these understandings, we discuss the clinical applications of EPO for treatment of ocular disorders, modes of administration, EPO formulations, current clinical trials, and its future directions.
Collapse
Affiliation(s)
- S L Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - S N Leow
- Department of Ophthalmology, Hospital Sultanah Aminah, Johor Bahru, Malaysia
| | - R Munisvaradass
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - E H Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - M L C Bastion
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - K Y Then
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - S Kumar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - P L Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
2054
|
Kawamura R, Hayashi Y, Murakami H, Nakashima M. EDTA soluble chemical components and the conditioned medium from mobilized dental pulp stem cells contain an inductive microenvironment, promoting cell proliferation, migration, and odontoblastic differentiation. Stem Cell Res Ther 2016; 7:77. [PMID: 27387974 PMCID: PMC4937592 DOI: 10.1186/s13287-016-0334-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022] Open
Abstract
Background The critical challenge in tissue engineering is to establish an optimal combination of stem cells, signaling morphogenetic molecules, and extracellular matrix scaffold/microenvironment. The extracellular matrix components of teeth may be reconstituted as an inductive microenvironment in an ectopic tooth transplantation bioassay. Thus, the isolation and identification of the chemical components of the inductive microenvironment in pulp/dentin regeneration will accelerate progress towards the goal of tissue engineering of the tooth. Methods The teeth demineralized in 0.6 M hydrochloric acid were sequentially extracted by 4.0 M guanidine hydrochloride (GdnHCl), pH 7.4, and 0.5 M ethylenediaminetetraacetic acid (EDTA), pH 7.4. The extracted teeth were transplanted into an ectopic site in severe combined immunodeficiency (SCID) mice with mobilized dental pulp stem cells (MDPSCs). The unextracted tooth served as a positive control. Furthermore, the soluble components for the inductive microenvironment, the GdnHCl extracts, or the EDTA extracts together with or without MDPSC conditioned medium (CM) were reconstituted systematically with autoclaved teeth in which the chemical components were completely inactivated and only the physical microenvironment was preserved. Their pulp/dentin regenerative potential and angiogenic potential were compared 28 days after ectopic tooth transplantation by histomorphometry and real-time RT-PCR analysis. Results Expression of an odontoblastic marker, enamelysin, and a pulp marker, thyrotropin-releasing hormone degrading enzyme (TRH-DE), was lower, and expression of a periodontal cell marker, anti-asporin/periodontal ligament-associated protein 1 (PLAP-1), was higher in the transplant of the EDTA-extracted teeth compared with the GdnHCl-extracted teeth. The autoclaved teeth reconstituted with the GdnHCl extracts or the EDTA extracts have weak regenerative potential and minimal angiogenic potential, and the CM significantly increased this potential. Combinatorial effects of the EDTA extracts and the CM on pulp/dentin regeneration were demonstrated in vivo, consistent with their in-vitro effects on enhanced proliferation, migration, and odontoblastic differentiation. Conclusions The EDTA-extracted teeth demonstrated significantly lower pulp/dentin regenerative potential compared with the GdnHCl-extracted teeth. The EDTA soluble chemical components when reconstituted with the physical structure of autoclaved teeth serve as an inductive microenvironment for pulp/dentin regeneration, promoting cell proliferation, migration, and odontoblastic differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0334-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rei Kawamura
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.,Department of Gerontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8651, Japan.,Department of Oral Implantology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8651, Japan
| | - Yuki Hayashi
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.,Department of Pediatric Dentistry, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8651, Japan
| | - Hiroshi Murakami
- Department of Gerontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8651, Japan.,Department of Oral Implantology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8651, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
2055
|
Liu J, Wu J, Sun A, Sun Y, Yu X, Liu N, Dong S, Yang F, Zhang L, Zhong X, Xu C, Lu F, Zhang W. Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway. Cell Biosci 2016; 6:33. [PMID: 27222705 PMCID: PMC4877995 DOI: 10.1186/s13578-016-0099-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background Excessive autophagy induced by extravagant oxidative stress is the main reason for diabetes-induced vascular endothelial cells dysfunction. Hydrogen sulfide (H2S) has anti-oxidative effects but its regulation on excessive autophagy of vascular endothelial cells is unclear. Methods In this study, aorta of db/db mice (28 weeks old) and rat aortic endothelial cells (RAECs) treated with 40 mM glucose and 500 μM palmitate acted as type II diabetic animal and cellular models, respectively, and 100 μMNaHS was used as an exogenous H2S donor. The apoptosis level was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) staining and Hoechst 33342/PI staining. The activities of SOD, CAT and respiratory complexes were also measured. The mRNA levels of SOD and CAT were detected by real-time PCR. AMPK-siRNA was used to detect the effect of AMPK on autophagy. Western blotting was used to detected the protein level. Results H2S production was decreased (p < 0.05, p < 0.01) both in vitro and in vivo; NaHS treatment rescued this impairment (p < 0.05, p < 0.01). The expression of adhesive proteins was increased (p < 0.05, p < 0.01) both in vitro and in vivo; NaHS attenuated (p < 0.05, p < 0.01) these alterations. NaHS could protect endothelial cells against apoptosis induced by type II diabetes (p < 0.05, p < 0.01). Furthermore, the expressions and activities of SOD and CAT were impaired (p < 0.05, p < 0.01) in endothelial cells of diabetes II; NaHS treatment attenuated (p < 0.05) this impairment. NaHS also increased ATP production (p < 0.05) and activities of respiratory complexes (p < 0.05), and the ratio of p-AMPK to AMPK was also decreased by NaHS (p < 0.01). The level of autophagy in endothelial cells was also decreased (p < 0.05, p < 0.01) by NaHS treatment and AMPK-siRNA treatment. The expression of Nrf2 in the nuclei was increased (p < 0.05) by NaHS treatment. Conclusion Exogenous H2S might protect arterial endothelial cells by suppressing excessive autophagy induced by oxidative stress through the Nrf2-ROS-AMPK signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0099-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Jichao Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Aili Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Xiangjing Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Fan Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Linxue Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| |
Collapse
|
2056
|
Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis. Int J Mol Sci 2016; 17:ijms17050712. [PMID: 27213355 PMCID: PMC4881534 DOI: 10.3390/ijms17050712] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/22/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
The clinical need for effective bone regeneration therapy remains in huge demands. However, the current "gold standard" treatments of autologous and allogeneic bone grafts may result in various complications. Furthermore, safety considerations of biomaterials and cell-based treatment require further clarification. Therefore, developing new therapies with stronger osteogenic potential and a lower incidence of complications is worthwhile. Recently, exosomes, small vesicles of endocytic origin, have attracted attention in bone regeneration field. The vesicles travel between cells and deliver functional cargoes, such as proteins and RNAs, thereby regulating targeted cells differentiation, commitment, function, and proliferation. Much evidence has demonstrated the important roles of exosomes in osteogenesis both in vitro and in vivo. In this review, we summarize the properties, origins and biogenesis of exosomes, and the recent reports using exosomes to regulate osteogenesis and promote bone regeneration.
Collapse
|
2057
|
Abstract
Diabetic macular edema (DME), one the most prevalent causes of visual loss in industrialized countries, may be diagnosed at any stage of diabetic retinopathy. The diagnosis, treatment, and follow up of DME have become straightforward with recent developments in fundus imaging, such as optical coherence tomography. Laser photocoagulation, intravitreal injections, and pars plana vitrectomy surgery are the current treatment modalities; however, the positive effects of currently available intravitreally injected agents are temporary. At this point, further treatment choices are needed for a permanent effect.
Collapse
Affiliation(s)
- Fatih C Gundogan
- Fatih C. Gundogan, GATA Medical School, Ophthalmology, Ankara, Turkey
| | - Umit Yolcu
- Umit Yolcu, Sarikamis Military Hospital, Ophthalmology, Kars, Turkey
| | - Fahrettin Akay
- Fahrettin Akay, İzmir Military Hospital, Ophthalmology, Izmir, Turkey
| | - Abdullah Ilhan
- Abdullah Ilhan, Erzurum Military Hospital, Ophthalmology, Erzurum, Turkey
| | - Gokhan Ozge
- Gokhan Ozge, GATA Medical School, Ophthalmology, Ankara, Turkey
| | - Salih Uzun
- Salih Uzun Etimesgut Military Hospital, Ophthalmology, Ankara, Turkey
| |
Collapse
|
2058
|
Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B. Extracellular Vesicles in Physiology, Pathology, and Therapy of the Immune and Central Nervous System, with Focus on Extracellular Vesicles Derived from Mesenchymal Stem Cells as Therapeutic Tools. Front Cell Neurosci 2016; 10:109. [PMID: 27199663 PMCID: PMC4852177 DOI: 10.3389/fncel.2016.00109] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-surrounded structures released by most cell types. They are characterized by a specific set of proteins, lipids and nucleic acids. EVs have been recognized as potent vehicles of intercellular communication to transmit biological signals between cells. In addition, pathophysiological roles of EVs in conditions like cancer, infectious diseases and neurodegenerative disorders are well established. In recent years focus has been shifted on therapeutic use of stem cell derived-EVs. Use of stem cell derived-EVs present distinct advantage over the whole stem cells as EVs do not replicate and after intravenous administration, they are less likely to trap inside the lungs. From the therapeutic perspective, the most promising cellular sources of EVs are mesenchymal stem cells (MSCs), which are easy to obtain and maintain. Therapeutic activity of MSCs has been shown in numerous animal models and the beneficial paracrine effect of MSCs may be mediated by EVs. The various components of MSC derived-EVs such as proteins, lipids, and RNA might play a specific therapeutic role. In this review, we characterize the role of EVs in immune and central nervous system (CNS); present evidences for defective signaling of these vesicles in neurodegeneration and therapeutic role of EVs in CNS.
Collapse
Affiliation(s)
- Sylwia Koniusz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua Padua, Italy
| | - Amit K Srivastava
- Russel H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of SciencesWarsaw, Poland; Russel H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, BaltimoreMD, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
2059
|
López-Paniagua M, Nieto-Miguel T, de la Mata A, Dziasko M, Galindo S, Rey E, Herreras JM, Corrales RM, Daniels JT, Calonge M. Comparison of functional limbal epithelial stem cell isolation methods. Exp Eye Res 2016; 146:83-94. [DOI: 10.1016/j.exer.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/05/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022]
|
2060
|
Alcayaga-Miranda F, Varas-Godoy M, Khoury M. Harnessing the Angiogenic Potential of Stem Cell-Derived Exosomes for Vascular Regeneration. Stem Cells Int 2016; 2016:3409169. [PMID: 27127516 PMCID: PMC4834153 DOI: 10.1155/2016/3409169] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/13/2016] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known to display important regenerative properties through the secretion of proangiogenic factors. Recent evidence pointed at the key role played by exosomes released from MSCs in this paracrine mechanism. Exosomes are key mediators of intercellular communication and contain a cargo that includes a modifiable content of microRNA (miRNA), mRNA, and proteins. Since the biogenesis of the MSCs-derived exosomes is regulated by the cross talk between MSCs and their niche, the content of the exosomes and consequently their biological function are dependent on the cell of origin and the physiologic or pathologic status of their microenvironment. Recent preclinical studies revealed that MSCs-derived exosomes have a critical implication in the angiogenic process since the use of exosomes-depleted conditioned medium impaired the MSCs angiogenesis response. In this review, we discuss the current knowledge related to the angiogenic potential of MSCs-exosomes and methods to enhance their biological activities for improved vascular regeneration. The current gain of insight in exosomes studies highlights the power of combining cell based therapies and their secreted products in therapeutic angiogenesis.
Collapse
Affiliation(s)
- F. Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, 7620001 Santiago, Chile
- Cells for Cells, 7620001 Santiago, Chile
| | - M. Varas-Godoy
- Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de Los Andes, 7620001 Santiago, Chile
| | - M. Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, 7620001 Santiago, Chile
- Cells for Cells, 7620001 Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, 7620001 Santiago, Chile
| |
Collapse
|
2061
|
Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases. Stem Cells Int 2016; 2016:7961816. [PMID: 27110252 PMCID: PMC4823508 DOI: 10.1155/2016/7961816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.
Collapse
|
2062
|
Yu T, Rajendran V, Griffith M, Forrester JV, Kuffová L. High-risk corneal allografts: A therapeutic challenge. World J Transplant 2016; 6:10-27. [PMID: 27011902 PMCID: PMC4801785 DOI: 10.5500/wjt.v6.i1.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/03/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Corneal transplantation is the most common surgical procedure amongst solid organ transplants with a high survival rate of 86% at 1-year post-grafting. This high success rate has been attributed to the immune privilege of the eye. However, mechanisms originally thought to promote immune privilege, such as the lack of antigen presenting cells and vessels in the cornea, are challenged by recent studies. Nevertheless, the immunological and physiological features of the cornea promoting a relatively weak alloimmune response is likely responsible for the high survival rate in “low-risk” settings. Furthermore, although corneal graft survival in “low-risk” recipients is favourable, the prognosis in “high-risk” recipients for corneal graft is poor. In “high-risk” grafts, the process of indirect allorecognition is accelerated by the enhanced innate and adaptive immune responses due to pre-existing inflammation and neovascularization of the host bed. This leads to the irreversible rejection of the allograft and ultimately graft failure. Many therapeutic measures are being tested in pre-clinical and clinical studies to counter the immunological challenge of “high-risk” recipients. Despite the prevailing dogma, recent data suggest that tissue matching together with use of systemic immunosuppression may increase the likelihood of graft acceptance in “high-risk” recipients. However, immunosuppressive drugs are accompanied with intolerance/side effects and toxicity, and therefore, novel cell-based therapies are in development which target host immune cells and restore immune homeostasis without significant side effect of treatment. In addition, developments in regenerative medicine may be able to solve both important short comings of allotransplantation: (1) graft rejection and ultimate graft failure; and (2) the lack of suitable donor corneas. The advances in technology and research indicate that wider therapeutic choices for patients may be available to address the worldwide problem of corneal blindness in both “low-risk” and “high-risk” hosts.
Collapse
|
2063
|
Mesenchymal Stem Cells Increase Neo-Angiogenesis and Albumin Production in a Liver Tissue-Engineered Engraftment. Int J Mol Sci 2016; 17:374. [PMID: 26985891 PMCID: PMC4813233 DOI: 10.3390/ijms17030374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
The construction of a three-dimensional (3D) liver tissue is limited by many factors; one of them is the lack of vascularization inside the tissue-engineered construct. An engineered liver pocket-scaffold able to increase neo-angiogenesis in vivo could be a solution to overcome these limitations. In this work, a hyaluronan (HA)-based scaffold enriched with human mesenchymal stem cells (hMSCs) and rat hepatocytes was pre-conditioned in a bioreactor system, then implanted into the liver of rats. Angiogenesis and hepatocyte metabolic functions were monitored. The formation of a de novo vascular network within the HA-based scaffold, as well as an improvement in albumin production by the implanted hepatocytes, were detected. The presence of hMSCs in the HA-scaffold increased the concentration of growth factors promoting angiogenesis inside the graft. This event ensured a high blood vessel density, coupled with a support to metabolic functions of hepatocytes. All together, these results highlight the important role played by stem cells in liver tissue-engineered engraftment.
Collapse
|
2064
|
Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC, Fan Y, Wang Y, Wang NS. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 2016; 7:24. [PMID: 26852014 PMCID: PMC4744390 DOI: 10.1186/s13287-016-0287-2] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic nephropathy is one of the most serious complications in patients with diabetes. At present, there are no satisfactory treatments available for diabetic nephropathy. Stem cells are currently the main candidates for the development of new treatments for diabetic nephropathy, as they may exert their therapeutic effects mainly through paracrine mechanisms. Exosomes derived from stem cells have been reported to play an important role in kidney injury. In this article, we try to investigate whether exosomes retrieved from urine stem cells could itself prevent diabetic nephropathy at an early stage in vivo and in vitro. Methods Exosomes from conditioned medium of urine-derived stem cells (USCs-Exo) were isolated using ultrafiltration-combined purification methods. USCs-Exo were then verified by morphology, size, and specific biomarkers using transmission electron microscopy, tunable resistive pulse sensing analysis, and western blotting. After establishment of the streptozotocin-induced Sprague–Dawley rat model, the effects of USCs-Exo on kidney injury and angiogenesis were observed via weekly tail intravenous injection of USCs-Exo or control until 12 weeks. In vitro, podocytes cultured in high-glucose medium were treated with USCs-Exo to test the protective effect of USCs-Exo on podocytic apoptosis. Meanwhile, the potential factors in promoting vascular regeneration in USCs-Exo and urine-derived stem cell conditioned medium were investigated by enzyme-linked immunosorbent assay. Results Urine-derived stem cells were cultured and were verified by positive markers for CD29, CD73, CD90 and CD44 antigens, and negative markers for CD34, CD45 and HLA-DR. USCs-Exo were approximately 50–100 nm spherical vesicles, and the specific markers included CD9, CD63 and CD81. Intravenous injections of USCs-Exo could potentially reduce the urine volume and urinary microalbumin excretion, prevent podocyte and tubular epithelial cell apoptosis, suppress the caspase-3 overexpression and increase glomerular endothelial cell proliferation in diabetic rats. In addition, USCs-Exo could reduce podocytic apoptosis induced by high glucose in vitro. USCs-Exo contained the potential factors, including growth factor, transforming growth factor-β1, angiogenin and bone morphogenetic protein-7, which may be related with vascular regeneration and cell survival. Conclusion USCs-Exo may have the potential to prevent kidney injury from diabetes by inhibiting podocyte apoptosis and promoting vascular regeneration and cell survival. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0287-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen-zhen Jiang
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Yu-mei Liu
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Jian-yong Yin
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Shang-chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Ying Fan
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Nian-song Wang
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| |
Collapse
|
2065
|
Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems. Int J Mol Sci 2016; 17:172. [PMID: 26861303 PMCID: PMC4783906 DOI: 10.3390/ijms17020172] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.
Collapse
|
2066
|
Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 2016; 320:129-39. [PMID: 26851773 DOI: 10.1016/j.neuroscience.2016.01.061] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) have been shown to promote neuronal growth and survival. However, the comparative effects of MSCs of different sources, including menstrual MSCs (MenSCs), BM, umbilical cord and chorion stem cells on neurite outgrowth have not yet been explored. Moreover, the modulatory effects of MSCs may be mediated by paracrine mechanisms, i.e. by molecules contained in the MSC secretome that includes soluble factors and extracellular vesicles such as microvesicles and/or exosomes. The biogenesis of microvesicles, characterized by a vesicle diameter of 50 to 1000 nm, involves membrane shedding while exosomes, of 30 to 100 nm in diameter, originate in the multivesicular bodies within cells. Both vesicle types, which can be harvested from the conditioned media of cell cultures by differential centrifugation steps, regulate the function of target cells due to their molecular content of microRNA, mRNA, proteins and lipids. Here, we compared the effect of human menstrual MSCs (MenSCs) mediated by cell-cell contact, by their total secretome or by secretome-derived extracellular vesicles on neuritic outgrowth in primary neuronal cultures. The contact of MenSCs with cortical neurons inhibited neurite outgrowth while their total secretome enhanced it. The extracellular vesicle fractions showed a distinctive effect: while the exosome-enriched fraction enhanced neurite outgrowth, the microvesicle-enriched fraction displayed an inhibitory effect. When we compared exosome fractions of different human MSC sources, MenSC exosomes showed superior effects on the growth of the longest neurite in cortical neurons and had a comparable effect to BM-SC exosomes on neurite outgrowth in dorsal root ganglia neurons. Thus, the growth-stimulating effects of exosomes derived from MenSCs as well as the opposing effects of both extracellular vesicle fractions provide important information regarding the potential use of MenSCs as therapeutic conveyors in neurodegenerative pathologies.
Collapse
|
2067
|
Chen X, Shao H, Zhi Y, Xiao Q, Su C, Dong L, Liu X, Li X, Zhang X. CD73 Pathway Contributes to the Immunosuppressive Ability of Mesenchymal Stem Cells in Intraocular Autoimmune Responses. Stem Cells Dev 2016; 25:337-46. [PMID: 26650818 DOI: 10.1089/scd.2015.0227] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit a potent immunomodulatory capacity and have been applied to treat diseases such as graft versus host disease and severe autoimmune diseases. However, the mechanism underlying their immunosuppressive effect is not yet completely understood. Here, we investigated the role of the CD73/adenosine pathway in immune modulation by MSCs using a mouse model of experimental autoimmune uveitis (EAU). Moreover, we examined the in vitro modulatory effect of MSCs mediated through the CD73/adenosine pathway in human and mouse T cells. We found that the severity of EAU was significantly attenuated by MSCs; however, most therapeutic effects of MSCs were lost by pretreatment with a CD73 inhibitor. The inhibitory mechanism of MSCs might be contributed by CD73 on MSCs that cooperated with CD39 and CD73 on activated T cells to produce adenosine, resulting in inhibition of T-cell proliferation. Furthermore, MSCs increased the expression of CD73 on CD4(+) T cells, and transforming growth factor-β1 (TGF-β1) was the only tested cytokine that contributed to upregulation of CD73. Hence, our study demonstrates that the CD73/adenosine pathway involves the immunomodulatory function of MSCs in autoimmune responses.
Collapse
Affiliation(s)
- Xiteng Chen
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Hui Shao
- 2 Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville , Louisville, Kentucky
| | - Yuntao Zhi
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Qing Xiao
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Chang Su
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Lijie Dong
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Xun Liu
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Xiaorong Li
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Xiaomin Zhang
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| |
Collapse
|
2068
|
Abstract
INTRODUCTION Application of regenerative medicine strategies for repair of organs/tissue impacted by chronic disease is an active subject for product development. Such methodologies emphasize the role of stem cells as the active biological ingredient. However, recent developments in elucidating mechanisms of action of these therapies have focused on the role of paracrine, 'action-at-a-distance' modus operandi in mediating the ability to catalyze regenerative outcomes without significant site-specific engraftment. A salient component of this secreted regenerative milieu are exosomes: 40-100 nm intraluminal vesicles that mediate transfer of proteins and nucleic acids across cellular boundaries. AREAS COVERED Here, we synthesize recent studies from PubMed and Google Scholar highlighting how cell-based therapeutics and cosmeceutics are transitioning towards the secretome generally and exosomes specifically as a principal modulator of regenerative outcomes. EXPERT OPINION Exosomes contribute to organ development and mediate regenerative outcomes in injury and disease that recapitulate observed bioactivity of stem cell populations. Encapsulation of the active biological ingredients of regeneration within non-living exosome carriers may offer process, manufacturing and regulatory advantages over stem cell-based therapies.
Collapse
|
2069
|
Clemson CM, Yost J, Taylor AW. The Role of Alpha-MSH as a Modulator of Ocular Immunobiology Exemplifies Mechanistic Differences between Melanocortins and Steroids. Ocul Immunol Inflamm 2016; 25:179-189. [PMID: 26807874 PMCID: PMC5769144 DOI: 10.3109/09273948.2015.1092560] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanocortins are a highly conserved family of peptides and receptors that includes multiple proopiomelanocortin-derived peptides and five defined melanocortin receptors. The melanocortins have an important role in maintaining immune homeostasis and in suppressing inflammation. Within the healthy eye, the melanocortins have a central role in preventing inflammation and maintaining immune privilege. A central mediator of the anti-inflammatory activity is the non-steroidogenic melanocortin peptide alpha-melanocyte stimulating hormone. In this review we summarize the major findings of melanocortin regulation of ocular immunobiology with particular interest in the ability of melanocortin to induce immune tolerance and cytoprotection. The melanocortins have therapeutic potential because their mechanisms of action in regulating immunity are distinctly different from the actions of steroids.
Collapse
Affiliation(s)
- Christine M Clemson
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - John Yost
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - Andrew W Taylor
- b Department of Ophthalmology , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
2070
|
Funderburgh JL, Funderburgh ML, Du Y. Stem Cells in the Limbal Stroma. Ocul Surf 2016; 14:113-20. [PMID: 26804252 DOI: 10.1016/j.jtos.2015.12.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 12/24/2015] [Indexed: 12/13/2022]
Abstract
The corneal stroma contains a population of mesenchymal cells subjacent to the limbal basement membrane with characteristics of adult stem cells. These 'niche cells' support limbal epithelial stem cell viability. In culture by themselves, the niche cells display a phenotype typical of mesenchymal stem cells. These stromal stem cells exhibit a potential to differentiate to multiple cell types, including keratocytes, thus providing an abundant source of these rare cells for experimental and bioengineering applications. Stromal stem cells have also shown the ability to remodel pathological stromal tissue, suppressing inflammation and restoring transparency. Because stromal stem cells can be obtained by biopsy, they offer a potential for autologous stem cell treatment for stromal opacities. This review provides an overview of the status of work on this interesting cell population.
Collapse
Affiliation(s)
- James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.
| | - Martha L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
2071
|
Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC. Inducing and Administering Tregs to Treat Human Disease. Front Immunol 2016; 6:654. [PMID: 26834735 PMCID: PMC4722090 DOI: 10.3389/fimmu.2015.00654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) control unwanted immune responses, including those that mediate tolerance to self as well as to foreign antigens. Their mechanisms of action include direct and indirect effects on effector T cells and important functions in tissue repair and homeostasis. Tregs express a number of cell surface markers and transcriptional factors that have been instrumental in defining their origins and potentially their function. A number of immune therapies, such as rapamycin, IL-2, and anti-T cell antibodies, are able to induce Tregs and are being tested for their efficacy in diverse clinical settings with exciting preliminary results. However, a balance exists with the use of some, such as IL-2, that may have effects on unwanted populations as well as promoting expansion and survival of Tregs requiring careful selection of dose for clinical use. The use of cell surface markers has enabled investigators to isolate and expand ex vivo Tregs more than 500-fold routinely. Clinical trials have begun, administering these expanded Tregs to patients as a means of suppressing autoimmune and alloimmune responses and potentially inducing immune tolerance. Studies in the future are likely to build on these initial technical achievements and use combinations of agents to improve the survival and functional capacity of Tregs.
Collapse
Affiliation(s)
- Ana Luisa Perdigoto
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France; INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco , San Francisco, CA , USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
2072
|
Fang S, Meng X, Zhang Z, Wang Y, Liu Y, You C, Yan H. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis. Neuromolecular Med 2016; 18:134-45. [PMID: 26798022 DOI: 10.1007/s12017-016-8383-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yang Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yuanyuan Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Caiyun You
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
2073
|
Zhang Y, Yu M, Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif 2016; 49:3-13. [PMID: 26776755 DOI: 10.1111/cpr.12233] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023] Open
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2074
|
Shi S, Zhang Q, Xia Y, You B, Shan Y, Bao L, Li L, You Y, Gu Z. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res 2016; 6:459-472. [PMID: 27186416 PMCID: PMC4859673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasmic constituents, have been described as participants in a novel mechanism of cell-to-cell communication. In the present study, we investigated the mechanisms underlying the interaction between MSCs and NPC cells. The data showed that MSCs secreted 40-100 nm heterogeneous small vesicles, which were defined as exosomes. Incubation of NPC cells with MSC-derived exosomes resulted in the uptake of exosomes by the cells, which promoted their proliferation, migration and tumorigenesis. After an extended treatment duration, the tumor cells showed morphological changes and significant changes in the expression of epithelial-mesenchymal transition (EMT) markers. Moreover, we found that FGF19 was highly expressed in MSC-exosomes and that exosomes stimulated NPC progression by activating the FGF19-FGFR4-dependent ERK signaling cascade and by modulating the EMT. All of these data indicated that exosomes participate in a novel mechanism by which MSCs influence NPC progression.
Collapse
Affiliation(s)
- Si Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Ying Shan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Lili Bao
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Li Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| |
Collapse
|
2075
|
Activation of Melanocortin Receptors MC 1 and MC 5 Attenuates Retinal Damage in Experimental Diabetic Retinopathy. Mediators Inflamm 2016; 2016:7368389. [PMID: 26949291 PMCID: PMC4753692 DOI: 10.1155/2016/7368389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023] Open
Abstract
We hypothesize that melanocortin receptors (MC) could activate tissue protective circuit in a model of streptozotocin- (STZ-) induced diabetic retinopathy (DR) in mice. At 12–16 weeks after diabetes induction, fluorescein angiography (FAG) revealed an approximate incidence of 80% microvascular changes, typical of DR, in the animals, without signs of vascular leakage. Occludin progressively decreased in the retina of mice developing retinopathy. qPCR of murine retina revealed expression of two MC receptors, Mc1r and Mc5r. The intravitreal injection (5 μL) of the selective MC1 small molecule agonist BMS-470539 (33 μmol) and the MC5 peptidomimetic agonist PG-901 (7.32 nM) elicited significant protection with regular course and caliber of retinal vessels, as quantified at weeks 12 and 16 after diabetes induction. Mouse retina homogenate settings indicated an augmented release of IL-1α, IL-1β, IL-6, MIP-1α, MIP-2α, MIP-3α, and VEGF from diabetic compared to nondiabetic mice. Application of PG20N or AGRP and MC5 and MC1 antagonist, respectively, augmented the release of cytokines, while the agonists BMS-470539 and PG-901 almost restored normal pattern of these mediators back to nondiabetic values. Similar changes were quantified with respect to Ki-67 staining. Finally, application of MC3-MC4 agonist/antagonists resulted to be inactive with respect to all parameters under assessment.
Collapse
|
2076
|
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7:7. [PMID: 26753925 PMCID: PMC4709937 DOI: 10.1186/s13287-015-0271-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are increasingly used as an intravenously applied cellular therapeutic. They were found to be potent in situations such as tissue repair or severe inflammation. Still, data are lacking with regard to the biodistribution of MSCs, their cellular or molecular target structures, and the mechanisms by which MSCs reach these targets. This review discusses current hypotheses for how MSCs can reach tissue sites. Both preclinical and clinical studies using MSCs applied intravenously or intra-arterially are discussed in the context of our current understanding of how MSCs might work in physiological and pathological situations.
Collapse
Affiliation(s)
- Johannes Leibacher
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany
| | - Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany. .,Blood Donor Center Zürich, Swiss Red Cross, Zürich, Switzerland.
| |
Collapse
|
2077
|
Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3808674. [PMID: 26880957 PMCID: PMC4736778 DOI: 10.1155/2016/3808674] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Bone transplantation is one of the most widely performed clinical procedures. Consequently, bone regeneration using mesenchymal stem cells and tissue engineering strategies is one of the most widely researched fields in regenerative medicine. Recent scientific consensus indicates that a biomimetic approach is required to achieve proper regeneration of any tissue. Exosomes are nanovesicles secreted by cells that act as messengers that influence cell fate. Although exosomal function has been studied with respect to cancer and immunology, the role of exosomes as inducers of stem cell differentiation has not been explored. We hypothesized that exosomes can be used as biomimetic tools for regenerative medicine. In this study we have explored the use of cell-generated exosomes as tools to induce lineage specific differentiation of stem cells. Our results indicate that proosteogenic exosomes isolated from cell cultures can induce lineage specific differentiation of naïve MSCs in vitro and in vivo. Additionally, exosomes can also bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. Overall, the results from this study show the potential of cell derived exosomes in bone regenerative medicine and opens up new avenues for future research.
Collapse
|
2078
|
Karaöz E, İnci Ç. Umbilical Cord Tissue and Wharton’s Jelly Mesenchymal Stem Cells Properties and Therapeutic Potentials. PERINATAL TISSUE-DERIVED STEM CELLS 2016. [DOI: 10.1007/978-3-319-46410-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2079
|
Treacy O, Fahy G, Ritter T, O'Flynn L. Corneal Immunosuppressive Mechanisms, Anterior Chamber-Associated Immune Deviation (ACAID) and Their Role in Allograft Rejection. Methods Mol Biol 2016; 1371:205-14. [PMID: 26530803 DOI: 10.1007/978-1-4939-3139-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Corneal transplantation is the most frequently performed transplant procedure in humans. Human leukocyte antigen matching, while imperative for other types of organ transplants, is usually not performed before cornea transplantation. With the use of topical steroid immunosuppressants, which are subsequently tailed off to almost zero, most corneal transplants will not be rejected in recipients with low risk of graft rejection. This phenomenon has been described as immune privilege by Medawar many years ago. However, this immune privilege is relative and can be easily eroded, e.g. by postoperative nonspecific inflammation or other causes of corneal or ocular inflammation. Interestingly, corneas that are at high risk of rejection have a higher failure rate than other organs. Considerable progress has been made in recent years to provide a better understanding of corneal immune privilege. This chapter will review current knowledge on ocular immunosuppressive mechanisms including anterior chamber-associated immune deviation and discuss their role(s) in corneal allograft rejection. Ultimately, this evolving information will be of benefit in developing therapeutic strategies to prevent corneal transplant rejection.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
2080
|
Lei P, Sun R, Wang L, Zhou J, Wan L, Zhou T, Hu Y. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model. PLoS One 2015; 10:e0146005. [PMID: 26719896 PMCID: PMC4699924 DOI: 10.1371/journal.pone.0146005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 12/12/2015] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives Deproteinization is an indispensable process for the elimination of antigenicity in xenograft bones. However, the hydrogen peroxide (H2O2) deproteinized xenograft, which is commonly used to repair bone defect, exhibits limited osteoinduction activity. The present study was designed to develop a new method for deproteinization and compare the osteogenic capacities of new pepsin deproteinized xenograft bones with those of conventional H2O2 deproteinized ones. Methods Bones were deproteinized in H2O2 or pepsin for 8 hours. The morphologies were compared by HE staining. The content of protein and collagen I were measured by the Kjeldahl method and HPLC-MS, respectively. The physical properties were evaluated by SEM and mechanical tests. For in vivo study, X-ray, micro-CT and HE staining were employed to monitor the healing processes of radius defects in rabbit models transplanted with different graft materials. Results Compared with H2O2 deproteinized bones, no distinct morphological and physical changes were observed. However, pepsin deproteinized bones showed a lower protein content, and a higher collagen content were preserved. In vivo studies showed that pepsin deproteinized bones exhibited better osteogenic performance than H2O2 deproteinized bones, moreover, the quantity and quality of the newly formed bones were improved as indicated by micro-CT analysis. From the results of histological examination, the newly formed bones in the pepsin group were mature bones. Conclusions Pepsin deproteinized xenograft bones show advantages over conventional H2O2 deproteinized bones with respect to osteogenic capacity; this new method may hold potential clinical value in the development of new biomaterials for bone grafting.
Collapse
Affiliation(s)
- Pengfei Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Rongxin Sun
- Department of Orthopedics, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jialin Zhou
- Department of Orthopedics, Thoracic hospital of Hunan province, Changsha, China
| | - Lifei Wan
- Department of Orthopedics, Ningxiang People's Hospital, Ningxiang, China
| | - Tianjian Zhou
- Department of Orthopedics, The First People's Hospital of Shenzhen, Shenzhen, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2081
|
α-Melanocyte-stimulating hormone ameliorates ocular surface dysfunctions and lesions in a scopolamine-induced dry eye model via PKA-CREB and MEK-Erk pathways. Sci Rep 2015; 5:18619. [PMID: 26685899 PMCID: PMC4685655 DOI: 10.1038/srep18619] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10(-4) μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH's protective effects, suggesting that both pathways are necessary for α-MSH's protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED.
Collapse
|
2082
|
Panfoli I, Ravera S, Podestà M, Cossu C, Santucci L, Bartolucci M, Bruschi M, Calzia D, Sabatini F, Bruschettini M, Ramenghi LA, Romantsik O, Marimpietri D, Pistoia V, Ghiggeri G, Frassoni F, Candiano G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB J 2015; 30:1416-24. [PMID: 26655706 DOI: 10.1096/fj.15-279679] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 01/13/2023]
Abstract
Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.
Collapse
Affiliation(s)
- Isabella Panfoli
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Ravera
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Marina Podestà
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Claudia Cossu
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Santucci
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Calzia
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Sabatini
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Matteo Bruschettini
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Antonio Ramenghi
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Olga Romantsik
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Danilo Marimpietri
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Vito Pistoia
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Gianmarco Ghiggeri
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Frassoni
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Candiano
- *Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy; and Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Laboratory of Pathophysiology of Uremia, Neonatal Intensive Care Unit, and Laboratorio Oncologia, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
2083
|
Antibody-Based Assays for Phenotyping of Extracellular Vesicles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:524817. [PMID: 26770974 PMCID: PMC4681819 DOI: 10.1155/2015/524817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed vesicles. EVs are recognized as important players in cell-to-cell communication and are described to be involved in numerous biological and pathological processes. The fact that EVs are involved in the development and progression of several diseases has formed the basis for the use of EV analysis in a clinical setting. As the interest in EVs has increased immensely, multiple techniques have been developed aiming at characterizing these vesicles. These techniques characterize different features of EVs, like the size distribution, enumeration, protein composition, and the intravesicular cargo (e.g., RNA). This review focuses on techniques that exploit the specificity and sensitivity associated with antibody-based assays to characterize the protein phenotype of EVs. The protein phenotype of EVs can provide information on the functionality of the vesicles and may be used for identification of disease-related biomarkers. Thus, protein profiling of EVs holds great diagnostic and prognostic potential.
Collapse
|
2084
|
Ocular surface changes in patients treated with oral antidiabetic drugs or insulin. Eur J Ophthalmol 2015; 26:303-6. [PMID: 26659019 DOI: 10.5301/ejo.5000710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE To describe and compare ocular surface changes in patients with type 2 diabetes treated with either oral antidiabetic drugs (OAD) or insulin. METHODS Forty eyes of 20 patients treated with OAD, 40 eyes of 20 patients treated with insulin, and 10 nondiabetic controls seen at Ministry of Health Ankara Educational and Research Hospital, 1st Eye Clinic, were studied. All subjects underwent routine ophthalmic examinations, Schirmer test, tear film break-up time analysis, and conjunctival impression cytologic analysis. Patients treated with OAD or insulin and a control group were compared for tear function parameters, goblet cell density, and squamous metaplasia grade. The relation between status of retinopathy and ocular surface disorder and serum HbA1c levels of diabetic patients were also noted. RESULTS The tear film break-up time values were significantly lower in patients treated with OAD (p<0.05). There was no statistically significant difference in Schirmer test results of the 3 groups. Goblet cell density and squamous metaplasia grade were similar in all groups. The median grade was grade 1, in which epithelial cells are slightly larger, more polygonal, have eosinophilic staining cytoplasm, and goblet cells are decreased in number. Status of retinopathy did not seem to relate to ocular surface disorder. The serum HbA1c level of diabetic patients treated with insulin or OAD was similar (p>0.05). CONCLUSIONS Precorneal tear film stability was worse in patients treated with OAD; however, impression cytology analysis and Schirmer test results were similar in all groups.
Collapse
|
2085
|
Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils. Res Vet Sci 2015; 103:60-9. [DOI: 10.1016/j.rvsc.2015.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022]
|
2086
|
Konala VBR, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 2015; 18:13-24. [PMID: 26631828 DOI: 10.1016/j.jcyt.2015.10.008] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022]
Abstract
The unique properties of mesenchymal stromal/stem cells (MSCs) to self-renew and their multipotentiality have rendered them attractive to researchers and clinicians. In addition to the differentiation potential, the broad repertoire of secreted trophic factors (cytokines) exhibiting diverse functions such as immunomodulation, anti-inflammatory activity, angiogenesis and anti-apoptotic, commonly referred to as the MSC secretome, has gained immense attention in the past few years. There is enough evidence to show that the one important pathway by which MSCs participate in tissue repair and regeneration is through its secretome. Concurrently, a large body of MSC research has focused on characterization of the MSC secretome; this includes both soluble factors and factors released in extracellular vesicles, for example, exosomes and microvesicles. This review provides an overview of our current understanding of the MSC secretome with respect to their potential clinical applications.
Collapse
Affiliation(s)
- Vijay Bhaskar Reddy Konala
- Department of Marine Biotechnology, AMET University, Kanathur, Chennai, India; Genes & Life Health Care Pvt. Ltd, Punjagutta, Hyderabad, India
| | | | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | - Anjan Kumar Das
- Department of Surgery, Taylor's University School of Medicine, Sungai Buloh Hospital, Selangor, Malaysia
| | - Radhika Pochampally
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rajarshi Pal
- School of Regenerative Medicine, Manipal University, Bangalore, India.
| |
Collapse
|
2087
|
Abstract
Mesenchymal stem — or stromal — cells (MSCs) have been administered in hundreds of clinical trials for multiple indications, making them some of the most commonly used selected regenerative cells. Paradoxically, MSCs have also long remained the least characterized stem cells regarding native identity and natural function, being isolated retrospectively in long-term culture. Recent years have seen progress in our understanding of the natural history of these cells, and candidate native MSCs have been identified within fetal and adult organs. Beyond basic knowledge, deciphering the biology of innate MSCs may have important positive consequences for the therapeutic use of these cells.
Collapse
Affiliation(s)
- Iain R Murray
- BHF Centre for Vascular Regeneration, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- BHF Centre for Vascular Regeneration, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK. .,Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2088
|
Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumour Biol 2015; 37:4755-65. [PMID: 26515338 DOI: 10.1007/s13277-015-4304-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related death worldwide. Patients presenting with advanced-stage NSCLC have poor prognosis, while metastatic spread accounts for >70 % of patient's deaths. The major advances in the treatment of lung cancer have brought only minor improvements in survival; therefore, novel strategic treatment approaches are urgently needed. Accumulating data allocate a central role for the cancer microenvironment including mesenchymal stem cells (MSCs) in acquisition of drug resistance and disease relapse. Furthermore, studies indicate that translation initiation factors are over expressed in NSCLC and negatively impact its prognosis. Importantly, translation initiation is highly modulated by microenvironmental cues. Therefore, we decided to examine the effect of bone marrow MSCs (BM-MSCs) from normal donors on NSCLC cell lines with special emphasis on translation initiation mechanism in the crosstalk. We cultured NSCLC cell lines with BM-MSC conditioned media (i.e., secretome) and showed deleterious effects on the cells' proliferation, viability, death, and migration. We also demonstrated reduced levels of translation initiation factors implicated in cancer progression [eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic translation initiation factor 4GI (eIF4GI)], their targets, and regulators. Finally, we outlined a mechanism by which BM-MSCs' secretome affected NSCLC's mitogen-activated protein kinase (MAPK) signaling pathway, downregulated the cell migration, and diminished translation initiation factors' levels. Taken together, our study demonstrates that there is direct dialogue between the BM-MSCs' secretome and NSCLC cells that manipulates translation initiation and critically affects cell fate. We suggest that therapeutic approach that will sabotage this dialogue, especially in the BM microenvironment, may diminish lung cancer metastatic spread and morbidity and improve the patient's life quality.
Collapse
|
2089
|
α-Melanocyte-stimulating hormone prevents glutamate excitotoxicity in developing chicken retina via MC4R-mediated down-regulation of microRNA-194. Sci Rep 2015; 5:15812. [PMID: 26507936 PMCID: PMC4623527 DOI: 10.1038/srep15812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022] Open
Abstract
Glutamate excitotoxicity is a common pathology to blinding ischemic retinopathies, such as diabetic retinopathy, glaucoma, and central retinal vein or artery occlusion. The development of an effective interventional modality to glutamate excitotoxicity is hence important to preventing blindness. Herein we showed that α-melanocyte-stimulating hormone (α-MSH) time-dependently protected against glutamate-induced cell death and tissue damage in an improved embryonic chicken retinal explant culture system. α-MSH down-regulated microRNA-194 (miR-194) expression during the glutamate excitotoxicity in the retinal explants. Furthermore, pharmacological antagonists to melanocortin 4 receptor (MC4R) and lentivirus-mediated overexpression of pre-miR-194 abrogated the suppressing effects of α-MSH on glutamate-induced activities of caspase 3 or 7, the ultimate enzymes for glutamate-induced cell death. These results suggest that the protective effects of α-MSH may be due to the MC4R mediated-down-regulation of miR-194 during the glutamate-induced excitotoxicity. Finally, α-MSH attenuated cell death and recovered visual functions in glutamate-stimulated post-hatch chick retinas. These results demonstrate the previously undescribed protective effects of α-MSH against glutamate-induced excitotoxic cell death in the cone-dominated retina both in vitro and in vivo, and indicate a novel molecular mechanism linking MC4R-mediated signaling to miR-194.
Collapse
|
2090
|
Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, Zhao Y, Liu H, Fu X, Han W. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13:308. [PMID: 26386558 PMCID: PMC4575470 DOI: 10.1186/s12967-015-0642-6] [Citation(s) in RCA: 517] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Within the last few years, it has become evident that LPS-preconditioned mesenchymal stromal cells (LPS pre-MSCs) show enhanced paracrine effects, including increased trophic support and improved regenerative and repair properties. MSCs may release large amounts of exosomes for cell-to-cell communication and maintain a dynamic and homeostatic microenvironment for tissue repair. The present study assesses the therapeutic efficacy and mechanisms of LPS-preconditioned MSC-derived exosomes (LPS pre-Exo) for chronic inflammation and wound healing. METHODS We extracted exosomes from the supernatant of LPS pre-MSCs using a gradient centrifugation method. In vitro, THP-1 cells were cultured with high glucose (HG, 30 mM) as an inflammatory model and treated with LPS pre-Exo for 48 h. The expression of inflammation-related cytokines was detected by real-time RT-PCR, and the distribution of macrophage subtype was measured by immunofluorescence. Next, the miRNA expression profiles of LPS pre-Exo were evaluated using miRNA microarray analysis. The molecular signaling pathway responsible for the regenerative potential was identified by western blotting. In vivo, we established a cutaneous wound model in streptozotocin-induced diabetic rats, and LPS pre-Exo were injected dispersively into the wound edge. The curative effects of LPS pre-Exo on inflammation and wound healing were observed and evaluated. RESULTS LPS pre-Exo have a better ability than untreated MSC-derived exosomes (un-Exo) to modulate the balance of macrophages due to their upregulation of the expression of anti-inflammatory cytokines and promotion of M2 macrophage activation. Microarray analysis of LPS pre-Exo identified the unique expression of let-7b compared with un-Exo, and the let-7b/TLR4 pathway served as potential contributor to macrophage polarization and inflammatory ablation. Further investigation of the mechanisms that control let-7b expression demonstrated that a TLR4/NF-κB/STAT3/AKT regulatory signaling pathway plays a critical role in the regulation of macrophage plasticity. Knockdown of AKT in THP-1 cells similarly abolished the immunomodulatory effect of LPS pre-Exo. In vivo, LPS pre-Exo greatly alleviated inflammation and enhanced diabetic cutaneous wound healing. CONCLUSION LPS pre-Exo may have improved regulatory abilities for macrophage polarization and resolution of chronic inflammation by shuttling let-7b, and these exosomes carry much immunotherapeutic potential for wound healing.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Jingxi Zheng
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Yali Zhao
- Central Laboratory, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, China.
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
2091
|
Roubeix C, Godefroy D, Mias C, Sapienza A, Riancho L, Degardin J, Fradot V, Ivkovic I, Picaud S, Sennlaub F, Denoyer A, Rostene W, Sahel JA, Parsadaniantz SM, Brignole-Baudouin F, Baudouin C. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther 2015; 6:177. [PMID: 26377305 PMCID: PMC4574127 DOI: 10.1186/s13287-015-0168-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 01/28/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Glaucoma is a sight-threatening retinal neuropathy associated with elevated intraocular pressure (IOP) due to degeneration and fibrosis of the trabecular meshwork (TM). Glaucoma medications aim to reduce IOP without targeting the specific TM pathology, Bone-marrow mesenchymal stem cells (MSCs) are used today in various clinical studies. Here, we investigated the potential of MSCs therapy in an glaucoma-like ocular hypertension (OHT) model and decipher in vitro the effects of MSCs on primary human trabecular meshwork cells. METHODS Ocular hypertension model was performed by cauterization of 3 episcleral veins (EVC) of Long-Evans male rat eyes. MSCs were isolated from rat bone marrow, amplified in vitro and tagged with quantum dot nanocrystals. Animals were distributed as 1) MSCs group receiving 5.10(5)cells/6μl Minimum Essential Medium and 2) MEM group receiving 6μl MEM (n = 10 each). Injections were performed into the anterior chamber of 20 days-hypertensive eyes and IOP was monitored twice a week for 4 weeks. At the end of experiment, cell distribution in the anterior segment was examined in confocal microscopy on flat mounted corneas. Moreover, we tested in vitro effects of MSCs conditioned medium (MSC-CM) on primary human trabecular meshwork cells (hTM cells) using Akt activation, myosin phosphorylation and TGF-β2-dependent profibrotic phenotype in hTM cells. RESULTS We demonstrated a rapid and long-lasting in vivo effect of MSCs transplantation that significantly reduced IOP in hypertensive eyes induced by EVC. MSCs were located to the ciliary processes and the TM. Enumeration of RGCs on whole flat-mounted retina highlighted a protective effect of MSCs on RGCs death. In vitro, MSC-CM promotes: (i) hTM cells survival by activating the antiapoptotic pathway, Akt, (ii) hTM cells relaxation as analyzed by the decrease in myosin phosphorylation and (iii) inhibition of TGF-β2-dependent profibrotic phenotype acquisition in hTM cells. CONCLUSIONS MSCs injection in the ocular anterior chamber in a rat model of OHT provides neuroprotective effect in the glaucoma pathophysiology via TM protection. These results demonstrate that MSCs constitute promising tool for treating ocular hypertension and retinal cell degeneration.
Collapse
Affiliation(s)
- Christophe Roubeix
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - David Godefroy
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Céline Mias
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, 31432 Toulouse cedex 4, France, Toulouse, France.
| | - Anaïs Sapienza
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Luisa Riancho
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Julie Degardin
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Valérie Fradot
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Ivana Ivkovic
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Serge Picaud
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Florian Sennlaub
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Alexandre Denoyer
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
| | - William Rostene
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - José Alain Sahel
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
| | - Stéphane Melik Parsadaniantz
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Françoise Brignole-Baudouin
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
- University Paris Descartes, Sorbonne Paris Cité, Paris, F-75006, France.
- Faculté de Pharmacie de Paris, University Paris Descartes, Sorbonne Paris Cité, Paris, F-75006, France.
| | - Christophe Baudouin
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
- Department of Ophthalmology, Hôpital Ambroise Pare, AP HP, Boulogne, F-92100, France.
- University Versailles St Quentin en Yvelines, Montigny-Le-Bretonneux, F-78180, France.
| |
Collapse
|
2092
|
Subbot AM, Kasparova EA, Subbot AM, Kasparova EA. [Review of approaches to cell therapy in ophthalmology]. Vestn Oftalmol 2015; 131:74-81. [PMID: 26845876 DOI: 10.17116/oftalma2015131574-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The review covers global trends in cell therapy research and clinical trials aimed at the treatment of ophthalmic diseases. Some definitions are provided and mechanisms of action of cell products studied to date are listed.
Collapse
Affiliation(s)
- A M Subbot
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - Evg A Kasparova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - A M Subbot
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - Evg A Kasparova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|
2093
|
Indoleamine 2, 3-Dioxgenase Transfected Mesenchymal Stem Cells Induce Kidney Allograft Tolerance by Increasing the Production and Function of Regulatory T Cells. Transplantation 2015; 99:1829-38. [DOI: 10.1097/tp.0000000000000856] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2094
|
Sehic A, Utheim ØA, Ommundsen K, Utheim TP. Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency. J Funct Biomater 2015; 6:863-88. [PMID: 26343740 PMCID: PMC4598682 DOI: 10.3390/jfb6030863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
The cornea is essential for normal vision by maintaining transparency for light transmission. Limbal stem cells, which reside in the corneal periphery, contribute to the homeostasis of the corneal epithelium. Any damage or disease affecting the function of these cells may result in limbal stem cell deficiency (LSCD). The condition may result in both severe pain and blindness. Transplantation of ex vivo cultured cells onto the cornea is most often an effective therapeutic strategy for LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial cells, and conjunctival epithelial cells to treat LSCD has been explored in humans. The present review focuses on the current state of knowledge of the many other cell-based therapies of LSCD that have so far exclusively been explored in animal models as there is currently no consensus on the best cell type for treating LSCD. Major findings of all these studies with special emphasis on substrates for culture and transplantation are systematically presented and discussed. Among the many potential cell types that still have not been used clinically, we conclude that two easily accessible autologous sources, epidermal stem cells and hair follicle-derived stem cells, are particularly strong candidates for future clinical trials.
Collapse
Affiliation(s)
- Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
| | - Øygunn Aass Utheim
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Kristoffer Ommundsen
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| |
Collapse
|
2095
|
Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Rotenstreich Y, Solomon AS. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Res 2015; 15:387-94. [PMID: 26322852 DOI: 10.1016/j.scr.2015.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/16/2015] [Accepted: 08/13/2015] [Indexed: 12/28/2022] Open
Abstract
Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection.
Collapse
Affiliation(s)
- Adi Tzameret
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ifat Sher
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michael Belkin
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | - Avraham J Treves
- Center for Stem Cells and Regenerative Medicine, Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Amilia Meir
- Center for Stem Cells and Regenerative Medicine, Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Arnon Nagler
- Hematology Division, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hani Levkovitch-Verbin
- Rothberg Ophthalmic Molecular Biology Laboratory, Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ygal Rotenstreich
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | - Arieh S Solomon
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
2096
|
Simonson OE, Mougiakakos D, Heldring N, Bassi G, Johansson HJ, Dalén M, Jitschin R, Rodin S, Corbascio M, El Andaloussi S, Wiklander OPB, Nordin JZ, Skog J, Romain C, Koestler T, Hellgren-Johansson L, Schiller P, Joachimsson PO, Hägglund H, Mattsson M, Lehtiö J, Faridani OR, Sandberg R, Korsgren O, Krampera M, Weiss DJ, Grinnemo KH, Le Blanc K. In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Transl Med 2015; 4:1199-213. [PMID: 26285659 DOI: 10.5966/sctm.2015-0021] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Mesenchymal stromal cells (MSCs) have been investigated as a treatment for various inflammatory diseases because of their immunomodulatory and reparative properties. However, many basic questions concerning their mechanisms of action after systemic infusion remain unanswered. We performed a detailed analysis of the immunomodulatory properties and proteomic profile of MSCs systemically administered to two patients with severe refractory acute respiratory distress syndrome (ARDS) on a compassionate use basis and attempted to correlate these with in vivo anti-inflammatory actions. Both patients received 2×10(6) cells per kilogram, and each subsequently improved with resolution of respiratory, hemodynamic, and multiorgan failure. In parallel, a decrease was seen in multiple pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar-capillary fluid leakage, and proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs demonstrated a broad anti-inflammatory capacity, including suppression of T-cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. Some of these in vitro potency assessments correlated with, and were relevant to, the observed in vivo actions. These experiences highlight both the mechanistic information that can be gained from clinical experience and the value of correlating in vitro potency assessments with clinical effects. The findings also suggest, but do not prove, a beneficial effect of lung protective strategies using adoptively transferred MSCs in ARDS. Appropriate randomized clinical trials are required to further assess any potential clinical efficacy and investigate the effects on in vivo inflammation. SIGNIFICANCE This article describes the cases of two patients with severe refractory adult respiratory syndrome (ARDS) who failed to improve after both standard life support measures, including mechanical ventilation, and additional measures, including extracorporeal ventilation (i.e., in a heart-lung machine). Unlike acute forms of ARDS (such in the current NIH-sponsored study of mesenchymal stromal cells in ARDS), recovery does not generally occur in such patients.
Collapse
Affiliation(s)
- Oscar E Simonson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dimitrios Mougiakakos
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Nina Heldring
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Giulio Bassi
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Henrik J Johansson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Magnus Dalén
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Regina Jitschin
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sergey Rodin
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Matthias Corbascio
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Samir El Andaloussi
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Oscar P B Wiklander
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Joel Z Nordin
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Johan Skog
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Charlotte Romain
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tina Koestler
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Laila Hellgren-Johansson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Petter Schiller
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Per-Olof Joachimsson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hans Hägglund
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mattias Mattsson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Janne Lehtiö
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Omid R Faridani
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Rickard Sandberg
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Olle Korsgren
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mauro Krampera
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Daniel J Weiss
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Karl-Henrik Grinnemo
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Katarina Le Blanc
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
2097
|
Yuan LF, Li GD, Ren XJ, Nian H, Li XR, Zhang XM. Rapamycin ameliorates experimental autoimmune uveoretinitis by inhibiting Th1/Th2/Th17 cells and upregulating CD4+CD25+ Foxp3 regulatory T cells. Int J Ophthalmol 2015; 8:659-664. [PMID: 26309858 PMCID: PMC4539633 DOI: 10.3980/j.issn.2222-3959.2015.04.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022] Open
Abstract
AIM To determine the effects of rapamycin on experimental autoimmune uveoretinitis (EAU) and investigate of role of rapamycin on T cell subsets in the disease. METHODS EAU was induced in rats using peptides 1169 to 1191 of the interphotoreceptor binding protein (IRBP). Rapamycin (0.2 mg/kg/d) was administrated by intraperitoneal injection for a consecutive 7d after immunization. Th1/Th2/Th17 cytokines, TGF-β1, and IL-6 produced by lymphocyteswere measured by ELISA, while Th17 cells and CD4+CD25+ regulatory T cells (Tregs) from rat spleen were detected by flow cytometry. RESULTS Intraperitoneal treatment immediately after immunization dramatically ameliorated the clinical course of EAU. Clinical responses were associated with reduced retinal inflammatory cell infiltration and tissue destruction. Rapamycin induced suppression of Th1/Th2/Th17 cytokines, including IFN-γ, IL-2, IL-17, IL-4, and IL-10 release from T lymphocytes of EAU rats, in vitro. Rapamycin also significantly increased TGF-β1 production but had no effect on IL-6 productionof T lymphocytes from EAU rats in vitro. Furthermore, rapamycin decreased the ratio of Th17 cells/CD4+T cells and upregulated Tregs in EAU, as detected by flow cytometry. CONCLUSION Rapamycin effectively interferes with T cell mediated autoimmune uveitis by inhibiting antigen-specific T cell functions and enhancing Tregs in EAU. Rapamycin is a promising new alternative as an adjunct corticosteroid-sparing agent for treating uveitis.
Collapse
Affiliation(s)
- Li-Fei Yuan
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
- Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Guang-Da Li
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
- Linyi People's Hospital, Linyi 276000, Shandong Province, China
| | - Xin-Jun Ren
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| | - Hong Nian
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin Medical University Eye Hospital & Eye Institute, Tianjin 300384, China
| |
Collapse
|
2098
|
Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int 2015; 2015:734731. [PMID: 26300923 PMCID: PMC4537770 DOI: 10.1155/2015/734731] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023] Open
Abstract
Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.
Collapse
|
2099
|
Roubeix C, Denoyer A, Brignole-Baudouin F, Baudouin C. [Mesenchymal stem cell therapy, a new hope for eye disease]. J Fr Ophtalmol 2015. [PMID: 26215486 DOI: 10.1016/j.jfo.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) are adult stem cells, first identified in skeletal tissues and then found in the entire body. MSC are able to not only differentiate into specialized cells within skeletal tissue - chondrocytes, osteocytes, adipocytes and fibroblasts - but also secrete a large range of soluble mediators defining their secretome and allowing their interaction with a number of cell protagonists. Thus, in a general sense, MSC are involved in tissue homeostasis through their secretome and are specifically responsible for cell turn-over in skeletal tissues. For a decade and a half, safety and efficiency of MSC has led to the development of many clinical trials in various fields. However, results were often disappointing, probably because of difficulties in methods and evaluation. At a time when the first clinical trials using MSC are emerging in ophthalmology, the goal of this literature review is to gather and put into perspective preclinical and clinical results in order to better predict the future of this innovative therapeutic pathway.
Collapse
Affiliation(s)
- C Roubeix
- Inserm, U968, 75012 Paris, France; UMR_S 968, institut de la vision, UPMC université Paris 06, 17, rue Moreau, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France.
| | - A Denoyer
- Inserm, U968, 75012 Paris, France; UMR_S 968, institut de la vision, UPMC université Paris 06, 17, rue Moreau, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France; Inserm-DHOS CIC 503, centre hospitalier national d'ophtalmologie des Quinze-Vingts, 75012 Paris, France
| | - F Brignole-Baudouin
- Inserm, U968, 75012 Paris, France; UMR_S 968, institut de la vision, UPMC université Paris 06, 17, rue Moreau, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France; Inserm-DHOS CIC 503, centre hospitalier national d'ophtalmologie des Quinze-Vingts, 75012 Paris, France; Faculté de pharmacie de Paris, université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - C Baudouin
- Inserm, U968, 75012 Paris, France; UMR_S 968, institut de la vision, UPMC université Paris 06, 17, rue Moreau, 75012 Paris, France; CNRS, UMR_7210, 75012 Paris, France; Inserm-DHOS CIC 503, centre hospitalier national d'ophtalmologie des Quinze-Vingts, 75012 Paris, France; Service d'ophtalmologie, hôpital Ambroise-Paré, AP-HP, 92100 Boulogne, France; Université Versailles-Saint-Quentin-en-Yvelines, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
2100
|
Mesenchymal Stromal Cell Therapy in Ischemia/Reperfusion Injury. J Immunol Res 2015; 2015:602597. [PMID: 26258151 PMCID: PMC4518154 DOI: 10.1155/2015/602597] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/07/2015] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) represents a worldwide public health issue of increasing incidence. IRI may virtually affect all organs and tissues and is associated with significant morbidity and mortality. Particularly, the duration of blood supply deprivation has been recognized as a critical factor in stroke, hemorrhagic shock, or myocardial infarction, as well as in solid organ transplantation (SOT). Pathophysiologically, IRI causes multiple cellular and tissular metabolic and architectural changes. Furthermore, the reperfusion of ischemic tissues induces both local and systemic inflammation. In the particular field of SOT, IRI is an unavoidable event, which conditions both short- and long-term outcomes of graft function and survival. Clinically, the treatment of patients with IRI mostly relies on supportive maneuvers since no specific target-oriented therapy has been validated thus far. In the present review, we summarize the current literature on mesenchymal stromal cells (MSC) and their potential use as cell therapy in IRI. MSC have demonstrated immunomodulatory, anti-inflammatory, and tissue repair properties in rodent studies and in preliminary clinical trials, which may open novel avenues in the management of IRI and SOT.
Collapse
|