201
|
Intermittent pressure imitating rolling manipulation ameliorates injury in skeletal muscle cells through oxidative stress and lipid metabolism signalling pathways. Gene 2021; 778:145460. [PMID: 33515727 DOI: 10.1016/j.gene.2021.145460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Traditional Chinese medicine manipulation (TCMM) is often used to treat human skeletal muscle injury, but its mechanism remains unclear due to difficulty standardizing and quantifying manipulation parameters. METHODS Here, dexamethasone sodium phosphate (DSP) was utilized to induce human skeletal muscle cell (HSkMC) impairments. Cells in a three-dimensional environment were divided into the control normal group (CNG), control injured group (CIG) and rolling manipulation group (RMG). The RMG was exposed to intermittent pressure imitating rolling manipulation (IPIRM) of TCMM via the FX‑5000™ compression system. Skeletal muscle damage was assessed via the cell proliferation rate, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and creatine kinase (CK) activity. Isobaric tagging for relative and absolute protein quantification (iTRAQ) and bioinformatic analysis were used to evaluate differentially expressed proteins (DEPs). RESULTS Higher-pressure IPIRM ameliorated the skeletal muscle cell injury induced by 1.2 mM DSP. Thirteen common DEPs after IPIRM were selected. Key biological processes, molecular functions, cellular components, and pathways were identified as mechanisms underlying the protective effect of TCMM against skeletal muscle damage. Some processes (response to oxidative stress, response to wounding, response to stress and lipid metabolism signalling pathways) were related to skeletal muscle cell injury. Western blotting for 4 DEPs confirmed the reliability of iTRAQ. CONCLUSIONS Higher-pressure IPIRM downregulated the CD36, Hsp27 and FABP4 proteins in oxidative stress and lipid metabolism pathways, alleviating excessive oxidative stress and lipid metabolism disorder in injured HSkMCs. The techniques used in this study might provide novel insights into the mechanism of TCMM.
Collapse
|
202
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
203
|
Cui Q, Yang H, Gu Y, Zong C, Chen X, Lin Y, Sun H, Shen Y, Zhu J. RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1595. [PMID: 33437794 PMCID: PMC7791259 DOI: 10.21037/atm-20-7400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Weightlessness-induced skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, has potentially damaged consequences. However, there is still an insufficient effective strategy to treat skeletal muscle atrophy. Therefore, exploring the molecular mechanisms regulating skeletal muscle atrophy and effective protection is necessary. Methods RNA sequencing (RNA-seq) analysis was used to detect differentially expressed genes (DEGs) in the soleus muscle at 12, 24, 36 hours, three days, and seven days after hindlimb unloading in rats. Pearson correlation heatmaps and principal component analysis (PCA) were applied to analyze DEGs’ expression profiles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for cluster analysis of DEGs. Ingenuity pathway analysis (IPA) was used to analyze specific biological processes further. Results At different time points (12, 24, 36 hours, three days, seven days) after hindlimb unloading, the expression levels of 712, 1,109, 1,433, 1,162, and 1,182 genes in rat soleus muscle were upregulated, respectively, whereas the expression levels of 1,186, 1,324, 1,632, 1,446, and 1,596 genes were downregulated, respectively. PCA revealed that rat soleus muscle showed three different transcriptional phases within seven days after hindlimb unloading. KEGG and GO annotation indicated that the first transcriptional phase primarily involved the activation of stress responses, including oxidative stress, and the inhibition of cell proliferation and angiogenesis; the second transcriptional phase primarily involved the activation of proteolytic systems and, to a certain degree, inflammatory responses; and the third transcriptional phase primarily involved extensive activation of the proteolytic system, significant inhibition of energy metabolism, and activation of the aging process and slow-to-fast muscle conversion. Conclusions Different physiological processes in rat skeletal muscles were activated sequentially after unloading. From these activated biological processes, the three transcriptional phases after skeletal muscle unloading can be successively defined as the stress response phase, the atrophic initiation phase, and the atrophic phase. Our study not only helps in the understanding of the molecular mechanisms underlying weightlessness-induced muscle atrophy but may also provide an important time window for the treatment and prevention of weightlessness-induced muscle atrophy.
Collapse
Affiliation(s)
- Qihao Cui
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Yang
- Department of Neurosurgery, People's Hospital of Binhai County, Yancheng, China
| | - Yuming Gu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
204
|
Xie Z, Lu H, Yang S, Zeng Y, Li W, Wang L, Luo G, Fang F, Zeng T, Cheng W. Salidroside Attenuates Cognitive Dysfunction in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice and Modulates Inflammation of the Gut-Brain Axis. Front Pharmacol 2020; 11:568423. [PMID: 33362539 PMCID: PMC7759146 DOI: 10.3389/fphar.2020.568423] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by progressive cognitive decline and memory loss. However, several therapeutic approaches have shown unsatisfactory outcomes in the clinical setting. Thus, developing alternative therapies for the prevention and treatment of AD is critical. Salidroside (SAL) is critical, an herb-derived phenylpropanoid glycoside compound, has been shown to attenuate lipopolysaccharide (LPS)-induced cognitive impairment. However, the mechanism underlying its neuroprotective effects remains unclear. Here, we show that SAL has a therapeutic effect in the senescence-accelerated mouse prone 8 (SAMP8) strain, a reliable and stable mouse model of AD. Methods: SAMP8 mice were treated with SAL, donepezil (DNP) or saline, and cognitive behavioral impairments were assessed using the Morris water maze (MWM), Y maze, and open field test (OFT). Fecal samples were collected and analyzed by 16S rRNA sequencing on an Illumina MiSeq system. Brain samples were analyzed to detect beta-amyloid (Aβ) 1-42 (Aβ1-42) deposition by immunohistochemistry (IHC) and western blotting. The activation of microglia and neuroinflammatory cytokines was detected by immunofluorescence (IF), western blotting and qPCR. Serum was analyzed by a Mouse High Sensitivity T Cell Magnetic Bead Panel on a Luminex-MAGPIX multiplex immunoassay system. Results: Our results suggest that SAL effectively alleviated hippocampus-dependent memory impairment in the SAMP8 mice. SAL significantly 1) reduced toxic Aβ1-42 deposition; 2) reduced microglial activation and attenuated the levels of the proinflammatory factors IL-1β, IL-6, and TNF-α in the brain; 3) improved the gut barrier integrity and modified the gut microbiota (reversed the ratio of Bacteroidetes to Firmicutes and eliminated Clostridiales and Streptococcaceae, which may be associated with cognitive deficits); and 4) decreased the levels of proinflammatory cytokines, particularly IL-1α, IL-6, IL-17A and IL-12, in the peripheral circulation, as determined by a multiplex immunoassay. Conclusion: In summary, SAL reversed AD-related changes in SAMP8 mice, potentially by regulating the microbiota-gut-brain axis and modulating inflammation in both the peripheral circulation and central nervous system. Our results strongly suggest that SAL has a preventive effect on cognition-related changes in SAMP8 mice and highlight its value as a potential agent for drug development.
Collapse
Affiliation(s)
- Zeping Xie
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Sixia Yang
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guanfeng Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fang Fang
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
205
|
Dai J, Xiang Y, Fu D, Xu L, Jiang J, Xu J. Ficus carica L. Attenuates Denervated Skeletal Muscle Atrophy via PPARα/NF-κB Pathway. Front Physiol 2020; 11:580223. [PMID: 33343385 PMCID: PMC7744683 DOI: 10.3389/fphys.2020.580223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment options for denervated skeletal muscle atrophy are limited, in part because the underlying molecular mechanisms are not well understood. Unlike previous transcriptomics studies conducted in rodent models of peripheral nerve injury, in the present study, we performed high-throughput sequencing with denervated atrophic biceps muscle and normal (non-denervated) sternocleidomastoid muscle samples obtained from four brachial plexus injury (BPI) patients. We also investigated whether Ficus carica L. (FCL.) extract can suppress denervated muscle atrophy in a mouse model, along with the mechanism of action. We identified 1471 genes that were differentially expressed between clinical specimens of atrophic and normal muscle, including 771 that were downregulated and 700 that were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed genes were mainly enriched in the GO terms “structural constituent of muscle,” “Z disc,” “M band,” and “striated muscle contraction,” as well as “Cell adhesion molecules,” “Glycolysis/Gluconeogenesis,” “Peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway,” and “P53 signaling pathway.” In experiments using mice, the reduction in wet weight and myofiber diameter in denervated muscle was improved by FCL. extract compared to saline administration, which was accompanied by downregulation of the proinflammatory cytokines interleukin (IL)-1β and IL-6. Moreover, although both denervated groups showed increased nuclear factor (NF)-κB activation and PPARα expression, the degree of NF-κB activation was lower while PPARα and inhibitor of NF-κB IκBα expression was higher in FCL. extract-treated mice. Thus, FCL. extract suppresses denervation-induced inflammation and attenuates muscle atrophy by enhancing PPARα expression and inhibiting NF-κB activation. These findings suggest that FCL. extract has therapeutic potential for preventing denervation-induced muscle atrophy caused by peripheral nerve injury or disease.
Collapse
Affiliation(s)
- Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Da Fu
- Central Laboratory, Shanghai Tenth People's Hospital, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
206
|
Alves PKN, Cruz A, Silva WJ, Labeit S, Moriscot AS. Leucine Supplementation Decreases HDAC4 Expression and Nuclear Localization in Skeletal Muscle Fiber of Rats Submitted to Hindlimb Immobilization. Cells 2020; 9:cells9122582. [PMID: 33276563 PMCID: PMC7761616 DOI: 10.3390/cells9122582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
In this study we surveyed a rat skeletal muscle RNA-Seq for genes that are induced by hindlimb immobilization and, in turn, become attenuated by leucine supplementation. This approach, in search of leucine-atrophy protection mediating genes, identified histone deacetylase 4 (HDAC4) as highly responsive to both hindlimb immobilization and leucine supplementation. We then examined the impact of leucine on HDAC4 expression, tissue localization, and target genes. A total of 76 male Wistar rats (~280 g) were submitted to hindlimb immobilization and/or leucine supplementation for 3, 7 and 12 days. These animals were euthanized, and soleus muscle was removed for further analysis. RNA-Seq analysis of hindlimb immobilized rats indicated a sharp induction (log2 = 3.4) of HDAC4 expression which was attenuated by leucine supplementation (~50%). Real-time PCR and protein expression analysis by Western blot confirmed increased HDAC4 mRNA after 7 days of hindlimb immobilization and mitigation of induction by leucine supplementation. Regarding the HDAC4 localization, the proportion of positive nuclei was higher in the immobilized group and decreased after leucine supplementation. Also, we found a marked decrease of myogenin and MAFbx-atrogin-1 mRNA levels upon leucine supplementation, while CAMKII and DACH2 mRNA levels were increased by leucine supplementation. Our data suggest that HDAC4 inhibition might be involved in the anti-atrophic effects of leucine.
Collapse
Affiliation(s)
- Paula K. N. Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - William J. Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - Siegfried Labeit
- Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Institute for Integrative Pathophysiology, Universitätsmedizin Mannheim, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemund, Germany
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
- Correspondence:
| |
Collapse
|
207
|
Huang Z, Zhong L, Zhu J, Xu H, Ma W, Zhang L, Shen Y, Law BYK, Ding F, Gu X, Sun H. Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1681. [PMID: 33490193 PMCID: PMC7812230 DOI: 10.21037/atm-20-7269] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The molecular mechanisms underlying denervated skeletal muscle atrophy with concomitant muscle mass loss have not been fully elucidated. Therefore, this study aimed to attain a deeper understanding of the molecular mechanisms underlying denervated skeletal muscle atrophy as a critical step to developing targeted therapy and retarding the concomitant loss of skeletal muscle mass. Methods We employed microarray analysis to reveal the potential molecular mechanisms underlying denervated skeletal muscle atrophy. We used in vitro and in vivo atrophy models to explore the roles of the interleukin 6 (IL-6), Janus kinase (JAK), and signal transducers and activators of transcription 3 (STAT3) in muscle atrophy. Results In this study, microarray analysis of the differentially expressed genes demonstrated that inflammation-related cytokines were markedly triggered and IL-6/JAK/STAT3 signaling pathway was strongly activated during denervated skeletal muscle atrophy. The high level of IL-6 enhanced C2C12 myotube atrophy through the activation of JAK/STAT3, while inhibiting JAK/STAT3 pathway by ruxolitinib (a JAK1/2 inhibitor) or C188-9 (a STAT3 inhibitor) significantly attenuated C2C12 myotube atrophy induced by IL-6. Pharmacological blocking of IL-6 by tocilizumab (antibody against IL-6 receptor) and pharmacological/genetic inhibition of JAK/STAT3 pathway by ruxolitinib/C188-9 (JAK/STAT3 inhibitor) and STAT3 short hairpin RNA (shRNA) lentivirus in tibialis anterior muscles could suppress muscle atrophy and inhibit mitophagy, and was accompanied by the decreased expression of atrophic genes (MuRF1 and MAFbx) and autophagy-related genes (PINK1, BNIP3, Beclin 1, ATG7, and LC3B). Conclusions Taken together, the results suggest that IL-6/JAK/STAT3 pathway may be a principal mediator in denervated skeletal muscle atrophy, meaning targeted therapy against IL-6/JAK/STAT3 pathway might have potential as a therapeutic strategy for prevention of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
208
|
Wan Q, Zhang L, Huang Z, Zhang H, Gu J, Xu H, Yang X, Shen Y, Law BYK, Zhu J, Sun H. Aspirin alleviates denervation-induced muscle atrophy via regulating the Sirt1/PGC-1α axis and STAT3 signaling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1524. [PMID: 33313269 PMCID: PMC7729378 DOI: 10.21037/atm-20-5460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Our prior studies have shown that inflammation may play an important triggering role during the process of denervated muscle atrophy. The nonsteroidal anti-inflammatory drug aspirin exhibits the effect of anti-inflammatory factors. This study will investigate the protective effect of aspirin on denervated muscle atrophy and the underlying mechanism. Methods Mouse models of denervated muscle atrophy were established. The protective effect of aspirin (20 mg/kg/d, i.p.) on denervated muscle atrophy was analyzed using the wet weight ratio of tibialis anterior (TA) muscle and muscle fiber cross-sectional area (CSA). The levels of inflammatory factors were detected using quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Sirtuins1 (SIRT1)/Peroxisome Proliferator-Activated Receptor γ Co-Activator 1α (PGC-1α) and Signal transducer and activator of transcription 3 (STAT3) signaling pathway and the muscle fiber type related proteins in TA muscle after denervation were analyzed by western blot assay. Results Intraperitoneal injection of aspirin (20 mg/kg/d) effectively alleviated denervation-induced muscle atrophy. This mainly manifested as follows: The wet weight ratio of TA muscle and muscle fiber CSA of mice treated with aspirin were significantly greater compared with mice treated with normal saline. The level of myosin heavy chain (MHC) increased, and the levels of muscle specific E3 ubiquitin ligase Muscle-specific RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx) were decreased. Mitochondrial vacuolation and autophagy were inhibited, as evidenced by reduced level of autophagy related proteins PINK1, BNIP3, LC3B and Atg7 in mice treated with aspirin compared with mice treated with saline. In addition, aspirin treatment inhibited the slow-to-fast twitch muscle fiber conversion, which were related with triggering the expression of Sirt1 and PGC-1α. Moreover, aspirin reduced the levels of inflammatory factors interleukin-6, interleukin-1β and tumor necrosis factor-α and decreased the activation of STAT3 signaling pathway. Conclusions This is the first study to find that aspirin can alleviate denervation-induced muscle atrophy and inhibit the type I-to-type II muscle fiber conversion and mitophagy possibly through regulating the STAT3 inflammatory signaling pathway and Sirt1/PGC-1α signal axis. This study expands our knowledge regarding the pharmacological function of aspirin and provides a novel strategy for prevention and treatment of denervated muscle atrophy.
Collapse
Affiliation(s)
- Qiuxian Wan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Haiyan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Jing Gu
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
209
|
Li A, Yi J, Li X, Zhou J. Physiological Ca 2+ Transients Versus Pathological Steady-State Ca 2+ Elevation, Who Flips the ROS Coin in Skeletal Muscle Mitochondria. Front Physiol 2020; 11:595800. [PMID: 33192612 PMCID: PMC7642813 DOI: 10.3389/fphys.2020.595800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are both the primary provider of ATP and the pivotal regulator of cell death, which are essential for physiological muscle activities. Ca2+ plays a multifaceted role in mitochondrial function. During muscle contraction, Ca2+ influx into mitochondria activates multiple enzymes related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation, resulting in increased ATP synthesis to meet the energy demand. Pathophysiological conditions such as skeletal muscle denervation or unloading also lead to elevated Ca2+ levels inside mitochondria. However, the outcomes of this steady-state elevation of mitochondrial Ca2+ level include exacerbated reactive oxygen species (ROS) generation, sensitized opening of mitochondrial permeability transition pore (mPTP), induction of programmed cell death, and ultimately muscle atrophy. Previously, both acute and long-term endurance exercises have been reported to activate certain signaling pathways to counteract ROS production. Meanwhile, electrical stimulation is known to help prevent apoptosis and alleviate muscle atrophy in denervated animal models and patients with motor impairment. There are various mechanistic studies that focus on the excitation-transcription coupling framework to understand the beneficial role of exercise and electrical stimulation. Interestingly, a recent study has revealed an unexpected role of rapid mitochondrial Ca2+ transients in keeping mPTP at a closed state with reduced mitochondrial ROS production. This discovery motivated us to contribute this review article to inspire further discussion about the potential mechanisms underlying differential outcomes of physiological mitochondrial Ca2+ transients and pathological mitochondrial Ca2+ elevation in skeletal muscle ROS production.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
210
|
Chen R, Lei S, Jiang T, She Y, Shi H. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs. Front Cell Dev Biol 2020; 8:577010. [PMID: 33043011 PMCID: PMC7523183 DOI: 10.3389/fcell.2020.577010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is a common complication of cachexia, characterized by progressive bodyweight loss and decreased muscle strength, and it significantly increases the risks of morbidity and mortality in the population with atrophy. Numerous complications associated with decreased muscle function can activate catabolism, reduce anabolism, and impair muscle regeneration, leading to muscle wasting. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), types of non-coding RNAs, are important for regulation of skeletal muscle development. Few studies have specifically identified the roles of miRNAs and lncRNAs in cellular or animal models of muscular atrophy during cachexia, and the pathogenesis of skeletal muscle wasting in cachexia is not entirely understood. To develop potential approaches to improve skeletal muscle mass, strength, and function, a more comprehensive understanding of the known key pathophysiological processes leading to muscular atrophy is needed. In this review, we summarize the known miRNAs, lncRNAs, and corresponding signaling pathways involved in regulating skeletal muscle atrophy in cachexia and other diseases. A comprehensive understanding of the functions and mechanisms of miRNAs and lncRNAs during skeletal muscle wasting in cachexia and other diseases will, therefore, promote therapeutic treatments for muscle atrophy.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
211
|
Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci 2020; 70:40. [PMID: 32938372 PMCID: PMC10717345 DOI: 10.1186/s12576-020-00768-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is one of the most abundant and highly plastic tissues. The ubiquitin-proteasome system (UPS) is recognised as a major intracellular protein degradation system, and its function is important for muscle homeostasis and health. Although UPS plays an essential role in protein degradation during muscle atrophy, leading to the loss of muscle mass and strength, its deficit negatively impacts muscle homeostasis and leads to the occurrence of several pathological phenotypes. A growing number of studies have linked UPS impairment not only to matured muscle fibre degeneration and weakness, but also to muscle stem cells and deficiency in regeneration. Emerging evidence suggests possible links between abnormal UPS regulation and several types of muscle diseases. Therefore, understanding of the role of UPS in skeletal muscle may provide novel therapeutic insights to counteract muscle wasting, and various muscle diseases. In this review, we focussed on the role of proteasomes in skeletal muscle and its regeneration, including a brief explanation of the structure of proteasomes. In addition, we summarised the recent findings on several diseases and elaborated on how the UPS is related to their pathological states.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan.
| | - Kiyoshi Yoshioka
- Institute for Research On Productive Aging (IRPA), #201 Kobe hybrid business center, Minami-cho 6-7-6, Minatojima, Kobe, 650-0047, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
- Department of Neurology, Shodo-Kai Southern Tohoku General Hospital, 1-2-5, Satonomori, Iwanuma, Miyagi, 989-2483, Japan.
| |
Collapse
|
212
|
Transcriptional Changes Involved in Atrophying Muscles during Prolonged Fasting in Rats. Int J Mol Sci 2020; 21:ijms21175984. [PMID: 32825252 PMCID: PMC7503389 DOI: 10.3390/ijms21175984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Food deprivation resulting in muscle atrophy may be detrimental to health. To better understand how muscle mass is regulated during such a nutritional challenge, the current study deciphered muscle responses during phase 2 (P2, protein sparing) and phase 3 (P3, protein mobilization) of prolonged fasting in rats. This was done using transcriptomics analysis and a series of biochemistry measurements. The main findings highlight changes for plasma catabolic and anabolic stimuli, as well as for muscle transcriptome, energy metabolism, and oxidative stress. Changes were generally consistent with the intense use of lipids as fuels during P2. They also reflected increased muscle protein degradation and repressed synthesis, in a more marked manner during P3 than P2 compared to the fed state. Nevertheless, several unexpected changes appeared to be in favor of muscle protein synthesis during fasting, notably at the level of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, transcription and translation processes, and the response to oxidative stress. Such mechanisms might promote protein sparing during P2 and prepare the restoration of the protein compartment during P3 in anticipation of food intake for optimizing the effects of an upcoming refeeding, thereby promoting body maintenance and survival. Future studies should examine relevance of such targets for improving nitrogen balance during catabolic diseases.
Collapse
|
213
|
Gd-Complex of a Rosmarinic Acid Conjugate as an Anti-Inflammatory Theranostic Agent via Reactive Oxygen Species Scavenging. Antioxidants (Basel) 2020; 9:antiox9080744. [PMID: 32823673 PMCID: PMC7464237 DOI: 10.3390/antiox9080744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
Rosmarinic acid (RosA), an important polyphenol, is known for its antioxidant and anti-inflammatory activities. However, its application in theranostics has been rarely reported. Therefore, a new single-molecule anti-inflammatory theranostic compound containing RosA would be of great interest. A gadolinium (Gd) complex of 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid (DO3A) and RosA (Gd(DO3A-RosA)(H2O)) was synthesized and examined for use as a single-molecule theranostic agent. Its kinetic stability is comparable to that of clinically used macrocyclic magnetic resonance imaging contrast agents. In addition, its relaxivity is higher than that of structurally analogous Gd-BT-DO3A. This agent was evaluated for inflammatory targeting magnetic resonance contrast and showed strong and prolonged enhancement of imaging in inflamed tissues of mice. The theranostic agent also possesses antioxidant and anti-inflammatory activities, as evidenced by reactive oxygen species scavenging, superoxide dismutase activity, and inflammatory factors. The novel RosA-conjugated Gd complex is a promising theranostic agent for the imaging of inflamed tissues, as well as for the treatment of inflammation and oxidative stress.
Collapse
|
214
|
Shen Y, Zhang Q, Huang Z, Zhu J, Qiu J, Ma W, Yang X, Ding F, Sun H. Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation. Front Physiol 2020; 11:988. [PMID: 32903465 PMCID: PMC7435639 DOI: 10.3389/fphys.2020.00988] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although denervated muscle atrophy is common, the underlying molecular mechanism remains unelucidated. We have previously found that oxidative stress and inflammatory response may be early events that trigger denervated muscle atrophy. Isoquercitrin is a biologically active flavonoid with antioxidative and anti-inflammatory properties. The present study investigated the effect of isoquercitrin on denervated soleus muscle atrophy and its possible molecular mechanisms. We found that isoquercitrin was effective in alleviating soleus muscle mass loss following denervation in a dose-dependent manner. Isoquercitrin demonstrated the optimal protective effect at 20 mg/kg/d, which was the dose used in subsequent experiments. To further explore the protective effect of isoquercitrin on denervated soleus muscle atrophy, we analyzed muscle proteolysis via the ubiquitin-proteasome pathway, mitophagy, and muscle fiber type conversion. Isoquercitrin significantly inhibited the denervation-induced overexpression of two muscle-specific ubiquitin ligases—muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), and reduced the degradation of myosin heavy chains (MyHCs) in the target muscle. Following isoquercitrin treatment, mitochondrial vacuolation and autophagy were inhibited, as evidenced by reduced level of autophagy-related proteins (ATG7, BNIP3, LC3B, and PINK1); slow-to-fast fiber type conversion in the target muscle was delayed via triggering expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α); and the production of reactive oxygen species (ROS) in the target muscle was reduced, which might be associated with the upregulation of antioxidant factors (SOD1, SOD2, NRF2, NQO1, and HO1) and the downregulation of ROS production-related factors (Nox2, Nox4, and DUOX1). Furthermore, isoquercitrin treatment reduced the levels of inflammatory factors—interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)—in the target muscle and inactivated the JAK/STAT3 signaling pathway. Overall, isoquercitrin may alleviate soleus muscle atrophy and mitophagy and reverse the slow-to-fast fiber type conversion following denervation via inhibition of oxidative stress and inflammatory response. Our study findings enrich the knowledge regarding the molecular regulatory mechanisms of denervated muscle atrophy and provide a scientific basis for isoquercitrin as a protective drug for the prevention and treatment of denervated muscle atrophy.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiayi Qiu
- School of Nursing, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
215
|
Salidroside Ameliorates Mitochondria-Dependent Neuronal Apoptosis after Spinal Cord Ischemia-Reperfusion Injury Partially through Inhibiting Oxidative Stress and Promoting Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3549704. [PMID: 32774670 PMCID: PMC7396093 DOI: 10.1155/2020/3549704] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury is the second most common injury of the spinal cord and has the risk of neurological dysfunction and paralysis, which can seriously affect patient quality of life. Salidroside (Sal) is an active ingredient extracted from Herba Cistanche with a variety of biological attributes such as antioxidant, antiapoptotic, and neuroprotective activities. Moreover, Sal has shown a protective effect in ischemia-reperfusion injury of the liver, heart, and brain, but its effect in ischemia-reperfusion injury of the spinal cord has not been elucidated. Here, we demonstrated for the first time that Sal pretreatment can significantly improve functional recovery in mice after spinal cord ischemia-reperfusion injury and significantly inhibit the apoptosis of neurons both in vivo and in vitro. Neurons have a high metabolic rate, and consequently, mitochondria, as the main energy-supplying suborganelles, become the main injury site of spinal cord ischemia-reperfusion injury. Mitochondrial pathway-dependent neuronal apoptosis is increasingly confirmed by researchers; therefore, Sal's effect on mitochondria naturally attracted our attention. By means of a range of experiments both in vivo and in vitro, we found that Sal can reduce reactive oxygen species production through antioxidant stress to reduce mitochondrial permeability and mitochondrial damage, and it can also enhance the PINK1-Parkin signaling pathway and promote mitophagy to eliminate damaged mitochondria. In conclusion, our results show that Sal is beneficial to the protection of spinal cord neurons after ischemia-reperfusion injury, mainly by reducing apoptosis associated with the mitochondrial-dependent pathway, among which Sal's antioxidant and autophagy-promoting properties play an important role.
Collapse
|
216
|
Gupta P, Dutt V, Kaur N, Kalra P, Gupta S, Dua A, Dabur R, Saini V, Mittal A. S-allyl cysteine: A potential compound against skeletal muscle atrophy. Biochim Biophys Acta Gen Subj 2020; 1864:129676. [PMID: 32649980 DOI: 10.1016/j.bbagen.2020.129676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oxidative stress is crucial player in skeletal muscle atrophy pathogenesis. S-allyl cysteine (SAC), an organosulfur compound of Allium sativum, possesses broad-spectrum properties including immuno- and redox-modulatory impact. Considering the role of SAC in regulating redox balance, we hypothesize that SAC may have a protective role in oxidative-stress induced atrophy. METHODS C2C12 myotubes were treated with H2O2 (100 μM) in the presence or absence of SAC (200 μM) to study morphology, redox status, inflammatory cytokines and proteolytic systems using fluorescence microscopy, biochemical analysis, real-time PCR and immunoblotting approaches. The anti-atrophic potential of SAC was confirmed in denervation-induced atrophy model. RESULTS SAC pre-incubation (4 h) could protect the myotube morphology (i.e. length/diameter/fusion index) from atrophic effects of H2O2. Lower levels of ROS, lipid peroxidation, oxidized glutathione and altered antioxidant enzymes were observed in H2O2-exposed cells upon pre-treatment with SAC. SAC supplementation also suppressed the rise in cytokines levels (TWEAK/IL6/myostatin) caused by H2O2. SAC treatment also moderated the degradation of muscle-specific proteins (MHCf) in the H2O2-treated myotubes supported by lower induction of diverse proteolytic systems (i.e. cathepsin, calpain, ubiquitin-proteasome E3-ligases, caspase-3, autophagy). Denervation-induced atrophy in mice illustrates that SAC administration alleviates the negative effects (i.e. mass loss, decreased cross-sectional area, up-regulation of proteolytic systems, and degradation of total/specific protein) of denervation on muscles. CONCLUSIONS SAC exerts significant anti-atrophic effects to protect myotubes from H2O2-induced protein loss and myofibers from denervation-induced muscle loss, due to the prevention of elevated proteolytic systems and inflammatory/oxidative molecules. GENERAL SIGNIFICANCE The results signify the potential of SAC against muscle atrophy.
Collapse
Affiliation(s)
- Prachi Gupta
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Vikas Dutt
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nirmaljeet Kaur
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priya Kalra
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanjeev Gupta
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Anita Dua
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Rajesh Dabur
- Biochemistry Department, MD University, Rohtak, Haryana 124001, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashwani Mittal
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
217
|
Scalabrin M, Adams V, Labeit S, Bowen TS. Emerging Strategies Targeting Catabolic Muscle Stress Relief. Int J Mol Sci 2020; 21:E4681. [PMID: 32630118 PMCID: PMC7369951 DOI: 10.3390/ijms21134681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle wasting represents a common trait in many conditions, including aging, cancer, heart failure, immobilization, and critical illness. Loss of muscle mass leads to impaired functional mobility and severely impedes the quality of life. At present, exercise training remains the only proven treatment for muscle atrophy, yet many patients are too ill, frail, bedridden, or neurologically impaired to perform physical exertion. The development of novel therapeutic strategies that can be applied to an in vivo context and attenuate secondary myopathies represents an unmet medical need. This review discusses recent progress in understanding the molecular pathways involved in regulating skeletal muscle wasting with a focus on pro-catabolic factors, in particular, the ubiquitin-proteasome system and its activating muscle-specific E3 ligase RING-finger protein 1 (MuRF1). Mechanistic progress has provided the opportunity to design experimental therapeutic concepts that may affect the ubiquitin-proteasome system and prevent subsequent muscle wasting, with novel advances made in regards to nutritional supplements, nuclear factor kappa-light-chain-enhancer of activated B cells (NFB) inhibitors, myostatin antibodies, β2 adrenergic agonists, and small-molecules interfering with MuRF1, which all emerge as a novel in vivo treatment strategies for muscle wasting.
Collapse
Affiliation(s)
- Mattia Scalabrin
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Volker Adams
- Department of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany;
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, 01067 Dresden, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- Myomedix GmbH, Im Biengarten 36, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
218
|
Feng R, He MC, Li Q, Liang XQ, Tang DZ, Zhang JL, Liu SF, Lin FH, Zhang Y. Phenol glycosides extract of Fructus Ligustri Lucidi attenuated depressive-like behaviors by suppressing neuroinflammation in hypothalamus of mice. Phytother Res 2020; 34:3273-3286. [PMID: 32603019 DOI: 10.1002/ptr.6777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
Depression is partially caused by inflammation in central nervous system. This study investigated the ameliorative effects of phenol glycosides (PG) from Ligustrum lucidum Ait. (Oleaceae) on neuroinflammation and depressive-like behavior in mice hypothalamus as well as the molecular mechanism. Mice were administered with PG extract for 2 weeks prior to treatment with LPS. The mice treated with PG extract showed resistance to LPS-induced reduction in body weight and LPS-induced depressive-like behaviors shown by sucrose preference, tail suspension test, forced swimming test and open field test. LPS-induced activation of microglial cells and elevation in protein expression of inflammatory cytokines including IL-1β, RANTES and MCP-1 in hypothalamus of mice were abrogated by pre-treatment with PG extract. This extract down-regulated expression of TLR4, MyD88, NLRP3, renin and angiotensin II and decreased proportional area of Iba-1+ microglias in hypothalamus. Pre-treatment with PG extract inhibited LPS-triggered activation of CaSR/Gα11 signaling, stimulated 1-OHase expression in hypothalamus, and enhanced circulating 1,25(OH)2 D3 level. Overall, pre-treatment with PG extract ameliorated LPS-induced depressive-like behaviors by repressing neuroinflammation in mice hypothalamus which was attributed to its suppression on activation of microglia and production of inflammatory cytokines via acting on TLR4 pathway, CaSR and RAS cascade associated with improving vitamin D metabolism.
Collapse
Affiliation(s)
- Rui Feng
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Li
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xiao-Qiang Liang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - De-Zhi Tang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
219
|
Ehmsen JT, Höke A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp Neurol 2020; 331:113379. [PMID: 32533969 DOI: 10.1016/j.expneurol.2020.113379] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Neurogenic atrophy refers to the loss of muscle mass and function that results directly from injury or disease of the peripheral nervous system. Individuals with neurogenic atrophy may experience reduced functional status and quality of life and, in some circumstances, reduced survival. Distinct pathological findings on muscle histology can aid in diagnosis of a neurogenic cause for muscle dysfunction, and provide indicators for the chronicity of denervation. Denervation induces pleiotypic responses in skeletal muscle, and the molecular mechanisms underlying neurogenic muscle atrophy appear to share common features with other causes of muscle atrophy, including activation of FOXO transcription factors and corresponding induction of ubiquitin-proteasomal and lysosomal degradation. In this review, we provide an overview of histologic features of neurogenic atrophy and a summary of current understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
220
|
Vitamin E Blocks Connexin Hemichannels and Prevents Deleterious Effects of Glucocorticoid Treatment on Skeletal Muscles. Int J Mol Sci 2020; 21:ijms21114094. [PMID: 32521774 PMCID: PMC7312599 DOI: 10.3390/ijms21114094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids are frequently used as anti-inflammatory and immunosuppressive agents. However, high doses and/or prolonged use induce undesired secondary effects such as muscular atrophy. Recently, de novo expression of connexin43 and connexin45 hemichannels (Cx43 HCs and Cx45 HCs, respectively) has been proposed to play a critical role in the mechanism underlying myofiber atrophy induced by dexamethasone (Dex: a synthetic glucocorticoid), but their involvement in specific muscle changes promoted by Dex remains poorly understood. Moreover, treatments that could prevent the undesired effects of glucocorticoids on skeletal muscles remain unknown. In the present work, a 7-day Dex treatment in adult mice was found to induce weight loss and skeletal muscle changes including expression of functional Cx43/Cx45 HCs, elevated atrogin immunoreactivity, atrophy, oxidative stress and mitochondrial dysfunction. All these undesired effects were absent in muscles of mice simultaneously treated with Dex and vitamin E (VitE). Moreover, VitE was found to rapidly inhibit the activity of Cx HCs in freshly isolated myofibers of Dex treated mice. Exposure to alkaline pH induced free radical generation only in HeLa cells expressing Cx43 or Cx45 where Ca2+ was present in the extracellular milieu, response that was prevented by VitE. Besides, VitE and two other anti-oxidant compounds, Tempol and Resveratrol, were found to inhibit Cx43 HCs in HeLa cells transfectants. Thus, we propose that in addition to their intrinsic anti-oxidant potency, some antioxidants could be used to reduce expression and/or opening of Cx HCs and consequently reduce the undesired effect of glucocorticoids on skeletal muscles.
Collapse
|
221
|
Nguyen K, Ito S, Maeyama S, Schaffer SW, Murakami S, Ito T. In Vivo and In Vitro Study of N-Methyltaurine on Pharmacokinetics and Antimuscle Atrophic Effects in Mice. ACS OMEGA 2020; 5:11241-11246. [PMID: 32455249 PMCID: PMC7241010 DOI: 10.1021/acsomega.0c01588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Various types of seaweed are potential functional foods as they contain multiple bioactive compounds. N-Methyltaurine (NMT) is a taurine derivative metabolite found in a type of red algae. The functional actions of NMT in mammalian animals have not been investigated, but the parent compound, taurine, possesses a variety of cellular actions. To explore the beneficial role of NMT in animals, the present study analyzed the effect of NMT against glucocorticoid-induced skeletal muscle atrophy. Glucocorticoids are one of the major causes of pathological muscle atrophy. Initially, we assessed the bioavailability of ingested NMT by determining its concentration in mouse blood. The bioavailability of orally administered NMT was found to be 96.1% that of intravenously administered NMT. Mice maintained on water containing 0.5% NMT for several days lead to the distribution of the taurine derivative to various tissues, including skeletal muscles. Like taurine, the delivery of NMT to skeletal muscles or myoblast cells is cytoprotective. The treatment with NMT prevents dexamethasone-induced atrophy of myotubes derived from C2C12 cells. Similarly, the addition of 0.5% NMT to drinking water attenuates dexamethasone-mediated reduction in muscle mass of the treated mice. The present study supports the hypothesis that orally administered NMT partially reverses skeletal muscle atrophy.
Collapse
Affiliation(s)
- Khanh
Hoang Nguyen
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Shunta Ito
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Sayuri Maeyama
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Stephen W. Schaffer
- College
of Medicine, University of South Alabama, 5795 USA Drive North, CSAB 170, Mobile, Alabama 36688, United States
| | - Shigeru Murakami
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takashi Ito
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
222
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
223
|
Wang R, Tian H, Guo D, Tian Q, Yao T, Kong X. Impacts of exercise intervention on various diseases in rats. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:211-227. [PMID: 32444146 PMCID: PMC7242221 DOI: 10.1016/j.jshs.2019.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/06/2019] [Accepted: 09/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exercise is considered as an important intervention for treatment and prevention of several diseases, such as osteoarthritis, obesity, hypertension, and Alzheimer's disease. This review summarizes decadal exercise intervention studies with various rat models across 6 major systems to provide a better understanding of the mechanisms behind the effects that exercise brought. METHODS PubMed was utilized as the data source. To collect research articles, we used the following terms to create the search: (exercise [Title] OR physical activity [Title] OR training [Title]) AND (rats [Title/Abstract] OR rat [Title/Abstract] OR rattus [Title/Abstract]). To best cover targeted studies, publication dates were limited to "within 11 years." The exercise intervention methods used for different diseases were sorted according to the mode, frequency, and intensity of exercise. RESULTS The collected articles were categorized into studies related to 6 systems or disease types: motor system (17 articles), metabolic system (110 articles), cardiocerebral vascular system (171 articles), nervous system (71 articles), urinary system (2 articles), and cancer (21 articles). Our review found that, for different diseases, exercise intervention mostly had a positive effect. However, the most powerful effect was achieved by using a specific mode of exercise that addressed the characteristics of the disease. CONCLUSION As a model animal, rats not only provide a convenient resource for studying human diseases but also provide the possibility for exploring the molecular mechanisms of exercise intervention on diseases. This review also aims to provide exercise intervention frameworks and optimal exercise dose recommendations for further human exercise intervention research.
Collapse
Affiliation(s)
- Ruwen Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Dandan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Qianqian Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Xingxing Kong
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
224
|
Preventive Effects of Schisandrin A, A Bioactive Component of Schisandra chinensis, on Dexamethasone-Induced Muscle Atrophy. Nutrients 2020; 12:nu12051255. [PMID: 32354126 PMCID: PMC7282012 DOI: 10.3390/nu12051255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022] Open
Abstract
Muscle wasting is caused by various factors, such as aging, cancer, diabetes, and chronic kidney disease, and significantly decreases the quality of life. However, therapeutic interventions for muscle atrophy have not yet been well-developed. In this study, we investigated the effects of schisandrin A (SNA), a component extracted from the fruits of Schisandra chinensis, on dexamethasone (DEX)-induced muscle atrophy in mice and studied the underlying mechanisms. DEX+SNA-treated mice had significantly increased grip strength, muscle weight, and muscle fiber size compared with DEX+vehicle-treated mice. In addition, SNA treatment significantly reduced the expression of muscle degradation factors such as myostatin, MAFbx (atrogin1), and muscle RING-finger protein-1 (MuRF1) and enhanced the expression of myosin heavy chain (MyHC) compared to the vehicle. In vitro studies using differentiated C2C12 myotubes also showed that SNA treatment decreased the expression of muscle degradation factors induced by dexamethasone and increased protein synthesis and expression of MyHCs by regulation of Akt/FoxO and Akt/70S6K pathways, respectively. These results suggest that SNA reduces protein degradation and increases protein synthesis in the muscle, contributing to the amelioration of dexamethasone-induced muscle atrophy and may be a potential candidate for the prevention and treatment of muscle atrophy.
Collapse
|
225
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
226
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
227
|
van de Worp WRPH, Schols AMWJ, Dingemans AMC, Op den Kamp CMH, Degens JHRJ, Kelders MCJM, Coort S, Woodruff HC, Kratassiouk G, Harel-Bellan A, Theys J, van Helvoort A, Langen RCJ. Identification of microRNAs in skeletal muscle associated with lung cancer cachexia. J Cachexia Sarcopenia Muscle 2020; 11:452-463. [PMID: 31828982 PMCID: PMC7113505 DOI: 10.1002/jcsm.12512] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/08/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cachexia, highly prevalent in patients with non-small cell lung cancer (NSCLC), impairs quality of life and is associated with reduced tolerance and responsiveness to cancer therapy and decreased survival. MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in post-transcriptional gene regulation. Changes in intramuscular levels of miRNAs have been implicated in muscle wasting conditions. Here, we aimed to identify miRNAs that are differentially expressed in skeletal muscle of cachectic lung cancer patients to increase our understanding of cachexia and to allow us to probe their potential as therapeutic targets. METHODS A total of 754 unique miRNAs were profiled and analysed in vastus lateralis muscle biopsies of newly diagnosed treatment-naïve NSCLC patients with cachexia (n = 8) and age-matched and sex-matched healthy controls (n = 8). miRNA expression analysis was performed using a TaqMan MicroRNA Array. In silico network analysis was performed on all significant differentially expressed miRNAs. Differential expression of the top-ranked miRNAs was confirmed using reverse transcription-quantitative real-time PCR in an extended group (n = 48) consisting of NSCLC patients with (n = 15) and without cachexia (n = 11) and healthy controls (n = 22). Finally, these miRNAs were subjected to univariate and multivariate Cox proportional hazard analysis using overall survival and treatment-induced toxicity data obtained during the follow-up of this group of patients. RESULTS We identified 28 significant differentially expressed miRNAs, of which five miRNAs were up-regulated and 23 were down-regulated. In silico miRNA-target prediction analysis showed 158 functional gene targets, and pathway analysis identified 22 pathways related to the degenerative or regenerative processes of muscle tissue. Subsequently, the expression of six top-ranked miRNAs was measured in muscle biopsies of the entire patient group. Five miRNAs were detectable with reverse transcription-quantitative real-time PCR analysis, and their altered expression (expressed as fold change, FC) was confirmed in muscle of cachectic NSCLC patients compared with healthy control subjects: miR-424-5p (FC = 4.5), miR-424-3p (FC = 12), miR-450a-5p (FC = 8.6), miR-144-5p (FC = 0.59), and miR-451a (FC = 0.57). In non-cachectic NSCLC patients, only miR-424-3p was significantly increased (FC = 5.6) compared with control. Although the statistical support was not sufficient to imply these miRNAs as individual predictors of overall survival or treatment-induced toxicity, when combined in multivariate analysis, miR-450-5p and miR-451a resulted in a significant stratification between short-term and long-term survival. CONCLUSIONS We identified differentially expressed miRNAs putatively involved in lung cancer cachexia. These findings call for further studies to investigate the causality of these miRNAs in muscle atrophy and the mechanisms underlying their differential expression in lung cancer cachexia.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Anne-Marie C Dingemans
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Céline M H Op den Kamp
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Juliette H R J Degens
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marco C J M Kelders
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Susan Coort
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Henry C Woodruff
- Department of Precision Medicine, GROW, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gueorqui Kratassiouk
- Plateforme ARN interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, University of Paris-Saclay, Paris, France
| | - Annick Harel-Bellan
- Laboratory of Epigenetics and Cancer, Institut de Hautes Études Scientifiques, University of Paris-Saclay, Paris, France
| | - Jan Theys
- Department of Precision Medicine, GROW, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands.,Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
228
|
Synchrotron radiation imaging analysis of neural damage in mouse soleus muscle. Sci Rep 2020; 10:4555. [PMID: 32165699 PMCID: PMC7067770 DOI: 10.1038/s41598-020-61599-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
Damage to lower limb muscles requires accurate analysis of the muscular condition via objective microscopic diagnosis. However, microscopic tissue analysis may cause deformation of the tissue structure due to injury induced by external factors during tissue sectioning. To substantiate these muscle injuries, we used synchrotron X-ray imaging technology to project extremely small objects, provide three-dimensional microstructural analysis as extracted samples. In this study, we used mice as experimental animals to create soleus muscle models with various nerve injuries. We morphologically analyzed and quantified the damaged Section and Crush muscles, respectively, via three-dimensional visualization using synchrotron radiation X-ray imaging to diagnose muscle injury. Results of this study can also be used as basic data in the medical imaging field.
Collapse
|
229
|
Mi Z, Cheng J, Zhao P, Tian P, Tan T. Improved Production of Pyrroloquinoline Quinone by Simultaneous Augmentation of Its Synthesis Gene Expression and Glucose Metabolism in Klebsiella pneumoniae. Curr Microbiol 2020; 77:1174-1183. [PMID: 32080751 DOI: 10.1007/s00284-020-01918-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Klebsiella pneumoniae can naturally synthesize pyrroloquinoline quinone (PQQ), but current low yield restricts its commercialization. Here, we reported that PQQ production can be improved by simultaneously intensifying PQQ gene expression and glucose metabolism. Firstly, tandem repetitive tac promoters were constructed to overexpress PQQ synthesis genes. Results showed that when three repeats of tac promoter were recruited to overexpress PQQ synthesis genes, the recombinant strain generated 1.5-fold PQQ relative to the strain recruiting only one tac promoter. Quantitative real-time PCR (qRT-PCR) revealed the increased transcription levels of PQQ synthesis genes. Next, fermentation parameters were optimized to augment the glucose direct oxidation pathway (GDOP) mediated by PQQ-dependent glucose dehydrogenase (PQQ-GDH). Results demonstrated that the cultivation conditions of sufficient glucose (≥ 32 g/L), low pH (5.8), and limited potassium (0.7 nmol/L) significantly promoted the biosynthesis of gluconic acid, 2-ketogluconic acid, and PQQ. In optimum shake flask fermentation conditions, the K. pneumoniae strain overexpressing PQQ synthesis genes under three repeats of tac promoter generated 363.3 nmol/L of PQQ, which was 2.6-fold of that in original culture conditions. In bioreactor cultivation, this strain produced 2371.7 nmol/L of PQQ. To our knowledge, this is the highest PQQ titer reported so far using K. pneumoniae as a host strain. Overall, simultaneous intensification of pqq gene expression and glucose metabolism is effective to improve PQQ production.
Collapse
Affiliation(s)
- Zhiwei Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jingchao Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
230
|
Geng H, Song Q, Cheng Y, Li H, Yang R, Liu S, Hao L. MicroRNA 322 Aggravates Dexamethasone-Induced Muscle Atrophy by Targeting IGF1R and INSR. Int J Mol Sci 2020; 21:1111. [PMID: 32046161 PMCID: PMC7043225 DOI: 10.3390/ijms21031111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
Dexamethasone (Dex) has been widely used as a potent anti-inflammatory, antishock, and immunosuppressive agent. However, high dose or long-term use of Dex is accompanied by side effects including skeletal muscle atrophy, whose underlying mechanisms remain incompletely understood. A number of microRNAs (miRNAs) have been shown to play key roles in skeletal muscle atrophy. Previous studies showed significantly increased miR-322 expression in Dex-treated C2C12 myotubes. In our study, the glucocorticoid receptor (GR) was required for Dex to increase miR-322 expression in C2C12 myotubes. miR-322 mimic or miR-322 inhibitor was used for regulating the expression of miR-322. Insulin-like growth factor 1 receptor (IGF1R) and insulin receptor (INSR) were identified as target genes of miR-322 using luciferase reporter assays and played key roles in Dex-induced muscle atrophy. miR-322 overexpression promoted atrophy in Dex-treated C2C12 myotubes and the gastrocnemius muscles of mice. Conversely, miR-322 inhibition showed the opposite effects. These data suggested that miR-322 contributes to Dex-induced muscle atrophy via targeting of IGF1R and INSR. Furthermore, miR-322 might be a potential target to counter Dex-induced muscle atrophy. miR-322 inhibition might also represent a therapeutic approach for Dex-induced muscle atrophy.
Collapse
Affiliation(s)
- Hongwei Geng
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Qinglong Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Bio-Feed Additives, Beijing 100193, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Haoyang Li
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Rui Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
- Five-Star Animal Health Pharmaceutical Factory of Jilin Province, Changchun 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| |
Collapse
|
231
|
Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr Res 2020; 74:10-22. [DOI: 10.1016/j.nutres.2019.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
232
|
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasit Vectors 2019; 12:611. [PMID: 31888743 PMCID: PMC6937654 DOI: 10.1186/s13071-019-3866-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schistosomiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strategies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, has been proved to be associated with the development of many human diseases, including schistosomiasis. In this review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic targets for treating schistosomiasis-associated hepatic fibrosis.![]()
Collapse
|
233
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
234
|
Qiu J, Yang X, Wang L, Zhang Q, Ma W, Huang Z, Bao Y, Zhong L, Sun H, Ding F. Isoquercitrin promotes peripheral nerve regeneration through inhibiting oxidative stress following sciatic crush injury in mice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:680. [PMID: 31930081 DOI: 10.21037/atm.2019.11.18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Oxidative stress has been recognized to play a crucial role in the pathogenesis of peripheral nerve injury. Isoquercitrin (quercetin-3-glucoside) is a flavonoid that exhibited many biological activities, including anti-oxidative effect. However, it is unclear whether isoquercitrin has protective effects on peripheral nerve injury. Methods Mice treated by isoquercitrin were used as a case group, and mice injected with saline was the control group. Sciatic behavioral function was assessed using SFI and CMAPs were measured by electrophysiology. Schwann cells proliferation and migration were tested using EdU staining and Transwell migration chambers respectively. The expression of oxidative stress related factors were detected by qRT-PCR and Western blotting. Results In present study, our results demonstrated that isoquercitrin (20 mg/kg/day) treatment achieved significantly higher SFI and higher amplitude of CMAP, promoted the nerve regeneration and remyelination, increased the production of GAP43, NF200, MAG and PMP22, alleviated target muscle atrophy and autophagy, and suppressed the expression of ATG7, PINK1 and Beclin1 in soleus muscles after sciatic nerve crush. In vitro studies found that isoquercitrin promoted the axonal regeneration of DRGs neurons, the proliferation and migration of Schwann cells, and the expression of proliferating cell nuclear antigen (PCNA) in Schwann cells. The administration of isoquercitrin at 40 and 320 µM showed a dose dependent, and high doses of isoquercitrin (160 and 320 µM) showed better performance in promoting axonal regeneration of DRGs neurons, and the proliferation and migration of Schwann cells than low dose of isoquercitrin (40 µM). Furthermore, isoquercitrin significantly inhibited oxidative stress through reducing the production of Nox4 and Duox1, and promoting the expression of Nrf2 and SOD2 in soleus muscles after sciatic nerve crush. Conclusions Isoquercitrin may promote motor functional recovery and nerve regeneration following peripheral nerve injury though inhibition of oxidative stress, which highlighted the therapeutic values of isoquercitrin as a neuroprotective drug for peripheral nerve repair applications.
Collapse
Affiliation(s)
- Jiaying Qiu
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Lingbin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuhua Bao
- Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Lou Zhong
- Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
235
|
Park S, Shin MG, Kim JR, Park SY. Beta-lapachone attenuates immobilization-induced skeletal muscle atrophy in mice. Exp Gerontol 2019; 126:110711. [PMID: 31454520 DOI: 10.1016/j.exger.2019.110711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022]
Abstract
Skeletal muscle atrophy reduces quality of life and increases morbidity and mortality in patients with chronic conditions. Oxidative stress is a key factor contributing to skeletal muscle atrophy by altering both protein synthesis and protein degradation pathways. Beta-lapachone (Beta-L) is known to act as a pro-oxidant in cancer cells but suppresses oxidative stress in normal cells and tissues. In the present study, we examined whether Beta-L (100 mg/kg body weight) prevents immobilization-induced skeletal muscle atrophy in male C57BL/6N mice. Skeletal muscle atrophy was induced by immobilization of left hindlimbs for two weeks, and right hindlimbs were used as controls. The muscle weights of gastrocnemius (0.132 ± 0.003 g vs. 0.115 ± 0.003 g in Beta-L and SLS, respectively, p < 0.01) and tibialis anterior (0.043 ± 0.001 vs. 0.027 ± 0.002 in Beta-L and SLS, respectively, p < 0.001) were significantly heavier in Beta-L-treated mice than that in SLS-treated mice in immobilization group, which was accompanied by improved skeletal muscle function as tested by treadmill exhaustion and grip strength test. Immobilization increased H2O2 levels, while Beta-L treatment normalized such levels (1.6 ± 0.16 μM vs. 2.7 ± 0.44 μM in Beta-L and vehicle, respectively, p < 0.05). Oxidative stress makers were also normalized by Beta-L treatment. Protein synthesis signaling pathways were unaltered in the case of both immobilization and Beta-L treatment. However, protein catabolic, ubiquitin-proteasomal, and autophagy-lysosomal pathways were stimulated by immobilization and were normalized by Beta-L treatment. Upregulation of transforming growth factor β and Smad 2/3 after immobilization was significantly diminished by Beta-L treatment. These results suggest that Beta-L attenuates the loss of muscle weight and function induced by immobilization through suppression of oxidative stress.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min-Gyeong Shin
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
236
|
Shen Y, Zhang R, Xu L, Wan Q, Zhu J, Gu J, Huang Z, Ma W, Shen M, Ding F, Sun H. Microarray Analysis of Gene Expression Provides New Insights Into Denervation-Induced Skeletal Muscle Atrophy. Front Physiol 2019; 10:1298. [PMID: 31681010 PMCID: PMC6798177 DOI: 10.3389/fphys.2019.01298] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023] Open
Abstract
Denervation induces skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, with potentially devastating outcomes even an increased mortality. Currently, however, there remains a paucity of effective strategies to treat skeletal muscle atrophy. Therefore, it is required to understand the molecular mechanisms of skeletal muscle atrophy and formulate new treatment strategies. In this study, we investigated the transcriptional profile of denervated skeletal muscle after peripheral nerve injury in rats. The cDNA microarray analysis showed that a huge number of genes in tibialis anterior (TA) muscles were differentially expressed at different times after sciatic nerve transection. Notably, the 24 h of denervation might be a critical time point for triggering TA muscle atrophy. According to the data from self-organizing map (SOM), Pearson correlation heatmap, principal component analysis (PCA), and hierarchical clustering analysis, three nodal transitions in gene expression profile of the denervated TA muscle might partition the period of 0.25 h–28 days post nerve injury into four distinct transcriptional phases. Moreover, the four transcriptional phases were designated as “oxidative stress stage”, “inflammation stage”, “atrophy stage” and “atrophic fibrosis stage”, respectively, which was concluded from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene ontology (GO) analyses at each transcriptional phase. Importantly, the differentially expressed genes at 24 h post sciatic nerve transection seemed to be mainly involved in inflammation, which might be a critical process in denervation-induced muscle atrophy. Overall, our study would contribute to the understanding of molecular aspects of denervation-induced muscle atrophy, and may also provide a new insight into the time window for targeted therapy.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ru Zhang
- The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Liang Xu
- Department of Surgery, Changshu Affiliated Hospital of Nanjing University of Chinese Medicine, Changshu Traditional Chinese Medicine Hospital, Changshu, China
| | - Qiuxian Wan
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Gu
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
237
|
Ryu Y, Lee D, Jung SH, Lee KJ, Jin H, Kim SJ, Lee HM, Kim B, Won KJ. Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK-MuRF-1 Pathway in Rats. Int J Mol Sci 2019; 20:ijms20194955. [PMID: 31597276 PMCID: PMC6801606 DOI: 10.3390/ijms20194955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022] Open
Abstract
Chrysanthemum boreale Makino essential oil (CBMEO) has diverse biological activities including a skin regenerating effect. However, its role in muscle atrophy remains unknown. This study explored the effects of CBMEO and its active ingredients on skeletal muscle atrophy using in vitro and in vivo models of muscle atrophy. CBMEO reversed the size decrease of L6 myoblasts under starvation. Among the eight monoterpene compounds of CBMEO without cytotoxicity for L6 cells, sabinene induced predominant recovery of reductions of myotube diameters under starvation. Sabinene diminished the elevated E3 ubiquitin ligase muscle ring-finger protein-1 (MuRF-1) expression and p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylations in starved myotubes. Moreover, sabinene decreased the increased level of reactive oxygen species (ROS) in myotubes under starvation. The ROS inhibitor antagonized expression of MuRF-1 and phosphorylation of MAPKs, which were elevated in starved myotubes. In addition, levels of muscle fiber atrophy and MuRF-1 expression in gastrocnemius from fasted rats were reduced after administration of sabinene. These findings demonstrate that sabinene, a bioactive component from CBMEO, may attenuate skeletal muscle atrophy by regulating the activation mechanism of ROS-mediated MAPK/MuRF-1 pathways in starved myotubes, probably leading to the reverse of reduced muscle fiber size in fasted rats.
Collapse
Affiliation(s)
- Yunkyoung Ryu
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Donghyen Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seung Hyo Jung
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyung-Jin Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hengzhe Jin
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Su Jung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, 20 Hoseo-ro79beon-gil, Hoseo-ro, Baebang-eup, Asan 31499, Korea.
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyung-Jong Won
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
238
|
Huang Z, Fang Q, Ma W, Zhang Q, Qiu J, Gu X, Yang H, Sun H. Skeletal Muscle Atrophy Was Alleviated by Salidroside Through Suppressing Oxidative Stress and Inflammation During Denervation. Front Pharmacol 2019; 10:997. [PMID: 31616291 PMCID: PMC6763704 DOI: 10.3389/fphar.2019.00997] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/06/2019] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. Oxidative stress and inflammation are two main molecular mechanisms involved in muscle atrophy. In the current study, we want to explore whether and how salidroside, with antioxidant and anti-inflammatory properties, protects against skeletal muscle atrophy induced by denervation. First, oxidative stress and inflammatory response were examined during myotube atrophy induced by nutrition deprivation. The results demonstrated that oxidative stress and inflammatory response were induced in cultured myotubes suffered from nutrition deprivation, and salidroside not only inhibited oxidative stress and inflammatory response but also attenuated nutrition deprivation-induced myotube atrophy, as evidenced by an increased myotube diameter. The antioxidant, anti-inflammatory, and antiatrophic properties of salidroside in cultured myotubes were confirmed in denervated mouse models. The mice treated with salidroside showed less oxidative stress and less inflammatory cytokines, as well as higher skeletal muscle wet weight ratio and larger average cross sectional areas of myofibers compared with those treated with saline only during denervation-induced skeletal muscle atrophy. Moreover, salidroside treatment of denervated mice resulted in an inhibition of the activation of mitophagy in skeletal muscle. Furthermore, salidroside reduced the expression of atrophic genes, including MuRF1 and MAFbx, autophagy genes, including PINK1, BNIP3, LC3B, ATG7, and Beclin1, and transcription factor forkhead box O3 A (Foxo3A), and improved the expression of myosin heavy chain and transcriptional factor phosphorylated Foxo3A. Taken together, these results suggested that salidroside alleviated denervation-induced muscle atrophy by suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ziwei Huang
- Department of Orthopedics, Orthopedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Qingqing Fang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Huilin Yang
- Department of Orthopedics, Orthopedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| |
Collapse
|
239
|
Qiu J, Zhu J, Zhang R, Liang W, Ma W, Zhang Q, Huang Z, Ding F, Sun H. miR-125b-5p targeting TRAF6 relieves skeletal muscle atrophy induced by fasting or denervation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:456. [PMID: 31700892 DOI: 10.21037/atm.2019.08.39] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Skeletal muscle atrophy, characterized by accelerated protein degradation, occurs in such conditions as unloading, immobilization, fasting, and denervation. Effective treatments for skeletal muscle atrophy are not yet available. Considering that microRNAs (miRs) may play an important role in the regulation of muscle atrophy, in the present study, we aimed to examine the effect of miR-125b-5p-based therapeutic strategies on skeletal muscle atrophy, and to explore the underlying mechanisms. Methods Fasting-induced atrophic mouse C2C12 myotubes and denervated rat tibialis anterior (TA) muscles were used as in vitro and in vivo models of skeletal muscle atrophy, respectively. The morphological parameters of skeletal muscle were measured by immunostaining-based quantification. The interaction between miR-125b-5p and TRAF6 3'-UTR was detected by luciferase reporter analysis. The mRNA and protein expressions were determined by real-time qPCR and Western blot analysis respectively. The miR mimics/agomir and miR inhibitor/antagomir were transfected into C2C12 myotubes and TA muscles respectively to alter the expression of miR-125b-5p. Results The expression of miR-125b-5p was down-regulated in both atrophic C2C12 myotubes and denervated TA muscles. The interaction between miR-125b-5p and TRAF6 3'-UTR was identified. Overexpression of miR-125b-5p protected skeletal muscle samples from atrophy in vitro and in vivo by targeting TRAF6 through inactivation of several ubiquitin-proteasome system (UPS)- and autophagy-lysosome system (ALS)-related proteins. Conclusions Overexpression of miR-125b-5p may provide a promising therapeutic approach to treat muscle atrophy.
Collapse
Affiliation(s)
- Jiaying Qiu
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ru Zhang
- The Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
240
|
Ma W, Zhang R, Huang Z, Zhang Q, Xie X, Yang X, Zhang Q, Liu H, Ding F, Zhu J, Sun H. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:440. [PMID: 31700876 DOI: 10.21037/atm.2019.08.101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Skeletal muscle atrophy involves and requires widespread changes in skeletal muscle gene expression and signaling pathway, resulting in excessive loss of muscle mass and strength, which is associated with poor prognosis and the decline of life quality in several diseases. However, the treatment of skeletal muscle atrophy remains an unresolved challenge to this day. The aim of the present study was to investigate the influence of pyrroloquinoline quinone (PQQ), a redox-active o-quinone found in various foods and mammalian tissues, on skeletal muscle atrophy, and to explore the underlying molecular mechanism. Methods After denervation, mice were injected intraperitoneally with saline plus PQQ (5 mg/kg/d) or saline only for 14 days. The level of inflammatory cytokines in tibialis anterior (TA) muscles was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), and the level of signaling proteins of Janus kinase 2/signal transduction and activator of transcription 3 (Jak2/STAT3), TGF-β1/Smad3, JNK/p38 MAPK, and nuclear factor κB (NF-κB) signaling pathway were detected by Western blot. The skeletal muscle atrophy was evaluated by muscle wet weight ratio and cross-sectional areas (CSAs) of myofibers. The mitophagy was observed through transmission electron microscopy (TEM) analysis, and muscle fiber type transition was analyzed through fast myosin skeletal heavy chain antibody staining. Results The proinflammatory cytokines IL-6, IL-1β and TNF-α were largely induced in TA muscles after sciatic nerve transection. PQQ can significantly reverse this phenomenon, as evidenced by the decreased levels of proinflammatory cytokines IL-6, IL-1β and TNF-α. Moreover, PQQ could significantly attenuate the signal activation of Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB in skeletal muscles after sciatic nerve transection. Furthermore, PQQ alleviated skeletal muscle atrophy, mitigated mitophagy and inhibited slow-to-fast muscle fiber type transition. Conclusions These results suggested that PQQ could attenuate denervation-induced skeletal muscle atrophy, mitophagy and fiber type transition through suppressing the Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ru Zhang
- Department of Imaging, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoying Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian 226600, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
241
|
Chazarin B, Ziemianin A, Evans AL, Meugnier E, Loizon E, Chery I, Arnemo JM, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Lefai E, Bertile F. Limited Oxidative Stress Favors Resistance to Skeletal Muscle Atrophy in Hibernating Brown Bears ( Ursus Arctos). Antioxidants (Basel) 2019; 8:antiox8090334. [PMID: 31443506 PMCID: PMC6770786 DOI: 10.3390/antiox8090334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, which is believed to promote muscle atrophy, has been reported to occur in a few hibernators. However, hibernating bears exhibit efficient energy savings and muscle protein sparing, despite long-term physical inactivity and fasting. We hypothesized that the regulation of the oxidant/antioxidant balance and oxidative stress could favor skeletal muscle maintenance in hibernating brown bears. We showed that increased expressions of cold-inducible proteins CIRBP and RBM3 could favor muscle mass maintenance and alleviate oxidative stress during hibernation. Downregulation of the subunits of the mitochondrial electron transfer chain complexes I, II, and III, and antioxidant enzymes, possibly due to the reduced mitochondrial content, indicated a possible reduction of the production of reactive oxygen species in the hibernating muscle. Concomitantly, the upregulation of cytosolic antioxidant systems, under the control of the transcription factor NRF2, and the maintenance of the GSH/GSSG ratio suggested that bear skeletal muscle is not under a significant oxidative insult during hibernation. Accordingly, lower levels of oxidative damage were recorded in hibernating bear skeletal muscles. These results identify mechanisms by which limited oxidative stress may underlie the resistance to skeletal muscle atrophy in hibernating brown bears. They may constitute therapeutic targets for the treatment of human muscle atrophy.
Collapse
Affiliation(s)
- Blandine Chazarin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Anna Ziemianin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
| | - Emmanuelle Meugnier
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Emmanuelle Loizon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Isabelle Chery
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | | | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Etienne Lefai
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
- Université d'Auvergne, INRA, UNH UMR1019, F-63122 Saint-Genès Champanelle, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France.
| |
Collapse
|
242
|
Chen SH, Liu XN, Peng Y. MicroRNA-351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway by inhibiting FLOT2 in mice of gestational diabetes mellitus. J Cell Mol Med 2019; 23:5895-5906. [PMID: 31287224 PMCID: PMC6714143 DOI: 10.1111/jcmm.14079] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/10/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is known as different degree glucose intolerance that is initially identified during pregnancy. MicroRNAs (miRs) may be a potential candidate for treatment of GDM. Herein, we suggested that miR‐351 could be an inhibitor in the progression of GDM via the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway. Microarray analysis was used to identify differentially expressed genes and predict miRs regulating flotillin 2 (FLOT2). Target relationship between miR‐351 and FLOT2 was verified. Gestational diabetes mellitus mice were treated with a series of mimic, inhibitor and small interfering RNA to explore the effect of miR‐351 on insulin resistance (IR), cell apoptosis in pancreatic tissues and liver gluconeogenesis through evaluating GDM‐related biochemical indexes, as well as expression of miR‐351, FLOT2, PI3K/AKT pathway‐, IR‐ and liver gluconeogenesis‐related genes. MiR‐351 and FLOT2 were reported to be involved in GDM. FLOT2 was the target gene of miR‐351. Gestational diabetes mellitus mice exhibited IR and liver gluconeogenesis, up‐regulated FLOT2, activated PI3K/AKT pathway and down‐regulated miR‐351 in liver tissues. Additionally, miR‐351 overexpression and FLOT2 silencing decreased the levels of FLOT2, phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase, fasting blood glucose, fasting insulin, total cholesterol, triglyceride, glyeosylated haemoglobin and homeostasis model of assessment for IR index (HOMA‐IR), extent of PI3K and AKT phosphorylation, yet increased the levels of HOMA for islet β‐cell function, HOMA for insulin sensitivity index and glucose transporter 2 expression, indicating reduced cell apoptosis in pancreatic tissues and alleviated IR and liver gluconeogenesis. Our results reveal that up‐regulation of miR‐351 protects against IR and liver gluconeogenesis by repressing the PI3K/AKT pathway through regulating FLOT2 in GDM mice, which identifies miR‐351 as a potential therapeutic target for the clinical management of GDM.
Collapse
Affiliation(s)
- Shu-Hong Chen
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| | - Xiao-Nan Liu
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| | - Yan Peng
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| |
Collapse
|
243
|
Sudi SB, Tanaka T, Oda S, Nishiyama K, Nishimura A, Sunggip C, Mangmool S, Numaga-Tomita T, Nishida M. TRPC3-Nox2 axis mediates nutritional deficiency-induced cardiomyocyte atrophy. Sci Rep 2019; 9:9785. [PMID: 31278358 PMCID: PMC6611789 DOI: 10.1038/s41598-019-46252-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/25/2019] [Indexed: 01/29/2023] Open
Abstract
Myocardial atrophy, characterized by the decreases in size and contractility of cardiomyocytes, is caused by severe malnutrition and/or mechanical unloading. Extracellular adenosine 5′-triphosphate (ATP), known as a danger signal, is recognized to negatively regulate cell volume. However, it is obscure whether extracellular ATP contributes to cardiomyocyte atrophy. Here, we report that ATP induces atrophy of neonatal rat cardiomyocytes (NRCMs) without cell death through P2Y2 receptors. ATP led to overproduction of reactive oxygen species (ROS) through increased amount of NADPH oxidase (Nox) 2 proteins, due to increased physical interaction between Nox2 and canonical transient receptor potential 3 (TRPC3). This ATP-mediated formation of TRPC3-Nox2 complex was also pathophysiologically involved in nutritional deficiency-induced NRCM atrophy. Strikingly, knockdown of either TRPC3 or Nox2 suppressed nutritional deficiency-induced ATP release, as well as ROS production and NRCM atrophy. Taken together, we propose that TRPC3-Nox2 axis, activated by extracellular ATP, is the key component that mediates nutritional deficiency-induced cardiomyocyte atrophy.
Collapse
Affiliation(s)
- Suhaini Binti Sudi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
| | - Sayaka Oda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akiyuki Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Caroline Sunggip
- Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia
| | | | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan. .,Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan. .,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan. .,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
244
|
Wu C, Tang L, Ni X, Xu T, Fang Q, Xu L, Ma W, Yang X, Sun H. Salidroside Attenuates Denervation-Induced Skeletal Muscle Atrophy Through Negative Regulation of Pro-inflammatory Cytokine. Front Physiol 2019; 10:665. [PMID: 31293430 PMCID: PMC6604664 DOI: 10.3389/fphys.2019.00665] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle atrophy is associated with pro-inflammatory cytokines. Salidroside is a biologically active ingredient of Rhodiola rosea, which exhibits anti-inflammatory property. However, there is little known about the effect of salidroside on denervation-induced muscle atrophy. Therefore, the present study aimed to determine whether salidroside could protect against denervation-induced muscle atrophy and to clarify potential molecular mechanisms. Denervation caused progressive accumulation of inflammatory factors in skeletal muscle, especially interleukin 6 (IL6) and its receptor, and recombinant murine IL6 (rmIL6) local infusion could induce target muscle atrophy, suggesting that denervation induced inflammation in target muscles and the inflammation may trigger muscle wasting. Salidroside alleviated denervation-induced muscle atrophy and inhibited the production of IL6. Furthermore, the inhibition of phosphorylation of signal transducer and activator of transcription 3 (STAT3), and the decreased levels of suppressor of cytokine signaling (SOCS3), muscle RING finger protein-1 (MuRF1), atrophy F-box (atrogin-1), microtubule-associated protein light chain 3 beta (LC3B) and PTEN-induced putative kinase (PINK1) were observed in denervated muscles that were treated with salidroside. Finally, all of these responses to salidroside were replicated in neutralizing antibody against IL6. Taken together, these results suggest that salidroside alleviates denervation-induced inflammation response, thereby inhibits muscle proteolysis and muscle atrophy. Therefore, it was assumed that salidroside might be a potential therapeutic candidate to prevent muscle wasting.
Collapse
Affiliation(s)
- Changyue Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Longhai Tang
- Departments of Blood Component Preparation, Suzhou Blood Center, Suzhou, China
| | - Xuejun Ni
- Departments of Ultrasound, Affiliated Hospital of Nantong University, Nantong, China
| | - Tongtong Xu
- School of Medicine, Nantong University, Nantong, China
| | - Qingqing Fang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
245
|
Browne RW, Jakimovski D, Ziliotto N, Kuhle J, Bernardi F, Weinstock-Guttman B, Zivadinov R, Ramanathan M. High-density lipoprotein cholesterol is associated with multiple sclerosis fatigue: A fatigue-metabolism nexus? J Clin Lipidol 2019; 13:654-663.e1. [PMID: 31307953 DOI: 10.1016/j.jacl.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fatigue is a frequent symptom in multiple sclerosis (MS). The role of cholesterol and lipids in MS fatigue has not been investigated. OBJECTIVE To investigate the associations of cholesterol biomarkers and serum neurofilament light chain (sNfL) with fatigue in relapsing-remitting MS. METHODS This cross-sectional study included 75 relapsing-remitting MS patients (69% female, mean age ± SD: 49.6 ± 11 years and median Expanded Disability Status Scale score: 2.0). Fatigue, disability, and depression were assessed with Fatigue Severity Scale (FSS), Expanded Disability Status Scale, and the Beck Depression Index-Fast Screen, respectively. sNfL was measured using single-molecule array technology. Plasma total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and an apolipoprotein panel data were obtained. Soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), chemokine (C-C motif) ligand 5 (CCL5 or RANTES), and CCL18 levels were measured to assess inflammation. RESULTS The mean FSS was 4.27 ± 1.73, and 57% had severe fatigue status (SFS, FSS ≥ 4.0). In regression analyses adjusted for age, sex, disability, and depression, lower FSS and SFS were associated with greater HDL-C (P = .006 for FSS, and P = .016 for SFS) and lower TC to HDL-C ratio (P = .011 for FSS, and P = .009 for SFS). Apolipoprotein A-II was also associated with FSS (P = .022). sNfL, CCL5, CCL18, sICAM-1, and sVCAM-1 levels were not associated with fatigue after adjusting for disability and depression. CONCLUSIONS TC to HDL-C ratio is associated with MS fatigue. Our results implicate a potential role for the HDL-C pathway in MS fatigue and could provide possible targets for the treatment of MS fatigue.
Collapse
Affiliation(s)
- Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
246
|
Di Rienzo M, Antonioli M, Fusco C, Liu Y, Mari M, Orhon I, Refolo G, Germani F, Corazzari M, Romagnoli A, Ciccosanti F, Mandriani B, Pellico MT, De La Torre R, Ding H, Dentice M, Neri M, Ferlini A, Reggiori F, Kulesz-Martin M, Piacentini M, Merla G, Fimia GM. Autophagy induction in atrophic muscle cells requires ULK1 activation by TRIM32 through unanchored K63-linked polyubiquitin chains. SCIENCE ADVANCES 2019; 5:eaau8857. [PMID: 31123703 PMCID: PMC6527439 DOI: 10.1126/sciadv.aau8857] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
Optimal autophagic activity is crucial to maintain muscle integrity, with either reduced or excessive levels leading to specific myopathies. LGMD2H is a muscle dystrophy caused by mutations in the ubiquitin ligase TRIM32, whose function in muscles remains not fully understood. Here, we show that TRIM32 is required for the induction of muscle autophagy in atrophic conditions using both in vitro and in vivo mouse models. Trim32 inhibition results in a defective autophagy response to muscle atrophy, associated with increased ROS and MuRF1 levels. The proautophagic function of TRIM32 relies on its ability to bind the autophagy proteins AMBRA1 and ULK1 and stimulate ULK1 activity via unanchored K63-linked polyubiquitin. LGMD2H-causative mutations impair TRIM32's ability to bind ULK1 and induce autophagy. Collectively, our study revealed a role for TRIM32 in the regulation of muscle autophagy in response to atrophic stimuli, uncovering a previously unidentified mechanism by which ubiquitin ligases activate autophagy regulators.
Collapse
Affiliation(s)
- M. Di Rienzo
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
- Department of Biology, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - M. Antonioli
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - C. Fusco
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Y. Liu
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - M. Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - I. Orhon
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - G. Refolo
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - F. Germani
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - M. Corazzari
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Novara, Italy
| | - A. Romagnoli
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - F. Ciccosanti
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
| | - B. Mandriani
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - M. T. Pellico
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - R. De La Torre
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - H. Ding
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - M. Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - M. Neri
- Section of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - A. Ferlini
- Section of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - F. Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - M. Kulesz-Martin
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - M. Piacentini
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
- Department of Biology, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - G. Merla
- Division of Medical Genetics, IRCCS, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - G. M. Fimia
- National Institute for Infectious Diseases IRCCS, Lazzaro Spallanzani, 00149 Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce 73100, Italy
| |
Collapse
|
247
|
Wang X, Zhao H, Ni J, Pan J, Hua H, Wang Y. Identification of suitable reference genes for gene expression studies in rat skeletal muscle following sciatic nerve crush injury. Mol Med Rep 2019; 19:4377-4387. [PMID: 30942461 PMCID: PMC6472138 DOI: 10.3892/mmr.2019.10102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a molecular biological method used to assess gene expression characterized by high simplicity, effectiveness, specificity and sensitivity. The selection of a suitable reference gene for normalization is critical for the accuracy of quantitative results. Peripheral nerve injury is a common clinical disorder that affects multiple tissues and organs, including peripheral nerves, neurons and the innervated muscles. Numerous genes are differentially expressed in skeletal muscles during muscle denervation and reinnervation following peripheral nerve injury. The identification of a suitable reference gene in innervated muscles following nerve injury may improve the understanding of the alterations in gene expression in the processes of peripheral nerve repair and regeneration. Therefore, in the present study, by using a rat sciatic nerve crush model, the expression levels of various housekeeping genes were examined. In particular, the expression levels of 13 housekeeping genes, including 18S ribosomal RNA, actin β, ankyrin repeat domain 27, cyclophilin A, GAPDH, hypoxanthine phosphoribosyltransferase 1 (HPRT1), mitochondrial ribosomal protein L10, phosphoglycerate kinase 1, RPTOR independent companion of mammalian target of rapamycin complex 2, TATA-box binding protein, ubiquitin C, UBX domain protein 11 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ζ, were investigated in gastrocnemius muscles. The geNorm and NormFinder analyses suggested that the expression level of HPRT1 was particularly stable in gastrocnemius muscles following rat sciatic nerve crush injury. Therefore, HPRT1 may be used as a reference gene for the normalization of gene expression data generated by RT-qPCR.
Collapse
Affiliation(s)
- Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hualong Zhao
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng, Jiangsu 224051, P.R. China
| | - Jun Ni
- Department of Rehabilitation, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiacheng Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hao Hua
- Department of Medicine, Xinglin College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
248
|
Qin R, Sun J, Wu J, Chen L. Pyrroloquinoline quinone prevents knee osteoarthritis by inhibiting oxidative stress and chondrocyte senescence. Am J Transl Res 2019; 11:1460-1472. [PMID: 30972174 PMCID: PMC6456530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Accumulating evidence suggests that oxidative stress plays an important role in the progression of osteoarthritis (OA), and pyrroloquinoline quinone (PQQ) is considered a strong antioxidant. However, it is unclear whether PQQ can prevent the progression of OA by inhibiting oxidative stress. In this study, anterior cruciate ligament transection (ACLT)-induced OA mice received a diet supplemented with/without PQQ, and were compared with each other and with sham-operated mice. Our results showed that in PQQ-untreated OA mice, articular surfaces collapsed, while the thickness of articular cartilage and the abundance of cartilage matrix protein decreased significantly, whereas PQQ supplementation largely prevented these alterations. We also found that oxidative stress, DNA damage, cellular senescence and the secretion of senescence-associated inflammatory cytokines were increased in PQQ-untreated OA mice compared with sham-operated mice. However, these parameters were obviously rescued in PQQ-treated OA mice. This study demonstrated that PQQ supplementation can prevent ACLT-induced OA by inhibiting oxidative stress, DNA damage, cell senescence and the development of the senescence-associated secretory phenotype.
Collapse
Affiliation(s)
- Ran Qin
- Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Jinyu Sun
- Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Jun Wu
- Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
- Key Laboratory for Aging and Disease, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Lulu Chen
- Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
- Key Laboratory for Aging and Disease, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
249
|
Changchien CY, Lin YH, Cheng YC, Chang HH, Peng YS, Chen Y. Indoxyl sulfate induces myotube atrophy by ROS-ERK and JNK-MAFbx cascades. Chem Biol Interact 2019; 304:43-51. [PMID: 30849338 DOI: 10.1016/j.cbi.2019.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 01/05/2023]
Abstract
Accumulations of uremic toxins has been widely recognized as the major trigger of skeletal muscle loss in chronic kidney disease (CKD), which is defined as uremic sarcopenia. Current study was aimed to examine the effects of representative uremic toxin, indoxyl sulfate (IS), on C2C12 myotubes. The incubation of IS (from 0.1 mM to 1.2 mM) exerted the reduction in myotube diameter without cell survival impairment. Elevated oxidative stress and mitogen-activated protein kinase (MAPKs) phosphorylation were observed after IS stimulation for 1 and 24 h. After N-acetylcysteine (NAC) treatment as antioxidants, the recovery in IS-induced decrease myotube diameter and ERK phosphorylation was observed. This findings were implicit the transduction of p-ERK in IS-induced ROS toxicity. Moreover, the increase of LC3β was found closely with IS treatment in C2C12 myotubes. The reverse effect of NAC on LC3β expression revealed the ROS-responsibility in autophagy regulation of CKD myopathy. The evaluation of IS-treated proteasome system showed increased phospho-myosin light chain, along with the upregulation of muscle atrophy F-box (MAFbx) mRNA and protein. This alteration in MAFbx was also identified in nephrectomy-induced CKD model. Besides, the inhibition of p-JNK was capable to attenuate IS-induced upward change in MAFbx protein expression. These findings indicated that IS-mediated myotube atrophy may manipulate through ROS-ERK axis and JNK-MAFbx regulation in C2C12 cells.
Collapse
Affiliation(s)
- Chih-Ying Changchien
- Dispensary of 3rd Wing, Air Force, Taichung, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan City, Taiwan.
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
250
|
Qiu J, Wang L, Wang Y, Zhang Q, Ma W, Fang Q, Sun H, Ding F. MicroRNA351 targeting TRAF6 alleviates dexamethasone-induced myotube atrophy. J Thorac Dis 2018; 10:6238-6246. [PMID: 30622796 PMCID: PMC6297431 DOI: 10.21037/jtd.2018.10.88] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glucocorticoids, including dexamethasone (Dex), are corticosteroids secreted by the adrenal gland, which are used as potent anti-inflammatory, anti-shock, and immunosuppressive agents. Dex is commonly used in patients with malignant tumors, such lung cancer. However, administration of high-dose Dex induces severe atrophy of the skeletal muscle, and the underlying mechanisms of this skeletal muscle atrophy remain unclear. Abundant miRNAs of skeletal muscle, such as miR-351, play an important role in the regulation of extenuating the process of muscle atrophy. METHODS The mRNA and protein expression of TRAF6, MuRF1, MAFbx was determined by real-time PCR and western blot, while the expression of miR-351 was detected by real-time PCR. The myotubes were transfected with miR-351 mimic, negative control, or miR-351 inhibitor. The C2C12 myotubes diameter was measured. RESULTS MicroRNA351 (miR-351) level was markedly reduced and the mRNA and protein levels of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) were increased in Dex-induced C2C12 myotube atrophy. miR-351 directly interacted with the 3'-untranslated region (3'UTR) of TRAF6. Interestingly, miR-351 administration notably inhibited the reduction of the C2C12 myotube diameter induced by Dex treatment and reduced the levels of TRAF6, muscle-RING-finger protein-1 (MuRF1), and muscle atrophy F-box (MAFbx). CONCLUSIONS miR-351 counteracts Dex-induced C2C12 myotube atrophy by repressing the TRAF6 expression as well as E3 ubiquitin ligase MuRF1 and MAFbx. miR-351 maybe a potential target for development of a new strategy for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Jiaying Qiu
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Lingbin Wang
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ye Wang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wenjing Ma
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qingqing Fang
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
- Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|