201
|
Zhao K, Wang M, Kang H, Wu A. A prognostic five long-noncoding RNA signature for patients with rectal cancer. J Cell Biochem 2020; 121:3854-3860. [PMID: 31709598 DOI: 10.1002/jcb.29549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/24/2019] [Indexed: 01/24/2023]
Abstract
This study aimed to identify prognostic long noncoding RNAs (lncRNAs) signature for predicting the prognosis of patients with rectal cancer. LncRNA-sequencing data and clinicopathological data of patients with rectal cancer were retrieved from The Cancer Genome Atlas database. Univariate and multivariate Cox proportional hazards regression analysis, the least absolute shrinkage, and selection operator analysis and the Kaplan-Meier curve method were employed to identify prognostic lncRNAs and construct multi-lncRNA signature. Finally, five lncRNAs (AC079789.1, AC106900.2, AL121987.1, AP004609.1, and LINC02163) were identified to construct a five-lncRNA signature. According to the five-lncRNA signature, patients with rectal cancer were divided into a high-risk group and low-risk group. Patients with rectal cancer had significantly poorer overall survival in the high-risk group than in the low-risk group. We used a time-dependent receiver operating characteristic curve to assess the power of the five-lncRNA signature by calculating the area under the curve (AUC). The AUCs for predicting 3-year survival and 5-year survival were 0.742 and 0.935, respectively, which indicated a good performance of the five-lncRNA signature. The five-lncRNA signature was independently associated with the prognosis of patients with rectal cancer through using univariate and multivariate Cox regression analysis. The biological function of the five lncRNAs was enriched in some cancer-related biological processes and pathways by performing functional enrichment analysis of their correlated protein-coding genes. In conclusion, we developed a five-lncRNA signature as a potential indicator for rectal cancer.
Collapse
Affiliation(s)
- Kankan Zhao
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Houlong Kang
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
202
|
Han Y, Wang L, Wang Y. Integrated Analysis of Three Publicly Available Gene Expression Profiles Identified Genes and Pathways Associated with Clear Cell Renal Cell Carcinoma. Med Sci Monit 2020; 26:e919965. [PMID: 32712616 PMCID: PMC7405617 DOI: 10.12659/msm.919965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Although advances have been achieved in the therapy of clear cell renal cell carcinoma (ccRCC), the pathogenesis of ccRCC is not yet fully understood. This study aimed to explore the critical genes and pathways associated with ccRCC by meta-analysis. MATERIAL AND METHODS We performed an integrated analysis of 3 publicly available microarray datasets developed from ccRCC tumor samples and normal tissues. A list of overlapped differentially expressed genes (DEGs) with the consistent expression trend in ccRCC tumor samples were identified, for which the protein-protein interaction (PPI) network was constructed, followed by topology structure and module analysis. The microRNA (miRNA) regulatory network and ccRCC associated pathway network were reconstructed. RESULTS A total of 504 genes were found to be consistently and differentially regulated based on 3 microarray datasets. The overrepresented pathways for DEGs included citric acid cycle (TCA cycle) and peroxisome proliferator-activated receptor (PPAR) signaling pathway and cell cycle. The PPI network was clustered into 6 modules that were closely related with the M phase, desmosome assembly, and response to hormone stimulus. The hsa04110: cell cycle and hsa04510: focal adhesion were the significant pathways associated with ccRCC overlapped with enrichment analysis. KDR and ITGB4 were focal-adhesion-associated genes, which were regulated by has-miR-424 and has-miR-204, respectively. CCND2 and CCNA2 were cell-cycle-associated genes, which were regulated by hsa-miR-324-3p, hsa-miR-146a and hsa-miR-145. CONCLUSIONS Cell cycle and focal adhesion were dysregulated in ccRCC, which were associated with the expression of CCND2, ITGB4, KDR, and CCNA2 genes. The deregulation of pathways and associated genes may provide insights to ccRCC research and therapy.
Collapse
Affiliation(s)
- YuPing Han
- Department of Urology, The Third Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - LinLin Wang
- Department of Ultrasound, The Third Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ye Wang
- Departmen of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
203
|
Silva M, Monteiro GA, Fialho AM, Bernardes N, da Silva CL. Conditioned Medium From Azurin-Expressing Human Mesenchymal Stromal Cells Demonstrates Antitumor Activity Against Breast and Lung Cancer Cell Lines. Front Cell Dev Biol 2020; 8:471. [PMID: 32733876 PMCID: PMC7363770 DOI: 10.3389/fcell.2020.00471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Recently, cell-based therapies have been explored as a strategy to enhance the specificity of anticancer therapeutic agents. In this perspective, human mesenchymal stromal cells (MSC) hold a promising future as cell delivery systems for anticancer proteins due to their unique biological features. In this study, we engineered human MSC to secrete a human codon-optimized version of azurin (hazu), a bacterial protein that has demonstrated anticancer activity toward different cancer models both in vitro and in vivo. To this end, microporation was used to deliver plasmid DNA encoding azurin into MSC derived from bone marrow (BM) and umbilical cord matrix (UCM), leading to expression and secretion of hazu to the conditioned medium (CM). Engineered hazu-MSC were shown to preserve tumor tropism toward breast (MCF-7) and lung (A549) cancer cell lines, comparable to non-modified MSC. Azurin was detected in the CM of transfected MSC and, upon treatment with hazu-MSC-CM, we observed a decrease in cancer cell proliferation, migration, and invasion, and an increase in cell death for both cancer cell lines. Moreover, expression of azurin caused no changes in MSC expression profile of cytokines relevant in the context of cancer progression, thus suggesting that the antitumoral effects induced by hazu-MSC secretome might be due to the presence of azurin independently. In conclusion, data shown herein indicate that MSC-produced azurin in a CM configuration elicits an anticancer effect.
Collapse
Affiliation(s)
- Marília Silva
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gabriel Amaro Monteiro
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Arsenio M Fialho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Lobato da Silva
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
204
|
Abstract
Atopic dermatitis is associated with an increased risk of asthma (10 to 30% according to age), allergic rhinitis and conjunctivitis and food allergy. Other comorbidiies are globally lest frequent than in psoriasis. There is no increased risk of solid cancer. Smoking is a major confounding factor that has to be taken into account. Obesity and metabolic syndrome are more frequent and there is a moderately increased cardiovascular risk in severe forms of atopic dermatitis. There is a clear-cut increased risk of vitiligo and alopecia areata and a lower risk of other auto-immune diseases, including type I diabetes in children. There is a higher risk of cutaneous but not extra-cutaneous bacterial and viral infections, and increased frequency of contact dermatitis and urticaria. Severe atopic dermatitis is associated with psychiatric comorbidities, like attention disorders/hyperactivity, depression and suicidal ideas. © 2019 Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- B Cribier
- Clinique dermatologique, Hôpitaux universitaires et université de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg Cedex, France.
| |
Collapse
|
205
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
206
|
Effects of D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles on the absorption, pharmacokinetics, and pharmacodynamics of salinomycin sodium. Anticancer Drugs 2020; 30:72-80. [PMID: 30239423 DOI: 10.1097/cad.0000000000000695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although salinomycin sodium (SS) has shown in-vitro potential to inhibit cancer stem cell growth and development, its low water solubility makes it a poor candidate as an oral chemotherapeutic agent. To improve the bioavailability of SS, SS was encapsulated here using D-α-tocopherol polyethylene glycol succinate (TPGS)-emulsified poly(lactic-co-glycolic acid) (PLGA) nanoparticles and compared with its parent SS in terms of absorption, pharmacokinetics, and efficacy in suppressing nasopharyngeal carcinomas stem cells. The pharmacokinetics of SS and salinomycin sodium-loaded D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles (SLN) prepared by nanoprecipitation were analyzed in-vivo by timed-interval blood sampling and oral administration of SS and SLN to rats. Sensitive liquid chromatography-mass spectrometry (LC-MS) was developed to quantify plasma drug concentrations. SS and SLN transport in Caco-2 cells was also investigated. The therapeutic efficacy of SS and SLN against cancer stem cells was determined by orally administering the drugs to mice bearing CNE1 and CNE2 nasopharyngeal carcinoma xenografts and then evaluating CD133 cell proportions and tumorsphere formation. The in-vivo trial with rats showed that the Cmax, AUC(0-t), and Tmax for orally administered SLN were all significantly higher than those for SS (P<0.05). These findings were corroborated by a Caco-2 cell Transwell assay showing that relative SLN absorption was greater than that of SS on the basis of their apparent permeability coefficients (Papp). Significantly, therapeutic SLN efficacy against nasopharyngeal carcinoma stem cells was superior to that of SS. TPGS-emulsified PLGA nanoparticles effectively increase SS solubility and bioavailability. SLN is, therefore, promising as an oral chemotherapeutic agent against cancer stem cells.
Collapse
|
207
|
Li L, Lai K, Gong Y, Huang C, Xu F, Li Y, Jin C. Downregulation of miR-146a-5p Inhibits Choroidal Neovascularization via the NF-κB Signaling Pathway by Targeting OTUD7B. Curr Eye Res 2020; 45:1514-1525. [PMID: 32438838 DOI: 10.1080/02713683.2020.1772831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Choroidal neovascularization (CNV) is the key pathological change caused by irreversible blindness resulting from neovascular AMD (nAMD). However, the pathological mechanisms underlying CNV remain largely unknown. Here, we aimed to investigate the role of miR-146a-5p in CNV formation. MATERIALS AND METHODS At the cellular level, we overexpressed or downregulated miR-146a-5p in an umbilical vein endothelial cell line (EA.hy926) by transfecting cells with either a miR-146a-5p mimic or an inhibitor. CCK8, wound healing, and Matrigel assays were performed to examine the proliferation, migration, and tube formation of endothelial cells (EA.hy926). Target relationship between miR-146a-5p and OTUD7B was verified using a double luciferase reporter experiment. An experimental CNV model was established by treating fundi of male C57BL/6 J mice with 810 nm laser. Fundus fluorescein angiography (FFA) was performed to evaluate the leakage of CNV on day 7 after miR-146a-5p antagomir intravitreal injection. The CNV volume was measured using Choroidal Flatmounts in a confocal study. The expression levels of VEGF, ICAM1, and NF-κB (p50 and p65) were detected both in vitro and in vivo. RESULTS The expression of miR-146a-5p was increased in LPS-stimulated endothelial cells and in experimental CNV RPE-choroidal complexes in mouse models. LPS-induced proliferation, migration, and tube formation were inhibited by the miR-146a-5p inhibitor. The miR-146a-5p antagomir attenuated CNV formation and fluorescent leakage in the vivo CNV model. In the LPS-stimulated endothelial cells and the CNV mouse model, the NF-κB signaling pathway was activated and the expression of VEGF and ICAM1 increased. Conversely, downregulation of miR-146a-5p inactivated the NF-κB signaling pathway and reduced the expression of VEGF and ICAM1. CONCLUSIONS Our results indicated that downregulation of miR-146a-5p inhibited experimental CNV formation via inactivation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yingqin Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
208
|
Jin W. Regulation of Src Family Kinases during Colorectal Cancer Development and Its Clinical Implications. Cancers (Basel) 2020; 12:cancers12051339. [PMID: 32456226 PMCID: PMC7281431 DOI: 10.3390/cancers12051339] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Src family kinases (SFKs) are non-receptor kinases that play a critical role in the pathogenesis of colorectal cancer (CRC). The expression and activity of SFKs are upregulated in patients with CRC. Activation of SFKs promotes CRC cell proliferation, metastases to other organs and chemoresistance, as well as the formation of cancer stem cells (CSCs). The enhanced expression level of Src is associated with decreased survival in patients with CRC. Src-mediated regulation of CRC progression involves various membrane receptors, modulators, and suppressors, which regulate Src activation and its downstream targets through various mechanisms. This review provides an overview of the current understanding of the correlations between Src and CRC progression, with a special focus on cancer cell proliferation, invasion, metastasis and chemoresistance, and formation of CSCs. Additionally, this review discusses preclinical and clinical strategies to improve the therapeutic efficacy of drugs targeting Src for treating patients with CRC.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
209
|
Changes in TRPV1-Mediated Physiological Function in Rats Systemically Treated With Capsaicin on the Neonate. Int J Mol Sci 2020. [PMID: 32365623 DOI: 10.3390/ijms21093143.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Capsaicin is the active component of chili peppers and is a hydrophobic, colorless, odorless, and crystalline to waxy compound. The transient receptor potential vanilloid 1 (TRPV1) is the capsaicin receptor channels that are involved in a variety of functions like transduction and transmission of the physiological stimulus. Subcutaneous injection of capsaicin to a newborn rat leads to involuntary lifelong TRPV1 desensitization. Various physiological changes including sensory and homeostatic actions in the body associated with neonatal capsaicin treatment are induced by direct TRPV1 channel targeting. Interesting changes include unique phenomena such as the reduction in pain perception, abnormal body temperature, increase in infection, infectious or neuropathological itching, and irregular circadian core body temperature rhythm. These symptoms are associated with relatively higher fever or loss of sensory c-fiber related to TRPV1 desensitization. The aforementioned outcomes not only provide a warning about the risk of capsaicin exposure in newborns but also indicate the possible occurrence of relatively rare diseases that are difficult to diagnose. Therefore, Therefore, the present review aims to summarize the unique phenomena caused by systemic capsaicin administration in neonatal rats.
Collapse
|
210
|
Jeong KY. Changes in TRPV1-Mediated Physiological Function in Rats Systemically Treated With Capsaicin on the Neonate. Int J Mol Sci 2020; 21:3143. [PMID: 32365623 PMCID: PMC7247669 DOI: 10.3390/ijms21093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Capsaicin is the active component of chili peppers and is a hydrophobic, colorless, odorless, and crystalline to waxy compound. The transient receptor potential vanilloid 1 (TRPV1) is the capsaicin receptor channels that are involved in a variety of functions like transduction and transmission of the physiological stimulus. Subcutaneous injection of capsaicin to a newborn rat leads to involuntary lifelong TRPV1 desensitization. Various physiological changes including sensory and homeostatic actions in the body associated with neonatal capsaicin treatment are induced by direct TRPV1 channel targeting. Interesting changes include unique phenomena such as the reduction in pain perception, abnormal body temperature, increase in infection, infectious or neuropathological itching, and irregular circadian core body temperature rhythm. These symptoms are associated with relatively higher fever or loss of sensory c-fiber related to TRPV1 desensitization. The aforementioned outcomes not only provide a warning about the risk of capsaicin exposure in newborns but also indicate the possible occurrence of relatively rare diseases that are difficult to diagnose. Therefore, Therefore, the present review aims to summarize the unique phenomena caused by systemic capsaicin administration in neonatal rats.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- MetiMedi Pharmaceuticals Co., Research Center, Incheon 22006, Korea
| |
Collapse
|
211
|
Monitoring Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells via Investigation of Mitochondrial Dysfunction. Methods Protoc 2020. [PMID: 32349411 DOI: 10.3390/mps3020032.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this protocol, we introduced a method of measuring mitochondrial dysfunction to confirm the epithelial-mesenchymal transition (EMT) in pancreatic cancer cells under a hypoxic environment. There are many expertized and complicated methods to verify EMT. However, our methods have indicated that EMT can be identified by examining changes in reactive oxygen species (ROS) generation and membrane potential in mitochondria. To demonstrate whether the changes in the indicators of mitochondrial dysfunction are correlative to EMT, cell morphology, and expression of E-cadherin and N-cadherin were additionally observed. The results verified that a decrease in membrane potential and an increase in ROS in mitochondria were associated with EMT of pancreatic cancer cells. This protocol would be useful as a basis for providing an additional indicator for changes in the tumor microenvironment of pancreatic cancer cells relating to EMT under a hypoxic environment.
Collapse
|
212
|
Sim JJ, Jeong KY. Monitoring Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells via Investigation of Mitochondrial Dysfunction. Methods Protoc 2020; 3:32. [PMID: 32349411 PMCID: PMC7359699 DOI: 10.3390/mps3020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022] Open
Abstract
In this protocol, we introduced a method of measuring mitochondrial dysfunction to confirm the epithelial-mesenchymal transition (EMT) in pancreatic cancer cells under a hypoxic environment. There are many expertized and complicated methods to verify EMT. However, our methods have indicated that EMT can be identified by examining changes in reactive oxygen species (ROS) generation and membrane potential in mitochondria. To demonstrate whether the changes in the indicators of mitochondrial dysfunction are correlative to EMT, cell morphology, and expression of E-cadherin and N-cadherin were additionally observed. The results verified that a decrease in membrane potential and an increase in ROS in mitochondria were associated with EMT of pancreatic cancer cells. This protocol would be useful as a basis for providing an additional indicator for changes in the tumor microenvironment of pancreatic cancer cells relating to EMT under a hypoxic environment.
Collapse
Affiliation(s)
| | - Keun-Yeong Jeong
- MetiMedi Pharmaceuticals Co., Research Center, Incheon 22006, Korea;
| |
Collapse
|
213
|
Palma S, Raffa CI, Garcia-Fabiani MB, Ferretti VA, Zwenger A, Perez Verdera PV, Llontop A, Rojas Bilbao E, Cuartero V, Abba MC, Lacunza E. RHBDD2 overexpression promotes a chemoresistant and invasive phenotype to rectal cancer tumors via modulating UPR and focal adhesion genes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165810. [PMID: 32339641 DOI: 10.1016/j.bbadis.2020.165810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
The current standard of care for locally advanced rectal cancer (RC) is neoadjuvant radio-chemotherapy (NRC) with 5-fluorouracil (5Fu) as the main drug, followed by surgery and adjuvant chemotherapy. While a group of patients will achieve a pathological complete response, a significant percentage will not respond to the treatment. The Unfolding Protein Response (UPR) pathway is generally activated in tumors and results in resistance to radio-chemotherapy. We previously showed that RHBDD2 gene is overexpressed in the advanced stages of colorectal cancer (CRC) and that it could modulate the UPR pathway. Moreover, RHBDD2 expression is induced by 5Fu. In this study, we demonstrate that the overexpression of RHBDD2 in CACO2 cell line confers resistance to 5Fu, favors cell migration, adhesion and proliferation and has a profound impact on the expression of both, the UPR genes BiP, PERK and CHOP, and on the cell adhesion genes FAK and PXN. We also determined that RHBDD2 binds to BiP protein, the master UPR regulator. Finally, we confirmed that a high expression of RHBDD2 in RC tumors after NRC treatment is associated with the development of local or distant metastases. The collected evidence positions RHBDD2 as a promising prognostic biomarker to predict the response to neoadjuvant therapy in patients with RC.
Collapse
Affiliation(s)
- S Palma
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C I Raffa
- Gastroenterology and Proctology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M B Garcia-Fabiani
- Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - V A Ferretti
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - A Zwenger
- Grupo Oncológico Cooperativo del Sur (GOCS), Neuquén, Argentina
| | | | - A Llontop
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - E Rojas Bilbao
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - V Cuartero
- Clinic Oncology Department, Functional Unit of Digestive Tumors, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - E Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
214
|
The Skin Microbiota and Itch: Is There a Link? J Clin Med 2020; 9:jcm9041190. [PMID: 32331207 PMCID: PMC7230651 DOI: 10.3390/jcm9041190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Itch is an unpleasant sensation that emanates primarily from the skin. The chemical mediators that drive neuronal activity originate from a complex interaction between keratinocytes, inflammatory cells, nerve endings and the skin microbiota, relaying itch signals to the brain. Stress also exacerbates itch via the skin–brain axis. Recently, the microbiota has surfaced as a major player to regulate this axis, notably during stress settings aroused by actual or perceived homeostatic challenge. The routes of communication between the microbiota and brain are slowly being unraveled and involve neurochemicals (i.e., acetylcholine, histamine, catecholamines, corticotropin) that originate from the microbiota itself. By focusing on itch biology and by referring to the more established field of pain research, this review examines the possible means by which the skin microbiota contributes to itch.
Collapse
|
215
|
Sun C, Hu A, Wang S, Tian B, Jiang L, Liang Y, Wang H, Dong J. ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol 2020; 57:249-263. [PMID: 32319605 PMCID: PMC7252465 DOI: 10.3892/ijo.2020.5045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal metastasis occurs in 50-75% of bone metastases caused by hepatocellular carcinoma (HCC), and HCC-derived spinal metastasis can lead to a less favorable prognosis. Recently, several studies have demonstrated that C-X3-C motif chemokine ligand 1 (CX3CL1) is closely associated with cancer metastasis, and its secretion is modulated by a disintegrin and metalloproteinase 17 (ADAM17). Bone marrow endothelial cells (BMECs) are an essential component of bone marrow. However, little is known about the roles in and effects of BMECs on HCC spinal metastasis. The present study demonstrated that CX3CL1 and C-X-C motif chemokine receptor 3 (CXCR3) expression was upregulated in HCC spinal metastases, and that CX3CL1 promoted the migration and invasion of HCC cells to the spine. Western blot analysis revealed that the Src/protein tyrosine kinase 2 (PTK2) axis participated in CX3CL1-induced HCC cell invasion and migration. CX3CL1 also increased the expression of M2 macrophage markers in THP-1 monocytes. BMECs promoted the migration and invasion of Hep3B and MHCC97H cells by secreting soluble CX3CL1, whereas the neutralization of CX3CL1 inhibited this enhancement. CX3CL1 enhanced the activation of the phosphatidylinositol-4,5-bisphos-phate 3-kinase catalytic subunit alpha (PIK3CA)/AKT serine/threonine kinase 1 (AKT1) and Ras homolog family member A (RHOA)/Rho associated coiled-coil containing protein kinase 2 (ROCK2) signaling pathways through the Src/PTK2 signaling pathway. Furthermore, ADAM17 was activated by mitogen-activated protein kinase (MAPK) z14 in BMECs and significantly promoted the secretion of CX3CL1. HCC cells enhanced the recruitment and proliferation of BMECs. The overexpression of CX3CR1 facilitated the spinal metastasis of HCC in a mouse model in vivo. In addition, in vivo experiments revealed that BMECs promoted the growth of HCC in the spine. The present study demonstrated that CX3CL1 participates in HCC spinal metastasis, and that BMECs play an important role in the regulation of CX3CL1 in the spinal metastatic environment.
Collapse
Affiliation(s)
- Chi Sun
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Annan Hu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shengxing Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Bo Tian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
216
|
Anticancer effect of X-Ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int J Pharm 2020; 582:119320. [PMID: 32278720 DOI: 10.1016/j.ijpharm.2020.119320] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
The application of nanoparticles (NPs) as radio-sensitizers and carriers has opened up a new horizon to overcome the limitations of chemo and radiotherapy. In this study, bovine serum albumin-coated Bi2S3 NPs (Bi2S3@BSA NPs) were synthesized and evaluated in terms of their ability to be used as a radio-sensitizer and carrier for methotrexate (MTX). Physicochemical properties of MTX conjugated Bi2S3@BSA NPs (Bi2S3@BSA-MTX NPs) were characterized by DLS, TEM, FTIR, UV/Vis, and XRD analyses. After the evaluation of cellular uptake and intracellular localization, the cytotoxicity of the combination of Bi2S3@BSA-MTX NPs and X-Ray radiation was analyzed against the SW480 cell line. The synthesized NPs exhibited spherical-like shapes and homogenous morphology, possessing a hydrodynamic diameter of 140.2 ± 5.71 nm (mean ± SD) and zeta potential of -25 mV. Also, the release study showed that the release of MTX is faster and higher in the presence of the proteinase K enzyme than the absence of the enzyme. The results of in-vitro chemo-radiation therapy indicated that the viability of treated cells with Bi2S3@BSA-MTX NPs is significantly lower than the cells treated with Bi2S3@BSA NPs. Furthermore, cells treated with Bi2S3@BSA-MTX NPs showed a lower degree of viability when combined with X-Ray radiation in comparison with the absence of irradiation, which confirmed the ability of the Bi2S3@BSA-MTX NPs as radio-sensitizer.
Collapse
|
217
|
Yang ZD, Kang H. Exploring prognostic potential of long noncoding RNAs in colorectal cancer based on a competing endogenous RNA network. World J Gastroenterol 2020; 26:1298-1316. [PMID: 32256018 PMCID: PMC7109275 DOI: 10.3748/wjg.v26.i12.1298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent tumors worldwide. Recently, long noncoding RNAs (lncRNAs) have been shown to influence tumorigenesis and tumor progression by acting as competing endogenous RNAs (ceRNAs). It is difficult to extract prognostic lncRNAs and useful bioinformation from most ceRNA networks constructed previously.
AIM To construct a prognostic related ceRNA regulatory network and lncRNA related signature based on risk score in CRC.
METHODS RNA transcriptome profile and clinical information of 506 CRC patients were downloaded from the Cancer Genome Atlas database. R packages and Perl program were used for data processing. Cox regression analysis was used for prognostic model construction. Quantitative real-time polymerase chain reaction was used to detect the expression of lncRNAs.
RESULTS A prognostic-related ceRNA network was constructed, including 9 lncRNAs, 44 mRNAs, and 30 miRNAs. In addition, a four-lncRNA model was constructed using multivariate Cox regression analysis, which could be an independent prognostic model in CRC. The risk score for each patient was calculated, and the 506 patients were divided into high and low-risk groups (253 for each group) based on the median risk score. The results of the survival analysis showed that patients with a high-risk score had a poor survival rate. Furthermore, the predictive value of the four-lncRNA model was evaluated in GSE38832. Patient survival probabilities could be better predicted when combing the risk score and clinical features. Gene Set Enrichment Analysis results verified that a number of cancer-related signaling pathways were enriched with a high-risk score in CRC. Finally, we validated a novel lncRNA (LINC00488) using quantitative real-time polymerase chain reaction in 22 paired CRC patient tumor tissues compared to adjacent non-tumor tissues.
CONCLUSION The four-lncRNA model could give better predictive value for CRC patients. Our understanding of the lncRNA-related ceRNA regulatory mechanism could provide a potential diagnostic indicator for CRC patients.
Collapse
Affiliation(s)
- Zhi-Dong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
218
|
Meng NN, Zhang RR, Liu C, Wang Q, Wang XK, Guo X, Wang PP, Sun JY. PDB-1 from Potentilla discolor Bunge suppresses lung cancer cell migration and invasion via FAK/Src and MAPK signaling pathways. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02527-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
219
|
Golpanian RS, Kim HS, Yosipovitch G. Effects of Stress on Itch. Clin Ther 2020; 42:745-756. [PMID: 32147148 DOI: 10.1016/j.clinthera.2020.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE Psychological stress and ensuing modulation of the immune and nervous systems can have a significant impact on itch. Stress can exacerbate itch and vice versa, resulting in a vicious cycle that can greatly impair a patient's quality of life. This review summarizes the association between stress and itch, elucidates the mechanism by which these two phenomena influence one another, and explores treatment modalities that aim to reduce stress-induced itch. METHODS A complete search of the PubMed and Google Scholar databases was completed and literature pertinent to this review was compiled. FINDINGS Both acute and chronic stress can significantly affect itch in healthy individuals and in those diagnosed with itchy skin diseases as well as systemic diseases, thus resulting in a vicious cycle in which stress exacerbates itch and vice versa. The mechanisms by which stress induces or aggravates itch include both central and peripheral activation of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. Activation of these systems, in turn, affects the mast cells, keratinocytes, and nerves that secrete neuropeptides, such as substance P, nerve growth factor, acetylcholine, histamine, and itchy cytokines. A dysfunctional parasympathetic response is thought to be involved in the chronic stress/itch response. Brain structures associated with emotion, such as the limbic system and periaqueductal gray, which work on the descending facilitation of itch, play a significant role in stress-induced itch. IMPLICATIONS As specific brain structures are associated with stress, drug treatments targeting these areas (ie, γ-aminobutyric acid-ergic drugs, serotonin and norepinephrine reuptake inhibitors) may help to modulate itch. Stress can also be combatted using nonpharmacologic treatments such as cognitive-behavioral therapies and stress-relieving holistic approaches (eg, yoga, acupuncture).
Collapse
Affiliation(s)
- Rachel Shireen Golpanian
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hei Sung Kim
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
220
|
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506:33-43. [PMID: 32142718 DOI: 10.1016/j.cca.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality that is often accompanied by immune system disorders and local lymphocyte infiltration. Tumor-infiltrating lymphocytes, cancer cells, stromal cells, and the numerous cytokines they produce, such as chemokines, interferons, tumor necrosis factors, and interleukins, collectively constitute the tumor microenvironment. As a main type of immune effector, interleukin plays opposing roles in regulating tumor cell progression, adhesion, and migration according to its different subtypes. Many reports have concentrated on the roles that interleukins play in HCC, but understanding them systematically remains challenging. This study reviewed the current data to comprehensively summarize the relationships between HCC progression and human interleukin gene families.
Collapse
Affiliation(s)
- Hu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China; Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Yang Xuefeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Xiao Jianhua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
221
|
Lai X, Friedman A. Mathematical modeling of cancer treatment with radiation and PD-L1 inhibitor. SCIENCE CHINA MATHEMATICS 2020; 63:465-484. [DOI: 10.1007/s11425-019-1648-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2025]
|
222
|
Chen J, Wang Z, Ding Y, Huang F, Huang W, Lan R, Chen R, Wu B, Fu L, Yang Y, Liu J, Hong J, Zhang W, Zhang L. Hypofractionated Irradiation Suppressed the Off-Target Mouse Hepatocarcinoma Growth by Inhibiting Myeloid-Derived Suppressor Cell-Mediated Immune Suppression. Front Oncol 2020; 10:4. [PMID: 32117702 PMCID: PMC7026455 DOI: 10.3389/fonc.2020.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Stereotactic radiotherapy treats hepatocellular carcinoma (HCC) at different stages effectively and safely. Besides its direct killing of cancer cells, radiotherapy stimulates host immunity against hepatoma. However, the role of myeloid-derived suppressor cells (MDSCs) in on-target and off-target anti-HCC effects induced by hypofractionated irradiation (IR) is unclear. Methods and Materials: Hepa1-6 and H22 allogeneic transplanted tumors on hind limbs of C57BL/6 and Institute of Cancer Research (ICR) mice, respectively, were irradiated with 0, 2.5, 4, 6, or 8 Gy/fraction until the total dose reached 40 Gy. The off-target effect induced by the IR was investigated by subsequently inoculating the same HCC cells subcutaneously on the abdomen. MDSCs in peripheral blood and tumor tissues were measured by flow cytometry or immunofluorescence microscopy analysis. IL-6, regulated on activation normal T cell expressed and secreted (RANTES), and granulocyte colony-stimulating factor (G-CSF) in irradiated mouse plasma and hepatoma cell cultures were measured with ELISA kits. Conditioned media (CM) from irradiated HCC cell cultures on bone marrow cell differentiation and MDSC proliferation were examined by co-culture and flow cytometry. Results: Our study showed that the IR of primarily inoculated HCC on hind limbs created an “in situ tumor vaccine” and triggered the antitumor immunity. The immunity was capable of suppressing the growth of the same type of HCC subcutaneously implanted on the abdomen, accompanied with reduced MDSCs in both blood and tumors. The decreased MDSCs were associated with low plasma levels of IL-6, RANTES, and G-CSF. The cytokines IL-6 and RANTES in the CM were lower in the high single IR dose group than in the control groups, but G-CSF was higher. The CM from high single-dose IR-Hepa1-6 cell culture reduced the differentiation of C57BL/6 mouse bone marrow cells into MDSCs, whereas CM from high single-dose IR-H22 cells reduced the proliferation of MDSCs, which might be due to the decreased p-STAT3 in bone marrow cells. Conclusions: The hypofractionated IR on transplanted tumors at the primary location exerted a strong antitumor effect on the same tumor at a different location (off target). This abscopal effect is most likely through the reduction of MDSCs and decrease of IL-6, RANTES, and G-CSF.
Collapse
Affiliation(s)
- Junying Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Zeng Wang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Yuxiong Ding
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Fei Huang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Weikang Huang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Ruilong Lan
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Ruiqing Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Bing Wu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Lengxi Fu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Yunhua Yang
- Department of Otolaryngology, Fujian Provincial Geriatric Hospital, Fuzhou, China
| | - Jun Liu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Jinsheng Hong
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Weijian Zhang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Lurong Zhang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
223
|
Williams MD, Lascelles BDX. Early Neonatal Pain-A Review of Clinical and Experimental Implications on Painful Conditions Later in Life. Front Pediatr 2020; 8:30. [PMID: 32117835 PMCID: PMC7020755 DOI: 10.3389/fped.2020.00030] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Modern health care has brought our society innumerable benefits but has also introduced the experience of pain very early in life. For example, it is now routine care for newborns to receive various injections or have blood drawn within 24 h of life. For infants who are sick or premature, the pain experiences inherent in the required medical care are frequent and often severe, with neonates requiring intensive care admission encountering approximately fourteen painful procedures daily in the hospital. Given that much of the world has seen a steady increase in preterm births for the last several decades, an ever-growing number of babies experience multiple painful events before even leaving the hospital. These noxious events occur during a critical period of neurodevelopment when the nervous system is very vulnerable due to immaturity and neuroplasticity. Here, we provide a narrative review of the literature pertaining to the idea that early life pain has significant long-term effects on neurosensory, cognition, behavior, pain processing, and health outcomes that persist into childhood and even adulthood. We refer to clinical and pre-clinical studies investigating how early life pain impacts acute pain later in life, focusing on animal model correlates that have been used to better understand this relationship. Current knowledge around the proposed underlying mechanisms responsible for the long-lasting consequences of neonatal pain, its neurobiological and behavioral effects, and its influence on later pain states are discussed. We conclude by highlighting that another important consequence of early life pain may be the impact it has on later chronic pain states-an area of research that has received little attention.
Collapse
Affiliation(s)
- Morika D. Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - B. Duncan X. Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
224
|
Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2020; 69:52-68. [PMID: 32014609 DOI: 10.1016/j.semcancer.2020.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/07/2023]
Abstract
Nanotechnology is reshaping health care strategies and is expected to exert a tremendous impact in the coming years offering better healthcare facilities. It has led to not only therapeutic drug delivery feasibility but also to diagnostics. Materials in the size of nano range (1-100 nm) used in the design, fabrication, regulation, and application of therapeutic drugs or devices are classified as medical nanotechnology and nanopharmacology. Delivery of more complex molecules to the specific site of action as well as gene therapy has pushed forward the nanoparticle-based drug delivery to its maximum. Areas that benefit from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic-related ailments. Moreover, development of nanotherapeutics with multi-functionalities has a considerable potential to fill the gaps that exist in the present therapeutic domain. In cancer treatment, nanomedicines have superiority over current therapeutic practices as they can effectively deliver the drug to the affected tissues, thus reducing drug toxicities. Along this line, polymeric conjugates of asparaginase and polymeric micelles of paclitaxel have recently been recommended for the treatment of various types of cancers. Nanotechnology-based therapeutics and diagnostics provide greater effectiveness with less or no toxicity concerns. Similarly, diagnostic imaging holds promising future applications with newer nano-level imaging elements. Advancements in nanotechnology have emerged to a newer direction which use nanorobotics for various applications in healthcare. Accordingly, this review comprehensively highlights the potentialities of various nanocarriers and nanomedicines for multifaceted applications in diagnostics and drug delivery, especially the potentialities of polymeric nanoparticle, nanoemulsion, solid-lipid nanoparticle, nanostructured lipid carrier, self-micellizing anticancer lipids, dendrimer, nanocapsule and nanosponge-based therapeutic approaches in the field of cancer. Furthermore, this article summarizes the most recent literature pertaining to the use of nano-technology in the field of medicine, particularly in treating cancer patients.
Collapse
|
225
|
Farmani A, Soroosh M, Mozaffari MH, Daghooghi T. Optical nanosensors for cancer and virus detections. NANOSENSORS FOR SMART CITIES 2020:419-432. [DOI: 10.1016/b978-0-12-819870-4.00024-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
226
|
Multi-responsive albumin-lonidamine conjugated hybridized gold nanoparticle as a combined photothermal-chemotherapy for synergistic tumor ablation. Acta Biomater 2020; 101:531-543. [PMID: 31706039 DOI: 10.1016/j.actbio.2019.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Herein, we developed a multifunctional nanoplatform based on the nanoassembly of gold nanoparticles (GNP) conjugated with lonidamine (LND) and aptamer AS1411 (AS-LAGN) as an effective cancer treatment. Conjugating AS1411 aptamer on the surface of the nanoparticle significantly improved particle accumulation in cancer cells via specific affinity toward the nucleolin receptors. In vitro study clearly revealed that laser irradiation-based hyperthermia effect enhanced the chemotherapeutic effects of LND. Combinational treatment modalities revealed significant apoptosis with higher cell killing effect due to increased ROS production and inhibition of cell migration. GNP's ability to convert the excited state photon energy into thermal heat enabled synergistic photothermal/chemotherapy with improved therapeutic efficacy in animal models. Moreover, immunohistochemistry staining assays confirmed the ability of AS-LAGN to induce cellular apoptosis/necrosis and ablation in tumor tissues, without causing evident damages to the surrounding healthy tissues. Altogether, this AS-LAGN nanoplatform could be a promising strategy for mitochondria-based cancer treatment. STATEMENT OF SIGNIFICANCE: We have designed a facile biodegradable multifunctional nanocarrier system to target the mitochondria, the major "power house" of the cancer cells. We have constructed a multifunctional nanoassembly of protein coronated gold nanoparticles (GNP) conjugated with lonidamine (LND) and aptamer AS1411 (AS-LAGN) as an effective combination of phototherapy with chemotherapy for cancer treatment. The LND was conjugated with albumin which was in turn conjugated to GNP via redox-liable disulfide linkage to generate oxidative stress and ROS to kill cancer cells. GNP's ability to convert the excited state photon energy into thermal heat enabled synergistic photothermal/chemotherapy with improved therapeutic efficacy in animal models. Consistently, AS-LAGN showed enhanced antitumor efficacy in xenograft tumor model with remarkable tumor regression property.
Collapse
|
227
|
Gupta P, Gulzar Z, Hsieh B, Lim A, Watson D, Mei R. Analytical validation of the CellMax platform for early detection of cancer by enumeration of rare circulating tumor cells. J Circ Biomark 2019; 8:1849454419899214. [PMID: 31921364 PMCID: PMC6939390 DOI: 10.1177/1849454419899214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
The CellMax (CMx®) platform was developed to enrich for epithelial circulating tumor cells (CTCs) in the whole blood. This report provides assay performance data, including accuracy, linearity, limit of blank, limit of detection (LOD), specificity, and precision of enumeration of cancer cell line cells (CLCs) spiked in cell culture medium or healthy donor blood samples. Additionally, assay specificity was demonstrated in 32 young healthy donors and clinical feasibility was demonstrated in a cohort of 47 subjects consisting of healthy donors and patients who were colonoscopy verified to have colorectal cancer, adenomas, or a negative result. The CMx platform demonstrated high accuracy, linearity, and sensitivity for the enumeration of all CLC concentrations tested, including the extremely low range of 1 to 10 cells in 2 mL of blood, which is most relevant for early cancer detection. Theoretically, the assay LOD is 0.71 CTCs in 2 mL of blood. The analytical specificity was 100% demonstrated using 32 young healthy donor samples. We also demonstrated precision across multiple days and multiple operators, with good reproducibility of recovery efficiency. In a clinical feasibility study, the CMx platform identified 8 of 10 diseased subjects as positive (80% clinical sensitivity) and 4 of 5 controls as negative (80% clinical specificity). We also compared processing time and transportation effects for similar blood samples from two different sites and assessed an artificial intelligence-based counting method. Finally, unlike other platforms for which captured CTCs are retained on ferromagnetic beads or tethered to the slide surface, the CMx platform's unique airfoam-enabled release of CTCs allows captured cells to be transferred from a microfluidic chip to an Eppendorf tube, enabling a seamless transition to downstream applications such as genetic analyses and live cell manipulations.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Mei
- CellMax Life, Sunnyvale, CA, USA
| |
Collapse
|
228
|
He L, Wang H, Han Y, Wang K, Dong H, Li Y, Shi D, Li Y. Remodeling of Cellular Surfaces via Fast Disulfide-Thiol Exchange To Regulate Cell Behaviors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47750-47761. [PMID: 31773939 DOI: 10.1021/acsami.9b17550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Remodeling of cellular surfaces is shown highly effective in the manipulation and control of cell behaviors via nonbiological means. By 5-thio-2-nitrobenzoate-mediated, fast, and reversible disulfide-thiol exchange, a sequential layer by layer assembly process was developed to grow albumin protein shells on cellular surfaces fixed by a disulfide-linked network, in a cytocompatible manner. The artificial shells, accomplished by a double-assembly process, were sustainable up to >1 day, and thereafter gradually bioabsorbed with unaffected cell viability. The surface engineering process enabled dynamic remodeling of cellular surfaces that effectively controlled cell behaviors including regulated cell proliferation, enhanced uptake efficiency of dextran-fluorescein isothiocyanate that is known for cell-impermeability, and targeted imaging. This unique approach was well-validated on tumor cells (B16), immune cells (DC2.4), and neutrophils, showing its potential universality for most of the cells that are rich in thiols. The new strategy will show promise in cell manipulation and targeted imaging.
Collapse
Affiliation(s)
- Lianghua He
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Huaiji Wang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Yi Han
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Kun Wang
- School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Haiqing Dong
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Yan Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Donglu Shi
- The Materials Science & Engineering Program, Department of Mechanical & Materials Engineering, College of Engineering & Applied Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| |
Collapse
|
229
|
Park J, Youn DH, Kang J, Ahn KS, Kwak HJ, Um JY. Taeumjowi-tang, a Traditional Korean Sasang Remedy, Improves Obesity-Atopic Dermatitis Comorbidity by Regulating Hypoxia-Inducible Factor 1 Alpha. Front Pharmacol 2019; 10:1458. [PMID: 31920651 PMCID: PMC6933016 DOI: 10.3389/fphar.2019.01458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory disease of the skin, resulting from an immune dysfunction, that often occurs as a comorbidity of obesity. This investigation evaluated the capacity of Taeumjowi-tang (TJT), a Korean herbal formulation from the Sasang medical tradition to influence prognostic features of AD and obesity in a mouse model. Here, obesity and AD were induced by a high-fat diet (HFD) and 1-fluoro-2,4-dinitrobenzene (DNFB). Following an 8-week HFD regimen and 4 weeks of DNFB administration, the comorbid (CO) group manifested increased body weight and AD-like lesions, as compared to normal control (NC) mice, while TJT administration diminished these symptoms of obesity and AD. Specifically, TJT treatment reduced epidermal thickness and eosinophil/mast cell infiltration, along with reduction in immunoglobulin E, interleukin (IL)-4, IL-6, and tumor necrosis factor-alpha (TNF-α). It was additionally demonstrated that TJT suppresses HFD/DNFB-associated increase of the inflammation-related nuclear factor-kappa beta (NF-κB) and mitogen activated protein kinase. Moreover, significantly increased levels of hypoxia inducible factor-1 alpha (HIF-1α) protein was observed in CO group versus controls, an increase significantly down-regulated by TJT-treatment. These outcomes suggest that TJT may prove useful in clinical management of obesity-AD comorbidity treatment, an effect that may be due to regulation of HIF-1α expression.
Collapse
Affiliation(s)
- Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - Dong-Hyun Youn
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, South Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
230
|
Zheng W, Yang Y, Sequeira RC, Bishop CE, Atala A, Gu Z, Zhao W. Effects of Extracellular Vesicles Derived from Mesenchymal Stem/Stromal Cells on Liver Diseases. Curr Stem Cell Res Ther 2019; 14:442-452. [PMID: 30854976 DOI: 10.2174/1574888x14666190308123714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Yumin Yang
- Co-Innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Russel Clive Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| |
Collapse
|
231
|
Tsujimura M, Kusamori K, Katsumi H, Sakane T, Yamamoto A, Nishikawa M. Cell-based interferon gene therapy using proliferation-controllable, interferon-releasing mesenchymal stem cells. Sci Rep 2019; 9:18869. [PMID: 31827180 PMCID: PMC6906518 DOI: 10.1038/s41598-019-55269-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 01/14/2023] Open
Abstract
An important safety concern on cell-based gene therapy is that few methods have been available to control the proliferation and functioning of therapeutic protein-expressing cells after transplantation. We previously reported that the proliferation and functioning of the cells transfected with herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, can be controlled by administration of ganciclovir. In this study, we tried to control the amount of murine interferon-γ (IFN-γ) secreted from transplanted murine mesenchymal stem cell line C3H10T1/2 cells to achieve safe cell-based IFN-γ gene therapy for cancer. C3H10T1/2 cells were transfected with HSVtk- and murine IFN-γ-expressing plasmid vectors to obtain C3H10T1/2/HSVtk/IFN-γ cells. C3H10T1/2/HSVtk/IFN-γ cells released IFN-γ and were sensitive to ganciclovir. C3H10T1/2/HSVtk/IFN-γ cells significantly suppressed the proliferation of murine adenocarcinoma cell line colon26 cells both in vitro and in vivo. Moreover, subcutaneous administration of ganciclovir to mice transplanted with NanoLuc luciferase-expressing C3H10T1/2/HSVtk cells for three consecutive days reduced the luminescence signals from the transplanted cells. These results indicate that the cell regulation system using HSVtk gene and ganciclovir can be useful for safe and efficient cell-based IFN-γ gene therapy for cancer.
Collapse
Affiliation(s)
- Mari Tsujimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
232
|
Yang X, Lou J, Shan W, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathogenic roles of altered calcium channels and transporters in colon tumorogenesis. Life Sci 2019; 239:116909. [PMID: 31689439 DOI: 10.1016/j.lfs.2019.116909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 01/26/2023]
|
233
|
El-Salamouni NS, Ali MM, Abdelhady SA, Kandil LS, Elbatouti GA, Farid RM. Evaluation of chamomile oil and nanoemulgels as a promising treatment option for atopic dermatitis induced in rats. Expert Opin Drug Deliv 2019; 17:111-122. [PMID: 31782320 DOI: 10.1080/17425247.2020.1699054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Atopic dermatitis is a chronic inflammatory skin disease that remarkably affects the quality-of-life of patients. Chamomile oil is used to treat skin inflammations. We evaluated the efficacy of chamomile oil and nanoemulgel formulations as a natural alternative therapeutic option for atopic dermatitis.Research design and methods: Formulations were developed comprising chamomile oil: olive oil (1:1), Tween 20/80 or Gelucire 44/14 as surfactant-cosurfactant mixtures, propylene glycol (10%w/w), water and hydroxypropyl methylcellulose (3%w/w). In-vitro physicochemical characterization, stability testing and in-vivo assessment of inflammatory biomarkers and histopathological examination of skin lesions were conducted in rats induced with atopic dermatitis.Results: Nanoemulgels G1 and X1 which displayed the smallest particle size of 137.5 ± 2.04 and 207.1 ± 5.44 nm, good homogeneity and high zeta-potential values of -26.4 and -32.7 mV were selected as the optimized emulgel. Nanoemulgels were nonirritating of pH value 5.56, readily spreadable, and were physically stable following 10 heating-cooling cycles. Treatment with nanoemulgels showed a two-fold decrease in duration of skin healing and no spongiosis compared to chamomile oil. Levels of biomarkers were reduced after topical application of both nanoemulgels and chamomile oil.Conclusion: Nanoemulgels are a potential cost effective, safe topical carrier system for chamomile in treating atopic dermatitis.
Collapse
Affiliation(s)
- Noha S El-Salamouni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Mai M Ali
- Department of Pharmaceutics, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Lamia S Kandil
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Gihan A Elbatouti
- Department of Microbiology and Immunology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
234
|
Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal 2019; 66:109487. [PMID: 31778739 DOI: 10.1016/j.cellsig.2019.109487] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) macromolecules together with a multitude of different molecules residing in the extracellular space play a vital role in the regulation of cellular phenotype and behavior. This is achieved via constant reciprocal interactions between the molecules of the ECM and the cells. The ECM-cell interactions are mediated via cell surface receptors either directly or indirectly with co-operative molecules. The ECM is also under perpetual remodeling process influencing cell-signaling pathways on its part. The fragmentation of ECM macromolecules provides even further complexity for the intricate environment of the cells. However, as long as the interactions between the ECM and the cells are in balance, the health of the body is retained. Alternatively, any dysregulation in these interactions can lead to pathological processes and finally to various diseases. Thus, therapeutic applications that are based on retaining normal ECM-cell interactions are highly rationale. Moreover, in the light of the current knowledge, also concurrent multi-targeting of the complex ECM-cell interactions is required for potent pharmacotherapies to be developed in the future.
Collapse
|
235
|
Fang Z, Sun Y, Cai C, Fan R, Guo R, Xie D. Targeted delivery of DOX by transferrin conjugated DSPE-PEG nanoparticles in leukemia therapy. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1685516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhigang Fang
- Department of Hematology, Institute of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanling Sun
- Department of Hematology, Institute of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chenlei Cai
- Department of Traditional Chinese Medicine, Hebei General Hospital, Hebei, China
| | - Ruifang Fan
- Department of Prevention and Healthcare, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Deming Xie
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
236
|
Arimura D, Shinohara K, Takahashi Y, Sugimura YK, Sugimoto M, Tsurugizawa T, Marumo K, Kato F. Primary Role of the Amygdala in Spontaneous Inflammatory Pain- Associated Activation of Pain Networks - A Chemogenetic Manganese-Enhanced MRI Approach. Front Neural Circuits 2019; 13:58. [PMID: 31632244 PMCID: PMC6779784 DOI: 10.3389/fncir.2019.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a major health problem, affecting 10–30% of the population in developed countries. While chronic pain is defined as “a persistent complaint of pain lasting for more than the usual period for recovery,” recently accumulated lines of evidence based on human brain imaging have revealed that chronic pain is not simply a sustained state of nociception, but rather an allostatic state established through gradually progressing plastic changes in the central nervous system. To visualize the brain activity associated with spontaneously occurring pain during the shift from acute to chronic pain under anesthetic-free conditions, we used manganese-enhanced magnetic resonance imaging (MEMRI) with a 9.4-T scanner to visualize neural activity-dependent accumulation of manganese in the brains of mice with hind paw inflammation. Time-differential analysis between 2- and 6-h after formalin injection to the left hind paw revealed a significantly increased MEMRI signal in various brain areas, including the right insular cortex, right nucleus accumbens, right globus pallidus, bilateral caudate putamen, right primary/secondary somatosensory cortex, bilateral thalamus, right amygdala, bilateral substantial nigra, and left ventral tegmental area. To analyze the role of the right amygdala in these post-formalin MEMRI signals, we repeatedly inhibited right amygdala neurons during this 2–6-h period using the “designer receptors exclusively activated by designer drugs” (DREADD) technique. Pharmacological activation of inhibitory DREADDs expressed in the right amygdala significantly attenuated MEMRI signals in the bilateral infralimbic cortex, bilateral nucleus accumbens, bilateral caudate putamen, right globus pallidus, bilateral ventral tegmental area, and bilateral substantia nigra, suggesting that the inflammatory pain-associated activation of these structures depends on the activity of the right amygdala and DREADD-expressing adjacent structures. In summary, the combined use of DREADD and MEMRI is a promising approach for revealing regions associated with spontaneous pain-associated brain activities and their causal relationships.
Collapse
Affiliation(s)
- Daigo Arimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yae K Sugimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Sugimoto
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan.,NeuroSpin, CEA-Saclay, Gif-sur-Yvette, France
| | - Keishi Marumo
- Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
237
|
Ramasamy T, Ruttala HB, Kaliraj K, Poudel K, Jin SG, Choi HG, Ku SK, Yong CS, Kim JO. Polypeptide Derivative of Metformin with the Combined Advantage of a Gene Carrier and Anticancer Activity. ACS Biomater Sci Eng 2019; 5:5159-5168. [PMID: 33455222 DOI: 10.1021/acsbiomaterials.9b00982] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
- Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hima Bindu Ruttala
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kaliappan Kaliraj
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
238
|
Siiskonen H, Harvima I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front Cell Neurosci 2019; 13:422. [PMID: 31619965 PMCID: PMC6759746 DOI: 10.3389/fncel.2019.00422] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The intimate interaction between mast cells and sensory nerves can be illustrated by the wheal and surrounding flare in an urticarial reaction in human skin. This reaction is typically associated with an intense itch at the reaction site. Upon activation, cutaneous mast cells release powerful mediators, such as histamine, tryptase, cytokines, and growth factors that can directly stimulate corresponding receptors on itch-mediating sensory nerves. These include, e.g., H1- and H4-receptors, protease-activated receptor-2, IL-31 receptor, and the high-affinity receptor of nerve growth factor (TrkA). On the other hand, sensory nerves can release neuropeptides, including substance P and vasoactive intestinal peptide, that are able to stimulate mast cells to release mediators leading to potentiation of the reciprocal interaction, inflammation, and itch. Even though mast cells are well recognized for their role in allergic skin whealing and urticaria, increasing evidence supports the reciprocal function between mast cells and sensory nerves in neurogenic inflammation in chronic skin diseases, such as psoriasis and atopic dermatitis, which are often characterized by distressing itch, and exacerbated by psychological stress. Increased morphological contacts between mast cells and sensory nerves in the lesional skin in psoriasis and atopic dermatitis as well as experimental models in mice and rats support the essential role for mast cell-sensory nerve communication in consequent pruritus. Therefore, we summarize here the present literature pointing to a close association between mast cells and sensory nerves in pruritic skin diseases as well as review the essential supporting findings on pruritic models in mice and rats.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Ilkka Harvima
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
239
|
Lu M, Lan Y, Xiao J, Song M, Chen C, Liang C, Huang Q, Cao Y, Ho CT. Capsaicin Ameliorates the Redox Imbalance and Glucose Metabolism Disorder in an Insulin-Resistance Model via Circadian Clock-Related Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10089-10096. [PMID: 31423784 DOI: 10.1021/acs.jafc.9b04016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circadian rhythms are closely associated with metabolic homeostasis. Metabolic disorders can be alleviated by many bioactive components through controlling of clock gene expressions. Capsaicin has been demonstrated with many beneficial effects including anti-obesity and anti-insulin resistance activities, yet whether the rhythmic expression of circadian clock genes are involved in the regulation of redox imbalance and glucose metabolism disorder by capsaicin remains unclear. In this work, the insulin resistance was induced in HepG2 cells by treatment of glucosamine. Glucose uptake levels, reactive oxygen species, H2O2 production, and mitochondrial membrane potential (MMP) were measured with/without capsaicin cotreatment. The mRNA and protein expressions of core circadian clock genes were evaluated by RT-qPCR and western blot analysis. Our study revealed that circadian misalignment could be ameliorated by capsaicin. The glucosamine-induced cellular redox imbalance and glucose metabolism disorder were ameliorated by capsaicin in a Bmal1-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingrong Huang
- Department of Food Science , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | | | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
240
|
Amantini C, Morelli MB, Nabissi M, Piva F, Marinelli O, Maggi F, Bianchi F, Bittoni A, Berardi R, Giampieri R, Santoni G. Expression Profiling of Circulating Tumor Cells in Pancreatic Ductal Adenocarcinoma Patients: Biomarkers Predicting Overall Survival. Front Oncol 2019; 9:874. [PMID: 31552188 PMCID: PMC6746928 DOI: 10.3389/fonc.2019.00874] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
The interest in liquid biopsy is growing because it could represent a non-invasive prognostic or predictive tool for clinical outcome in patients with pancreatic ductal adenocarcinoma (PDAC), an aggressive and lethal disease. In this pilot study, circulating tumor cells (CTCs), CD16 positive atypical CTCs, and CTC clusters were captured and characterized in the blood of patients with PDAC before and after palliative first line chemotherapy by ScreenCell device, immunohistochemistry, and confocal microscopy analysis. Gene profiles were performed by digital droplet PCR in isolated CTCs, five primary PDAC tissues, and three different batches of RNA from normal human pancreatic tissue. Welsh's t-test, Kaplan-Meier survival, and Univariate Cox regression analyses have been performed. Statistical analysis revealed that the presence of high CTC number in blood is a prognostic factor for poor overall survival and progression free survival in advanced PDAC patients, before and after first line chemotherapy. Furthermore, untreated PDAC patients with CTCs, characterized by high ALCAM, POU5F1B, and SMO mRNAs expression, have shorter progression free survival and overall survival compared with patients expressing the same biomarkers at low levels. Finally, high SHH mRNA levels are negatively associated to progression free survival, whereas high vimentin mRNA levels are correlated with the most favorable prognosis. By hierarchical clustering and correlation index analysis, two cluster gene signatures were identified in CTCs: the first, with high expression of VEGFA, NOTCH1, EPCAM, IHH, is the signature of PDAC patients before chemotherapy, whereas the second, with an enrichment in the expression of CD44, ALCAM, and POU5F1B stemness and pluripotency genes, is reported after palliative chemotherapy. Overall our data support the clinic value of the identification of CTC's specific biomarkers to improve the prognosis and the therapy in advanced PDAC patients.
Collapse
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oliviero Marinelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Bianchi
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Bittoni
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Rossana Berardi
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Riccardo Giampieri
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
241
|
Neuroimaging of pain in animal models: a review of recent literature. Pain Rep 2019; 4:e732. [PMID: 31579844 PMCID: PMC6728006 DOI: 10.1097/pr9.0000000000000732] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
Neuroimaging of pain in animals allows us to better understand mechanisms of pain processing and modulation. In this review, we discuss recently published brain imaging studies in rats, mice, and monkeys, including functional magnetic resonance imaging (MRI), manganese-enhanced MRI, positron emission tomography, and electroencephalography. We provide an overview of innovations and limitations in neuroimaging techniques, as well as results of functional brain imaging studies of pain from January 1, 2016, to October 10, 2018. We then discuss how future investigations can address some bias and gaps in the field. Despite the limitations of neuroimaging techniques, the 28 studies reinforced that transition from acute to chronic pain entails considerable changes in brain function. Brain activations in acute pain were in areas more related to the sensory aspect of noxious stimulation, including primary somatosensory cortex, insula, cingulate cortex, thalamus, retrosplenial cortex, and periaqueductal gray. Pharmacological and nonpharmacological treatments modulated these brain regions in several pain models. On the other hand, in chronic pain models, brain activity was observed in regions commonly associated with emotion and motivation, including prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, basal ganglia, and nucleus accumbens. Neuroimaging of pain in animals holds great promise for advancing our knowledge of brain function and allowing us to expand human subject research. Additional research is needed to address effects of anesthesia, analysis approaches, sex bias and omission, and potential effects of development and aging.
Collapse
|
242
|
McLennan KM, Miller AL, Dalla Costa E, Stucke D, Corke MJ, Broom DM, Leach MC. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
243
|
Fan S, Gao H, Ji W, Zhu F, Sun L, Liu Y, Zhang S, Xu Y, Yan Y, Gao Y. Umbilical cord-derived mesenchymal stromal/stem cells expressing IL-24 induce apoptosis in gliomas. J Cell Physiol 2019; 235:1769-1779. [PMID: 31301067 DOI: 10.1002/jcp.29095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Although much progress has been made in the treatment of gliomas, the prognosis for patients with gliomas is still very poor. Stem cell-based therapies may be promising options for glioma treatment. Recently, many studies have reported that umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) are ideal gene vehicles for tumor gene therapy. Interleukin 24 (IL-24) is a pleiotropic immunoregulatory cytokine that has an apoptotic effect on many kinds of tumor cells and can inhibit the growth of tumors specifically without damaging normal cells. In this study, we investigated UC-MSCs as a vehicle for the targeted delivery of IL-24 to tumor sites. UC-MSCs were transduced with lentiviral vectors carrying green fluorescent protein (GFP) or IL-24 complementary DNA. The results indicated that UC-MSCs could selectively migrate to glioma cells in vitro and in vivo. Injection of IL-24-UC-MSCs significantly suppressed tumor growth of glioma xenografts. The restrictive efficacy of IL-24-UC-MSCs was associated with the inhibition of proliferation as well as the induction of apoptosis in tumor cells. These findings indicate that UC-MSC-based IL-24 gene therapy may be able to suppress the growth of glioma xenografts, thereby suggesting possible future therapeutic use in the treatment of gliomas.
Collapse
Affiliation(s)
- Shaochen Fan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Huasong Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Fengwei Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lingzheng Sun
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuankun Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Siming Zhang
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yanran Xu
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yaohua Yan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
244
|
Yang H, Liu Y, Qiu Y, Ding M, Zhang Y. MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma. Int J Pharm 2019; 566:585-593. [PMID: 31181310 DOI: 10.1016/j.ijpharm.2019.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
|
245
|
Li JN, Sun Y, Ji SL, Chen YB, Ren JH, He CB, Wu ZY, Li H, Dong YL, Li YQ. Collateral Projections from the Medullary Dorsal Horn to the Ventral Posteromedial Thalamic Nucleus and the Parafascicular Thalamic Nucleus in the Rat. Neuroscience 2019; 410:293-304. [PMID: 31075313 DOI: 10.1016/j.neuroscience.2019.04.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
Medullary dorsal horn (MDH), the homolog of spinal dorsal horn, plays essential roles in processing of nociceptive signals from orofacial region toward higher centers, such as the ventral posteromedial thalamic nucleus (VPM) and parafascicular thalamic nucleus (Pf), which belong to the sensory-discriminative and affective aspects of pain transmission systems at the thalamic level, respectively. In the present study, in order to provide morphological evidence for whether neurons in the MDH send collateral projections to the VPM and Pf, a retrograde double tracing method combined with immunofluorescence staining for substance P (SP), SP receptor (SPR) and Fos protein was used. Fluoro-gold (FG) was injected into the VPM and the tetramethylrhodamine-dextran (TMR) was injected into the Pf. The result revealed that both FG- and TMR-labeled projection neurons were observed throughout the entire extent of the MDH, while the FG/TMR double-labeled neurons were mainly located in laminae I and III. It was also found that some of the FG/TMR double-labeled neurons within lamina I expressed SPR and were in close contact with SP-immunoreactive (SP-ir) terminals. After formalin injection into the orofacial region, 41.4% and 34.3% of the FG/TMR double-labeled neurons expressed Fos protein in laminae I and III, respectively. The present results provided morphological evidence for that some SPR-expressing neurons within the MDH send collateral projections to both VPM and Pf and might be involved in sensory-discriminative and affective aspects of acute orofacial nociceptive information transmission.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Yi Sun
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou 350108, China
| | - Song-Ling Ji
- Department of Anatomy, The Zunyi Medical Collage, Zunyi 563000, China
| | - Yan-Bing Chen
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou 350108, China
| | - Jia-Hao Ren
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Cheng-Bo He
- Department of Anatomy, The Zunyi Medical Collage, Zunyi 563000, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
246
|
Wang F, Sun Y, Shi J. Programmed death-ligand 1 monoclonal antibody-linked immunoliposomes for synergistic efficacy of miR-130a and oxaliplatin in gastric cancers. Nanomedicine (Lond) 2019; 14:1729-1744. [PMID: 31290727 DOI: 10.2217/nnm-2019-0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: PD-L1 monoclonal antibody-conjugated miR-130a/oxaliplatin-loaded immunoliposomes were constructed for enhanced therapeutic efficacy against gastric cancer. Materials & methods: The in vitro antitumor efficacy of the immunoliposomes was evaluated by cell viability, cell invasion, cell apoptosis and western blot analysis and in vivo antitumor efficacy was evaluated in a HGC27-bearing tumor xenograft model. Results: The inhibitory role of miR-130a was demonstrated in HGC27 cells by the downregulation of RAB5A and FOCL1 signaling pathways. Consequently, PD-miOXNP exhibited the strongest anticancer activity in vitro compared with any other formulation. PD-miOXNP showed a significantly higher anticancer efficacy in HGC27 tumors with reduced Ki67+ cells and increased TUNEL+ cells for mice group. Conclusion: PD-L1 monoclonal antibody-conjugated immunoliposomes have immense potential to be applied as a next-generation nanomedicine for PD-L1-positive gastric cancers.
Collapse
Affiliation(s)
- Fengyong Wang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, PR China
| | - Yuanshui Sun
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, PR China
| | - Jianfeng Shi
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, PR China
| |
Collapse
|
247
|
Ramos AA, Almeida T, Lima B, Rocha E. Cytotoxic activity of the seaweed compound fucosterol, alone and in combination with 5-fluorouracil, in colon cells using 2D and 3D culturing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:537-549. [PMID: 31258008 DOI: 10.1080/15287394.2019.1634378] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring carcinomas which require effective therapies. Fucosterol is a sterol present in marine brown seaweeds with several biological activities. However, the influence of fucosterol in CRC remains to be determined. Thus, the aim of this study was to examine the anticancer activity of fucosterol alone and in combination with 5-fluorouracil (5-Fu) on two human CRC cell lines (HCT116 and HT29) and compared with cytotoxicity in one normal colon fibroblast cell line (CCD-18co) in monolayer (2D). The effect of fucosterol alone or in combination with 5-Fu was further assessed using HT29 multicellular spheroids (3D). Data demonstrated that fucosterol alone or combined with 5-Fu decreased cell viability in HT29 cells in 2D cultures without inducing cytotoxic in normal colon cells. The combination, fucosterol, and 5-Fu, also inhibited cell proliferation, clonogenic potential and cell migration without producing cell death in 2D. In multicellular spheroids, the combination fucosterol plus 5-Fu at the same concentrations used in 2D was not effective demonstrating that under the tested conditions the 3D model was more resistant than the 2D model. Taken together, these findings suggest that fucosterol might be a promising alternative to enhance the cytotoxic and anti-invasive actions of 5-Fu in colon cancer cells without consequent major adverse effects in normal cells. Our results also reinforce the need to include more complex 3D culture models in the initial stages of drug screening.
Collapse
Affiliation(s)
- Alice A Ramos
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
- b Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - Tânia Almeida
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
| | - Bruna Lima
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
| | - Eduardo Rocha
- a Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, University of Porto , Matosinhos , Portugal
- b Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| |
Collapse
|
248
|
Rahimi K, Lotfabad TB, Jabeen F, Mohammad Ganji S. Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Colloids Surf B Biointerfaces 2019; 181:943-952. [PMID: 31382344 DOI: 10.1016/j.colsurfb.2019.06.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/11/2019] [Accepted: 06/01/2019] [Indexed: 12/21/2022]
Abstract
Rhamnolipids produced by P. aeruginosa MR01 were fractionated into mono- and di-rhamnolipids, and their dominant congeners, Rha-C10-C10 and Rha-Rha-C10-C10, were shown by mass spectrometry. Minimum surface tensions and critical micelle concentrations (CMC) were determined as "≃34 mN/m; ≃26.17 mg/l;" and "≃29 mN/m; ≃29.63 mg/l" for mono- and di-rhamnolipids, respectively. Spectrophotometry measurements provided a close approximation of CMC. Contact angle and diameter of wet area were determined for rhamnolipid-containing drops on hydrophobic paper to display their capability for alteration of surface wettability. Wet area measurement is a simple, reliable method not requiring a Drop Shape Analyzer. Cell viabilities determined by MTT assay showed a decline in a dose-dependent manner and estimated IC50 values were 25.87 μg/ml and 31.00 μg/ml for mono- and di-rhamnolipids treating MCF-7 cells for 48 h. Morphological observations using the inverted phase-contrast microscopy and fluorescence microscopy via Hoechst staining revealed the apoptotic characteristics in treated MCF-7 cells. The semi-quantitative RT-PCR method demonstrated that expression of the p53 gene in mRNA levels significantly (P < 0.05) increased when treated with 30 μg/ml of each rhamnolipid compound for 12 h. It can be concluded that rhamnolipids derived from MR01 show significant anticancer potential against MCF-7 cell line and should be further investigated as natural, therapeutic anti-tumor agents.
Collapse
Affiliation(s)
- Kobra Rahimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Tayebe Bagheri Lotfabad
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Farhat Jabeen
- Department of Zoology, Government College, University of Faisalabad, Pakistan
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
249
|
Wu Y, Chen X, Zhao Y, Wang Y, Li Y, Xiang C. Genome-wide DNA methylation and hydroxymethylation analysis reveal human menstrual blood-derived stem cells inhibit hepatocellular carcinoma growth through oncogenic pathway suppression via regulating 5-hmC in enhancer elements. Stem Cell Res Ther 2019; 10:151. [PMID: 31151404 PMCID: PMC6544940 DOI: 10.1186/s13287-019-1243-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epigenetic alteration is an important indicator of crosstalk between cancer cells and surrounding microenvironment components including mesenchymal stem cells (MSC). Human menstrual blood-derived stem cells (MenSCs) are novel source of MSCs which exert suppressive effects on cancers via multiple components of microenvironmental paracrine signaling. However, whether MenSCs play a crucial role in the epigenetic regulation of cancer cells remains unknown. METHODS Epigenetic alterations of hepatocellular carcinoma (HCC) mediated by MenSCs were examined by immunofluorescence, ELISA, and RT-PCR assays. The suppressive impact of MenSCs on HCC was investigated in vitro using CCK8, apoptosis, wound healing, and invasion assays and in vivo using a xenograft mice model. MeDIP-seq, hMeDIP-seq, and RNA-seq were used to identify the genome-wide pattern of DNA methylation and hydroxymethylation in HCC cells after MenSC therapy. RESULTS We show that HCC cells display distinct genome-wide alterations in DNA hydroxymethylation and methylation after MenSC therapy. MenSCs exert an inhibitory effect on HCC growth via regulating 5-hmC and 5-mC abundance in the regulatory regions of oncogenic pathways including PI3K/AKT and MAPK signaling, especially in enhancers and promoters. FOXO3 expression is rescued via reversal of 5-hmC and 5-mC levels in its enhancers and contributes to the activation of downstream apoptosis. Inactivation of the MAPK pathway further disrupts c-myc-mediated epithelial-mesenchymal transitions (EMT). Additionally, chemotherapy resistance-associated genes including ID4 and HMGA1 are suppressed via amending 5-hmC and 5-mC abundance at their regulatory regions. HMGA1 and BYSL might be potential targets for gene-modified MSC therapy. CONCLUSIONS Our results confirm that MSCs could regulate the epigenetic mechanism of HCC cells and provide a novel concept for a modified MSC strategy or combination therapy with chemotherapeutics based on epigenetics.
Collapse
Affiliation(s)
- Yichen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjia Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanling Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
250
|
Pavlenko D, Akiyama T. Why does stress aggravate itch? A possible role of the amygdala. Exp Dermatol 2019; 28:1439-1441. [PMID: 30991457 DOI: 10.1111/exd.13941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Stress is the exacerbating factor of itch across patients with chronic itch due to different origins. However, the precise mechanisms behind stress-induced exacerbation of itch remain unknown. Chronic stress induces hyperexcitability of the amygdala, the centre of emotional processing. Recent findings on the itch neuronal pathways support a pivotal role of the amygdala for itch processing. We hypothesized that itch is enhanced by stress through hyperexcitation of the amygdala. Modulation of amygdala activity, therefore, may have therapeutic potential in the treatment of chronic itch.
Collapse
Affiliation(s)
- Darya Pavlenko
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, Florida
| | - Tasuku Akiyama
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, Florida
| |
Collapse
|