2201
|
Kon N, Zhong J, Kobayashi Y, Li M, Szabolcs M, Ludwig T, Canoll PD, Gu W. Roles of HAUSP-mediated p53 regulation in central nervous system development. Cell Death Differ 2011; 18:1366-75. [PMID: 21350561 DOI: 10.1038/cdd.2011.12] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.
Collapse
Affiliation(s)
- N Kon
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
2202
|
Tian Y, Hou Y, Zhou X, Cheng H, Zhou R. Tumor suppressor RASSF1A promoter: p53 binding and methylation. PLoS One 2011; 6:e17017. [PMID: 21364923 PMCID: PMC3045384 DOI: 10.1371/journal.pone.0017017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/19/2011] [Indexed: 01/30/2023] Open
Abstract
Oncogenes and tumor suppressors work in concert to regulate cell growth or death, which is a pair of antagonist factors for regulation of tumorigenesis. Here we show promoter characteristic of tumor suppressor RASSF1A, which revealed a p53 binding site in the distal and a GC-rich region in the proximal promoter region of RASSF1A, in despite of TATA box-less. The GC-rich region, which is ∼300 bp upstream from the RASSF1A ATG, showed the strongest promoter activity in an assay of RASSF1A-driving GFP expression. Methylation analysis of the CpG island showed that 78.57% of the GC sties were methylated in testis tumor samples compared with methylation-less in normal testis. Hypermethylation of the GC-rich region is associated with RASSF1A silencing in human testis tumors. In addition, electrophoretic mobility shift assay indicated that p53 protein bound to the RASSF1A promoter. Further chromatin immunoprecipitation confirmed p53 binding to the RASSF1A. Moreover, p53 binding to the promoter down-regulated RASSF1A expression. These results suggest that p53 protein specifically binds to the RASSF1A promoter and inhibits its expression. Our results provide new insight into the mechanism of action of tumor suppressors and may be a starting point for development of new approaches to cancer treatment.
Collapse
Affiliation(s)
- Yihao Tian
- Department of Genetics and Center for Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Yu Hou
- Department of Genetics and Center for Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Xiang Zhou
- Department of Genetics and Center for Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Hanhua Cheng
- Department of Genetics and Center for Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
- * E-mail: (RZ); (HC)
| | - Rongjia Zhou
- Department of Genetics and Center for Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
- * E-mail: (RZ); (HC)
| |
Collapse
|
2203
|
Hu B, Shen KP, An HM, Wu Y, Du Q. Aqueous extract of Curcuma aromatica induces apoptosis and G2/M arrest in human colon carcinoma LS-174-T cells independent of p53. Cancer Biother Radiopharm 2011; 26:97-104. [PMID: 21348775 DOI: 10.1089/cbr.2010.0853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Curcuma aromatica is a common Chinese herb for treating diseases with blood stasis and has been regarded as an anticancer herb in modern clinical practice. However, the anticancer effects and related molecular mechanisms of Curcuma aromatica remain unclear. In the present study, human colon carcinoma LS-174-T cell line with wild-type p53 was used as a model cell to evaluate the anticancer effects of aqueous extract of Curcuma aromatica (AECA). AECA inhibits LS-174-T cell proliferation in a dose- and time-dependent manner and colony formation in a dose-dependent manner. AECA treatment induces apoptosis accompanied by caspase-8, -9, and -3 activation in LS-174-T cells. Moreover, blocking the activities of these caspases with a specific inhibitor significantly protected LS-174-T cells from AECA-induced apoptosis. AECA treatment also induces G2/M phase arrest in LS-174-T cells. Expression of p53 was unchanged after AECA treatment; specific silence of p53 did not influence AECA-induced apoptosis and G2/M phase arrest. Further, the expression of cyclin B1 and CDK1 was reduced by AECA. This study suggests that AECA might be effective as an antiproliferative herb for colon carcinoma, the antitumor activity of AECA may involve both extrinsic and intrinsic apoptosis, and AECA induces G2/M phase arrest via downregulation of cyclin B1 and CDK1 and without the participation of p53.
Collapse
Affiliation(s)
- Bing Hu
- The Fifth Department of Oncology and Institute of Cancer Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
2204
|
Maddocks ODK, Vousden KH. Metabolic regulation by p53. J Mol Med (Berl) 2011; 89:237-45. [PMID: 21340684 PMCID: PMC3043245 DOI: 10.1007/s00109-011-0735-5] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 01/24/2023]
Abstract
We are increasingly aware that cellular metabolism plays a vital role in diseases such as cancer, and that p53 is an important regulator of metabolic pathways. By transcriptional activation and other means, p53 is able to contribute to the regulation of glycolysis, oxidative phosphorylation, glutaminolysis, insulin sensitivity, nucleotide biosynthesis, mitochondrial integrity, fatty acid oxidation, antioxidant response, autophagy and mTOR signalling. The ability to positively and negatively regulate many of these pathways, combined with feedback signalling from these pathways to p53, demonstrates the reciprocal and flexible nature of the regulation, facilitating a diverse range of responses to metabolic stress. Intriguingly, metabolic stress triggers primarily an adaptive (rather than pro-apoptotic) p53 response, and p53 is emerging as an important regulator of metabolic homeostasis. A better understanding of how p53 coordinates metabolic adaptation will facilitate the identification of novel therapeutic targets and will also illuminate the wider role of p53 in human biology.
Collapse
|
2205
|
Gong QF, Liu EH, Xin R, Huang X, Gao N. 2ME and 2OHE2 exhibit growth inhibitory effects and cell cycle arrest at G2/M in RL95-2 human endometrial cancer cells through activation of p53 and Chk1. Mol Cell Biochem 2011; 352:221-30. [DOI: 10.1007/s11010-011-0757-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/17/2011] [Indexed: 01/03/2023]
|
2206
|
Vilgelm AE, Zaika AI, Prassolov VS. Coordinated interaction of multifunctional members of the p53 family determines many key processes in multicellular organisms. Mol Biol 2011. [DOI: 10.1134/s002689331101016x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2207
|
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011; 13:310-6. [PMID: 21336310 DOI: 10.1038/ncb2172] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/25/2010] [Indexed: 12/11/2022]
Abstract
Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen. This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation. However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.
Collapse
Affiliation(s)
- Peng Jiang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | | | | | | | | | | | | |
Collapse
|
2208
|
Sonnemann J, Palani CD, Wittig S, Becker S, Eichhorn F, Voigt A, Beck JF. Anticancer effects of the p53 activator nutlin-3 in Ewing's sarcoma cells. Eur J Cancer 2011; 47:1432-41. [PMID: 21334198 DOI: 10.1016/j.ejca.2011.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/20/2011] [Indexed: 01/16/2023]
Abstract
Mutation of p53 is rare in Ewing's sarcoma (ES), suggesting that targeting and activation of wild-type p53 may be an effective therapeutic strategy for ES. The recently developed small-molecule MDM2 inhibitor nutlin-3 restores wild-type p53 function, resulting in the inhibition of cancer cell growth and the induction of apoptosis. In the present study, we explored the responsiveness of ES cell lines with wild-type or mutated p53 to nutlin-3. We found that treatment with nutlin-3 increased p53 level and induced p53 target gene expression (MDM2, p21, PUMA) in ES cells with wild-type p53, but not in ES cells with mutated p53. Consistently, nutlin-3 elicited apoptosis only in wild-type p53 cells, as assessed by caspase-3 activity assay and flow cytometric analyses of mitochondrial depolarisation and DNA fragmentation. In addition, we found nutlin-3 to evoke cellular senescence, indicating that nutlin-3 induces pleiotropic anticancer effects in ES. Furthermore, combined treatment with nutlin-3 and an inhibitor of NF-κB produced synergistic antineoplastic activity in ES cells. Our findings suggest that the direct activation of p53 by nutlin-3 treatment may be a useful new therapeutic approach for patients with ES.
Collapse
Affiliation(s)
- Jürgen Sonnemann
- University Children's Hospital Jena, Department of Paediatric Haematology and Oncology, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
2209
|
Stankiewicz E, Prowse DM, Ktori E, Cuzick J, Ambroisine L, Zhang X, Kudahetti S, Watkin N, Corbishley C, Berney DM. The retinoblastoma protein/p16INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma. Histopathology 2011; 58:433-9. [DOI: 10.1111/j.1365-2559.2011.03762.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2210
|
Park JH, Smith RJ, Shieh SY, Roeder RG. The GAS41-PP2Cbeta complex dephosphorylates p53 at serine 366 and regulates its stability. J Biol Chem 2011; 286:10911-7. [PMID: 21317290 DOI: 10.1074/jbc.c110.210211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor is principally regulated by post-translational modifications and proteasome-dependent degradation. Various kinases have been shown to phosphorylate p53, but little is known about the counteracting phosphatases. We demonstrate here that the newly identified complex GAS41-PP2Cβ, and not PP2Cβ alone, is specifically required for dephosphorylation of serine 366 on p53. Ectopic expression of GAS41 and PP2Cβ reduces UV radiation-induced p53 up-regulation, thereby increasing the cell survival upon genotoxic DNA damage. To our knowledge, the GAS41-PP2Cβ complex is the first example in which substrate specificity of a PP2C family member is controlled by an associated regulatory subunit. Because GAS41 is frequently amplified in human gliomas, our finding illustrates a novel oncogenic mechanism of GAS41 by p53 dephosphorylation.
Collapse
Affiliation(s)
- Jeong Hyeon Park
- Institute of Molecular Biosciences, Massey University, Palmerston North 4442, New Zealand.
| | | | | | | |
Collapse
|
2211
|
Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci 2011; 30:16938-48. [PMID: 21159964 DOI: 10.1523/jneurosci.1598-10.2010] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An increasing body of evidence points to a key role of endoplasmic reticulum (ER) stress in acute and chronic neurodegenerative conditions. Extensive ER stress can trigger neuronal apoptosis, but the signaling pathways that regulate this cell death remain unclear. In the present study, we demonstrate that PUMA, a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family, is transcriptionally activated in cortical neurons by ER stress and is essential for ER-stress-induced cell death. PUMA is known to be a key transcriptional target of p53, but we have found that ER stress triggers PUMA induction and cell death through a p53-independent mechanism mediated by the ER-stress-inducible transcription factor ATF4 (activating transcription factor 4). Specifically, we demonstrate that ectopic expression of ATF4 sensitizes mouse cortical neurons to ER-stress-induced apoptosis and that ATF4-deficient neurons exhibit markedly reduced levels of PUMA expression and cell death. However, chromatin immunoprecipitation experiments suggest that ATF4 does not directly regulate the PUMA promoter. Rather, we found that ATF4 induces expression of the transcription factor CHOP (C/EBP homologous protein) and that CHOP in turn activates PUMA induction. Specifically, we demonstrate that CHOP binds to the PUMA promoter during ER stress and that CHOP knockdown attenuates PUMA induction and neuronal apoptosis. In summary, we have identified a key signaling pathway in ER-stress-induced neuronal death involving ATF4-CHOP-mediated transactivation of the proapoptotic Bcl-2 family member PUMA. We propose that this pathway may be an important therapeutic target relevant to a number of neurodegenerative conditions.
Collapse
|
2212
|
Deng Y, Meyer SA, Guan X, Escalon BL, Ai J, Wilbanks MS, Welti R, Garcia-Reyero N, Perkins EJ. Analysis of common and specific mechanisms of liver function affected by nitrotoluene compounds. PLoS One 2011; 6:e14662. [PMID: 21346803 PMCID: PMC3035612 DOI: 10.1371/journal.pone.0014662] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022] Open
Abstract
Background Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. Methodology/Principal Findings Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. Conclusions/Significance A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds.
Collapse
Affiliation(s)
- Youping Deng
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
2213
|
Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc Natl Acad Sci U S A 2011; 108:3624-9. [PMID: 21300884 DOI: 10.1073/pnas.1016201108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAp63, but not its homolog p53, eliminates oocytes that suffered DNA damage. An equivalent gene for guarding the male germ line is currently not known. Here we identify hitherto unknown human p63 transcripts with unique 5'-ends derived from incorporated exons upstream of the currently mapped TP63 gene. These unique p63 transcripts are highly and specifically expressed in testis. Their most upstream region corresponds to a LTR of the human endogenous retrovirus 9 (ERV9). The insertion of this LTR upstream of the TP63 locus occurred only recently in evolution and is unique to humans and great apes (Hominidae). A corresponding p63 protein is the sole p63 species in healthy human testis, and is strongly expressed in spermatogenic precursors but not in mature spermatozoa. In response to DNA damage, this human male germ-cell-encoded TAp63 protein (designated GTAp63) is activated by caspase cleavage near its carboxyterminal domain and induces apoptosis. Human testicular cancer tissues and cell lines largely lost p63 expression. However, pharmacological inhibition of histone deacetylases completely restores p63 expression in testicular cancer cells (>3,000-fold increase). Our data support a model whereby testis-specific GTAp63 protects the genomic integrity of the male germ line and acts as a tumor suppressor. In Hominidae, this guardian function was greatly enhanced by integration of an endogenous retrovirus upstream of the TP63 locus that occurred 15 million years ago. By providing increased germ-line stability, this event may have contributed to the evolution of hominids and enabled their long reproductive periods.
Collapse
|
2214
|
Niemantsverdriet M, de Jong E, Langendijk JA, Kampinga HH, Coppes RP. Synergistic induction of profibrotic PAI-1 by TGF-β and radiation depends on p53. Radiother Oncol 2011; 97:33-5. [PMID: 20435362 DOI: 10.1016/j.radonc.2010.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/16/2022]
Abstract
Radiation-induced fibrosis is a severe side effect of radiotherapy. TGF-β and radiation synergistically induce expression of the profibrotic PAI-1 gene and this cooperation potentially involves p53. Here, we demonstrate that p53 is both indispensable and sufficient for the radiation effect inducing synergistic activation of PAI-1 by radiation and TGF-β.
Collapse
Affiliation(s)
- Maarten Niemantsverdriet
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
2215
|
RNA content in the nucleolus alters p53 acetylation via MYBBP1A. EMBO J 2011; 30:1054-66. [PMID: 21297583 DOI: 10.1038/emboj.2011.23] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/11/2011] [Indexed: 12/23/2022] Open
Abstract
A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53-p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity.
Collapse
|
2216
|
Fang X, Yoon JG, Li L, Tsai YS, Zheng S, Hood L, Goodlett DR, Foltz G, Lin B. Landscape of the SOX2 protein-protein interactome. Proteomics 2011; 11:921-34. [PMID: 21280222 DOI: 10.1002/pmic.201000419] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/19/2010] [Accepted: 12/05/2010] [Indexed: 01/21/2023]
Abstract
SOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells that appears to re-activate in several human cancers including glioblastoma multiforme. Using immunoprecipitation (IP)/MS/MS, we identified 144 proteins that are putative SOX2 interacting proteins. Of note, SOX2 was found to interact with several heterogeneous nuclear ribonucleoprotein family proteins, including HNRNPA2B1, HNRNPA3, HNRNPC, HNRNPK, HNRNPL, HNRNPM, HNRNPR, HNRNPU, as well as other ribonucleoproteins, DNA repair proteins and helicases. Gene ontology (GO) analysis revealed that the SOX2 interactome was enriched for GO terms GO:0030529 ribonucleoprotein complex and GO:0004386 helicase activity. These findings indicate that SOX2 associates with the heterogeneous nuclear ribonucleoprotein complex, suggesting a possible role for SOX2 in post-transcriptional regulation in addition to its function as a transcription factor.
Collapse
Affiliation(s)
- Xuefeng Fang
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2217
|
|
2218
|
Affiliation(s)
- Colleen A Brady
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305-5152, USA
| | | |
Collapse
|
2219
|
Repression of Puma by scratch2 is required for neuronal survival during embryonic development. Cell Death Differ 2011; 18:1196-207. [PMID: 21252910 DOI: 10.1038/cdd.2010.190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although Snail factors promote cell survival in development and cancer, the tumor-suppressor p53 promotes apoptosis in response to stress. p53 and Snail2 act antagonistically to regulate p53 upregulated modulator of apoptosis (Puma) and cell death in hematopoietic progenitors following DNA damage. Here, we show that this relationship is conserved in the developing nervous system in which Snail genes are excluded from vertebrate neurons and they are substituted by Scratch, a related but independent neural-specific factor. The transcription of scratch2 is induced directly by p53 after DNA damage to repress puma, thereby antagonizing p53-mediated apoptosis. In addition, we show that scratch2 is required for newly differentiated neurons to survive by maintaining Puma levels low during normal embryonic development in the absence of damage. scratch2 knockdown in zebrafish embryos leads to neuronal death through the activation of the intrinsic and extrinsic apoptotic pathways. To compensate for neuronal loss, the proliferation of neuronal precursors increases in scratch2-deficient embryos, reminiscent of the activation of progenitor/stem cell proliferation after damage-induced apoptosis. Our data indicate that the regulatory loop linking p53/Puma with Scratch is active in the vertebrate nervous system, not only controlling cell death in response to damage but also during normal embryonic development.
Collapse
|
2220
|
Chakraborty A, Uechi T, Kenmochi N. Guarding the 'translation apparatus': defective ribosome biogenesis and the p53 signaling pathway. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:507-22. [PMID: 21957040 DOI: 10.1002/wrna.73] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomes, the molecular factories that carry out protein synthesis, are essential for every living cell. Ribosome biogenesis, the process of ribosome synthesis, is highly complex and energy consuming. Over the last decade, many exciting and novel findings have linked various aspects of ribosome biogenesis to cell growth and cell cycle control. Defects in ribosome biogenesis have also been linked to human diseases. It is now clear that disruption of ribosome biogenesis causes nucleolar stress that triggers a p53 signaling pathway, thus providing cells with a surveillance mechanism for monitoring ribosomal integrity. Although the exact mechanisms of p53 induction in response to nucleolar stress are still unknown, several ribosomal proteins have been identified as key players in this ribosome-p53 signaling pathway. Recent studies of human ribosomal pathologies in a variety of animal models have also highlighted the role of this pathway in the pathophysiology of these diseases. However, it remains to be understood why the effect of ribosomal malfunction is not a universal response in all cell types but is restricted to particular tissues, causing the specific phenotypes seen in ribosomal diseases. A challenge for future studies will be to identify additional players in this signaling pathway and to elucidate the underlying molecular mechanisms that link defective ribosome synthesis to p53.
Collapse
|
2221
|
Abstract
Sestrins (Sesns) are a family of highly conserved stress-responsive proteins, transcriptionally regulated by p53 and forkhead transcription factor that exhibit oxidoreductase activity in vitro and can protect cells from oxidative stress. However, their major biochemical and physiological function does not appear to depend on their redox (reduction and oxidation) activity. Sesns promote activation of adenosine-5′-monophosphate (AMP)-dependent protein kinase in both mammals and flies. Stress-induced Sesn expression results in inhibition of the target of rapamycin complex 1 (TORC1) and the physiological and pathological implications of disrupting the Sesns-TORC1 crosstalk are now being unravelled. Detailing their mechanism of action and exploring their roles in human physiology point to exciting new insights to topics as diverse as stress, cancer, metabolism and aging.
Collapse
Affiliation(s)
- Andrei V Budanov
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
2222
|
Abstract
Cdc25B phosphatases function as key players in G2/M cell cycle progression by activating the CDK1-cyclinB1 complexes. They also have an essential role in recovery from the G2/M checkpoint activated in response to DNA damage. Overexpression of Cdc25B results in bypass of the G2/M checkpoint and illegitimate entry into mitosis, and also causes replicative stress, leading to genomic instability. Thus, fine-tuning of Cdc25B expression level is critical for correct cell cycle progression and G2 checkpoint recovery. However, the transcriptional regulation of Cdc25B remains largely unknown. Earlier studies have shown that the tumor suppressor p53 overexpression transcriptionally represses Cdc25B; however, the molecular mechanism of this repression has not yet been elucidated, although it was suggested to occur through the induction of p21. Here we show that Cdc25B is downregulated by the basal level of p53 in multiple cell types. This downregulation also occurs in p21-/- cell lines, indicating that p21 is not required for p53-mediated regulation of Cdc25B. Deletion and mutation analyses of the Cdc25B promoter revealed that downregulation by p53 is dependent on the presence of functional Sp1/Sp3 and NF-Y binding sites. Furthermore, chromatin immunoprecipitation analyses show that p53 binds to the Cdc25B promoter and mediates transcriptional attenuation through the Sp1 and NF-Y transcription factors. Our results suggest that the inability to downregulate Cdc25B after loss of p53 might contribute to tumorigenesis.
Collapse
|
2223
|
Kasper LH, Thomas MC, Zambetti GP, Brindle PK. Double null cells reveal that CBP and p300 are dispensable for p53 targets p21 and Mdm2 but variably required for target genes of other signaling pathways. Cell Cycle 2011; 10:212-21. [PMID: 21220944 DOI: 10.4161/cc.10.2.14542] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The histone acetyltransferase coactivators CBP (CREBBP) and p300 (EP300) have more than 400 described protein interaction partners and are implicated in numerous transcriptional pathways. We have shown previously that CBP and p300 double knockout mutations in mouse embryonic fibroblasts (dKO MEFs) result in mixed effects on cAMP-inducible gene expression, with many CREB target genes requiring CBP/p300 for full expression, while others are unaffected or expressed better in their absence. Here we used CBP and p300 dKO MEFs to examine gene expression in response to four other signals: DNA damage (via p53), double-stranded RNA, serum, and retinoic acid. We found that while retinoic acid-inducible gene expression tends to be uniformly dependent on CBP/p300, dsRNA- and serum-inducible genes displayed non-uniform requirements for CBP/p300, with the dsRNA-inducible expression of Ifnb1 (interferon-β) being particularly dependent on CBP/p300. Surprisingly, the p53-dependent genes Cdkn1a (p21/CIP/WAF) and Mdm2 did not require CBP/p300 for their expression. As with cAMP-responsive CREB targets, we propose that the signal-responsive recruitment of CBP and p300 does not necessarily indicate a requirement for these coactivators at a locus. Rather, target gene context (e.g. DNA sequence) influences the extent to which transcription requires CBP/p300 versus other coactivators, which may not be HATs.
Collapse
Affiliation(s)
- Lawryn H Kasper
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|
2224
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2225
|
The menin tumor suppressor protein is phosphorylated in response to DNA damage. PLoS One 2011; 6:e16119. [PMID: 21264250 PMCID: PMC3021530 DOI: 10.1371/journal.pone.0016119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/08/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is a heritable cancer syndrome characterized by tumors of the pituitary, pancreas and parathyroid. Menin, the product of the MEN1 gene, is a tumor suppressor protein that functions in part through the regulation of transcription mediated by interactions with chromatin modifying enzymes. PRINCIPAL FINDINGS Here we show menin association with the 5' regions of DNA damage response genes increases after DNA damage and is correlated with RNA polymerase II association but not with changes in histone methylation. Furthermore, we were able to detect significant levels of menin at the 3' regions of CDKN1A and GADD45A under conditions of enhanced transcription following DNA damage. We also demonstrate that menin is specifically phosphorylated at Ser394 in response to several forms of DNA damage, Ser487 is dynamically phosphorylated and Ser543 is constitutively phosphorylated. Phosphorylation at these sites however does not influence the ability to interact with histone methyltransferase activity. In contrast, the interaction between menin and RNA polymerase II is influenced by phosphorylation, whereby a phospho-deficient mutant had a higher affinity for the elongating form of RNA polymerase compared to wild type. Additionally, a subset of MEN1-associated missense point mutants, fail to undergo DNA damage dependent phosphorylation. CONCLUSION Together, our findings suggest that the menin tumor suppressor protein undergoes DNA damage induced phosphorylation and participates in the DNA damage transcriptional response.
Collapse
|
2226
|
Rad is a p53 direct transcriptional target that inhibits cell migration and is frequently silenced in lung carcinoma cells. J Mol Med (Berl) 2011; 89:481-92. [PMID: 21221513 DOI: 10.1007/s00109-010-0717-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 12/08/2010] [Accepted: 12/20/2010] [Indexed: 01/16/2023]
Abstract
The p53 tumor suppressor exerts its function mainly as a transcriptional activator. Here we show that the Ras-related small GTPase Rad, an inhibitor of Rho kinase, is a direct transcriptional target of p53. Expression of Rad messenger RNA (mRNA) and protein was induced by DNA damage in a p53-dependent manner. The -2934/-2905-bp Rad promoter region, to which p53 bound, was required for p53-mediated Rad gene activation. Treatment by DNA damaging agents increased p53 occupancy and histone acetylation in the region of Rad promoter containing the p53-binding site. Expression of Rad diminished the inhibitory phosphorylation at Ser3 of cofilin, a regulator of actin dynamics, and suppressed migration and invasiveness of cancer cells. Knockdown of Rad promoted cell migration and alleviated the p53-mediated migration suppression. Frequent loss of Rad mRNA and protein expression was observed in non-small cell lung carcinoma tissues. Together our results reveal a mechanism that p53 may inhibit cell migration by disrupting actin dynamics via Rad activation and implicate a tumor suppressor role of Rad in lung cancer.
Collapse
|
2227
|
Yuan F, Xie Q, Wu J, Bai Y, Mao B, Dong Y, Bi W, Ji G, Tao W, Wang Y, Yuan Z. MST1 promotes apoptosis through regulating Sirt1-dependent p53 deacetylation. J Biol Chem 2011; 286:6940-5. [PMID: 21212262 DOI: 10.1074/jbc.m110.182543] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mammalian Sterile 20-like kinase 1 (MST1) protein kinase plays an important role in the apoptosis induced by a variety of stresses. The MST1 is a serine/threonine kinase that is activated upon apoptotic stimulation, which in turn activates its downstream targets, JNK/p38, histone H2B and FOXO. It has been reported that overexpression of MST1 initiates apoptosis by activating p53. However, the molecular mechanisms underlying MST1-p53 signaling during apoptosis are unclear. Here, we report that MST1 promotes genotoxic agent-induced apoptosis in a p53-dependent manner. We found that MST1 increases p53 acetylation and transactivation by inhibiting the deacetylation of Sirtuin 1 (Sirt1) and its interaction with p53 and that Sirt1 can be phosphorylated by MST1 leading to the inhibition of Sirt1 activity. Collectively, these findings define a novel regulatory mechanism involving the phosphorylation of Sirt1 by MST1 kinase which leads to p53 activation, with implications for our understanding of signaling mechanisms during DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Fang Yuan
- State Key Laboratory of Brain and Cognitive Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2228
|
Huang FW, Yang J, Feng J, Zhuo RX, Zhang XZ. Design of hepatocyte-targeted gene transfer vector and its in vitro transfer of tumor-suppressor p53 gene. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03618h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2229
|
Huang SXL, Jaurand MC, Kamp DW, Whysner J, Hei TK. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:179-245. [PMID: 21534089 PMCID: PMC3118525 DOI: 10.1080/10937404.2011.556051] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases. This article summarizes the findings from existing literature with a focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more convincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcinogenesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity. At the end of this review, a consensus statement of what is known, what is believed to be factual but requires confirmation, and existing data gaps, as well as future research needs and directions, is provided.
Collapse
Affiliation(s)
- Sarah X. L. Huang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marie-Claude Jaurand
- INSERM (Institut National de la Santé et de la Recherche Médicale), Paris, France
| | - David W. Kamp
- Pulmonary & Critical Care Medicine, Northwestern University Feinberg School of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - John Whysner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Tom K. Hei
- Address correspondence to Tom K. Hei, Center for Radiological Research, College of Physicians and Surgeons, Columbia University. 630 West 168th Street, New York, NY 10032, USA. E-mail:
| |
Collapse
|
2230
|
Stawowczyk M, Van Scoy S, Kumar KP, Reich NC. The interferon stimulated gene 54 promotes apoptosis. J Biol Chem 2010; 286:7257-66. [PMID: 21190939 DOI: 10.1074/jbc.m110.207068] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of interferons (IFNs) to inhibit viral replication and cellular proliferation is well established, but the specific contribution of each IFN-stimulated gene (ISG) to these biological responses remains to be completely understood. In this report we demonstrate that ISG54, also known as IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), is a mediator of apoptosis. Expression of ISG54, independent of IFN stimulation, elicits apoptotic cell death. Cell death and apoptosis were quantified by propidium iodide uptake and annexin-V staining, respectively. The activation of caspase-3, a key mediator of the execution phase of apoptosis, was clearly apparent in cells expressing ISG54. The anti-apoptotic B cell lymphoma-xl (Bcl-xl) protein inhibited the apoptotic effects of ISG54 as did the anti-apoptotic adenoviral E1B-19K protein. In addition, ISG54 was not able to promote cell death in the absence of pro-apoptotic Bcl family members, Bax and Bak. Analyses of binding partners of ISG54 revealed association with two homologous proteins, ISG56/IFIT1 and ISG60/IFIT3. In addition, ISG60 binding negatively regulates the apoptotic effects of ISG54. The results reveal a previously unidentified role of ISG54 in the induction of apoptosis via a mitochondrial pathway and shed new light on the mechanism by which IFN elicits anti-viral and anti-cancer effects.
Collapse
Affiliation(s)
- Marcin Stawowczyk
- Department of Molecular Genetics and Microbiology, Stony Brook University Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
2231
|
Pandit B, Gartel AL. Proteasome inhibitors induce p53-independent apoptosis in human cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:355-60. [PMID: 21224072 DOI: 10.1016/j.ajpath.2010.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/03/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022]
Abstract
Proteasome inhibitors are used against human cancer, but their mechanisms of action are not entirely understood. For example, the role of the tumor suppressor p53 is controversial. We reevaluated the role of p53 in proteasome inhibitor-induced apoptosis by using isogenic human cancer cell lines with different p53 status. We found that well-known proteasome inhibitors such as MG132 and bortezomib, as well as the recently discovered proteasome inhibitor thiostrepton, induced p53-independent apoptosis in human cancer cell lines that correlated with p53-independent induction of proapoptotic Noxa but not Puma protein. In addition, these drugs inhibited growth of several cancer cell lines independently of p53 status. Notably, thiostrepton induced more potent apoptosis in HepG2 cells with p53 knockdown than in parental cells with wild-type p53. Our data confirm that proteasome inhibitors generally induce p53-independent apoptosis in human cancer cells.
Collapse
Affiliation(s)
- Bulbul Pandit
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
2232
|
Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Proc Natl Acad Sci U S A 2010; 108:557-62. [PMID: 21178074 DOI: 10.1073/pnas.1015520107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The multidomain homotetrameric tumor suppressor p53 has two modes of binding dsDNA that are thought to be responsible for scanning and recognizing specific response elements (REs). The C termini bind nonspecifically to dsDNA. The four DNA-binding domains (DBDs) bind REs that have two symmetric 10 base-pair sequences. p53 bound to a 20-bp RE has the DBDs enveloping the DNA, which is in the center of the molecule surrounded by linker sequences to the tetramerization domain (Tet). We investigated by electron microscopy structures of p53 bound to DNA sequences consisting of a 20-bp RE with either 12 or 20 bp nonspecific extensions on either end. We found a variety of structures that give clues to recognition and scanning mechanisms. The 44- and 60-bp sequences gave rise to three and four classes of structures, respectively. One was similar to the known 20-bp structure, but the DBDs in the other classes were loosely arranged and incompatible with specific DNA recognition. Some of the complexes had density consistent with the C termini extending from Tet to the DNA, adjacent to the DBDs. Single-molecule fluorescence resonance energy transfer experiments detected the approach of the C termini towards the DBDs on addition of DNA. The structural data are consistent with p53 sliding along DNA via its C termini and the DNA-binding domains hopping on and off during searches for REs. The loose structures and posttranslational modifications account for the affinity of nonspecific DNA for p53 and point to a mechanism of enhancement of specificity by its binding to effector proteins.
Collapse
|
2233
|
Millau JF, Bandele OJ, Perron J, Bastien N, Bouchard EF, Gaudreau L, Bell DA, Drouin R. Formation of stress-specific p53 binding patterns is influenced by chromatin but not by modulation of p53 binding affinity to response elements. Nucleic Acids Res 2010; 39:3053-63. [PMID: 21177650 PMCID: PMC3082904 DOI: 10.1093/nar/gkq1209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The p53 protein is crucial for adapting programs of gene expression in response to stress. Recently, we revealed that this occurs partly through the formation of stress-specific p53 binding patterns. However, the mechanisms that generate these binding patterns remain largely unknown. It is not established whether the selective binding of p53 is achieved through modulation of its binding affinity to certain response elements (REs) or via a chromatin-dependent mechanism. To shed light on this issue, we used a microsphere assay for protein-DNA binding to measure p53 binding patterns on naked DNA. In parallel, we measured p53 binding patterns within chromatin using chromatin immunoprecipitation and DNase I coupled to ligation-mediated polymerase chain reaction footprinting. Through this experimental approach, we revealed that UVB and Nutlin-3 doses, which lead to different cellular outcomes, induce similar p53 binding patterns on naked DNA. Conversely, the same treatments lead to stress-specific p53 binding patterns on chromatin. We show further that altering chromatin remodeling using an histone acetyltransferase inhibitor reduces p53 binding to REs. Altogether, our results reveal that the formation of p53 binding patterns is not due to the modulation of sequence-specific p53 binding affinity. Rather, we propose that chromatin and chromatin remodeling are required in this process.
Collapse
Affiliation(s)
- Jean-François Millau
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
2234
|
Novel Perspectives on p53 Function in Neural Stem Cells and Brain Tumors. JOURNAL OF ONCOLOGY 2010; 2011:852970. [PMID: 21209724 PMCID: PMC3010739 DOI: 10.1155/2011/852970] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/18/2010] [Accepted: 10/29/2010] [Indexed: 12/30/2022]
Abstract
Malignant glioma is the most common brain tumor in adults and is associated with a very poor prognosis. Mutations in the p53 tumor suppressor gene are frequently detected in gliomas. p53 is well-known for its ability to induce cell cycle arrest, apoptosis, senescence, or differentiation following cellular stress. That the guardian of the genome also controls stem cell self-renewal and suppresses pluripotency adds a novel level of complexity to p53. Exactly how p53 works in order to prevent malignant transformation of cells in the central nervous system remains unclear, and despite being one of the most studied proteins, there is a need to acquire further knowledge about p53 in neural stem cells. Importantly, the characterization of glioma cells with stem-like properties, also known as brain tumor stem cells, has opened up for the development of novel targeted therapies. Here, we give an overview of what is currently known about p53 in brain tumors and neural stem cells. Specifically, we review the literature regarding transformation of adult neural stem cells and, we discuss how the loss of p53 and deregulation of growth factor signaling pathways, such as increased PDGF signaling, lead to brain tumor development. Reactivation of p53 in brain tumor stem cell populations in combination with current treatments for glioma should be further explored and may become a viable future therapeutic approach.
Collapse
|
2235
|
Roh JL, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM. p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol 2010; 47:8-15. [PMID: 21109480 DOI: 10.1016/j.oraloncology.2010.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 01/05/2023]
Abstract
We evaluate whether p53-reactivating (p53RA) small molecules induce p53-dependent apoptosis in head and neck squamous cell carcinoma (HNSCC), a question that has not been previously addressed in head and neck cancer. PRIMA-1, CP-31398, RITA, and nutlin-3 were tested in four human HNSCC cell lines differing in TP53 status. Cell growth, viability, cell cycle progression, and apoptosis after treatment with p53RA small molecules individually or in combination with chemotherapeutic agents were assessed. Prominent p53 reactivation was observed in mutant TP53-bearing tumor cell lines treated with PRIMA-1 or CP-31398, and in wild-type TP53-bearing cell lines treated with nutlin-3. Cell-cycle arrest and apoptosis induced by p53RA small molecules were associated with upregulation of p21 and BAX, and cleavage of caspase-3. Nutlin-3 showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. High-dose treatment with p53RA small molecules also induced apoptosis in cell lines independent of p53 or MDM2 expression. In combination therapy, p53RA small molecules enhanced the anti-tumor activity of cisplatin, 5-fluorouracil, paclitaxel, and erlotinib against HNSCC cells. The p53RA small molecules effectively restored p53 tumor-suppressive function in HNSCCs with mutant or wild-type TP53. The p53RA agents may be clinically useful against HNSCC, in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jong-Lyel Roh
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC 6221, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
2236
|
Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol 2010; 48:98-116. [PMID: 21149845 DOI: 10.1177/0300985810390826] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies focusing on the molecular basis of canine mammary tumors (CMT) have long been hampered by limited numbers of molecular tools specific to the canine species. The lack of molecular information for CMT has impeded the identification of clinically relevant tumor markers beyond histopathology and the introduction of new therapeutic concepts. Additionally, the potential use for the dog as a model for human breast cancer is debatable until questions are answered regarding cellular origin, mechanisms, and cellular pathways. During the past years, increasing numbers of canine molecular tools have been developed on the genomic, RNA, and protein levels, and an increasing number of studies have shed light on specific aspects of canine carcinogenesis, particularly of the mammary gland. This review summarizes current knowledge on the molecular carcinogenesis of CMT, including the role of specific oncogenes, tumor suppressors, regulators of apoptosis and DNA repair, proliferation indices, adhesion molecules, circulating tumor cells, and mediators of angiogenesis in CMT progression and clinical behavior. Whereas the data available are far from complete, knowledge of molecular pathways has a significant potential to complement and refine the current diagnostic and therapeutic approach to this tumor type. Furthermore, current data show that significant similarities and differences exist between canine and human mammary tumors at the molecular level. Clearly, this is only the beginning of an understanding of the molecular mechanisms of CMT and their application in clinical patient management.
Collapse
Affiliation(s)
- R Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, reie Universität Berlin, Robert von Ostertag Str 15, D-14163 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
2237
|
Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell 2010; 40:216-27. [PMID: 20965417 PMCID: PMC2987465 DOI: 10.1016/j.molcel.2010.09.024] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/16/2010] [Accepted: 09/22/2010] [Indexed: 12/16/2022]
Abstract
Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses.
Collapse
Affiliation(s)
- Séverine Boulon
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
2238
|
Abstract
The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53.
Collapse
|
2239
|
Gerety SS, Wilkinson DG. Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 2010; 350:279-89. [PMID: 21145318 PMCID: PMC3111810 DOI: 10.1016/j.ydbio.2010.11.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/02/2010] [Accepted: 11/25/2010] [Indexed: 12/16/2022]
Abstract
Morpholino antisense oligonucleotides (MOs) are widely used as a tool to achieve loss of gene function, but many have off-target effects mediated by activation of Tp53 and associated apoptosis. Here, we re-examine our previous MO-based loss-of-function studies that had suggested that Wnt1 expressed at hindbrain boundaries in zebrafish promotes neurogenesis and inhibits boundary marker gene expression in the adjacent para-boundary regions. We find that Tp53 is highly activated and apoptosis is frequently induced by the MOs used in these studies. Co-knockdown of Tp53 rescues the decrease in proneural and neuronal marker expression, which is thus an off-target effect of MOs. While loss of gene expression can be attributed to cell loss through apoptotic cell death, surprisingly we find that the ectopic expression of hindbrain boundary markers is also dependent on Tp53 activity and its downstream apoptotic effectors. We examine whether this non-specific activation of hindbrain boundary gene expression provides insight into the endogenous mechanisms underlying boundary cell specification. We find that the pro-apoptotic Bcl genes puma and bax-a are required for hindbrain boundary marker expression, and that gain of function of the Bcl-caspase pathway leads to ectopic boundary marker expression. These data reveal a non-apoptotic role for pro-apoptotic genes in the regulation of gene expression at hindbrain boundaries. In light of these findings, we discuss the precautions needed in performing morpholino knockdowns and in interpreting the data derived from their use.
Collapse
Affiliation(s)
- Sebastian S Gerety
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
2240
|
Khoronenkova SV, Dianova II, Parsons JL, Dianov GL. USP7/HAUSP stimulates repair of oxidative DNA lesions. Nucleic Acids Res 2010; 39:2604-9. [PMID: 21138959 PMCID: PMC3074138 DOI: 10.1093/nar/gkq1210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
USP7 is involved in the cellular stress response by regulating Mdm2 and p53 protein levels following severe DNA damage. In addition to this, USP7 may also play a role in chromatin remodelling by direct deubiquitylation of histones, as well as indirectly by regulating the cellular levels of E3 ubiquitin ligases involved in histone ubiquitylation. Here, we provide new evidence that USP7 modulated chromatin remodelling is important for base excision repair of oxidative lesions. We show that transient USP7 siRNA knockdown did not change the levels or activity of base excision repair enzymes, but significantly reduced chromatin DNA accessibility and consequently the rate of repair of oxidative lesions.
Collapse
Affiliation(s)
- Svetlana V Khoronenkova
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | | | | | | |
Collapse
|
2241
|
Lindenboim L, Borner C, Stein R. Nuclear proteins acting on mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:584-96. [PMID: 21130123 DOI: 10.1016/j.bbamcr.2010.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/08/2010] [Accepted: 11/23/2010] [Indexed: 12/23/2022]
Abstract
An important mechanism in apoptotic regulation is changes in the subcellular distribution of pro- and anti-apoptotic proteins. Among the proteins that change in their localization and may promote apoptosis are nuclear proteins. Several of these nuclear proteins such as p53, Nur77, histone H1.2, and nucleophosmin were reported to accumulate in the cytosol and/or mitochondria and to promote the mitochondrial apoptotic pathway in response to apoptotic stressors. In this review, we will discuss the functions of these and other nuclear proteins in promoting the mitochondrial apoptotic pathway, the mechanisms that regulate their accumulation in the cytosol and/or mitochondria and the potential role of Bax and Bak in this process. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | | | | |
Collapse
|
2242
|
Shinada K, Tsukiyama T, Sho T, Okumura F, Asaka M, Hatakeyama S. RNF43 interacts with NEDL1 and regulates p53-mediated transcription. Biochem Biophys Res Commun 2010; 404:143-7. [PMID: 21108931 DOI: 10.1016/j.bbrc.2010.11.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
The ubiquitin-proteasomal system plays a crucial role in oncogenesis in colorectal tissues. Recent studies have shown that stability of β-catenin, which functions as an oncogene for colorectal cancer, is regulated by ubiquitin-mediated degradation. It has been reported that a putative E3 ubiquitin ligase, RNF43, is highly expressed in human colorectal carcinoma and that RNF43 promotes cell growth. However, the involvement of RNF43 in carcinogenesis has not been fully elucidated. In this study, we found by using yeast two-hybrid screening that RNF43 binds to NEDD-4-like ubiquitin-protein ligase-1 (NEDL1), which enhances pro-apoptotic activity by p53. In addition, we found that RNF43 also interacts with p53 and that RNF43 suppresses transcriptional activity of p53 in H1299 cells and attenuates apoptosis induced by ultraviolet irradiation. These findings suggest that RNF43 is associated with p53-mediated apoptosis in collaboration with NEDL1 in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Keisuke Shinada
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
2243
|
Uversky VN. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 2010; 7:543-64. [PMID: 20653509 DOI: 10.1586/epr.10.36] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many biologically active proteins, which are usually called intrinsically disordered or natively unfolded proteins, lack stable tertiary and/or secondary structure under physiological conditions in vitro. Their functions complement the functional repertoire of ordered proteins, with intrinsically disordered proteins (IDPs) often being involved in regulation, signaling and control. Their amino acid sequences and compositions are very different from those of ordered proteins, making reliable identification of IDPs possible at the proteome level. IDPs are highly abundant in various human diseases, including neurodegeneration and other protein dysfunction maladies and, therefore, represent attractive novel drug targets. Some of the aspects of IDPs, as well as their roles in neurodegeneration and protein dysfunction diseases, are discussed in this article, together with the peculiarities of IDPs as potential drug targets.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
2244
|
Rajagopalan S, Huang F, Fersht AR. Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res 2010; 39:2294-303. [PMID: 21097469 PMCID: PMC3064802 DOI: 10.1093/nar/gkq800] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The state of oligomerization of the tumor suppressor p53 is an important factor in its various biological functions. It has a well-defined tetramerization domain, and the protein exists as monomers, dimers and tetramers in equilibrium. The dissociation constants between oligomeric forms are so low that they are at the limits of measurement by conventional methods in vitro. Here, we have used the high sensitivity of single-molecule methods to measure the equilibria and kinetics of oligomerization of full-length p53 and its isolated tetramerization domain, p53tet, at physiological temperature, pH and ionic strength using fluorescence correlation spectroscopy (FCS) in vitro. The dissociation constant at 37°C for tetramers dissociating into dimers for full-length p53 was 50 ± 7 nM, and the corresponding value for dimers into monomers was 0.55 ± 0.08 nM. The half-lives for the two processes were 20 and 50 min, respectively. The equivalent quantities for p53tet were 150 ± 10 nM, 1.0 ± 0.14 nM, 2.5 ± 0.4 min and 13 ± 2 min. The data suggest that unligated p53 in unstressed cells should be predominantly dimeric. Single-molecule FCS is a useful procedure for measuring dissociation equilibria, kinetics and aggregation at extreme sensitivity.
Collapse
|
2245
|
Abstract
The intricacies of p53 regulation just got more complex. While much is known about the transcriptional regulation of p53 target genes, Chen and Kastan (pp. 2146-2156) uncovered a new mechanism regarding the making of the p53 protein itself. In the October 1, 2010, issue of Genes & Development, they introduced us to a novel mechanism of p53 translational control, by which a 5'-3' cap-independent, poly(A)-independent, RNA-RNA interaction enhances p53 translation by binding the ribosomal protein RPL26 following DNA damage. Oligonucleotides designed against this 5'-3' untranslated region (UTR) duplex disrupted the binding of RPL26 to p53 mRNA and reduced p53 synthesis and, therefore, function. This study reveals an alternate mechanism of translational control to regulate p53 levels.
Collapse
Affiliation(s)
- Tamara Terzian
- Department of Dermatology/Stem Cell Biology, University of Colorado at Denver, Aurora, Colorado 80045, USA
| | | |
Collapse
|
2246
|
p53-mediated apoptosis requires inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A 2010; 107:20947-51. [PMID: 21078964 DOI: 10.1073/pnas.1015671107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inositol pyrophosphates have been implicated in numerous biological processes. Inositol hexakisphosphate kinase-2 (IP6K2), which generates the inositol pyrophosphate, diphosphoinositol pentakisphosphate (IP7), influences apoptotic cell death. The tumor suppressor p53 responds to genotoxic stress by engaging a transcriptional program leading to cell-cycle arrest or apoptosis. We demonstrate that IP6K2 is required for p53-mediated apoptosis and modulates the outcome of the p53 response. Gene disruption of IP6K2 in colorectal cancer cells selectively impairs p53-mediated apoptosis, instead favoring cell-cycle arrest. IP6K2 acts by binding directly to p53 and decreasing expression of proarrest gene targets such as the cyclin-dependent kinase inhibitor p21.
Collapse
|
2247
|
Jørgensen KM, Hjelle SM, Øye OK, Puntervoll P, Reikvam H, Skavland J, Anderssen E, Bruserud Ø, Gjertsen BT. Untangling the intracellular signalling network in cancer--a strategy for data integration in acute myeloid leukaemia. J Proteomics 2010; 74:269-81. [PMID: 21075225 DOI: 10.1016/j.jprot.2010.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/31/2010] [Accepted: 11/03/2010] [Indexed: 01/10/2023]
Abstract
Protein and gene networks centred on the regulatory tumour suppressor proteins may be of crucial importance both in carcinogenesis and in the response to chemotherapy. Tumour suppressor protein p53 integrates intracellular data in stress responses, receiving signals and translating these into differential gene expression. Interpretation of the data integrated on p53 may therefore reveal the response to therapy in cancer. Proteomics offers more specific data - closer to "the real action" - than the hitherto more frequently used gene expression profiling. Integrated data analysis may reveal pathways disrupted at several regulatory levels. Ultimately, integrated data analysis may also contribute to finding key underlying cancer genes. We here proposes a Partial Least Squares Regression (PLSR)-based data integration strategy, which allows simultaneous analysis of proteomic data, gene expression data and classical clinical parameters. PLSR collapses multidimensional data into fewer relevant dimensions for data interpretation. PLSR can also aid identification of functionally important modules by also performing comparison to databases on known biological interactions. Further, PLSR allows meaningful visualization of complex datasets, aiding interpretation of the underlying biology. Extracting the true biological causal mechanisms from heterogeneous patient populations is the key to discovery of new therapeutic options in cancer.
Collapse
|
2248
|
Wang H, Ma X, Ren S, Buolamwini JK, Yan C. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol Cancer Ther 2010; 10:69-79. [PMID: 21075910 DOI: 10.1158/1535-7163.mct-10-0581] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The p53 inactivation caused by aberrant expression of its major regulators (e.g., MDM2 and MDMX) contributes to the genesis of a large number of human cancers. Recent studies have shown that restoration of p53 activity by counteracting p53 repressors is a promising anticancer strategy. Although agents (e.g., nutlin-3a) that disrupt MDM2-p53 interaction can inhibit tumor growth, they are less effective in cancer cells that express high levels of MDMX. MDMX binds to p53 and can repress the tumor suppressor function of p53 through inhibiting its trans-activation activity and/or destabilizing the protein. Here we report the identification of a benzofuroxan derivative [7-(4-methylpiperazin-1-yl)-4-nitro-1-oxido-2,1,3-benzoxadiazol-1-ium, NSC207895] that could inhibit MDMX expression in cancer cells through a reporter-based drug screening. Treatments of MCF-7 cells with this small-molecule MDMX inhibitor activated p53, resulting in elevated expression of proapoptotic genes (e.g., PUMA, BAX, and PIG3). Importantly, this novel small-molecule p53 activator caused MCF-7 cells to undergo apoptosis and acted additively with nutlin-3a to activate p53 and decrease the viability of cancer cells. These results thus show that small molecules targeting MDMX expression would be of therapeutic benefits.
Collapse
Affiliation(s)
- Hongbo Wang
- Albany Medical College, MC 165, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
2249
|
Anaganti S, Fernández-Cuesta L, Langerød A, Hainaut P, Olivier M. p53-Dependent repression of focal adhesion kinase in response to estradiol in breast cancer cell-lines. Cancer Lett 2010; 300:215-24. [PMID: 21071137 DOI: 10.1016/j.canlet.2010.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 12/13/2022]
Abstract
Mutations in the TP53 suppressor gene are frequent in breast cancers. These mutations are associated with poor prognosis, thought to be due to proliferative advantage and poor response to chemotherapy associated with loss of p53 function. The focal adhesion kinase (FAK/PTK2), a tyrosine kinase, is over-expressed in a variety of human tumors including breast cancers. FAK is a critical regulator of adhesion and motility and its over-expression is associated with increased metastatic potential. Recently, FAK promoter has been shown to contain p53 responsive elements and to be down-regulated by DNA-damage in a p53-dependent manner. Here, we have used five estrogen-dependent breast cancer cells lines with different p53 status, including an isogenic model, to show that FAK expression was regulated in a p53-dependent manner in response to estradiol. FAK protein and mRNA expression were down-regulated by estradiol in wild-type but not mutant p53 cells. Moreover, silencing wild-type p53 increased FAK expression, while over expressing p53 repressed FAK expression. ChIP experiment showed that p53 bound to FAK promoter in the presence of estradiol in p53 wild-type but not in mutant p53 cells, suggesting a direct role of p53 in down regulating FAK mRNA expression. FAK mRNA expression was also found to correlate with TP53 mutation status in a series of breast tumors. Finally, loss of FAK down-regulation in p53 mutant cells was correlated with increased proliferation and invasion upon estradiol stimulation, while FAK silencing reduced invasion. These results suggest that p53 is an important down regulator of FAK and that loss of p53 function in breast cancer may contribute to the metastatic potential of estrogen-responsive tumors through uncontrolled FAK expression upon estrogens stimulation.
Collapse
|
2250
|
Beno I, Rosenthal K, Levitine M, Shaulov L, Haran TE. Sequence-dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Res 2010; 39:1919-32. [PMID: 21071400 PMCID: PMC3061056 DOI: 10.1093/nar/gkq1044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The prime mechanism by which p53 acts as a tumor suppressor is as a transcription factor regulating the expression of diverse downstream genes. The DNA-binding domain of p53 (p53DBD) interacts with defined DNA sites and is the main target for mutations in human primary tumors. Here, we show that the CWWG motif, found in the center of each consensus p53 half-site, is a key player in p53/DNA interactions. Gel-mobility-shift assays provide a unique opportunity to directly observe the various oligomeric complexes formed between p53DBD and its target sites. We demonstrate that p53DBD binds to p53 consensus sites containing CATG with relatively low cooperativity, as both dimers and tetramers, and with even lower cooperativity to such sites containing spacer sequences. p53DBD binds to sites containing CAAG and CTAG with measurable affinity only when imbedded in two contiguous p53 half-sites and only as tetramers (with very high cooperativity). There are three orders-of-magnitude difference in the cooperativity of interaction between sites differing in their non-contacted step, and further two orders-of-magnitude difference as a function of spacer sequences. By experimentally measuring the global structural properties of these sites, by cyclization kinetics of DNA minicircles, we correlate these differences with the torsional flexibility of the binding sites.
Collapse
Affiliation(s)
- Itai Beno
- Department of Biology, Technion, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|