201
|
Liu H, Fu M, Zhang Y, You Q, Wang L. Small molecules targeting canonical transient receptor potential channels: an update. Drug Discov Today 2024; 29:103951. [PMID: 38514041 DOI: 10.1016/j.drudis.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Min Fu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
202
|
Zhan Z, Chen B, Cheng H, Xu S, Huang C, Zhou S, Chen H, Lin X, Lin R, Huang W, Ma X, Fu Y, Chen Z, Zheng H, Shi S, Guo Z, Zhang L. Identification of prognostic signatures in remnant gastric cancer through an interpretable risk model based on machine learning: a multicenter cohort study. BMC Cancer 2024; 24:547. [PMID: 38689252 PMCID: PMC11062017 DOI: 10.1186/s12885-024-12303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE The purpose of this study was to develop an individual survival prediction model based on multiple machine learning (ML) algorithms to predict survival probability for remnant gastric cancer (RGC). METHODS Clinicopathologic data of 286 patients with RGC undergoing operation (radical resection and palliative resection) from a multi-institution database were enrolled and analyzed retrospectively. These individuals were split into training (80%) and test cohort (20%) by using random allocation. Nine commonly used ML methods were employed to construct survival prediction models. Algorithm performance was estimated by analyzing accuracy, precision, recall, F1-score, area under the receiver operating characteristic curve (AUC), confusion matrices, five-fold cross-validation, decision curve analysis (DCA), and calibration curve. The best model was selected through appropriate verification and validation and was suitably explained by the SHapley Additive exPlanations (SHAP) approach. RESULTS Compared with the traditional methods, the RGC survival prediction models employing ML exhibited good performance. Except for the decision tree model, all other models performed well, with a mean ROC AUC above 0.7. The DCA findings suggest that the developed models have the potential to enhance clinical decision-making processes, thereby improving patient outcomes. The calibration curve reveals that all models except the decision tree model displayed commendable predictive performance. Through CatBoost-based modeling and SHAP analysis, the five-year survival probability is significantly influenced by several factors: the lymph node ratio (LNR), T stage, tumor size, resection margins, perineural invasion, and distant metastasis. CONCLUSIONS This study established predictive models for survival probability at five years in RGC patients based on ML algorithms which showed high accuracy and applicative value.
Collapse
Affiliation(s)
- Zhouwei Zhan
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Fuzhou, Fujian, 350014, People's Republic of China
| | - Bijuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Hui Cheng
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Shaohua Xu
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Chunping Huang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Sijing Zhou
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Fuzhou, Fujian, 350014, People's Republic of China
| | - Haiting Chen
- School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Xuanping Lin
- School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Ruyu Lin
- School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Wanting Huang
- School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Xiaohuan Ma
- School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Yu Fu
- School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Zhipeng Chen
- School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Hanchen Zheng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Fuzhou, Fujian, 350014, People's Republic of China
| | - Songchang Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, People's Republic of China.
| | - Zengqing Guo
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Fuzhou, Fujian, 350014, People's Republic of China.
| | - Lihui Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
203
|
Deng D, Zhang T, Ma L, Zhao W, Huang S, Wang K, Shu S, Chen X. PD-L1/PD-1 pathway: a potential neuroimmune target for pain relief. Cell Biosci 2024; 14:51. [PMID: 38643205 PMCID: PMC11031890 DOI: 10.1186/s13578-024-01227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Pain is a common symptom of many diseases with a high incidence rate. Clinically, drug treatment, as the main method to relieve pain at present, is often accompanied by different degrees of adverse reactions. Therefore, it is urgent to gain a profound understanding of the pain mechanisms in order to develop advantageous analgesic targets. The PD-L1/PD-1 pathway, an important inhibitory molecule in the immune system, has taken part in regulating neuroinflammation and immune response. Accumulating evidence indicates that the PD-L1/PD-1 pathway is aberrantly activated in various pain models. And blocking PD-L1/PD-1 pathway will aggravate pain behaviors. This review aims to summarize the emerging evidence on the role of the PD-L1/PD-1 pathway in alleviating pain and provide an overview of the mechanisms involved in pain resolution, including the regulation of macrophages, microglia, T cells, as well as nociceptor neurons. However, its underlying mechanism still needs to be further elucidated in the future. In conclusion, despite more deep researches are needed, these pioneering studies indicate that PD-L1/PD-1 may be a potential neuroimmune target for pain relief.
Collapse
Affiliation(s)
- Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kaixing Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
204
|
Li SW, Zhang LH, Cai Y, Zhou XB, Fu XY, Song YQ, Xu SW, Tang SP, Luo RQ, Huang Q, Yan LL, He SQ, Zhang Y, Wang J, Ge SQ, Gu BB, Peng JB, Wang Y, Fang LN, Wu WD, Ye WG, Zhu M, Luo DH, Jin XX, Yang HD, Zhou JJ, Wang ZZ, Wu JF, Qin QQ, Lu YD, Wang F, Chen YH, Chen X, Xu SJ, Tung TH, Luo CW, Ye LP, Yu HG, Mao XL. Deep learning assists detection of esophageal cancer and precursor lesions in a prospective, randomized controlled study. Sci Transl Med 2024; 16:eadk5395. [PMID: 38630847 DOI: 10.1126/scitranslmed.adk5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.
Collapse
Affiliation(s)
- Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Li-Hui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430000, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan 430000, China
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yue Cai
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Xin-Yu Fu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Ya-Qi Song
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Shi-Wen Xu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Shen-Ping Tang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Ren-Quan Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430000, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qin Huang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Sai-Qin He
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Yu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Jun Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Shu-Qiong Ge
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Bin-Bin Gu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Jin-Bang Peng
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Yi Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Li-Na Fang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Wei-Dan Wu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Wen-Guang Ye
- Department of Gastroenterology, Zhejiang University School Medicine Affiliated Hangzhou Cancer Hospital, Hangzhou 310000, China
| | - Min Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Ding-Hai Luo
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Xiu-Xiu Jin
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Hai-Deng Yang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Jing-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Zhen-Zhen Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Jian-Fen Wu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Qiao-Qiao Qin
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Yan-di Lu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Fei Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Xia Chen
- Department of Gastroenterology, Wenling First People's Hospital, Taizhou, Zhejiang 317500, China
| | - Shan-Jing Xu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Chen-Wen Luo
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Li-Ping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Hong-Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430000, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Xin-Li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| |
Collapse
|
205
|
Ling T, Zhang C, Liu Y, Jiang C, Gu L. Single-cell analysis revealed a potential role of T-cell exhaustion in colorectal cancer with liver metastasis. J Cell Mol Med 2024; 28:e18341. [PMID: 38647235 PMCID: PMC11034372 DOI: 10.1111/jcmm.18341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Liver metastasis (LM) is an important factor leading to colorectal cancer (CRC) mortality. However, the effect of T-cell exhaustion on LM in CRC is unclear. Single-cell sequencing data derived from the Gene Expression Omnibus database. Data were normalized using the Seurat package and subsequently clustered and annotated into different cell clusters. The differentiation trajectories of epithelial cells and T cells were characterized based on pseudo-time analysis. Single-sample gene set enrichment analysis (ssGSEA) was used to calculate enrichment scores for different cell clusters and to identify enriched biological pathways. Finally, cell communication analysis was performed. Nine cell subpopulations were identified from CRC samples with LM. The proportion of T cells increased in LM. T cells can be subdivided into NK/T cells, regulatory T cells (Treg) and exhausted T cells (Tex). In LM, cell adhesion and proliferation activity of Tex were promoted. Epithelial cells can be categorized into six subpopulations. The transformation of primary CRC into LM involved two evolutionary branches of Tex cells. Epithelial cells two were at the beginning of the trajectory in CRC but at the end of the trajectory in CRC with LM. The receptor ligands CEACAM5 and ADGRE5-CD55 played critical roles in the interactions between Tex and Treg cell-epithelial cell, which may promote the epithelial-mesenchymal transition process in CRC. Tex cells are able to promote the process of LM in CRC, which in turn promotes tumour development. This provides a new perspective on the treatment and diagnosis of CRC.
Collapse
Affiliation(s)
- Tianlong Ling
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cheng Zhang
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
206
|
Hussain MS, Moglad E, Afzal M, Bansal P, Kaur H, Deorari M, Ali H, Shahwan M, Hassan Almalki W, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Circular RNAs in the KRAS pathway: Emerging players in cancer progression. Pathol Res Pract 2024; 256:155259. [PMID: 38503004 DOI: 10.1016/j.prp.2024.155259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Circular RNAs (circRNAs) have been recognized as key components in the intricate regulatory network of the KRAS pathway across various cancers. The KRAS pathway, a central signalling cascade crucial in tumorigenesis, has gained substantial emphasis as a possible therapeutic target. CircRNAs, a subgroup of non-coding RNAs known for their closed circular arrangement, play diverse roles in gene regulation, contributing to the intricate landscape of cancer biology. This review consolidates existing knowledge on circRNAs within the framework of the KRAS pathway, emphasizing their multifaceted functions in cancer progression. Notable circRNAs, such as Circ_GLG1 and circITGA7, have been identified as pivotal regulators in colorectal cancer (CRC), influencing KRAS expression and the Ras signaling pathway. Aside from their significance in gene regulation, circRNAs contribute to immune evasion, apoptosis, and drug tolerance within KRAS-driven cancers, adding complexity to the intricate interplay. While our comprehension of circRNAs in the KRAS pathway is evolving, challenges such as the diverse landscape of KRAS mutant tumors and the necessity for synergistic combination therapies persist. Integrating cutting-edge technologies, including deep learning-based prediction methods, holds the potential for unveiling disease-associated circRNAs and identifying novel therapeutic targets. Sustained research efforts are crucial to comprehensively unravel the molecular mechanisms governing the intricate interplay between circRNAs and the KRAS pathway, offering insights that could potentially revolutionize cancer diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Ultimo, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Ultimo, Sydney, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
207
|
Wang H, Shi J, Yang Y, Ma K, Xue Y. Machine learning methods predict recurrence of pN3b gastric cancer after radical resection. Transl Cancer Res 2024; 13:1519-1532. [PMID: 38617507 PMCID: PMC11009806 DOI: 10.21037/tcr-23-1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/16/2024] [Indexed: 04/16/2024]
Abstract
Background The incidence of stage pN3b gastric cancer (GC) is low, and the clinical prognosis is poor, with a high rate of postoperative recurrence. Machine learning (ML) methods can predict the recurrence of GC after surgery. However, the prognostic significance for pN3b remains unclear. Therefore, we aimed to predict the recurrence of pN3b through ML models. Methods This retrospective study included 336 patients with pN3b GC who underwent radical surgery. A 3-fold cross-validation was used to partition the participants into training and test cohorts. Linear combinations of new variable features were constructed using principal component analysis (PCA). Various ML algorithms, including random forest, support vector machine (SVM), logistic regression, multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and Gaussian naive Bayes (GNB), were utilized to establish a recurrence prediction model. Model performance was evaluated using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). Python was used for the analysis of ML algorithms. Results Nine principal components with a cumulative variance interpretation rate of 90.71% were identified. The output results of the test set showed that random forests had the highest AUC (0.927) for predicting overall recurrence with an accuracy rate of 80.5%. Random forests had the highest AUC (0.940) for predicting regional recurrence with an accuracy of 89.7%. For predicting distant recurrence, random forests had the highest AUC (0.896) with an accuracy of 84.3%. For peritoneal recurrence, random forests had the highest AUC (0.923) with an accuracy of 83.3%. Conclusions ML can personalize the prediction of postoperative recurrence in patients with GC with stage pN3b.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jianting Shi
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Yuhang Yang
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Keru Ma
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingwei Xue
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
208
|
Yi J, Ma X, Ying Y, Liu Z, Tang Y, Shu X, Sun J, Wu Y, Lu D, Wang X, Luo J, Liu B, Zheng X, Lin Y, Li J, Xie L. N6-methyladenosine-modified CircPSMA7 enhances bladder cancer malignancy through the miR-128-3p/MAPK1 axis. Cancer Lett 2024; 585:216613. [PMID: 38211649 DOI: 10.1016/j.canlet.2024.216613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Several studies have indicated that circular RNAs (circRNAs) play vital roles in the progression of various diseases, including bladder cancer (BCa). However, the underlying mechanisms by which circRNAs drive BCa malignancy remain unclear. In this study, we identified a novel circRNA, circPSMA7 (circbaseID:has_circ_0003456), showing increased expression in BCa cell lines and tissues, by integrating the reported information with circRNA-seq and qRT-PCR. We revealed that circPSMA7 is associated with a higher tumor grade and stage in BCa. M6A modification was identified in circPSMA7, and IGF2BP3 recognized this modification and stabilized circPSMA7, subsequently increasing the circPSMA7 expression. In vitro and in vivo experiments showed that circPSMA7 promoted BCa proliferation and metastasis by regulating the cell cycle and EMT processes. CircPSMA7 acted as a sponge for miR-128-3p, which showed antitumor effects in BCa cell lines, increasing the expression of MAPK1. The tumor proliferation and metastasis suppression induced by silencing circPSMA7 could be partly reversed by miR-128-3p inhibition. Thus, the METTL3/IGF2BP3/circPSMA7/miR-128-3p/MAPK1 axis plays a critical role in BCa progression. Furthermore, circPSMA7 may be a potential diagnostic biomarker and novel therapeutic target for patients with BCa.
Collapse
Affiliation(s)
- Jiahe Yi
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xueyou Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Zixiang Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yijie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xuan Shu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jiazhu Sun
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yuqing Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Dingheng Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jindan Luo
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yiwei Lin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China.
| | - Jiangfeng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China.
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China.
| |
Collapse
|
209
|
Katari V, Dalal K, Adapala RK, Guarino BD, Kondapalli N, Paruchuri S, Thodeti CK. A TRP to Pathological Angiogenesis and Vascular Normalization. Compr Physiol 2024; 14:5389-5406. [PMID: 39109978 PMCID: PMC11998386 DOI: 10.1002/cphy.c230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Uncontrolled angiogenesis underlies various pathological conditions such as cancer, age-related macular degeneration (AMD), and proliferative diabetic retinopathy (PDR). Hence, targeting pathological angiogenesis has become a promising strategy for the treatment of cancer and neovascular ocular diseases. However, current pharmacological treatments that target VEGF signaling have met with limited success either due to acquiring resistance against anti-VEGF therapies with serious side effects including nephrotoxicity and cardiovascular-related adverse effects in cancer patients or retinal vasculitis and intraocular inflammation after intravitreal injection in patients with AMD or PDR. Therefore, there is an urgent need to develop novel strategies which can control multiple aspects of the pathological microenvironment and regulate the process of abnormal angiogenesis. To this end, vascular normalization has been proposed as an alternative for antiangiogenesis approach; however, these strategies still focus on targeting VEGF or FGF or PDGF which has shown adverse effects. In addition to these growth factors, calcium has been recently implicated as an important modulator of tumor angiogenesis. This article provides an overview on the role of major calcium channels in endothelium, TRP channels, with a special focus on TRPV4 and its downstream signaling pathways in the regulation of pathological angiogenesis and vascular normalization. We also highlight recent findings on the modulation of TRPV4 activity and endothelial phenotypic transformation by tumor microenvironment through Rho/YAP/VEGFR2 mechanotranscriptional pathways. Finally, we provide perspective on endothelial TRPV4 as a novel VEGF alternative therapeutic target for vascular normalization and improved therapy. © 2024 American Physiological Society. Compr Physiol 14:5389-5406, 2024.
Collapse
Affiliation(s)
- Venkatesh Katari
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Kesha Dalal
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Ravi K. Adapala
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Brianna D. Guarino
- Vascular Research Lab, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Narendrababu Kondapalli
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
210
|
Zhong Q, Hong W, Xiong L. KIF3C: an emerging biomarker with prognostic and immune implications across pan-cancer types and its experiment validation in gastric cancer. Aging (Albany NY) 2024; 16:6163-6187. [PMID: 38552217 PMCID: PMC11042961 DOI: 10.18632/aging.205694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Wenbo Hong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
211
|
Rong Z, Zheng K, Chen J, Jin X. The cross talk of ubiquitination and chemotherapy tolerance in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:154. [PMID: 38521878 PMCID: PMC10960765 DOI: 10.1007/s00432-024-05659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Ubiquitination, a highly adaptable post-translational modification, plays a pivotal role in maintaining cellular protein homeostasis, encompassing cancer chemoresistance-associated proteins. Recent findings have indicated a potential correlation between perturbations in the ubiquitination process and the emergence of drug resistance in CRC cancer. Consequently, numerous studies have spurred the advancement of compounds specifically designed to target ubiquitinates, offering promising prospects for cancer therapy. In this review, we highlight the role of ubiquitination enzymes associated with chemoresistance to chemotherapy via the Wnt/β-catenin signaling pathway, epithelial-mesenchymal transition (EMT), and cell cycle perturbation. In addition, we summarize the application and role of small compounds that target ubiquitination enzymes for CRC treatment, along with the significance of targeting ubiquitination enzymes as potential cancer therapies.
Collapse
Affiliation(s)
- Ze Rong
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo, 315211, China.
| |
Collapse
|
212
|
Wang Y, Fan J, Liu Y, Du J, Liang B, Wang H, Song Z. Identification and validation of DHCR7 as a diagnostic biomarker involved in the proliferation and mitochondrial function of breast cancer. Aging (Albany NY) 2024; 16:5967-5986. [PMID: 38526324 PMCID: PMC11042931 DOI: 10.18632/aging.205683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Energy metabolism has a complex intersection with pathogenesis and development of breast cancer (BC). This allows for the possibility of identifying energy-metabolism-related genes (EMRGs) as novel prognostic biomarkers for BC. 7-dehydrocholesterol reductase (DHCR7) is a key enzyme of cholesterol biosynthesis involved in many cancers, and in this paper, we investigate the effects of DHCR7 on the proliferation and mitochondrial function of BC. METHODS EMRGs were identified from the Gene Expression Omnibus (GEO) and MSigDB databases using bioinformatics methods. Key EMRGs of BC were then identified and validated by functional enrichment analysis, interaction analysis, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, Cox analysis, and immune infiltration. Western blot, qRT-PCR, immunohistochemistry (IHC), MTT assay, colony formation assay and flow cytometry assay were then used to analyze DHCR7 expression and its biological effects on BC cells. RESULTS We identified 31 EMRGs in BC. These 31 EMRGs and related transcription factors (TFs), miRNAs, and drugs were enriched in glycerophospholipid metabolism, glycoprotein metabolic process, breast cancer, and cell cycle. Crucially, DHCR7 was a key EMRG in BC identified and validated by WGCNA, LASSO regression and receiver operating characteristic (ROC) curve analysis. High DHCR7 expression was significantly associated with tumor immune infiltration level, pathological M, and poor prognosis in BC. In addition, DHCR7 knockdown inhibited cell proliferation, induced apoptosis and affected mitochondrial function in BC cells. CONCLUSIONS DHCR7 was found to be a key EMRG up-regulated in BC cells. This study is the first to our knowledge to report that DHCR7 acts as an oncogene in BC, which might become a novel therapeutic target for BC patients.
Collapse
Affiliation(s)
- Yanfeng Wang
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Shaanxi, China
- Department of Clinical Laboratory, Affiliated Hospital of Yan’an University, Shaanxi, China
| | - Jiaxin Fan
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Shaanxi, China
| | - Yongcheng Liu
- Department of Pathology, Affiliated Hospital of Yan’an University, Shaanxi, China
| | - Jie Du
- Department of Health Examination Center, Shaanxi Provincial People’s Hospital, Shaanxi, China
| | - Boyu Liang
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Shaanxi, China
| | - Huxia Wang
- Department of Breast Disease Center, Shaanxi Provincial Tumor Hospital, Shaanxi, China
| | - Zhangjun Song
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Shaanxi, China
| |
Collapse
|
213
|
Wei Y, Li M, Hu Y, Lu J, Wang L, Yin Q, Hong X, Tian J, Wang H. PCC0208057 as a small molecule inhibitor of TRPC6 in the treatment of prostate cancer. Front Pharmacol 2024; 15:1352373. [PMID: 38567350 PMCID: PMC10986179 DOI: 10.3389/fphar.2024.1352373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor, whose morbidity and mortality keep the top three in the male-related tumors in developed countries. Abnormal ion channels, such as transient receptor potential canonical 6 (TRPC6), are reported to be involved in the carcinogenesis and progress of prostate cancer and have become potential drug targets against prostate cancer. Here, we report a novel small molecule inhibitor of TRPC6, designated as PCC0208057, which can suppress the proliferation and migration of prostate cancer cells in vitro, and inhibit the formation of Human umbilical vein endothelial cells cell lumen. PCC0208057 can effectively inhibit the growth of xenograft tumor in vivo. Molecular mechanism studies revealed that PCC0208057 could directly bind and inhibit the activity of TRPC6, which then induces the prostate cancer cells arrested in G2/M phase via enhancing the phosphorylation of Nuclear Factor of Activated T Cells (NFAT) and Cdc2. Taken together, our study describes for the first time that PCC0208057, a novel TRPC6 inhibitor, might be a promising lead compound for treatment of prostate cancer.
Collapse
Affiliation(s)
- Yingjie Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Min Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
214
|
Jiang T, Qi J, Xue Z, Liu B, Liu J, Hu Q, Li Y, Ren J, Song H, Xu Y, Xu T, Fan R, Song J. The m 6A modification mediated-lncRNA POU6F2-AS1 reprograms fatty acid metabolism and facilitates the growth of colorectal cancer via upregulation of FASN. Mol Cancer 2024; 23:55. [PMID: 38491348 PMCID: PMC10943897 DOI: 10.1186/s12943-024-01962-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Junwen Qi
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhenyu Xue
- Department of Radiation Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jianquan Liu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qihang Hu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuqiu Li
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
215
|
Cai Y, Wang Y, Mao B, You Q, Guo X. Targeting insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) for the treatment of cancer. Eur J Med Chem 2024; 268:116241. [PMID: 38382391 DOI: 10.1016/j.ejmech.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.
Collapse
Affiliation(s)
- Yuanqian Cai
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingzhe Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingjie Mao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
216
|
Wang T, Peng X, Liu W, Ji M, Sun J. Identification and validation of KIF23 as a hypoxia-regulated lactate metabolism-related oncogene in uterine corpus endometrial carcinoma. Life Sci 2024; 341:122490. [PMID: 38336274 DOI: 10.1016/j.lfs.2024.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
AIMS The "Warburg effect" has been developed from the discovery that hypoxia-inducible factor 1α (HIF-1α) could promote the conversion of pyruvate to lactate. However, no studies have linked hypoxia and lactate metabolism to uterine corpus endometrial carcinoma (UCEC). MAIN METHODS Sequencing and clinical data of patients with UCEC were extracted from The Cancer Genome Atlas (TCGA) database. Hypoxia-related lactate metabolism genes (HRLGs) were screened using Spearman's correlation analysis. A prognostic signature based on HRLGs was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. A comprehensive analysis was conducted on the molecular features, immune environment, mutation patterns, and response to drugs between different risk groups. In vitro and in vivo experiments were performed to verify the function of KIF23. KEY FINDINGS A five HRLG-based prognostic signature was identified. The prognostic outcome was unfavorable for the high-risk subgroup. Observation of increased pathway activities associated with cell proliferation and DNA damage repair was noted in the high-risk subgroup. Additionally, notable correlations were observed between risk score and immune microenvironment, mutational features, and drug responsiveness. Further, we confirmed KIF23 as a novel oncogene in UCEC, whose silencing decreased proliferation and promoted apoptosis of cancer cells. KIF23 knockdown reduced tumor growth in nude mice. We demonstrated that KIF23 was upregulated under hypoxic stress in a HIF-1α dependent manner. Moreover, KIF23 regulated lactate dehydrogenase A expression. SIGNIFICANCE The developed HRLG-related signature was associated with prognosis, immune microenvironment, and drug sensitivity in UCEC. We also revealed KIF23 as a hypoxia-regulated lactate metabolism-related oncogene.
Collapse
Affiliation(s)
- Tao Wang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaotong Peng
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenwen Liu
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mei Ji
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
217
|
Guo H, Li Y, Lin J, Li D, Yang J, Wang J, Mao J, Wang Y, Yan X. A novel investigation into the negative impact of opioid use on the efficacy of immune checkpoint inhibitors in advanced non-small cell lung cancer patients. Int Immunopharmacol 2024; 129:111611. [PMID: 38325047 DOI: 10.1016/j.intimp.2024.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) have effectively improved the clinical outcome of advanced non-small cell lung cancer (NSCLC). Opioids are commonly used for pain relief in cancer patients. This study aims to clarify the prognostic impact of opioid use in advanced NSCLC patients receiving ICI therapy. METHODS A systematic literature review was carried out using online databases before July 2023. The meta-analysis was used to clarify the correlation of opioid use with the overall survival (OS) or progression-free survival (PFS) of ICI-treated NSCLC patients, both of which were determined using hazard ratios (HRs) coupled with 95 % confidence intervals (CIs). Then, an independent cohort enrolling 181 NSCLC patients was utilized for validation. Finally, a comprehensive bioinformatics analysis based on TCGA cohort was performed to investigate the prognostic significance of opioid target genes (OTGs) and their correlation with immune infiltration in NSCLC patients. RESULTS A total of 8 studies enrolling 1174 patients were included in the meta-analysis. Opioid use was negatively associated with worse PFS (HR = 2.16, 95 %CI: 1.26-3.71) and OS (HR = 2.02, 95 %CI: 1.54-2.63) in ICI-treated NSCLC patients. The retrospective validation confirmed the above result and identified opioid use as an independent unfavorable predictor for PFS and OS in both the entire cohort and ICI subgroup. The bioinformatic analysis identified 14 prognostic OTGs (CYP17A1, PDYN, PYCARD, FGA, NTSR1, FABP1, HPCA, PENK, PDGFB, LIN7A, FKBP5, TYMS, CACNA1H and LDHA), most of which were correlated with immune infiltration in NSCLC. A risk model was constructed based on 14 OTGs and found to effectively stratify the clinical outcome in both the training and validation set, independent of age, gender and TNM staging system. The model was also significantly correlated with infiltration of activated dendritic cells, neutrophils and tumor infiltrating lymphocytes. Finally, a nomogram was constructed based on the model, age, gender and TNM stage, which could predict well the 1-, 3- and 5-year survival of NSCLC patients. CONCLUSION Opioid use is correlated with the poor clinical outcome in ICI-treated NSCLC patients. Precise pain management is highly advocated and opioids are recommended to be cautiously used in these patients. OTGs have the potential to be prognostic biomarkers for NSCLC patients and their role in tumor immunity needs to be further investigated.
Collapse
Affiliation(s)
- Huaijuan Guo
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yin Li
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, Jilin University Second Hospital, Changchun, Jilin, China
| | - Donglin Li
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingjing Yang
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiaxin Wang
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingxian Mao
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
218
|
Zhang G, Tao X, Ji BW, Gong J. Long Non-coding RNA COX10-AS1 Promotes Glioma Progression by Competitively Binding miR-1-3p to Regulate ORC6 Expression. Neuroscience 2024; 540:68-76. [PMID: 38244670 DOI: 10.1016/j.neuroscience.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 01/22/2024]
Abstract
Glioma is one of the most common and difficult to cure malignant primary tumors of the central nervous system. Long non-coding RNA (lncRNA) has been reported to play important functions in biological processes of many tumors, including glioma. In our study, we aimed to reveal the role and molecular mechanisms of lncRNA COX10-AS1 in regulating the progression of glioma. First of all, we showed that lncRNA COX10-AS1 was significantly increased in glioma tissues and cell lines, and high-expressed COX10-AS1 was associated with a poor prognosis in glioma patients. Moreover, through performing the functional experiments, including CCK-8, colony formation and Transwell assays, we confirmed that COX10-AS1 ablation curbed cell proliferation, migration and invasion in glioblastoma (GBM) cells. In addition, we uncovered that there existed a regulatory relationship that COX10-AS1 upregulated OCR6 by sponging miR-1-3p in GBM cells, and the following rescue assays demonstrated that both miR-1-3p downregulation and origin recognition complex subunit 6 (ORC6) overexpression rescued cell viability, migration and invasion in the COX10-AS1-deficient GBM cells. Consistently, we also verified that COX10-AS1 promoted tumorigenesis of the GBM cells in vivo through modulating the miR-1-3p/ORC6 axis. On the whole, our findings indicated a novel ceRNA pattern in which COX10-AS1 elevated OCR6 expression via sponging miR-1-3p, therefore boosting tumorigenesis in glioma, and we firstly discussed the underlying mechanisms by which the COX10-AS1/miR-1-3p/ORC6 axis affected the progression of glioma.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bao-Wei Ji
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Jie Gong
- Department of Neurosurgery, General Hospital, Central Theater Command, PLA, Wuhan 430070, China.
| |
Collapse
|
219
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
220
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
221
|
Yang W, Zhu KF, Tao CT, Yan YM, Cheng YX. Isolation and target identification of anti-renal fibrosis compounds from Cordyceps militaris. Bioorg Chem 2024; 144:107169. [PMID: 38330722 DOI: 10.1016/j.bioorg.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Four undescribed compounds including one aromatic glucoside derivative, cordyceglycoside A (1), one new isoleucine derivative inner salt, cordycepisosalt A (2), a rare four-membered lactam, cinerealactam B (3), and one sesquiterpene derivative, cordycepsetp A (4), together with six known compounds were isolated from Cordyceps militaris. The structures including absolute configurations of these new compounds, were unambiguously elucidated by spectroscopic data analysis and single crystal X-ray diffraction. Biological evaluation of compounds 1-4 showed that 3 displays anti-renal fibrotic activities in TGF-β1 induced NRK-52e cells. Furthermore, DARTS coupled with LC-MS/MS analysis was used to identify candidate target proteins for 3. Subsequently, C1qbp knockdown using siRNA allowed us to validate the target protein of 3.
Collapse
Affiliation(s)
- Wei Yang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Kun-Fang Zhu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Cheng-Tian Tao
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China.
| |
Collapse
|
222
|
Huang Y, Zheng Z, Xu R, Zhang H, Yin J, Liu X, Zhang J, Chen G, Zhang Z. Assessment of risk factors of lymph node metastasis and prognosis of Siewert II/III adenocarcinoma of esophagogastric junction: A retrospective study. Medicine (Baltimore) 2024; 103:e37289. [PMID: 38428860 PMCID: PMC10906611 DOI: 10.1097/md.0000000000037289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) has a high incidence, and the extent of lymph node dissection (LND) and its impact on prognosis remain controversial. This study aimed to explore the risk factors for lymph node metastasis (LNM) and prognosis in Siewert II/III AEG patients. A retrospective review of 239 Siewert II/III AEG patients surgically treated at Beijing Friendship Hospital from July 2013 to December 2022 was conducted. Preoperative staging was conducted via endoscopy, ultrasound gastroscopy, CT, and biopsy. Depending on the stage, patients received radical gastrectomy with LND and chemotherapy. Clinicopathological data were collected, and survival was monitored semiannually until November 2023. Utilizing logistic regression for data analysis and Cox regression for survival studies, multivariate analysis identified infiltration depth (OR = 0.038, 95% CI: 0.011-0.139, P < .001), tumor deposit (OR = 0.101, 95% CI: 0.011-0.904, P = .040), and intravascular cancer embolus (OR = 0.234, 95% CI: 0.108-0.507, P < .001) as independent predictors of LNM. Lymph nodes No. 1, 2, 3, 4, 7, 10, and 11 were more prone to metastasis in the abdominal cavity. Notably, Siewert III AEG patients showed a higher metastatic rate in nodes No. 5 and No. 6 compared to Siewert II. Mediastinal LNM was predominantly found in nodes No. 110 and No. 111 for Siewert II AEG, with rates of 5.45% and 3.64%, respectively. A 3-year survival analysis underscored LNM as a significant prognostic factor (P = .001). Siewert II AEG patients should undergo removal of both celiac and mediastinal lymph nodes, specifically nodes No. 1, 2, 3, 4, 7, 10, 11, 110, and 111. Dissection of nodes No. 5 and No. 6 is not indicated for these patients. In contrast, Siewert III AEG patients do not require mediastinal LND, but pyloric lymphadenectomy for nodes No. 5 and No. 6 is essential. The presence of LNM is associated with poorer long-term prognosis. Perioperative chemotherapy may offer a survival advantage for AEG patients.
Collapse
Affiliation(s)
- Yidong Huang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing, China
| | - Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing, China
| |
Collapse
|
223
|
Lauer SM, Omar MH, Golkowski MG, Kenerson HL, Lee KS, Pascual BC, Lim HC, Forbush K, Smith FD, Gordan JD, Ong SE, Yeung RS, Scott JD. Recruitment of BAG2 to DNAJ-PKAc scaffolds promotes cell survival and resistance to drug-induced apoptosis in fibrolamellar carcinoma. Cell Rep 2024; 43:113678. [PMID: 38236773 PMCID: PMC10964278 DOI: 10.1016/j.celrep.2024.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
The DNAJ-PKAc fusion kinase is a defining feature of fibrolamellar carcinoma (FLC). FLC tumors are notoriously resistant to standard chemotherapies, with aberrant kinase activity assumed to be a contributing factor. By combining proximity proteomics, biochemical analyses, and live-cell photoactivation microscopy, we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates, including proteins involved in translation and the anti-apoptotic factor Bcl-2-associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Tissue samples from patients with FLC exhibit increased levels of BAG2 in primary and metastatic tumors. Furthermore, drug studies implicate the DNAJ-PKAc/Hsp70/BAG2 axis in potentiating chemotherapeutic resistance. We find that the Bcl-2 inhibitor navitoclax enhances sensitivity to etoposide-induced apoptosis in cells expressing DNAJ-PKAc. Thus, our work indicates BAG2 as a marker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.
Collapse
Affiliation(s)
- Sophia M Lauer
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Mitchell H Omar
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Martin G Golkowski
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Bryan C Pascual
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Huat C Lim
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine Forbush
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - F Donelson Smith
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - John D Gordan
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Raymond S Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA.
| |
Collapse
|
224
|
Tian L, Lu J, Ng IOL. Extracellular vesicles and cancer stemness in hepatocellular carcinoma - is there a link? Front Immunol 2024; 15:1368898. [PMID: 38476233 PMCID: PMC10927723 DOI: 10.3389/fimmu.2024.1368898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, with high recurrence rates and notorious resistance to conventional chemotherapy. Cancer stemness refers to the stem-cell-like phenotype of cancer cells and has been recognized to play important roles in different aspects of hepatocarcinogenesis. Small extracellular vesicles (sEVs) are small membranous particles secreted by cells that can transfer bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites, to neighboring or distant cells. Recent studies have highlighted the role of sEVs in modulating different aspects of the cancer stemness properties of HCC. Furthermore, sEVs derived from diverse cellular sources, such as cancer cells, stromal cells, and immune cells, contribute to the maintenance of the cancer stemness phenotype in HCC. Through cargo transfer, specific signaling pathways are activated within the recipient cells, thus promoting the stemness properties. Additionally, sEVs can govern the secretion of growth factors from non-cancer cells to further maintain their stemness features. Clinically, plasma sEVs may hold promise as potential biomarkers for HCC diagnosis and treatment prediction. Understanding the underlying mechanisms by which sEVs promote cancer stemness in HCC is crucial, as targeting sEV-mediated communication may offer novel strategies in treatment and improve patient outcome.
Collapse
Affiliation(s)
- Lu Tian
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingyi Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
225
|
Ma Q, Yang F, Xiao B, Guo X. Emerging roles of circular RNAs in tumorigenesis, progression, and treatment of gastric cancer. J Transl Med 2024; 22:207. [PMID: 38414006 PMCID: PMC10897999 DOI: 10.1186/s12967-024-05001-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
With an estimated one million new cases reported annually, gastric cancer (GC) ranks as the fifth most diagnosed malignancy worldwide. The early detection of GC remains a major challenge, and the prognosis worsens either when patients develop resistance to chemotherapy or radiotherapy or when the cancer metastasizes. The precise pathogenesis underlying GC is not well understood, which further complicates its treatment. Circular RNAs (circRNAs), a recently discovered class of noncoding RNAs that originate from parental genes through "back-splicing", have been shown to play a key role in various biological processes in both eukaryotes and prokaryotes. CircRNAs have been linked to cardiovascular diseases, diabetes, hypertension, Alzheimer's disease, and the occurrence and progression of tumors. Prior studies have established that circRNAs play a crucial role in GC, impacting tumorigenesis, diagnosis, progression, and therapy resistance. This review aims to summarize how circRNAs contribute to GC tumorigenesis and progression, examine their roles in the development of drug resistance, discuss their potential as biotechnological drugs, and summarize their response to therapeutic drugs and microorganism in GC.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
226
|
Li Y, Sadée CY, Carrillo-Perez F, Selby HM, Thieme AH, Gevaert O. A 3D lung lesion variational autoencoder. CELL REPORTS METHODS 2024; 4:100695. [PMID: 38278157 PMCID: PMC10921017 DOI: 10.1016/j.crmeth.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024]
Abstract
In this study, we develop a 3D beta variational autoencoder (beta-VAE) to advance lung cancer imaging analysis, countering the constraints of conventional radiomics methods. The autoencoder extracts information from public lung computed tomography (CT) datasets without additional labels. It reconstructs 3D lung nodule images with high quality (structural similarity: 0.774, peak signal-to-noise ratio: 26.1, and mean-squared error: 0.0008). The model effectively encodes lesion sizes in its latent embeddings, with a significant correlation with lesion size found after applying uniform manifold approximation and projection (UMAP) for dimensionality reduction. Additionally, the beta-VAE can synthesize new lesions of varying sizes by manipulating the latent features. The model can predict multiple clinical endpoints, including pathological N stage or KRAS mutation status, on the Stanford radiogenomics lung cancer dataset. Comparisons with other methods show that the beta-VAE performs equally well in these tasks, suggesting its potential as a pretrained model for predicting patient outcomes in medical imaging.
Collapse
Affiliation(s)
- Yiheng Li
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Christoph Y Sadée
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Francisco Carrillo-Perez
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Architecture and Computer Technology (ATC), University of Granada, C. Periodista Daniel Saucedo Aranda, s/n, Granada, 18014 Granada, Spain
| | - Heather M Selby
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alexander H Thieme
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
227
|
Lee HJ, Kwon YS, Lee JH, Moon YG, Choi J, Hyun M, Tak TK, Kim JH, Heo JD. Pectolinarigenin regulates the tumor-associated proteins in AGS-xenograft BALB/c nude mice. Mol Biol Rep 2024; 51:305. [PMID: 38361124 PMCID: PMC10869406 DOI: 10.1007/s11033-023-09046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Pectolinarigenin (PEC) is a flavone extracted from Cirsium, and because it has anti-inflammatory properties, anti-cancer research is also being conducted. The objective of this work was to find out if PEC is involved in tumor control and which pathways it regulates in vivo and in vitro. METHODS AGS cell lines were xenografted into BALB/c nude mice to create tumors, and PEC was administered intraperitoneally to see if it was involved in tumor control. Once animal testing was completed, tumor proteins were isolated and identified using LC-MS analysis, and gene ontology of the found proteins was performed. RESULTS Body weight and hematological measurements on the xenograft mice model demonstrated that PEC was not harmful to non-cancerous cells. We found 582 proteins in tumor tissue linked to biological reactions such as carcinogenesis and cell death signaling. PEC regulated 6 out of 582 proteins in vivo and in vitro in the same way. CONCLUSION Our findings suggested that PEC therapy may inhibit tumor development in gastric cancer (GC), and proteomic research gives fundamental information about proteins that may have great promise as new therapeutic targets in GC.
Collapse
Affiliation(s)
- Ho Jeong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Ju Hong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Yeon Gyu Moon
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Jungil Choi
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Moonjung Hyun
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Tae Kil Tak
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Je-Hein Kim
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea.
| |
Collapse
|
228
|
Wang C, He J, Chen C, Luo W, Dang X, Mao L. A potential role of human esophageal cancer-related gene-4 in cardiovascular homeostasis. Gene 2024; 894:147977. [PMID: 37956966 DOI: 10.1016/j.gene.2023.147977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Human esophageal cancer related gene-4 (ECRG-4) encodes a 148-aminoacid pre-pro-peptide that can be processed tissue-dependently into multiple small peptides possessing multiple functions distinct from, similar to, or opposite to the tumor suppressor function of the full-length Ecrg4. Ecrg-4 is covalently bound to the cell surface through its signal peptide, colocalized with the innate immunity complex (TLR4-CD14-MD2), and functions as a 'sentinel' molecule in the maintenance of epithelium and leukocyte homeostasis, meaning that the presence of Ecrg-4 on the cell surface signals the maintained homeostasis, whereas the loss of Ecrg-4 due to tissue injury activates pro-inflammatory and tissue proliferative responses, and the level of Ecrg-4 gradually returns to its pre-injury level upon wound healing. Interestingly, Ecrg-4 is also highly expressed in the heart and its conduction system, endothelial cells, and vascular smooth muscle cells. Accumulating evidence has shown that Ecrg-4 is involved in cardiac rate/rhythm control, the development of atrial fibrillation, doxorubicin-induced cardiotoxicity, the ischemic response of the heart and hypoxic response in the carotid body, the pathogenesis of atherosclerosis, and likely the endemic incidence of idiopathic dilated cardiomyopathy. These preliminary discoveries suggest that Ecrg-4 may function as a 'sentinel' molecule in cardiovascular system as well. Here, we briefly review the basic characteristics of ECRG-4 as a tumor suppressor gene and its regulatory functions on inflammation and apoptosis; summarize the discoveries about its distribution in cardiovascular system and involvement in the development of CVDs, and discuss its potential as a novel therapeutic target for the maintenance of cardiovascular system homeostasis.
Collapse
Affiliation(s)
- Chaoying Wang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Jianghui He
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Wenjun Luo
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China.
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
229
|
Peng N, Liu J, Hai S, Liu Y, Zhao H, Liu W. Role of Post-Translational Modifications in Colorectal Cancer Metastasis. Cancers (Basel) 2024; 16:652. [PMID: 38339403 PMCID: PMC10854713 DOI: 10.3390/cancers16030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. CRC metastasis is a multi-step process with various factors involved, including genetic and epigenetic regulations, which turn out to be a serious threat to CRC patients. Post-translational modifications (PTMs) of proteins involve the addition of chemical groups, sugars, or proteins to specific residues, which fine-tunes a protein's stability, localization, or interactions to orchestrate complicated biological processes. An increasing number of recent studies suggest that dysregulation of PTMs, such as phosphorylation, ubiquitination, and glycosylation, play pivotal roles in the CRC metastasis cascade. Here, we summarized recent advances in the role of post-translational modifications in diverse aspects of CRC metastasis and its detailed molecular mechanisms. Moreover, advances in drugs targeting PTMs and their cooperation with other anti-cancer drugs, which might provide novel targets for CRC treatment and improve therapeutic efficacy, were also discussed.
Collapse
Affiliation(s)
- Na Peng
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Shuangshuang Hai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Yihong Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Haibo Zhao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Weixin Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| |
Collapse
|
230
|
Wang J, Zheng F, Wang D, Yang Q. Regulation of ULK1 by WTAP/IGF2BP3 axis enhances mitophagy and progression in epithelial ovarian cancer. Cell Death Dis 2024; 15:97. [PMID: 38286802 PMCID: PMC10824720 DOI: 10.1038/s41419-024-06477-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
There is a pressing need for innovative therapeutic strategies for patients with epithelial ovarian cancer (EOC). Previous studies have shown that UNC-51-like kinase 1 (ULK1), a serine/threonine kinase, is crucial in regulating cellular autophagy and mitophagy across various tumor types. However, the clinical implications, biological functions, and potential mechanisms of ULK1 in EOC remain poorly understood. This study demonstrates that ULK1 expression is upregulated in EOC tissue samples and EOC cell lines, with increased ULK1 expression correlating with poor prognosis. Functionally, overexpressed ULK1 enhances the proliferation and migration abilities of EOC cells both in vitro and in vivo. Mechanistically, ULK1 was identified as an m6A target of WTAP. WTAP-mediated m6A modification of ULK1 enhanced its mRNA stability in an IGF2BP3-dependent manner, leading to elevated ULK1 expression and enhanced mitophagy in EOC. In summary, our research reveals that the WTAP/IGF2BP3-ULK1 axis significantly influences protective mitophagy in EOC, contributing to its progression. Therefore, the regulatory mechanisms and biological function of ULK1 identify it as a potential molecular target for therapeutic intervention in EOC.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fei Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
231
|
Zhou Z, Zhang B, Deng Y, Deng S, Li J, Wei W, Wang Y, Wang J, Feng Z, Che M, Yang X, Meng J, Li Y, Hu Y, Sun Y, Wen L, Huang F, Sheng Y, Wan C, Yang K. FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J Exp Clin Cancer Res 2024; 43:34. [PMID: 38281999 PMCID: PMC10823633 DOI: 10.1186/s13046-024-02959-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3β on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3β kinase to recognize and degrade IGF2BP2. CONCLUSIONS Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiacheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zishan Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
232
|
Sung HWJ, Son HO, Heo DB, Won HR, Koo BS, Chang JW. Optimal Extent of Neck Dissection for a Head and Neck Lymph Node Metastasis from a Remote Primary Site. J Clin Med 2024; 13:661. [PMID: 38337356 PMCID: PMC10856640 DOI: 10.3390/jcm13030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Despite its rarity and limited documentation, therapeutic neck dissection (ND) for cervical lymph node (LN) metastases from distant primary sites is increasingly practiced, potentially enhancing survival rates. However, the optimal ND extent remains unclear. This study aimed to determine the safety of excluding upper neck levels from ND. METHODS We retrospectively analyzed 25 patients who underwent ND for cervical LN metastases from remote primary tumors between 2015 and 2021 (12 with primary lung tumors, four with ovary, three with mammary gland, three with esophagus, two with thymus, and one with colon). RESULTS Assessing clinical characteristics and occult metastasis rates, we observed LN metastases predominantly at levels III and IV. Occult metastases occurred in 14 out of 25 patients, primarily at neck levels III and IV (55.0% and 50.0%, respectively). The five-year disease-specific survival rate for all patients was 44.3%. While no statistically significant impact of occult metastasis on prognosis was confirmed, an association between the postoperative LN ratio and poor prognosis was revealed. CONCLUSIONS Our findings suggest that prophylactic NDs at levels I, II, and Va may not be essential for managing cervical LN metastases from remote primary malignancies. This could lead to a more tailored and less invasive therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea; (H.W.J.S.); (H.O.S.); (D.B.H.); (H.-R.W.); (B.S.K.)
| |
Collapse
|
233
|
Sun Z, Tie Y, Tong X, Cheng M, Wu Y, Xu P, Xue M, Xu L, Zhou X. Multi-omics approaches revealed the therapeutic mechanisms of Suo-Quan-Wan for treating overactive bladder in spontaneously hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117066. [PMID: 37604331 DOI: 10.1016/j.jep.2023.117066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suo-Quan-Wan (SQW), a traditional Chinese prescription, has been used for hundreds of years to alleviate overactive bladder (OAB) symptoms such as frequent and nocturnal urination. However, limited modern research on OAB therapeutic targets has hindered the use and development of SQW. AIM OF THE STUDY This study aimed to investigate the biological mechanisms and key targets of SQW on OAB in spontaneously hypertensive rats (SHR) using an integrated analysis of network pharmacology, transcriptome and metabolome. METHODS Rats were divided into five groups: model group (SHR), control group (WKY), darifenacin group, high dose (SQWH) and low dose (SQWL) group. Urodynamic parameters and histological examination were detected. Network pharmacology, transcriptome, and metabolome were used to screen for disease gene targets, differential mRNA, and differential metabolites, respectively. The biological targets and mechanisms of SQW for OAB were analyzed. Western blotting was performed to verify the proteins of key differential targets. RESULTS Urodynamics revealed a significant decrease in storage parameters in SHR. After SQW treatment, the inter-contraction interval, voided volume and bladder capacity increased by 2-3 times, as well as bladder compliance. Additionally, SQW improved the pathological changes in the urinary tract epithelium and the detrusor layer of the bladder in SHR. Metabolomic results showed an increase in arachidonic acid (AA) and cyclic adenosine monophosphate (cAMP) in plasma, suggesting the involvement of arachidonic acid metabolism and purine metabolism in SQW treatment. The downregulation of cytochrome P450 1B1 (CYP1B1), thromboxane-A synthase (TBXAS1), polyunsaturated fatty acid 5-lipoxygenase (ALOX5), and cAMP-specific 3',5'-cyclic phosphodiesterase 4B (PDE4B) were confirmed through topological analysis and Venn analysis of omics data and network pharmacology. These proteins affected the metabolism of AA and cAMP, respectively, and consequently affected downstream proteins, such as transient receptor potential (TRP) cation channel proteins (e.g. TRPV1, TRPA1, and TRPM8), myosin light chain kinase (MLCK), and the phosphorylation of myosin regulatory light chain (p-MLC). CONCLUSION This study initially elucidated the importance of AA and cAMP in the treatment of SQW, indicating the AA-CYP1B1/TBXAS1/ALOX5-TRPA1/TRPV1/TRPM8 and cAMP-PDE4B-MLCK-p-MLC pathways as the important pathways in SQW-treated SHR bladder in vivo.
Collapse
Affiliation(s)
- Zhihui Sun
- Department of Clinical Prescription Pharmacy of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Yan Tie
- Department of Clinical Prescription Pharmacy of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Xinyi Tong
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Mingchang Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yushan Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Liping Xu
- Department of Clinical Prescription Pharmacy of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
234
|
Wen Z, Li Y, Zhao Z, Li R, Li X, Lu C, Sun C, Chen W, Ge Z, Ni L, Lai Y. A serum panel of three microRNAs may serve as possible biomarkers for kidney renal clear cell carcinoma. Cancer Cell Int 2024; 24:18. [PMID: 38191389 PMCID: PMC10773017 DOI: 10.1186/s12935-023-03187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Although non-invasive radiological techniques are widely applied in kidney renal clear cell carcinoma (KIRC) diagnosis, more than 50% of KIRCs are detected incidentally during the diagnostic procedures to identify renal cell carcinoma (RCC). Thus, sensitive and accurate KIRC diagnostic methods are required. Therefore, in this study, we aimed to identify KIRC-associated microRNAs (miRNAs). METHODS This three-phase study included 224 participants (112 each of patients with KIRC and healthy controls (NCs)). RT-qPCR was used to evaluate miRNA expression in KIRC and NC samples. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to predict the usefulness of serum miRNAs in KIRC diagnosis. In addition, we performed survival and bioinformatics analyses. RESULTS We found that miR-1-3p, miR-129-5p, miR-146b-5p, miR-187-3p, and miR-200a-3p were significantly differentially expressed in patients with KIRC. A panel consisting of three miRNAs (miR-1-3p, miR-129-5p, and miR-146b-5p) had an AUC of 0.895, ranging from 0.848 to 0.942. In addition, using the GEPIA database, we found that the miRNAs were associated with CREB5. According to the survival analysis, miR-146b-5p overexpression was indicative of a poorer prognosis in patients with KIRC. CONCLUSIONS The identified three-miRNA panel could serve as a non-invasive indicator for KIRC and CREB5 as a potential target gene for KIRC treatment.
Collapse
Affiliation(s)
- Zhenyu Wen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Yingqi Li
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zhengping Zhao
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
| | - Rongkang Li
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinji Li
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Chong Lu
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chen Sun
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wenkang Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Zhenjian Ge
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Liangchao Ni
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China.
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, People's Republic of China.
| |
Collapse
|
235
|
Wang X, Zhang J, Wu Y, Zhang Y, Zhang S, Li A, Wang J, Wang Z. RORα inhibits gastric cancer proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity. Cancer Cell Int 2024; 24:12. [PMID: 38184549 PMCID: PMC10770990 DOI: 10.1186/s12935-023-03201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Glycolysis is critical for harvesting abundant energy to maintain the tumor microenvironment in malignant tumors. Retinoic acid-related orphan receptor α (RORα) has been identified as a circadian gene. However, the association of glycolysis with RORα in regulating gastric cancer (GC) proliferation remains poorly understood. METHODS Bioinformatic analysis and retrospective study were utilized to explore the role of RORα in cell cycle and glycolysis in GC. The mechanisms were performed in vitro and in vivo including colony formation, Cell Counting Kit-8 (CCK-8), Epithelial- mesenchymal transition (EMT) and subcutaneous tumors of mice model assays. The key drives between RORα and glycolysis were verified through western blot and chip assays. Moreover, we constructed models of high proliferation and high glucose environments to verify a negative feedback and chemoresistance through a series of functional experiments in vitro and in vivo. RESULTS RORα was found to be involved in the cell cycle and glycolysis through a gene set enrichment analysis (GSEA) algorithm. GC patients with low RORα expression were not only associated with high circulating tumor cells (CTC) and high vascular endothelial growth factor (VEGF) levels. However, it also presented a positive correlation with the standard uptake value (SUV) level. Moreover, the SUVmax levels showed a positive linear relation with CTC and VEGF levels. In addition, RORα expression levels were associated with glucose 6 phosphate dehydrogenase (G6PD) and phosphofructokinase-2/fructose-2,6-bisphosphatase (PFKFB3) expression levels, and GC patients with low RORα and high G6PD or low RORα and high PFKFB3 expression patterns had poorest disease-free survival (DFS). Functionally, RORα deletion promoted GC proliferation and drove glycolysis in vitro and in vivo. These phenomena were reversed by the RORα activator SR1078. Moreover, RORα deletion promoted GC proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity in vitro and in vivo. Mechanistically, RORα was recruited to the G6PD and PFKFB3 promoters to modulate their transcription. Next, high proliferation and high glucose inhibited RORα expression, which indicated that negative feedback exists in GC. Moreover, RORα deletion improved fluorouracil chemoresistance through inhibition of glucose uptake. CONCLUSION RORα might be a novel biomarker and therapeutic target for GC through attenuating glycolysis.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Junyi Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuwei Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuqing Zhang
- Department of Occupational Health and Environmental Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Siyuan Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Angqing Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Jian Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
236
|
Wang K, Lu Y, Li H, Zhang J, Ju Y, Ouyang M. Role of long non-coding RNAs in metabolic reprogramming of gastrointestinal cancer cells. Cancer Cell Int 2024; 24:15. [PMID: 38184562 PMCID: PMC10770979 DOI: 10.1186/s12935-023-03194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Metabolic reprogramming, which is recognized as a hallmark of cancer, refers to the phenomenon by which cancer cells change their metabolism to support their increased biosynthetic demands. Tumor cells undergo substantial alterations in metabolic pathways, such as glycolysis, oxidative phosphorylation, pentose phosphate pathway, tricarboxylic acid cycle, fatty acid metabolism, and amino acid metabolism. Latest studies have revealed that long non-coding RNAs (lncRNAs), a group of non-coding RNAs over 200 nucleotides long, mediate metabolic reprogramming in tumor cells by regulating the transcription, translation and post-translational modification of metabolic-related signaling pathways and metabolism-related enzymes through transcriptional, translational, and post-translational modifications of genes. In addition, lncRNAs are closely related to the tumor microenvironment, and they directly or indirectly affect the proliferation and migration of tumor cells, drug resistance and other processes. Here, we review the mechanisms of lncRNA-mediated regulation of glucose, lipid, amino acid metabolism and tumor immunity in gastrointestinal tumors, aiming to provide more information on effective therapeutic targets and drug molecules for gastrointestinal tumors.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- Guangdong Medical University, Dongguan, 523808, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
237
|
Tian S, Wang R, Wang Y, Chen R, Lin T, Xiao X, Liu X, Ideozu JE, Geng H, Wang Y, Yue D. p32 regulates glycometabolism and TCA cycle to inhibit ccRCC progression via copper-induced DLAT lipoylation oligomerization. Int J Biol Sci 2024; 20:516-536. [PMID: 38169635 PMCID: PMC10758103 DOI: 10.7150/ijbs.84399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
A key player in mitochondrial respiration, p32, often referred to as C1QBP, is mostly found in the mitochondrial matrix. Previously, we showed that p32 interacts with DLAT in the mitochondria. Here, we found that p32 expression was reduced in ccRCC and suppressed progression and metastasis in ccRCC animal models. We observed that increasing p32 expression led to an increase in oxidative phosphorylation by interacting with DLAT, thus, regulating the activation of the pyruvate dehydrogenase complex (PDHc). Mechanistically, reduced p32 expression, in concert with DLAT, suppresses PDHc activity and the TCA cycle. Furthermore, our research discovered that p32 has a direct binding affinity for copper, facilitating the copper-induced oligomerization of lipo-DLAT specifically in ccRCC cells. This finding reveals an innovative function of the p32/DLAT/copper complex in regulating glycometabolism and the TCA cycle in ccRCC. Importantly, our research provides important new understandings of the underlying molecular processes causing the abnormal mitochondrial metabolism linked to this cancer.
Collapse
Affiliation(s)
- Shaoping Tian
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Rui Wang
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Yiting Wang
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin 300134, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tianyu Lin
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Xuesong Xiao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xinyu Liu
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Justin Eze Ideozu
- Genomic Medicine, Genomic Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Hua Geng
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dan Yue
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
238
|
Leggett CL. Endoscopic screening for oesophageal cancer: empowering artificial intelligence with a high-quality examination. Lancet Gastroenterol Hepatol 2024; 9:4-5. [PMID: 37952556 DOI: 10.1016/s2468-1253(23)00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Cadman L Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
239
|
Peng S, Zhang H, Song G, Zhu J, Zhang S, Liu C, Gao F, Yang H, Zhu W. Construct dysregulated miRNA-mRNA interaction networks to conjecture possible pathogenesis for Stomach adenocarcinomas. Cancer Biomark 2024; 39:197-210. [PMID: 38108345 PMCID: PMC11091561 DOI: 10.3233/cbm-230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Post-transcriptional regulation of mRNA induced by microRNA is known crucial in tumor occurrence, progression, and metastasis. This study aims at identifying significant miRNA-mRNA axes for stomach adenocarcinomas (STAD). METHOD RNA expression profiles were collected from The Cancer Genome Atlas (TCGA) and GEO database for screening differently expressed RNAs and miRNAs (DE-miRNAs/DE-mRNAs). Functional enrichment analysis was conducted with Hiplot and DAVID-mirPath. Connectivity MAP was applied in compounds prediction. MiRNA-mRNA axes were forecasted by TarBase and MiRTarBase. Real-time reverse transcription polymerase chain reaction (RT-qPCR) of stomach specimen verified these miRNA-mRNA pairs. Diagnosis efficacy of miRNA-mRNA interactions was measured by Receiver operation characteristic curve and Decision Curve Analysis. Clinical and survival analysis were also carried out. CIBERSORT and ESTIMATE was employed for immune microenvironment measurement. RESULT Totally 228 DE-mRNAs (105 upregulated and 123 downregulated) and 38 DE-miRNAs (22 upregulated and 16 downregulated) were considered significant. TarBase and MiRTarBase identified 18 miRNA-mRNA pairs, 12 of which were verified in RT-qPCR. The network of miR-301a-3p/ELL2 and miR-1-3p/ANXA2 were established and verified in external validation. The model containing all 4 signatures showed better diagnosis ability. Via interacting with M0 macrophage and resting mast cell, these miRNA-mRNA axes may influence tumor microenvironment. CONCLUSION This study established a miRNA-mRNA network via bioinformatic analysis and experiment validation for STAD.
Collapse
Affiliation(s)
- Shuang Peng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoxin Song
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfeng Zhu
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Gao
- Department of Osteology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hang Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
240
|
Massaro M, Cinà G, Borrego-Sánchez A, Sainz-Díaz CI, Viseras-Iborra C, Sánchez-Espejo R, de Melo Barbosa R, Leone F, Pibiri I, Noto R, Riela S. Thixotropic Hydrogels Based on Laponite® and Cucurbituril for Delivery of Lipophilic Drug Molecules. Chempluschem 2024; 89:e202300370. [PMID: 37767728 DOI: 10.1002/cplu.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Nowadays the use of hydrogels for biomedical purposes is increasing because of their interesting features that allow the development of targeted drug delivery systems. Herein, hydrogel based on Laponite® (Lap) clay mineral as gelator and cucurbit[6]uril (CB[6]) molecules were synthetized for the delivery of flufenamic acid (FFA) for potential topical application. Firstly, the interaction between CB[6] and FFA was assessed by UV-vis spectroscopic measurements and molecular modeling calculations. Then, the obtained complex was used as filler for Lap hydrogel (Lap/CB[6]/FFA). The properties of the hydrogel in terms of viscosity and, self-repair abilities were investigated; its morphology was imaged by scanning electron and polarized optical microscopies. Furthermore, the changes in the hydrodynamic radii and in the colloidal stability of CB[6]/Lap mixture were investigated in terms of translational diffusion from dynamic light scattering and ζ-potential measurements. Finally, the kinetic in vitro release of FFA, from Lap/CB[6]/FFA hydrogel, was studied in a medium mimicking the pH of skin and the obtained results were discussed both by an experimental point of view and by molecular modeling calculations.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Giuseppe Cinà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Ana Borrego-Sánchez
- Instituto de Ciencia Molecular, Universitat de València, Carrer del Catedrátic José Beltrán Martinez 2, 46980, Paterna, Spain
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas- Universidad de Granada (CSIC-UGR), Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain
| | - César Viseras-Iborra
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas- Universidad de Granada (CSIC-UGR), Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, s/n, 18071, Granada, Spain
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, s/n, 18071, Granada, Spain
| | - Raquel de Melo Barbosa
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, s/n, 18071, Granada, Spain
| | - Federica Leone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Renato Noto
- University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Serena Riela
- Dipartimento di Scienze Chimiche, University of Catania, Via A. Doria, 6, 95125, Catania, Italy
| |
Collapse
|
241
|
Yan Q, Feng Z, Jiang B, Yao J. Biological functions of connexins in the development of inflammatory bowel disease. Scand J Gastroenterol 2024; 59:142-149. [PMID: 37837320 DOI: 10.1080/00365521.2023.2267713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory diseases with unknown etiology. Gap junctions composed of connexins (Cxs) have been recently validated as an important factor in the development of IBD. Under IBD-induced inflammatory response in the gut, gap junctions connect multiple signaling pathways involved in the interaction between inflammatory cells with other intestinal cells, which altogether mediate the development of IBD. This paper is a narrative review aiming to comprehensively elucidate the biological function of connexins, especially the ubiquitously and predominantly expressed Cx43, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Qiaojing Yan
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Zhiling Feng
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Bin Jiang
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
242
|
Li L, Chen G, Chen EY, Strickland MR, Zhao W, Zhang J, Li Z. Development and validation of a nomogram to predict pathological complete response in patients with locally advanced gastric adenocarcinoma treated with neoadjuvant chemotherapy in combination with PD-1 antibodies. J Gastrointest Oncol 2023; 14:2373-2383. [PMID: 38196541 PMCID: PMC10772673 DOI: 10.21037/jgo-23-751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Background Currently, the survival benefits of combining neoadjuvant chemotherapy with programmed death 1 (PD-1) antibody immunotherapy in advanced gastric adenocarcinoma remain controversial. Emerging evidence suggests that the survival benefits of neoadjuvant therapy in advanced gastric adenocarcinoma hinge upon the attainment of pathological complete response (pCR). Therefore, the prediction of pCR in patients undergoing neoadjuvant chemotherapy combined with PD-1 antibody immunotherapy holds significant importance and is beneficial for the individualized treatment of gastric cancer (GC) patients. Methods Clinical and pathological characteristics of patients with GC who received neoadjuvant chemotherapy combined with PD-1 inhibitor (camrelizumab) therapy and radical gastrectomy between January 2019 and December 2020 at the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital were retrospectively analyzed. A total of 52 patients were enrolled in the study, with all subjects assigned to the training set. The neoadjuvant regimen consisted of a combination of PD-1 inhibitor and fluorouracil analogues plus oxaliplatin, comprising two drugs. The patients were divided into a pCR group and a non-pCR group according to pCR occurrence. Multifactor logistic regression analysis was applied to determine the correlation between each factor and pCR. A prediction model was developed based on the results of the logistic regression analysis. The predictive performance of the model was evaluated using the receiver operating characteristic curves. Internal verification was completed via the bootstrapping method. Results The pCR was observed in 10 out of 52 patients (19.2%). The results of binary logistic regression multivariate analysis showed that cN stage [odds ratio (OR): 0.215; P=0.03], combined positive score (CPS) (OR: 6.364; P=0.026), and tumor diameter (OR: 0.112; P=0.026) were independent predictors of pCR. The nomogram prediction model for the pCR was plotted with a concordance index of 0.923 [95% confidence interval (CI): 0.8441-1]. Conclusions Neoadjuvant chemotherapy combined with PD-1 antibodies may be the preferred option for patients with advanced gastric adenocarcinoma who have a small tumor diameter, no or few lymph node metastases, and high CPS. The presented nomogram model exhibits the potential to predict pCR in advanced gastric adenocarcinoma patients, showcasing satisfactory predictive performance and potentially facilitating the implementation of personalized treatment strategies.
Collapse
Affiliation(s)
- Liang Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guanglong Chen
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Emerson Y. Chen
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R. Strickland
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Weijie Zhao
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhi Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
243
|
Chen W, Caiyun L, Yang Y, Xinwei H, Nan L, Jiaming Y, Huirong Y, Kai W, Liucheng Y. Circular RNA MTCL1 targets SMAD3 by sponging miR-145-5p for regulation of cell proliferation and migration in Hirschsprung's disease. Pediatr Surg Int 2023; 40:25. [PMID: 38127107 DOI: 10.1007/s00383-023-05621-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital disorder resulting from abnormal development of the enteric nervous system (ENS). Given the complexity of its pathogenesis, it is important to investigate the role of epigenetic inheritance in its development. As Circ-MTCL1 is abundant in brain tissue and colon tissue, whether it has a significant part in the development of ENS is worth exploring. This study clarifies its role in HSCR and identifies the specific molecular mechanisms involved. METHODS Diseased and dilated segment colon tissues diagnosed as HSCR were collected for the assessment of gene expression levels using RT-PCR. EdU and CCK-8 assays were adopted to evaluate cell proliferation, and Transwell assay was adopted to assess cell migration. The interaction between Circ-MTCL1, miR-145-5p and SMAD3 was confirmed by dual luciferase reporter gene analysis, RT-PCR and Western blotting. RESULTS Circ-MTCL1 was down-regulated in the aganglionic colon tissues. The decreased expression of Circ-MTCL1 associated with a reduction in cell migration and proliferation. Bioinformatics analysis and cellular experiments confirmed its role might have been associated with the inhibition of miR-145-5p. MiR-145-5p was up-regulated in HSCR diseased segment colon tissues, exhibiting a negative correlation with Circ-MTCL1. Overexpression of miR-145-5p reversed the inhibition of cell migration and proliferation associated with Circ-MTCL1 down-regulation. The expression of SMAD3 was inhibited by miR-145-5p. The overexpression of SMAD3 eliminated the miR-145-5p-associated inhibition of cell migration and proliferation. Overexpression of miR-145-5p reversed the inhibitory effects of Circ-MTCL1 down-regulation-associated inhibition of cell migration and proliferation, while suppressing SMAD3 expression. Conversely, overexpression of SMAD3 counteracted the miR-145-5p-associated inhibition of cell migration and proliferation. CONCLUSIONS Circ-MTCL1 may function as a miR-145-5p sponge, regulating the expression of SMAD3 and influencing cell migration and proliferation, thus participating in the development of HSCR.
Collapse
Affiliation(s)
- Wang Chen
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Luo Caiyun
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Yang
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hou Xinwei
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Li Nan
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Jiaming
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Huirong
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yang Liucheng
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
244
|
Wang Y, Qin Z, Chen Y, Zheng Y, Jia L. A Novel LncRNA MASCC1 Regulates the Progression and Metastasis of Head and Neck Squamous Cell Carcinoma by Sponging miR-195. Cancers (Basel) 2023; 15:5792. [PMID: 38136338 PMCID: PMC10741893 DOI: 10.3390/cancers15245792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The altered expression of long noncoding RNAs (lncRNAs) is associated with human carcinogenesis. We performed a high-throughput analysis of lncRNA expression in strictly selected pairs of metastatic head and neck squamous cell carcinoma (HNSCC) and non-metastatic HNSCC samples. We identified a novel lncRNA, which was highly expressed in metastatic HNSCC, named Metastasis Associated Squamous Cell Carcinoma 1 (MASCC1), for further study. Using qRT-PCR, we further compared MASCC1 expression in 60 HNSCC samples. The results show that high expression of MASCC1 in patients with HNSCC was related to poor prognosis. In vitro, MASCC1 knockdown (KD) inhibited HNSCC proliferation, migration, invasion, and tumor sphere formation, while promoting apoptosis. In vivo, MASCC1 KD inhibited HNSCC growth and lymph node metastasis. Mechanistically, MASCC1 acted as a competing endogenous RNA (ceRNA) by binding to miR-195, subsequently regulating the expression of Cyclin D1, BCL-2, and YAP1. Moreover, miR-195 overexpression rescued the effects of MASCC1 on the biological behaviors of HNSCC. Taken together, our results suggest that MASCC1 is a novel oncogene that can predict the prognosis of patients with HNSCC and is a potential therapeutic target for HNSCC intervention.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
| | - Zhen Qin
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
| | - Yiwen Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| |
Collapse
|
245
|
Han E, Lee E, Sukhu B, Garcia J, López Castillo H. The relationship between dietary inflammatory potential and cancer outcomes among cancer survivors: A systematic review and meta-analysis of cohort studies. Transl Oncol 2023; 38:101798. [PMID: 37826918 PMCID: PMC10582578 DOI: 10.1016/j.tranon.2023.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer remains the second leading cause of death globally. Chronic inflammatory environments promote the growth of tumors, and the intake of certain food items can increase systemic inflammation. This study examined the relationship between the inflammatory potential of diet, measured by the Dietary Inflammatory Index (DII), and recurrence, all-cause, and cancer-specific mortality among cancer survivors. Web of Science, Medline, CINHAL, and PsycINFO databases were searched in April 2022. Two independent reviewers screened all searches. Of the 1,443 studies, 13 studies involving 14,920 cancer survivors passed all the screening stages. Three studies reported cancer recurrence, 12 reported all-cause mortality, and six reported cancer-specific mortality. Seven studies calculated DII from pre-diagnosis diets, five from post-diagnosis diets, and one from both pre-and post-diagnosis diets. A random-effects model meta-analysis showed that high DII was not associated with an increased risk of recurrence (HR = 1.09, 95 % CI = 0.77, 1.54, n = 4) and all-cause (HR = 1.08, 95 % CI = 0.99, 1.19, n = 14) and cancer-specific mortality (H = 1.07, 95 % CI = 0.92, 1.25, n = 6). Analysis by the timing of dietary assessment showed that only post-diagnosis DII was associated with an increased risk of all-cause mortality (HR = 1.34, 95 % CI = 1.05, 1.72, n = 6) by 34 %; however, cancer type did not modify these associations. The quality of the study assessed using the Newcastle Ottawa Scale indicated all but one studies were good. The risk of all-cause mortality among cancer survivors could be reduced by consuming more anti-inflammatory diets after cancer diagnosis.
Collapse
Affiliation(s)
- Eric Han
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, United States
| | - Eunkyung Lee
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, United States.
| | - Brian Sukhu
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, United States
| | - Jeanette Garcia
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, United States
| | - Humberto López Castillo
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, United States
| |
Collapse
|
246
|
Zhang X, Qiu X, Yin H, Zhao W, Song L, Zhang X, Yang L, Tao M. The combination of preoperative fibrinogen-to-albumin ratio and postoperative TNM stage (FAR-TNM) predicts the survival in gastric cancer patients after gastrectomy. Biomarkers 2023; 28:714-721. [PMID: 38059615 DOI: 10.1080/1354750x.2023.2281870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE There are many factors that affect the survival of patients with gastric cancer, such as TNM stage, the patient's nutritional status, inflammation, and so on. In this study, the prognostic significance of preoperative fibrinogen-to-albumin ratio (FAR) and postoperative TNM staging in patients with gastric cancer was retrospectively studied. METHODS A total of 265 patients (surgery dates from January 2007 to December 2013) were included in this retrospective study. All the patients were confirmed by pathology after operation. Categorical variables were compared using the χ2 test. Kaplan-Meier and log-rank tests were used for survival analysis. Cox proportional hazard models were used to assess prognostic factors. Nomogram was applied to predict the prognosis of overall survival (OS). RESULTS The higher the FAR value, the more lymph node metastasis, the later the TNM stage, and the shorter the survival time. We established a new scoring system, the FAR-TNM score, which combined FAR and TNM stage. The FAR-TNM score was significantly related to tumor location, tumor size, Bormann types, differentiation, operative type, vascular invasion, nerve invasion, depth of invasion, lymphatic metastasis, and advanced TNM stage. Multivariate Cox regression analysis demonstrated that tumor location, TNM stage, adjuvant chemotherapy, and FAR-TNM score were independent prognostic elements for OS in patients with GC. CONCLUSIONS The FAR-TNM score was a valuable independent prognostic indicator for GC patients after surgery, which can help clinicians to assist the treatment and long-term management of patients with gastric cancer.
Collapse
Affiliation(s)
- Xunlei Zhang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyue Qiu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haibing Yin
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenjing Zhao
- Cancer Research Center, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Song
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingsong Zhang
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Yang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
247
|
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J, Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl) 2023; 101:1543-1565. [PMID: 37796337 DOI: 10.1007/s00109-023-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common squamous cell carcinomas of the head and neck, and Epstein-Barr virus (EBV) infection is one of the pathogenic factors involved in the oncogenetic development and progression of NPC. E3 ligases, which are key members of the ubiquitin proteasome system (UPS), specifically recognize various oncogenic factors and tumor suppressors and contribute to determining their fate through ubiquitination. Several studies have demonstrated that E3 ligases are aberrantly expressed and mutated in NPC and that these changes are closely associated with the occurrence and progression of NPC. Herein, we aim to thoroughly review the specific action mechanisms by which E3 ligases participate in NPC signaling pathways and discuss their functional relationship with EBV. Moreover, we describe the current progress in and limitations for targeted therapies against E3 ligases in NPC. KEY MESSAGES: • E3 ubiquitin ligases, as members of the UPS system, determine the fate of their substrates and may act either as oncogenic or anti-tumorigenic factors in NPC. • Mutations or dysregulated expression of E3 ubiquitin ligases is closely related to the occurrence, development, and therapeutic sensitivity of NPC, as they play important roles in several signaling pathways affected by EBV infection. • As promising therapeutic targets, E3 ligases may open new avenues for treatment and for improving the prognosis of NPC patients.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Shao Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Youxiong Yang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315199, China.
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
248
|
Hu Z, Chen Z, Jiang W, Fang D, Peng P, Yao S, Luo M, Wang L, Sun Z, Wang W, Wang X, Mao H, Ai F, Zhou P. Long Noncoding RNA ACTA2-AS1 Inhibits Cell Growth and Facilitates Apoptosis in Gastric Cancer by Binding with miR-6720-5p to Regulate ESRRB. Biochem Genet 2023; 61:2672-2690. [PMID: 37222961 DOI: 10.1007/s10528-023-10399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/07/2023] [Indexed: 05/25/2023]
Abstract
Gastric cancer (GC) is a common malignant tumor, posing a great threat to human's health and life. Previous studies have suggested aberrant expression of long non-coding RNAs (lncRNAs) in GC. This study elucidated the effects of lncRNA ACTA2-AS1 on the biological characteristics of GC. Gene expression in stomach adenocarcinoma (STAD) samples compared with normal tissues and the correlation between gene expression and prognosis of STAD patients were analyzed using bioinformatic tools. Gene expression at protein and mRNA levels in GC and normal cells was tested by western blotting and RT-qPCR. The subcellular localization of ACTA2-AS1 in AGS and HGC27 cells was identified by nuclear-cytoplasmic fractionation and FISH assay. EdU, CCK-8, flow cytometry analysis, TUNEL staining assays were conducted to evaluate the role of ACTA2-AS1 and ESRRB on GC cellular behaviors. The binding relationship among ACTA2-AS1, miR-6720-5p and ESRRB was verified by RNA pulldown, luciferase reporter assay and RIP assay. LncRNA ACTA2-AS1 was underexpressed in GC tissues and cell lines. ACTA2-AS1 elevation suppressed GC cell proliferation and induced apoptosis. Mechanistically, ACTA2-AS1 directly bound to miR-6720-5p and subsequently promoted the expression of target gene ESRRB in GC cells. Furthermore, ESRRB knockdown reversed the influence of ACTA2-AS1 overexpression on GC proliferation and apoptosis. ACTA2-AS1 plays an antioncogenic role in GC via binding with miR-6720-5p to regulate ESRRB expression.
Collapse
Affiliation(s)
- Zuchao Hu
- The Second Ward of Surgery, Sinophram Hanjiang Hospital, Shiyan, Hubei, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, Hubei, China
| | - Wei Jiang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, Hubei, China
| | - Dazheng Fang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Peng
- The Second Ward of Internal Medicine, Sinophram Hanjiang Hospital, Shiyan, Hubei, China
| | - Shouguo Yao
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ming Luo
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Wang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhengfu Sun
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Wang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Wang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haibo Mao
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, Hubei, China.
| | - Peihua Zhou
- Department of Gastrointestinal Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, No. 16, Daling Road, Zhangwan District, Shiyan, Hubei, China.
| |
Collapse
|
249
|
Li T, Tian L, Cao J, Liu M. Cancer-associated fibroblasts secret extracellular vesicles to support cell proliferation and epithelial-mesenchymal transition in laryngeal squamous cell carcinoma. Mol Cell Probes 2023; 72:101934. [PMID: 37777021 DOI: 10.1016/j.mcp.2023.101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
As the critical components of tumor microenvironment, cancer-associated fibroblasts (CAFs) support the development of various type of cancers, including laryngeal squamous cell carcinoma (LSCC), but the detailed molecular mechanisms by which cancer-associated fibroblasts interact with LSCC cells to facilitate its progression have not been fully uncovered. In the present study, by analyzing the contents from normal fibroblasts (NFs) and cancer-associated fibroblasts-derived extracellular vesicles (EVs) with Real-Time qPCR analysis, we found that the tumor-initiating LncRNA TUC338 was significantly upregulated in the cancer-associated fibroblasts-derived extracellular vesicles, compared to the normal fibroblasts-secreted extracellular vesicles. Further experiments confirmed that cancer-associated fibroblasts-derived extracellular vesicles promoted cell proliferation, colony formation abilities, epithelial-mesenchymal transition (EMT) and tumorigenesis of LSCC cells via delivering LncRNA TUC338. The mechanical experiments verified that LncRNA TUC338 was stabilized by METTL3/YTHDF1-mediated N6-methyladenosine (m6A) modifications, and elevated LncRNA TUC338 sponged miR-8485 to upregulate chromobox homolog 2 (CBX2) in LSCC cells in a competing endogenous RNA mechanisms-dependent manner. Moreover, our rescue experiments evidenced that cancer-associated fibroblasts-derived LncRNA TUC338-containing extracellular vesicles-induced supportive effects in LSCC aggressiveness were all abrogated by overexpressing miR-8485 and silencing CBX2. Collectively, this study is the first to identify a novel m6A/LncRNA TUC338/miR-8485/CBX2 axis in CAFs-EVs-mediated LSCC development, and to show its potential as a diagnostic biomarker for LSCC.
Collapse
Affiliation(s)
- Tingting Li
- Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Linli Tian
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Nangang District, Harbin, 150086, Heilongjiang, China.
| | - Jing Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Nangang District, Harbin, 150086, Heilongjiang, China.
| | - Ming Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Nangang District, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
250
|
Hou B, Yuan J, Kang S, Yang Y, Huang X, Xu H, Guo K, Tian W. Positive lymph node ratio is an important index to predict long-term survival for advanced esophageal squamous carcinoma patients (II∼III) with R0 resection--a SEER-based analysis. Heliyon 2023; 9:e22600. [PMID: 38144311 PMCID: PMC10746414 DOI: 10.1016/j.heliyon.2023.e22600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Background Esophageal squamous carcinoma (ESCC) is one of the most malignant cancers in the world due to nodal metastasis. Therefore, a reasonable nodal staging system is extremely important for further treatment strategies. Recently the positive lymph node ratio (PLNR) is an important prognostic factor in various solid tumors. Method In this study, we investigated the clinical significance of the PLNR in stage II∼III ESCC patients. We collected the pathological characteristics of 272 stage II∼III ESCC patients from the SEER database from 2004-2016. ROC curves were used to calculate the best cutoff value of the PLNR; Pearson's Chi-square (χ2) and Fisher's exact probability tests were used to compare the clinical baseline and characteristics of patients. For continuous variables, Student's t-test and ANOVA were performed to evaluate statistical significance. Clinical outcomes were estimated by using the Kaplan‒Meier method and log-rank test. Furthermore, univariate and multivariate Cox regression models were utilized to analyze independent prognostic factors of ESCC patients. Results Consequently, advanced ESCC patients were effectively stratified into two groups by prognosis using a PLNR cutoff value of 0.15 (P value = 0.04). The median survival time of patients with PLNR <0.15 (n = 145) was much higher than that of patients (n = 127) in the PLNR ≥0.15 group (20.0 vs. 13.0 months, P value < 0.0001). Notably, the PLNR significantly predicted the prognosis of ESCC patients with stage N1 (P value 0.01) and stage III (P value < 0.001) disease. The multivariate Cox proportional hazard model showed that T stage (HR 1.33, 95 % CI 0.97-1.82), tumor size >45 mm (HR 1.32, 95 % CI 1.02-1.70), N stage (HR 1.41, 95 % CI 0.98-2.01) and PLNR ≥0.15 (HR 1.35, 95 % CI 0.87-1.74) were independent risk factors for prognostic prediction in ESCC patients. Meanwhile, 117 II∼III ESCC patients from Shaanxi Provincial People's Hospital shown that the overall survival with a PLNR <0.15 (n = 96) was significantly longer than that with a PLNR ≥0.15 (n = 21) . Conclusions The PLNR is useful for accurately predicting clinical outcomes and determining postoperative strategies.
Collapse
Affiliation(s)
| | - Jinyan Yuan
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Youyi Road, Xi'an, Shaanxi, 710068, China
| | - Shuge Kang
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Youyi Road, Xi'an, Shaanxi, 710068, China
| | - Yuanye Yang
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Youyi Road, Xi'an, Shaanxi, 710068, China
| | - Xing Huang
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Youyi Road, Xi'an, Shaanxi, 710068, China
| | - Hui Xu
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Youyi Road, Xi'an, Shaanxi, 710068, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Youyi Road, Xi'an, Shaanxi, 710068, China
| | - Wei Tian
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Youyi Road, Xi'an, Shaanxi, 710068, China
| |
Collapse
|