2151
|
Plock JA, Schnider JT, Solari MG, Zheng XX, Gorantla VS. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol 2013; 4:175. [PMID: 23888159 PMCID: PMC3719134 DOI: 10.3389/fimmu.2013.00175] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/18/2013] [Indexed: 12/13/2022] Open
Abstract
Reconstructive transplantation has emerged as clinical reality over the past decade. Long-term graft acceptance has been feasible in extremity and facial vascularized composite allotransplantation (VCA) under standard immunosuppression. Minimizing overall burden of lifelong immunosuppression is key to wider application of these non-life saving grafts. Allograft tolerance is the holy grail of many cell-based immunomodulatory strategies. Recent protocols using mesenchymal stem cells from bone marrow and adipose tissue offer promise and potential in VCA. This article provides an overview of the experimental basis, the scientific background and clinical applications of stem cell-based therapies in the field of reconstructive allotransplantation.
Collapse
Affiliation(s)
- Jan A Plock
- Department of Plastic Surgery, University of Pittsburgh Medical Center , Pittsburgh, PA , USA ; Division of Plastic and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | | | | | | | | |
Collapse
|
2152
|
Shaharuddin B, Ahmad S, Meeson A, Ali S. Concise review: immunological properties of ocular surface and importance of limbal stem cells for transplantation. Stem Cells Transl Med 2013; 2:614-24. [PMID: 23817133 DOI: 10.5966/sctm.2012-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cornea transplantation has been considered to be different from other solid organ transplantation because of the assumed immune-privileged state of the anterior chamber of the eye. Three major lines of thought regarding the molecular mechanisms of immune privilege in the eye are as follows: (a) anatomical, cellular, and molecular barriers in the eye; (b) anterior chamber-associated immune deviation; and (c) immunosuppressive microenvironment in the eye. However, cornea transplants suffer allograft rejection when breached by vascularization. In recent developments, cellular corneal transplantation from cultivated limbal epithelial cells has shown impressive advances as a future therapy. The limbal stem cell niche contains stem cells that promote proliferation and migration and have immunosuppressive mechanisms to protect them from immunological reactions. Limbal stem cells are also noted to display an enhanced expression of genes for the antiapoptotic proteins, a property that is imperative for the survival of transplanted tissues. Further investigation of the molecular mechanisms regulating the immune regulation of limbal stem cells is relevant in the clinical setting to promote the survival of whole corneal and limbal stem cell transplantation.
Collapse
Affiliation(s)
- Bakiah Shaharuddin
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | | | | | | |
Collapse
|
2153
|
Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, Li X, Zhang X. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol 2013; 173:28-37. [PMID: 23607419 PMCID: PMC3694532 DOI: 10.1111/cei.12080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being explored extensively as a promising treatment for autoimmune diseases. We have recently reported that MSCs could ameliorate experimental autoimmune uveoretinitis (EAU) in rats. In this study, we examined further the effects of MSCs on the dynamics of T cell subsets in both eye and spleen and their cytokine production during the course of EAU. We focused on when and where the MSCs had inhibitory effects on T helper type 1 (Th1) and Th17 cells and how long the inhibitory effect lasted, in order to provide more mechanistic evidence for MSCs on the treatment of uveitis. Compared to the control group, administration of MSCs decreased the production of Th1 and Th17 cytokines significantly, while the production of Th2 and regulatory T cell (T(reg)) cytokines [interleukin (IL)-10 and transforming growth factor (TGF)-β] was elevated during the entire course of EAU. Correspondingly, the dynamic levels of IL-17 in the aqueous humour (AqH) were reduced in MSC-treated rats. Moreover, the ratio of Th17/T(reg) cells in both spleen and eye was decreased. These results provide powerful evidence that MSCs can regulate negatively both Th1 and Th17 responses and restore the balance of Th17/T(regs) in the whole course of EAU, which is important for the regression of the disease.
Collapse
Affiliation(s)
- G Li
- Tianjin Medical University Eye Hospital and Eye Institute, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
2154
|
Bath C. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling. Acta Ophthalmol 2013; 91 Thesis 4:1-34. [PMID: 23732018 DOI: 10.1111/aos.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined differentiation pathway in human corneal epithelium according to an optimized protocol for maintenance of expression profiles. Isolated total RNA from basal limbal crypts (BLCs), superficial limbal crypts (SLCs), paracentral/central cornea and limbal stroma was amplified and converted to fragmented cDNA libraries for use in deep paired-end next-generation sequencing. Global transcriptional profiling was carried out using bioinformatics. The location of primitive cells in BLCs, migratory and activated cells in SLCs and differentiated cells in paracentral/central cornea was evident from mapping of significantly upregulated genes in each compartment to the gene ontology (GO). Interestingly, many GO terms in BLCs were also involved in neurogenic processes, whereas many GO terms in SLCs were related to vasculature. Mapping upregulated genes in BLCs to pathway annotations in Kyoto Encyclopedia of Genes and Genomes described many active pathways as signalling and cancer-associated pathways. We supply extensive information on possible novel biomarkers, reveal insight into both active pathways and novel regulators of LESCs such as Lrig1 and SOX9 and provide an immense amount of data for future exploration (Bath et al. 2013b). Selective ex vivo expansion of LESCs in hypoxia and the comprehensive molecular characterization of corneal epithelial subpopulations in situ are expected to be beneficial for the future treatment of LSCD by cultured limbal epithelial transplantation.
Collapse
Affiliation(s)
- Chris Bath
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
2155
|
Chakraborty A, Dutta J, Das S, Datta H. Effect of cord blood serum on ex vivo human limbal epithelial cell culture. J Ocul Biol Dis Infor 2013; 5:77-82. [PMID: 24596943 DOI: 10.1007/s12177-013-9106-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 04/24/2013] [Indexed: 12/15/2022] Open
Abstract
Limbal cell transplantation is an efficacious procedure for rehabilitation of visual acuity in patients with severe ocular surface disorders. Cultivation of limbal epithelial stem cell with fetal bovine serum for transplantation has been a promising treatment for reconstructing the ocular surface in severe limbal stem cell deficiency caused by Steven Johnson syndrome, chemical or thermal injury. This technique of "cell therapy" has been accepted worldwide but the cost of cultivating the cells for transplantation is high. The objective of this study was to investigate the effect of cord blood serum in place of fetal bovine serum on the growth of human limbal epithelial cell culture. Our group has experimented with human cord blood serum which was obtained free of cost from willing donors. The use of human cord blood serum in place of fetal bovine serum for ex vivo culture of limbal stem cell has helped us in reducing the cost of culture. Fresh human limbal tissues from donor cadavers were cultured on intact and denuded amniotic membrane. Cells were proliferated in vitro with cell culture media containing human cord blood serum. Reverse transcription-polymerase chain reaction and immunofluorescence cytochemistry of cultured human limbal epithelial stem cell was done for characterization of the cells.
Collapse
Affiliation(s)
- Anindita Chakraborty
- Neurobiology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Jayanta Dutta
- Department of Ophthalmology, Institute of Post Graduate Medical Education And Research (IPGME&R), 244 A.J.C Bose Road, Kolkata, 700 020 West Bengal India
| | - Sumantra Das
- Neurobiology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Himadri Datta
- Himadri Datta, Professor, Regional Institute of Ophthalmology, Medical College and Hospital, 88 College street, Kolkata, West Bengal India
| |
Collapse
|
2156
|
English K, Wood KJ. Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harb Perspect Med 2013; 3:a015560. [PMID: 23637312 PMCID: PMC3633184 DOI: 10.1101/cshperspect.a015560] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) have recently emerged as promising candidates for cell-based immunotherapy in solid organ transplantation (SOT). In addition to immune modulation, MSCs possess proreparative properties and preclinical studies indicate that MSCs have the capacity to prolong graft survival and in some cases induce tolerance. Currently, the application of MSCs in SOT is being evaluated in phase I/II clinical trials. Whereas the mechanisms of action used by MSC immunomodulation have been somewhat elucidated in vitro, the data from preclinical transplant models have been unclear. Furthermore, the optimal timing, dose, and route of administration remain to be elucidated. Importantly, MSCs have the ability to sense their environment, which may influence their function. In this article, we discuss the impact of the local microenvironment on MSCs and the mechanisms of MSC immunomodulation in the setting of SOT.
Collapse
Affiliation(s)
- Karen English
- Cellular Immunology Group, Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland.
| | | |
Collapse
|
2157
|
Saadi G, Fadel F, El Ansary M, El‐Hamid SA. Mesenchymal stem cell transfusion for desensitization of positive lymphocyte cross-match before kidney transplantation: outcome of 3 cases. Cell Prolif 2013; 46:121-126. [PMID: 23510466 PMCID: PMC6496178 DOI: 10.1111/cpr.12012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/01/2012] [Accepted: 11/10/2012] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Donor specific antibodies (DSA) and a positive cross-match are contraindications for kidney transplantation. Trials of allograft transplantation across the HLA barrier have employed desensitization strategies, including the use of plasmapheresis, intravenous immunoglobulins, anti-B-cell monoclonal antibodies and splenectomy, associated with high-intensity immunosuppressive regimens. Our case 1 report suffered from repeatedly positive lymphocyte cross match after 1st renal transplantation. Graft nephrectomy could not correct the state of sensitization. Splenectomy was done in a trial to get rid of the antibody producing clone. Furthermore plasmapheresis with low dose IVIG could not as well revert the state of sensitization for the patient. MATERIAL AND METHODS About 50 millions donor specific MSCs were injected to the patient. RESULTS MSCs transfusion proved to be the only procedure which could achieve successful desensitization before performing the second transplantation owing to their immunosuppressive properties. CONCLUSION This case indicates that DS-MSCs is a potential option for anti-HLA desensitization. In cases 2 and 3 IV DS-MSCs transfusion was selected from the start as a successful line of treatment for pre renal transplantation desensitization to save other unnecessary lines of treatment that were tried in case 1.
Collapse
Affiliation(s)
- G. Saadi
- Department of Internal Medicine and NephrologyCairo UniversityCairoEgypt
| | - F. Fadel
- Department of Pediatric NephrologyCairo UniversityCairoEgypt
| | - M. El Ansary
- Department of Clinical PathologyCairo UniversityCairoEgypt
| | | |
Collapse
|
2158
|
Forrester JV, Steptoe RJ, Klaska IP, Martin-Granados C, Dua HS, Degli-Esposti MA, Wikstrom ME. Cell-based therapies for ocular inflammation. Prog Retin Eye Res 2013; 35:82-101. [PMID: 23542232 DOI: 10.1016/j.preteyeres.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/13/2022]
Abstract
Since the plasticity and the potential for re-programming cells has become widely accepted, there has been great interest in cell-based therapies. These are being applied to a range of diseases, not least ocular diseases, where it is assumed that there is a reduced risk of immune rejection although this may be more perceived than real. There are two broad classes of cell-based therapies: those aimed at restoring structure and function of specific tissues and cells; and those directed towards restoring immunological homeostasis by controlling the damaging effects of inflammatory disease. Stem cells of all types represent the first group and prototypically have been used with the aim of regenerating failing cells. In contrast, immune cells have been suggested as potential modulators of inflammation. However, there is functional overlap in these two applications, with some types of stem cells, such as mesenchymal stem cells, demonstrating a potent immunomodulatory effect. This review summarises recent information on cell based therapies for ocular disease, with special emphasis on ocular inflammatory disease, and explores current uses, potential and limitations.
Collapse
Affiliation(s)
- John V Forrester
- Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
2159
|
Abstract
The transplantation of cultured limbal epithelial cells (LEC) has since its first application in 1997 emerged as a promising technique for treating limbal stem cell deficiency. The culture methods hitherto used vary with respect to preparation of the harvested tissue, choice of culture medium, culture time, culture substrates, and supplementary techniques. In this chapter, we describe a procedure for establishing human LEC cultures using a feeder-free explant culture technique with human amniotic membrane (AM) as the culture substrate.
Collapse
|
2160
|
Zhang Y, Zhang M, Zhao S, Li X, Jia Z, Zhang L, Han ZC, Zhang X. Effects of human umbilical cord-derived mesenchymal stem cells on anterior chamber-associated immune deviation. Int Immunopharmacol 2013. [PMID: 23178576 DOI: 10.1016/j.intimp.2012.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2161
|
Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiology 2013; 218:90-5. [DOI: 10.1016/j.imbio.2012.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 12/13/2022]
|
2162
|
Liu Y, Wang S, Shi S. The role of recipient T cells in mesenchymal stem cell-based tissue regeneration. Int J Biochem Cell Biol 2012; 44:2044-50. [PMID: 22903019 PMCID: PMC3454862 DOI: 10.1016/j.biocel.2012.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 12/17/2022]
Abstract
Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addition, the immunoregulatory property of MSCs provides a foundation for their use in treating a variety of autoimmune diseases. However, the interaction between MSCs and immune cells in cell-based tissue regeneration is largely unknown. In this review, we will discuss the current understanding of MSC-based tissue regeneration, emphasizing the role of the immune microenvironment in bone regeneration.
Collapse
Affiliation(s)
- Yi Liu
- Faculty of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing 100050, China
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
2163
|
Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, Lim R. Human amnion epithelial cells repair established lung injury. Cell Transplant 2012; 22:1337-49. [PMID: 23044339 DOI: 10.3727/096368912x657657] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With a view to developing a cell therapy for chronic lung disease, human amnion epithelial cells (hAECs) have been shown to prevent acute lung injury. Whether they can repair established lung disease is unknown. We aimed to assess whether hAECs can repair existing lung damage induced in mice by bleomycin and whether the timing of cell administration influences reparative efficacy. In addition, we aimed to characterize the effect of hAECs on fibroblast proliferation and activation, investigating possible mechanisms of reparative action. hAECs were administered intraperitoneally (IP) either 7 or 14 days after bleomycin exposure. Lungs were assessed 7 days after hAEC administration. Bleomycin significantly reduced body weight and induced pulmonary inflammation and fibrosis at 14 and 21 days. Delivery of hAECs 7 days after bleomycin had no effect on lung injury, whereas delivery of hAECs 14 days after bleomycin normalized lung tissue density, collagen content, and α-SMA production, in association with a reduction in pulmonary leucocytes and lung expression of TGF-β, PDGF-α, and PDGF-β. In vitro, hAECs reduced proliferation and activation of primary mouse lung fibroblasts. Our findings suggest that the timing of hAEC administration in the course of lung disease may impact on the ability of hAECs to repair lung injury.
Collapse
Affiliation(s)
- Patricia Vosdoganes
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
2164
|
Jia Z, Jiao C, Zhao S, Li X, Ren X, Zhang L, Han ZC, Zhang X. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res 2012; 102:44-9. [PMID: 22800963 DOI: 10.1016/j.exer.2012.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/07/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for immunomodulatory therapy that are currently being tested in several organ transplant rejection models. In this study, we tested the immunomodulatory effects of MSC injection in a rat model of corneal allograft rejection. MSCs were isolated and cultured from bone marrow of Wistar rats. A rat corneal allograft rejection model was established using Wistar rats as donors and Lewis rats as recipients. Lewis rats were randomly separated into 12 groups and treated with MSCs alone or MSCs combined with Cyclosporin A (CsA) at different doses. In MSC-treated rats, the T cell response to ConA was evaluated, Th1/Th2 cytokines produced by T lymphocytes were measured, and the number of CD4+CD25+Foxp3+ regulatory T cells (Treg) was assessed. Results demonstrated that postoperative injection of MSCs prolonged graft survival time. MSCs significantly inhibited proliferation of pathogenic T cells in vitro and prevented T cell response in vivo (p < 0.05). Postoperative injection also reduced Th1 pro-inflammatory cytokines and elevated IL-4 cytokine secretion from T lymphocytes derived from cornea-transplanted rats. In addition, Tregs were upregulated by MSC treatment. Unexpectedly, the application of MSCs combined with low dose CsA therapy (1 mg/kg) accelerated graft rejection compared with postoperative MSC therapy alone. However, when 2 mg/kg CsA was given together with MSCs, graft survival was significantly prolonged. These results suggested that MSCs could exert therapeutic effect against corneal allograft rejection, and further investigation of combined MSC and CsA treatment be required as opposite effects were observed depending on CsA dose.
Collapse
Affiliation(s)
- Zhe Jia
- Tianjin Medical University Eye Center, Tianjin Medical University Eye Institute, China
| | | | | | | | | | | | | | | |
Collapse
|
2165
|
Eslani M, Baradaran-Rafii A, Ahmad S. Cultivated Limbal and Oral Mucosal Epithelial Transplantation. Semin Ophthalmol 2012; 27:80-93. [DOI: 10.3109/08820538.2012.680641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2166
|
Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21:2724-52. [PMID: 22468918 DOI: 10.1089/scd.2011.0722] [Citation(s) in RCA: 598] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) comprise a heterogeneous population of cells with multilineage differentiation potential, the ability to modulate oxidative stress, and secrete various cytokines and growth factors that can have immunomodulatory, angiogenic, anti-inflammatory and anti-apoptotic effects. Recent data indicate that these paracrine factors may play a key role in MSC-mediated effects in modulating various acute and chronic pathological conditions. MSCs are found in virtually all organs of the body. Bone marrow-derived MSCs (BM-MSCs) were discovered first, and the bone marrow was considered the main source of MSCs for clinical application. Subsequently, MSCs have been isolated from various other sources with the adipose tissue, serving as one of the alternatives to bone marrow. Adipose tissue-derived MSCs (ASCs) can be more easily isolated; this approach is safer, and also, considerably larger amounts of ASCs can be obtained compared with the bone marrow. ASCs and BM-MSCs share many biological characteristics; however, there are some differences in their immunophenotype, differentiation potential, transcriptome, proteome, and immunomodulatory activity. Some of these differences may represent specific features of BM-MSCs and ASCs, while others are suggestive of the inherent heterogeneity of both BM-MSC and ASC populations. Still other differences may simply be related to different isolation and culture protocols. Most importantly, despite the minor differences between these MSC populations, ASCs seem to be as effective as BM-MSCs in clinical application, and, in some cases, may be better suited than BM-MSCs. In this review, we will examine in detail the ontology, biology, preclinical, and clinical application of BM-MSCs versus ASCs.
Collapse
Affiliation(s)
- Marius Strioga
- Department of Immunology, Center of Oncosurgery, Institute of Oncology, Vilnius University, Vilnius, Lithuania.
| | | | | | | | | |
Collapse
|
2167
|
Ho PJ, Yen ML, Yet SF, Yen BL. Current Applications of Human Pluripotent Stem Cells: Possibilities and Challenges. Cell Transplant 2012; 21:801-14. [DOI: 10.3727/096368911x627507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.
Collapse
Affiliation(s)
- Pai-Jiun Ho
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Men-Luh Yen
- Departmant of Primary Medicine and Department of Obstetrics/Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shaw-Fang Yet
- Cardiovascular Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
2168
|
Rendal-Vázquez ME, San-Luis-Verdes A, Yebra-Pimentel-Vilar MT, López-Rodríguez I, Domenech-García N, Andión-Núñez C, Blanco-García F. Culture of limbal stem cells on human amniotic membrane. Cell Tissue Bank 2012; 13:513-9. [DOI: 10.1007/s10561-012-9300-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
2169
|
Tasso R, Ilengo C, Quarto R, Cancedda R, Caspi RR, Pennesi G. Mesenchymal stem cells induce functionally active T-regulatory lymphocytes in a paracrine fashion and ameliorate experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 2012; 53:786-93. [PMID: 22232435 DOI: 10.1167/iovs.11-8211] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Mesenchymal stem/progenitor cells (MSCs) have regenerative and immunomodulatory properties, exerted by cell-cell contact and in a paracrine fashion. Part of their immunosuppressive activity has been ascribed to their ability to promote the induction of CD4+CD25+FoxP3+ T lymphocytes with regulatory functions (Treg). Here the authors studied the effect of MSCs on the induction of Treg and on the development of autoimmunity, and they examined the possibility that MSC-mediated Treg induction could be attributed to the secretion of soluble factors. METHODS The authors induced experimental autoimmune uveitis (EAU) in mice by immunization with the 1-20 peptide of the intraphotoreceptor binding protein. At the same time, some of the animals were treated intraperitoneally with syngeneic MSCs. The authors checked T-cell responses and in vitro Treg conversion by cell proliferation and blocking assays, in cell-cell contact and transwell settings. TGFβ and TGFβ receptor gene expression analyses were performed by real-time PCR. RESULTS The authors found that a single intraperitoneal injection of MSCs was able to significantly attenuate EAU and that a significantly higher percentage of adaptive Treg was present in MSC-treated mice than in MSC-untreated animals. In vitro blocking of antigen presentation by major histocompatibility complex class II precluded priming and clonal expansion of antigen-specific Treg, whereas blockade of TGFβ impaired the expression of FoxP3, preventing the conversion of CD4+ T cells into functionally active Treg. CONCLUSIONS The authors demonstrated that MSCs can inhibit EAU and that their immunomodulatory function is due at least in part to the induction of antigen-specific Treg in a paracrine fashion by secreting TGFβ.
Collapse
Affiliation(s)
- Roberta Tasso
- Department of Oncology, Biology, and Genetics, University of Genoa, Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
2170
|
Mazaheri T, Esmaeilzadeh A, Mirzaei MH. Introducing the immunomodulatory effects of mesenchymal stem cells in an experimental model of Behçet’s disease. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2012. [DOI: 10.1016/j.jmhi.2012.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2171
|
Jackson WM, Lozito TP, Djouad F, Kuhn NZ, Nesti LJ, Tuan RS. Differentiation and regeneration potential of mesenchymal progenitor cells derived from traumatized muscle tissue. J Cell Mol Med 2011; 15:2377-88. [PMID: 21129154 PMCID: PMC3131486 DOI: 10.1111/j.1582-4934.2010.01225.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 11/29/2010] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to promote tissue regeneration by either differentiating the MSCs into the desired cell type or by using their trophic functions to promote endogenous tissue repair. These strategies of regenerative medicine are limited by the availability of MSCs at the point of clinical care. Our laboratory has recently identified multipotent mesenchymal progenitor cells (MPCs) in traumatically injured muscle tissue, and the objective of this study was to compare these cells to a typical population of bone marrow derived MSCs. Our hypothesis was that the MPCs exhibit multilineage differentiation and expression of trophic properties that make functionally them equivalent to bone marrow derived MSCs for tissue regeneration therapies. Quantitative evaluation of their proliferation, metabolic activity, expression of characteristic cell-surface markers and baseline gene expression profile demonstrate substantial similarity between the two cell types. The MPCs were capable of differentiation into osteoblasts, adipocytes and chondrocytes, but they appeared to demonstrate limited lineage commitment compared to the bone marrow derived MSCs. The MPCs also exhibited trophic (i.e. immunoregulatory and pro-angiogenic) properties that were comparable to those of MSCs. These results suggest that the traumatized muscle derived MPCs may not be a direct substitute for bone marrow derived MSCs. However, because of their availability and abundance, particularly following orthopaedic injuries when traumatized muscle is available to harvest autologous cells, MPCs are a promising cell source for regenerative medicine therapies designed to take advantage of their trophic properties.
Collapse
Affiliation(s)
- Wesley M Jackson
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
- Clinical and Experimental Orthopaedics Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
| | - Thomas P Lozito
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Farida Djouad
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
| | - Nastaran Z Kuhn
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
| | - Leon J Nesti
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
- Clinical and Experimental Orthopaedics Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
- Department of Orthopaedics and Rehabilitation, Walter Reed Army Medical CenterWashington, DC, USA
| | - Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|
2172
|
Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G. Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev Rep 2011; 7:342-63. [PMID: 20972649 DOI: 10.1007/s12015-010-9196-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in high numbers via ex vivo culture and can be differentiated towards insulin-producing cells (IPC). Moreover, recent reports evidenced that MSC possess immunomodulatory activities (acting on both innate and acquired immunity effectors) which should result in a reduction of the immunogenicity of transplanted cells, thus limiting rejection. Moreover it has been proposed that MSC administration should be used to attenuate the autoimmune processes which lead to the destruction of beta cells. This review illustrates the recent advances made in differentiating human MSC to IPC. In particular, we compare the effectiveness of the differentiation protocols applied, the markers and functional assays used to characterize differentiated progeny, and the in vivo controls. We further speculate on how MSC derived from Wharton's jelly of human umbilical cord may represent a more promising regenerative medicine tool, as recently demonstrated for endoderm-derived organs (as liver) in human subjects, also considering their peculiar immunomodulatory features compared to other MSC populations.
Collapse
Affiliation(s)
- Rita Anzalone
- Sezione di Anatomia Umana, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Via del Vespro 129, Palermo, PA 90127, Italy
| | | | | | | | | | | | | |
Collapse
|
2173
|
Gu C, Ni T, Verter EE, Redmond RW, Kochevar IE, Yao M. Photochemical tissue bonding: A potential strategy for treating limbal stem cell deficiency. Lasers Surg Med 2011; 43:433-42. [DOI: 10.1002/lsm.21066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2174
|
Borjesson DL, Peroni JF. The regenerative medicine laboratory: facilitating stem cell therapy for equine disease. Clin Lab Med 2011; 31:109-23. [PMID: 21295725 DOI: 10.1016/j.cll.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This article focuses on the emerging field of equine regenerative medicine with an emphasis on the use of mesenchymal stem cells (MSCs) for orthopedic diseases. We detail laboratory procedures and protocols for tissue handling and MSC isolation, characterization, expansion, and cryopreservation from bone marrow, fat, and placental tissues. We provide an overview of current clinical uses for equine MSCs and how MSCs function to heal tissues. Current laboratory practices in equine regenerative medicine mirror those in the human field. However, the translational use of autologous and allogeneic MSCs for patient therapy far exceeds what is currently permitted in human medicine.
Collapse
Affiliation(s)
- Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, 95616, USA.
| | | |
Collapse
|
2175
|
Varghese VM, Prasad T, Kumary TV. Optimization of culture conditions for an efficient xeno-feeder free limbal cell culture system towards ocular surface regeneration. Microsc Res Tech 2011; 73:1045-52. [PMID: 20196106 DOI: 10.1002/jemt.20831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ex vivo expansion of limbal stem cells from a small biopsy and its subsequent transplantation is the golden choice of treatment for limbal stem cell deficiency. Use of murine 3T3 feeder layer is a prerequisite for this ex vivo expansion. There is an ever-increasing demand for feeder free cultures to avoid xenotoxicity and transmission of xeno-diseases to human system. This study was aimed to establish an efficient xeno-feeder free limbal culture system towards ocular surface regeneration. To study the effect of initial dispase treatment and culture system used, migratory distance of cells from explants was analyzed from phase contrast images using "interactive measurements" of Qwin software (Leica). Expression of p63 in different culture systems was studied by immunofluorescent staining, followed by quantitative confocal microscopy (Carl Zeiss). Results showed dispase treatment was not necessary for establishing limbal explant culture. A combination of Iscove's modified Dulbecco's medium and Panserin 801 resulted in formation of autofeeder layer with maintenance of progenitor characteristics, thus mimicking natural tissue architecture. Further analysis of this culture system showed that cells could be cultured till confluency. Immunofluorescent staining of ABCG2 revealed presence of stem cell marker in the confluent cell layer. Scanning Electron Micrographs demonstrated homogenous population of tightly packed cells in this culture system. Replacement of bovine serum with autologous serum did not affect morphology or growth of cells in this culture system. This study will be a major step in the development of xeno-feeder free epithelial equivalents towards ocular surface reconstruction.
Collapse
Affiliation(s)
- Viji Mary Varghese
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | | | | |
Collapse
|
2176
|
Lai HY, Yang MJ, Wen KC, Chao KC, Shih CC, Lee OK. Mesenchymal stem cells negatively regulate dendritic lineage commitment of umbilical-cord-blood-derived hematopoietic stem cells: an unappreciated mechanism as immunomodulators. Tissue Eng Part A 2010; 16:2987-97. [PMID: 20545555 DOI: 10.1089/ten.tea.2009.0731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Due to their immunomodulatory functions, mesenchymal stem cells (MSCs) have great potential for clinical applications to prevent rejection in organ transplantation and to prevent graft-versus-host disease in hematopoietic stem cell (HSC) transplantation. Since dendritic cells (DCs) play an important role in modulating diverse T cell responses, including rejection and graft-versus-host disease, the goal of this study was to investigate whether MSCs modulate DC differentiation from HSCs and if this effect could be one of the mechanisms for MSCs' immune-modulating functions. Our results demonstrate that differentiation of HSCs into mature DCs is inhibited in the presence of MSCs. Similar frequency of dendritic precursors in the cultures, either with or without MSCs, suggests that the inhibition of MSCs on the differentiation of mature DCs from HSCs could be due to the arresting of maturation at the dendritic precursor step. Reduced levels of cyclic AMP, adenosine 3',5'-cyclic monophosphate (cAMP) and beta-catenin in DC-like cells from the cocultures are detected, suggesting that induction of apoptosis and inhibition of differentiation could be the basis for the inhibition of mature DCs from HSCs by MSCs. Further, our results demonstrate that DCs derived from HSCs in the presence of MSCs are functionally impaired, especially for those after direct contact with MSCs. To investigate the basis of functional impairment, our data show downregulated tumor necrosis factor-alpha and transforming growth factor-beta1 secretion and upregulated interleukin-6 (IL6) and IL1beta secretion in the cultures with MSCs. Together, MSCs can inhibit differentiation of mature DCs from HSCs by arresting them at the precursor stage and induce their apoptosis. Further, HSC-derived DCs in the presence of MSCs are functionally impaired, which could be partly due to the upregulation of IL6 secretion.
Collapse
Affiliation(s)
- Hsiu-Yu Lai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
2177
|
La Manna G, Bianchi F, Cappuccilli M, Cenacchi G, Tarantino L, Pasquinelli G, Valente S, Della Bella E, Cantoni S, Claudia C, Neri F, Tsivian M, Nardo B, Ventura C, Stefoni S. Mesenchymal stem cells in renal function recovery after acute kidney injury: use of a differentiating agent in a rat model. Cell Transplant 2010; 20:1193-1208. [PMID: 21092414 DOI: 10.3727/096368910x543394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major health care condition with limited current treatment options. Within this context, stem cells may provide a clinical approach for AKI. Moreover, a synthetic compound previously developed, hyaluronan monoesters with butyric acid (HB), able to induce metanephric differentiation, formation of capillary-like structures, and secretion of angiogenic cytokines, was tested in vitro. Thereafter, we investigated the effects of human mesenchymal stem cells from fetal membranes (FMhMSCs), both treated and untreated with HB, after induction of ischemic AKI in a rat model. At reperfusion following 45-min clamping of renal pedicles, each rat was randomly assigned to one of four groups: CTR, PBS, MSC, and MSC-HB. Renal function at 1, 3, 5, and 7 days was assessed. Histological samples were analyzed by light and electron microscopy and renal injury was graded. Cytokine analysis on serum samples was performed. FMhMSCs induced an accelerated renal functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys. HB-treated rats showed a minor degree of inflammation, both at cytokine and TEM analyses. Better functional and morphological recovery were not associated to stem cells' regenerative processes, but possibly suggest paracrine effects on microenvironment that induce retrieval of renal damaged tissues. These results suggest that FMhMSCs could be useful in the treatment of AKI and the utilization of synthetic compounds could enhance the recovery induction ability of cells.
Collapse
Affiliation(s)
- Gaetano La Manna
- Department of Internal Medicine, Aging and Renal Disease-Section of Nephrology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2178
|
Jing W, Xiao J, Xiong Z, Yang X, Huang Y, Zhou M, Chen S, Lin Y, Tian W. Explant culture: an efficient method to isolate adipose-derived stromal cells for tissue engineering. Artif Organs 2010; 35:105-12. [PMID: 20946305 DOI: 10.1111/j.1525-1594.2010.01054.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymatic digestion, the commonly used method of adipose-derived stromal cells isolation, is time consuming and expensive, especially when applied to large volumes of tissue. In the present study, the characteristics of the cells obtained by adipose tissue explant culture were studied. We found that adipose tissue fragments could adhere onto the growth surface of flasks in a very short time after plating and that fibroblast-like cells migrated from the explants and reached confluence. Morphologic analysis and surface markers expression suggested the mesenchymal origin of the cells derived from adipose tissue explants. After in vitro expansion these cells were successfully induced into adipogenic, osteogenic, and chondrogenic lineages, which demonstrated their multipotency. The high growth rate and colony-forming efficiency of explant-derived cells were similar to those of cells obtained by digestion. Furthermore, explant culture gave higher yield of cells than digestion method after primary culture. The experiment of ectopic adipogenesis in nude mice suggested the prospects for tissue engineering of these cells. In conclusion, we obtained multipotent stromal cells from adipose tissue by explant culture, and this method was simple, time saving, and gave a high yield of cells. Therefore, explant culture can be used as an effective way to isolate adipose-derived stromal cells for tissue engineering.
Collapse
Affiliation(s)
- Wei Jing
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2179
|
Ionova IA, Vásquez-Vivar J, Cooley BC, Khanna AK, Whitsett J, Herrnreiter A, Migrino RQ, Ge ZD, Regner KR, Channon KM, Alp NJ, Pieper GM. Cardiac myocyte-specific overexpression of human GTP cyclohydrolase I protects against acute cardiac allograft rejection. Am J Physiol Heart Circ Physiol 2010; 299:H88-96. [PMID: 20418482 PMCID: PMC2904123 DOI: 10.1152/ajpheart.00203.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/20/2010] [Indexed: 12/31/2022]
Abstract
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for tetrahydrobiopterin (BH(4)) synthesis. Decreases in GTPCH activity and expression have been shown in late stages of acute cardiac rejection, suggesting a deficit in BH(4). We hypothesized that increasing intracellular levels of BH(4) by cardiac myocyte-targeted overexpression of GTPCH would diminish acute cardiac allograft rejection. Transgenic mice overexpressing GTPCH in the heart were generated and crossed on C57BL6 background. Wild-type and transgenic mouse donor hearts were transplanted into BALB/c recipient mice. Left ventricular (LV) function, histological rejection, BH(4) levels, and inflammatory cytokine gene expression (mRNA) were examined. Expression of human GTPCH was documented by PCR, Western analysis, and function by a significant (P < 0.001) increase in cardiac BH(4) levels. GTPCH transgene decreased histological rejection (46%; P < 0.003) and cardiac myocyte injury (eosin autofluorescence; 56%; P < 0.0001) independent of changes in inflammatory cytokine expression or nitric oxide content. GTPCH transgene decreased IL-2 (88%; P < 0.002), IL-1R2 (42%; P < 0.0001), and programmed cell death-1 (67%; P < 0.0001) expression, whereas it increased fms-like tyrosine kinase 3 (156%; P < 0.0001) and stromal-derived factor-1 (2; 190%; P < 0.0001) expression. There was no difference in ejection fraction or fractional shortening; however, LV mass was significantly increased (P < 0.05) only in wild-type grafts. The decreases in LV mass, cardiac injury, and histological rejection support a protective role of cardiac GTPCH overexpression and increased BH(4) synthesis in cardiac allografts. The mechanism of the decreased rejection appears related to decreased T cell proliferation and modulation of immune function by higher expression of genes involved in hematopoietic/stromal cell development and recruitment.
Collapse
Affiliation(s)
- Irina A Ionova
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, 9200 West Wisconsin Ave., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2180
|
Abstract
The term ex vivo cultured limbal epithelial transplantation (CLET) refers to the process of culturing a sheet of human limbal epithelium in the laboratory and transplanting this sheet back onto the limbal stem cell-deficient cornea of the same patient or another recipient. This emerging technology represents one of the earliest successes in regenerative medicine. CLET is, at present, best suited to patients who have unilateral total limbal stem cell deficiency arising from chemical injury and who are suitable for autologous cell culture and transplantation. Although the results of allogeneic cell transplantation are encouraging and superior to conventional stem cell transplantation techniques, insufficient follow-up precludes conclusions regarding the long-term outcomes. Other tissues, such as oral mucosal epithelium, are emerging as viable alternative sources of cells, especially for patients with bilateral disease.
Collapse
Affiliation(s)
- Alex J Shortt
- Cells for Sight Transplantation and Research Programme, Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom.
| | | | | |
Collapse
|
2181
|
Zhang X, Sun H, Li X, Yuan X, Zhang L, Zhao S. Utilization of human limbal mesenchymal cells as feeder layers for human limbal stem cells cultured on amniotic membrane. J Tissue Eng Regen Med 2010; 4:38-44. [PMID: 19813216 DOI: 10.1002/term.216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Various cell culture techniques for limbal epithelial cells are currently being used for the transplantation of cultured limbal stem cells. In this study, we explored the possibility of using human limbal mesenchymal cells (HLMCs) as feeder layer for the human limbal epithelial cells (HLECs). Single cell suspension of HLECs was seeded onto denuded amniotic membranes with inactivated 3T3 fibroblasts or HLMCs as feeder layer. Expressions of Cytokeratin 3, Np63 and connexin 43 (Cx43) of the cultured epithelial cells were determined at 28 days and the ultrastructure of the epithelium was examined by transmission electron microscope after 14 days and 28 days of cultivation. In both groups, cells were differentiated into multilayer epithelium at 28 days. Basal cells of the cultured epithelium showed a strong nuclear labeling of Np63, but lacked CK3 and Cx43 expression. Transmission electron microscopy examination showed that there were abundant desmosomal contacts between the cells. The key feature the cultured epithelium was occurrence of a typical basement membrane. These results suggested that HLMCs can be used as an alternative feeder layer for HLECs, which makes the bioengineering product biologically safer for the clinical applications.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Tianjin Medical University Eye Centre, People's Republic of China
| | | | | | | | | | | |
Collapse
|
2182
|
Mothersill C, Seymour C. Communication of ionising radiation signals – a tale of two fish. Int J Radiat Biol 2009; 85:909-19. [DOI: 10.3109/09553000903105452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2183
|
Shortt AJ, Secker GA, Rajan MS, Meligonis G, Dart JK, Tuft SJ, Daniels JT. Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 2008; 115:1989-97. [PMID: 18554721 DOI: 10.1016/j.ophtha.2008.04.039] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/31/2008] [Accepted: 04/25/2008] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To determine, using objective measures, the outcome of ex vivo cultured limbal epithelial stem cell (LESC) transplantation performed in compliance with good manufacturing practice using a novel culture system without 3T3 feeder cells. DESIGN Prospective, noncomparative, interventional case series. PARTICIPANTS Ten eyes of 10 patients with profound LESC deficiency arising from chemical injury (4 eyes), aniridia (3 eyes), ectodermal dysplasia (1 eye), Reiger's anomaly with Pax6 haploinsufficiency (1 eye), and unknown cause (1 eye). METHODS Allogeneic (7 eyes) or autologous (3 eyes) corneal LESCs were cultured on human amniotic membrane. Tissue was transplanted to the recipient eye after superficial keratectomy. Impression cytology and confocal microscopy were performed 6 months after surgery with clinical follow-up to 13 months. Success was defined as an improvement in the defined clinical parameters of LESC deficiency, an improvement in visual acuity, the restoration of a more normal corneal phenotype on impression cytology, and the appearance of a regular hexagonal basal layer of cells on corneal confocal microscopy. MAIN OUTCOME MEASURES Clinical parameters of LESC deficiency (loss of epithelial transparency, superficial corneal vascularization, epithelial irregularity, and epithelial breakdown), visual acuity, impression cytology and cytokeratin expression profiles, and in vivo confocal corneal confocal microscopy. RESULTS The success rate using this technique was 60% (autografts 33%, allografts 71%). All patients with a successful outcome experienced an improvement in visual acuity of >/=2 lines Snellen acuity. Preoperatively, CK3+ and CK19+ cells accounted for 12+/-2.4% (mean +/- standard error of the mean) and 80+/-2.15% of cells, respectively, whereas postoperatively these accounted for 69+/-6.43% (P<0.0001) and 30+/-6.34% (P<0.0001) of cells, respectively. Goblet cells accounted for 8+/-1.19% of cells preoperatively and 1+/-0.35% of cells postoperatively (P<0.0001). CONCLUSIONS These data demonstrate that it is possible to culture LESCs ex vivo in compliance with good manufacturing practice regulations. A set of objective outcome measures that confirm the efficiency of this technique in treating LESC deficiency is described. The widespread use of such standardized and objective outcome measures would facilitate a comparison between the different culture methods in use.
Collapse
Affiliation(s)
- Alex J Shortt
- Cells for Sight Transplantation and Research Programme, UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
2184
|
Kim MK, Lee JL, Oh JY, Shin MS, Shin KS, Wee WR, Lee JH, Park KS, Son YS. Efficient cultivation conditions for human limbal epithelial cells. J Korean Med Sci 2008; 23:864-9. [PMID: 18955795 PMCID: PMC2580009 DOI: 10.3346/jkms.2008.23.5.864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To compare the stem niche in different culture conditions of limbal epithelial cells, the suspended human limbal epithelial cells (HLECs) were seeded on the 3T3-pretreated plates and the other suspended cells were plated on amniotic membranes (AMs) which were either cryo-preserved or freeze-dried. All were cultured for 10 to 12 days. Reverse transcription-polymerase chain reaction (RT-PCR) for ATP-binding cassette, subfamily G, member 2 (ABCG2), p63, cytokeratin 12, and connexin 43 were performed in cultivated HLECs and their expression levels were compared. The mRNA expression of all markers examined showed no statistically significant differences between the cells on cryo-preserved and on freeze-dried AM. The expression of p63 and cytokeratin 12 in cultivated cells on AMs were significantly lower than those in 3T3-cocultured cells on RT-PCR and immunofluorescent staining. Cultivated HLECs on AMs showed reduced proliferation and differentiation while maintaining stem-property regardless of the preservative method of AM.
Collapse
Affiliation(s)
- Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Seoul Artificial Eye Center, Seoul National University Hospital Clinical Research Institute, Seoul, Korea
| | | | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Seoul Artificial Eye Center, Seoul National University Hospital Clinical Research Institute, Seoul, Korea
| | - Mi Sun Shin
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Seoul Artificial Eye Center, Seoul National University Hospital Clinical Research Institute, Seoul, Korea
| | - Kyeong Seon Shin
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Seoul Artificial Eye Center, Seoul National University Hospital Clinical Research Institute, Seoul, Korea
| | - Jin Hak Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Seoul Artificial Eye Center, Seoul National University Hospital Clinical Research Institute, Seoul, Korea
| | - Ki Sook Park
- Laboratory of Tissue Engineering, Korea institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young Sook Son
- Laboratory of Tissue Engineering, Korea institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
2185
|
Werner A, Braun M, Kietzmann M. Isolation and cultivation of canine corneal cells for in vitro studies on the anti-inflammatory effects of dexamethasone. Vet Ophthalmol 2008; 11:67-74. [PMID: 18302570 DOI: 10.1111/j.1463-5224.2008.00602.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study was conducted to establish a protocol for the isolation and culture of canine corneal cells (i.e. endothelium, keratocytes, and epithelium) to be used for in vitro studies on the effects of dexamethasone in corneal inflammation. ANIMAL MATERIAL: Corneal endothelial cells, epithelial cells and keratocytes from enucleated eyes of dogs (euthanized not related to this study) were isolated and cultured. PROCEDURE Canine corneal cells were isolated using a combined enzymatic and mechanical technique and separately taken into culture. The three different cell types were verified by phase contrast microscopy, immunofluorescence, and Western blot using antivimentin and anticytokeratin antibodies. The mRNA for the glucocorticoid receptor (GR) was detected using reverse transcriptase polymerase chain reaction (RT-PCR). To study dexamethasone effects, primary cells were stimulated with lipopolysaccharides (LPS) to induce production of inflammatory mediators, particularly prostaglandin E(2) (PGE(2)). The concentration of PGE(2) in cell culture supernatant was determined utilizing an ELISA assay. Results were compared between control, stimulated as well as stimulated and dexamethasone treated cells. RESULTS A protocol for the isolation and culture of canine corneal endothelium, keratocytes, and epithelium was successfully established. Using morphological criteria as well as immunocytochemistry and Western blotting the identity of the cells could be verified. RT-PCR of the primary cells showed mRNA for the GR in all three cell types of the canine cornea. Furthermore, stimulation with LPS led to an increased PGE(2)-production in epithelial cells and fibroblasts, which was significant for epithelial cells. The PGE(2)-concentration was decreased in a dose dependent manner by the addition of dexamethasone. CONCLUSION The three major cell types of the canine cornea (i.e. endothelium, keratocytes, and epithelium) can be isolated and cultured in vitro. The mRNA for the GR is shown in all three cell types, its functionality is demonstrated by the dose dependent reduction of PGE(2)-production following dexamethasone treatment.
Collapse
Affiliation(s)
- Anke Werner
- Institute of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | | | | |
Collapse
|