201
|
Steinbrenner M, Duncan JS, Dickson J, Rathore C, Wächter B, Aygun N, Menon RN, Radhakrishnan A, Holtkamp M, Ilyas-Feldmann M. Utility of 18F-fluorodeoxyglucose positron emission tomography in presurgical evaluation of patients with epilepsy: A multicenter study. Epilepsia 2022; 63:1238-1252. [PMID: 35166379 DOI: 10.1111/epi.17194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) is widely used in presurgical assessment in patients with drug-resistant focal epilepsy (DRE) if magnetic resonance imaging (MRI) and scalp electroencephalography (EEG) do not localize the seizure onset zone or are discordant. METHODS In this multicenter, retrospective observational cohort study, we included consecutive patients with DRE who had undergone FDG-PET as part of their presurgical workup. We assessed the utility of FDG-PET, which was defined as contributing to the decision-making process to refer for resection or intracranial EEG (iEEG) or to conclude surgery was not feasible. RESULTS We included 951 patients in this study; 479 had temporal lobe epilepsy (TLE), 219 extratemporal epilepsy (ETLE), and 253 epilepsy of uncertain lobar origin. FDG-PET showed a distinct hypometabolism in 62% and was concordant with ictal EEG in 74% in TLE and in 56% in ETLE (p < .001). FDG-PET was useful in presurgical decision-making in 396 patients (47%) and most beneficial in TLE compared to ETLE (58% vs. 44%, p = .001). Overall, FDG-PET contributed to recommending resection in 78 cases (20%) and iEEG in 187 cases (47%); in 131 patients (33%), FDG-PET resulted in a conclusion that resection was not feasible. In TLE, seizure-freedom 1 year after surgery did not differ significantly (p = .48) between patients with negative MRI and EEG-PET concordance (n = 30, 65%) and those with positive MRI and concordant EEG (n = 46, 68%). In ETLE, half of patients with negative MRI and EEG-PET concordance and three quarters with positive MRI and concordant EEG were seizure-free postsurgery (n = 5 vs. n = 6, p = .28). SIGNIFICANCE This is the largest reported cohort of patients with DRE who received presurgical FDG-PET, showing that FDG-PET is a useful diagnostic tool. MRI-negative and MRI-positive cases with concordant FDG-PET results (with either EEG or MRI) had a comparable outcome after surgery. These findings confirm the significance of FDG-PET in presurgical epilepsy diagnostics.
Collapse
Affiliation(s)
- Mirja Steinbrenner
- Department of Neurology and Experimental Neurology, Epilepsy Center Berlin-Brandenburg, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Chaturbhuj Rathore
- Department of Neurology, Smt. B. K. Shah (SBKS) Medical College, Sumandeep Vidyapeeth, Vadodara, India
| | - Bettina Wächter
- Epilepsy Center Berlin-Brandenburg, Evangelische Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Nafi Aygun
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ashalatha Radhakrishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Martin Holtkamp
- Department of Neurology and Experimental Neurology, Epilepsy Center Berlin-Brandenburg, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Epilepsy Center Berlin-Brandenburg, Evangelische Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Maria Ilyas-Feldmann
- Department of Neurology and Experimental Neurology, Epilepsy Center Berlin-Brandenburg, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
202
|
Sloekers JC, Herrler A, Hoogland G, Rijkers K, Beckervordersandforth J, van Kuijk SM, Schijns OE. Nerve fiber density differences in the temporal dura mater: an explanation for headache after temporal lobectomy?, An anatomical study. J Chem Neuroanat 2022; 121:102082. [DOI: 10.1016/j.jchemneu.2022.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
203
|
Cui D, Gao R, Xu C, Yan H, Zhang X, Yu T, Zhang G. Ictal onset stereoelectroencephalography patterns in temporal lobe epilepsy: type, distribution, and prognostic value. Acta Neurochir (Wien) 2022; 164:555-563. [PMID: 35041086 DOI: 10.1007/s00701-022-05122-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the different ictal onset stereoelectroencephalography patterns (IOPs) in patients with drug-resistant temporal lobe epilepsy (TLE). We examined whether the IOPs relate to different TLE subtypes, MRI findings, and underlying pathologies, and we evaluated their prognostic value for predicting the surgical outcome. METHODS We retrospectively analyzed data from patients with TLE who underwent stereoelectroencephalography (SEEG) monitoring followed by surgical resection between January 2018 and January 2020. The SEEG recordings were independently analyzed by two epileptologists. RESULTS Forty-five patients were included in the study, and 61seizures were analyzed. Five IOPs were identified: low voltage fast activity (LVFA; 44.3%), spike-and-wave activity (16.4%), low frequency high-amplitude periodic spikes (LFPS; 18%), a burst of high-amplitude polyspikes (8.2%), and rhythmic sharp activity at ≤ 13 Hz (13.1%). Thirty-two patients were found to have a single IOP, while the other 13 patients had two or more IOPs. All five IOPs were found to occur in the medial temporal lobe epilepsy (MTLE), while four IOPs occurred in the lateral temporal lobe epilepsy (LTLE). The LFPS was a common IOP that could distinguish MTLE from LTLE (x2 = 7.046, p = 0.011). Among the MTLE patients, the LFPS was exclusively seen in cases of hippocampal sclerosis (x2 = 5.058, p = 0.038), while the LVFA was associated with nonspecific histology (x2 = 6.077, p = 0.023). The IOPs were not found to differ according to whether the MRI scans were positive or negative. After surgery, patients achieved the higher seizure-free rate at 81.8% and 77.8%, respectively, if the LFPS and LVFA were the predominant patterns. Multiple IOPs or a negative MRI did not indicate a poor prognosis. CONCLUSIONS Five distinct IOPs were identified in the patients with TLE. The differences found have important clinical implications and could provide complementary information for surgical decision-making, especially in MRI-negative patients.
Collapse
Affiliation(s)
- Deqiu Cui
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Hao Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
204
|
Wu C, Schwalb JM, Rosenow JM, McKhann GM, Neimat JS. The American Society for Stereotactic and Functional Neurosurgery Position Statement on Laser Interstitial Thermal Therapy for the Treatment of Drug-Resistant Epilepsy. Neurosurgery 2022; 90:155-160. [PMID: 34995216 DOI: 10.1227/neu.0000000000001799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetic resonance image-guided laser interstitial thermal therapy (MRgLITT) is a novel tool in the neurosurgical armamentarium for the management of drug-resistant epilepsy. Given the recent introduction of this technology, the American Society for Stereotactic and Functional Neurosurgery (ASSFN), which acts as the joint section representing the field of stereotactic and functional neurosurgery on behalf of the Congress of Neurological Surgeons and the American Association of Neurological Surgeons, provides here the expert consensus opinion on evidence-based best practices for the use and implementation of this treatment modality. Indications for treatment are outlined, consisting of failure to respond to, or intolerance of, at least 2 appropriately chosen medications at appropriate doses for disabling, localization-related epilepsy in the setting of well-defined epileptogenic foci, or critical pathways of seizure propagation accessible by MRgLITT. Applications of MRgLITT in mesial temporal lobe epilepsy and hypothalamic hamartoma, along with its contraindications in the treatment of epilepsy, are discussed based on current evidence. To put this position statement in perspective, we detail the evidence and authority on which this ASSFN position statement is based.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jason M Schwalb
- Department of Neurological Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Neurological Institute of New York, Columbia University Medical Center, New York, New York, USA
| | - Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
205
|
Sinha SR, Yang JC, Wallace MJ, Grover K, Johnson FR, Reed SD. Patient preferences pertaining to treatment options for drug-resistant focal epilepsy. Epilepsy Behav 2022; 127:108529. [PMID: 35016055 DOI: 10.1016/j.yebeh.2021.108529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine patient acceptability of benefit-risk trade-offs in selecting treatment options for drug-resistant mesial temporal lobe epilepsy, including open brain surgery, laser ablation (laser interstitial thermal therapy [LITT]), and continued medications. METHODS A discrete-choice experiment survey was developed, consisting of 20 versions that were randomly assigned to respondents. Each version had 8 sets of constructed treatment alternatives, representing open brain surgery, LITT, or continued medical management. For each set, respondents indicated the treatment alternative they would choose first. Treatment alternatives were characterized by varying levels of chance of seizure freedom for at least 2 years (20-70%), risk of 30-day mortality (0-10%), and risk of neurological deficits (0-40%). Respondents' choices were analyzed using random-parameters logit models to quantify acceptable benefit-risk trade-offs. Preference heterogeneity was evaluated using latent-class analysis. RESULTS The survey was administered to 2 cohorts of adult patients with drug-resistant epilepsy: a Duke cohort identified using diagnostic codes (n = 106) and a web-recruited panel with a self-reported physician diagnosis of drug-resistant epilepsy (n = 300). Based on mean preference weights, respondents who indicated a willingness to consider surgical intervention would accept a reduction in chance of seizure freedom from 70% to a minimum-acceptable benefit (MAB) of 23% if they could undergo LITT rather than open brain surgery. For a reduction in 30-day mortality from 1% to 0%, MAB was 52%. For a reduction in risk of long-term deficits from 10% to 0%, MAB was 39%. Latent-class analysis revealed additional choice patterns identifying respondent groups that more strongly favored continuing medications or undergoing surgery. CONCLUSION Patients who are receptive to surgery would accept significantly lower treatment effectiveness to undergo a minimally invasive procedure relative to open brain surgery. They also were willing to accept lower treatment benefit to reduce risks of mortality or neurological deficits.
Collapse
Affiliation(s)
- Saurabh R Sinha
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Jui-Chen Yang
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Matthew J Wallace
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kiran Grover
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - F Reed Johnson
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Shelby D Reed
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
206
|
Shlobin NA, Campbell JM, Rosenow JM, Rolston JD. Ethical considerations in the surgical and neuromodulatory treatment of epilepsy. Epilepsy Behav 2022; 127:108524. [PMID: 34998267 PMCID: PMC10184316 DOI: 10.1016/j.yebeh.2021.108524] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Surgical resection and neuromodulation are well-established treatments for those with medically refractory epilepsy. These treatments entail important ethical considerations beyond those which extend to the treatment of epilepsy generally. In this paper, the authors explore these unique considerations through a framework that relates foundational principles of bioethics to features of resective epilepsy surgery and neuromodulation. The authors conducted a literature review to identify ethical considerations for a variety of epilepsy surgery procedures and to examine how foundational principles in bioethics may inform treatment decisions. Healthcare providers should be cognizant of how an increased prevalence of somatic and psychiatric comorbidities, the dynamic nature of symptom burden over time, the individual and systemic barriers to treatment, and variable sociocultural contexts constitute important ethical considerations regarding the use of surgery or neuromodulation for the treatment of epilepsy. Moreover, careful attention should be paid to how resective epilepsy surgery and neuromodulation relate to notions of patient autonomy, safety and privacy, and the shared responsibility for device management and maintenance. A three-tiered approach-(1) gathering information and assessing the risks and benefits of different treatment options, (2) clear communication with patient or proxy with awareness of patient values and barriers to treatment, and (3) long-term decision maintenance through continued identification of gaps in understanding and provision of information-allows for optimal treatment of the individual person with epilepsy while minimizing disparities in epilepsy care.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Justin M Campbell
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA; Department of Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
207
|
Gleichgerrcht E, Drane DL, Keller SS, Davis KA, Gross R, Willie JT, Pedersen N, de Bezenac C, Jensen J, Weber B, Kuzniecky R, Bonilha L. Association Between Anatomical Location of Surgically Induced Lesions and Postoperative Seizure Outcome in Temporal Lobe Epilepsy. Neurology 2022; 98:e141-e151. [PMID: 34716254 PMCID: PMC8762583 DOI: 10.1212/wnl.0000000000013033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To determine the association between surgical lesions of distinct gray and white structures and connections with favorable postoperative seizure outcomes. METHODS Patients with drug-resistant temporal lobe epilepsy (TLE) from 3 epilepsy centers were included. We employed a voxel-based and connectome-based mapping approach to determine the association between favorable outcomes and surgery-induced temporal lesions. Analyses were conducted controlling for multiple confounders, including total surgical resection/ablation volume, hippocampal volumes, side of surgery, and site where the patient was treated. RESULTS The cohort included 113 patients with TLE (54 women; 86 right-handed; mean age at seizure onset 16.5 years [SD 11.9]; 54.9% left) who were 61.1% free of disabling seizures (Engel Class 1) at follow-up. Postoperative seizure freedom in TLE was associated with (1) surgical lesions that targeted the hippocampus as well as the amygdala-piriform cortex complex and entorhinal cortices; (2) disconnection of temporal, frontal, and limbic regions through loss of white matter tracts within the uncinate fasciculus, anterior commissure, and fornix; and (3) functional disconnection of the frontal (superior and middle frontal gyri, orbitofrontal region) and temporal (superior and middle pole) lobes. DISCUSSION Better postoperative seizure freedom is associated with surgical lesions of specific structures and connections throughout the temporal lobes. These findings shed light on the key components of epileptogenic networks in TLE and constitute a promising source of new evidence for future improvements in surgical interventions. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for patients with TLE, postoperative seizure freedom is associated with surgical lesions of specific temporal lobe structures and connections.
Collapse
Affiliation(s)
- Ezequiel Gleichgerrcht
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY.
| | - Daniel L Drane
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Simon S Keller
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Kathryn A Davis
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Robert Gross
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Jon T Willie
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Nigel Pedersen
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Christophe de Bezenac
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Jens Jensen
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Bernd Weber
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Ruben Kuzniecky
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| | - Leonardo Bonilha
- From the Department of Neurology (E.G., L.B.) and Center for Biomedical Imaging (J.J.), Medical University of South Carolina, Charleston; Department of Neurology (D.L.D., N.P.), Emory University, Atlanta, GA; Institute of Systems, Molecular and Integrative Biology (S.S.K., C.d.B.), University of Liverpool; The Walton Centre NHS Foundation Trust (S.S.K.), Liverpool, UK; Department of Neurology (K.A.D.), University of Pennsylvania, Philadelphia; Department of Neurosurgery (R.G., J.T.W.), Emory University, Atlanta, GA; Department of Neurological Surgery (J.T.W.), Washington University in St. Louis, MO; and Department of Neurology (R.K.), Hofstra University/Northwell, NY
| |
Collapse
|
208
|
van Lanen RHGJ, Wiggins CJ, Colon AJ, Backes WH, Jansen JFA, Uher D, Drenthen GS, Roebroeck A, Ivanov D, Poser BA, Hoeberigs MC, van Kuijk SMJ, Hoogland G, Rijkers K, Wagner GL, Beckervordersandforth J, Delev D, Clusmann H, Wolking S, Klinkenberg S, Rouhl RPW, Hofman PAM, Schijns OEMG. Value of ultra-high field MRI in patients with suspected focal epilepsy and negative 3 T MRI (EpiUltraStudy): protocol for a prospective, longitudinal therapeutic study. Neuroradiology 2022; 64:753-764. [PMID: 34984522 PMCID: PMC8907090 DOI: 10.1007/s00234-021-02884-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 10/30/2022]
Abstract
PURPOSE Resective epilepsy surgery is a well-established, evidence-based treatment option in patients with drug-resistant focal epilepsy. A major predictive factor of good surgical outcome is visualization and delineation of a potential epileptogenic lesion by MRI. However, frequently, these lesions are subtle and may escape detection by conventional MRI (≤ 3 T). METHODS We present the EpiUltraStudy protocol to address the hypothesis that application of ultra-high field (UHF) MRI increases the rate of detection of structural lesions and functional brain aberrances in patients with drug-resistant focal epilepsy who are candidates for resective epilepsy surgery. Additionally, therapeutic gain will be addressed, testing whether increased lesion detection and tailored resections result in higher rates of seizure freedom 1 year after epilepsy surgery. Sixty patients enroll the study according to the following inclusion criteria: aged ≥ 12 years, diagnosed with drug-resistant focal epilepsy with a suspected epileptogenic focus, negative conventional 3 T MRI during pre-surgical work-up. RESULTS All patients will be evaluated by 7 T MRI; ten patients will undergo an additional 9.4 T MRI exam. Images will be evaluated independently by two neuroradiologists and a neurologist or neurosurgeon. Clinical and UHF MRI will be discussed in the multidisciplinary epilepsy surgery conference. Demographic and epilepsy characteristics, along with postoperative seizure outcome and histopathological evaluation, will be recorded. CONCLUSION This protocol was reviewed and approved by the local Institutional Review Board and complies with the Declaration of Helsinki and principles of Good Clinical Practice. Results will be submitted to international peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER www.trialregister.nl : NTR7536.
Collapse
Affiliation(s)
- R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands. .,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.
| | - C J Wiggins
- Scannexus, Ultra-High Field MRI Research Center, Maastricht, the Netherlands
| | - A J Colon
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - W H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - D Uher
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G S Drenthen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - M C Hoeberigs
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - G L Wagner
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | | | - D Delev
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - H Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - S Wolking
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - S Klinkenberg
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - R P W Rouhl
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P A M Hofman
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| |
Collapse
|
209
|
Zhou H, Zhang W, Tan Z, Zhou Z, Li Y, Zhang S, Zhang L, Gan J, Wu H, Tang Y, Cheng Y, Ling X, Guo Q, Xu H. Localizing Epileptic Foci Before Surgery in Patients With MRI-Negative Refractory Epilepsy Using Statistical Parameter Mapping and Three-Dimensional Stereotactic Surface Projection Based on 18F-FDG PET. Front Bioeng Biotechnol 2022; 9:810890. [PMID: 35071215 PMCID: PMC8766976 DOI: 10.3389/fbioe.2021.810890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with refractory epilepsy are not only free of seizures after resecting epileptic foci, but also experience significantly improved quality of life. Fluorine-18-fluorodeoxyglucose positron-emission tomography (18F-FDG PET) is a promising avenue for detecting epileptic foci in patients with magnetic resonance imaging (MRI)-negative refractory epilepsy. However, the detection of epileptic foci by visual assessment based on 18F-FDG PET is often complicated by a variety of factors in clinical practice. Easy imaging methods based on 18F-FDG PET images, such as statistical parameter mapping (SPM) and three-dimensional stereotactic surface projection (3D-SSP), can objectively detect epileptic foci. In this study, the regions of surgical resection of patients with over 1 year follow-up and no seizures were defined as standard epileptic foci. We retrospectively analyzed the sensitivity of visual assessment, SPM and 3D-SSP based on 18F-FDG PET to detect epileptic foci in MRI-negative refractory epilepsy patients and obtained the sensitivities of visual assessment, SPM and 3D-SSP are 57, 70 and 60% respectively. Visual assessment combined with SPM or 3D-SSP can improve the sensitivity of detecting epileptic foci. The sensitivity was highest when the three methods were combined, but decreased consistency, in localizing epileptic foci. We conclude that SPM and 3D-SSP can be used as objective methods to detect epileptic foci before surgery in patients with MRI-negative refractory epilepsy. Visual assessment is the preferred method for PET image analysis in MRI-negative refractory epilepsy. When the visual assessment is inconsistent with the patient's electroclinical information, SPM or 3D-SSP was further selected to assess the epileptic foci. If the combination of the two methods still fails to accurately locate the epileptic foci, comprehensive evaluation can be performed by combining the three methods.
Collapse
Affiliation(s)
- Hailing Zhou
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- Epilepsy Center, Guangdong 999 Brain Hospital, Affiliated Brain Hospital of Jinan University, Guangzhou, China
| | - Zhiqiang Tan
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ziqing Zhou
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Li
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingling Zhang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiefeng Gan
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huanhua Wu
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongjin Tang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Cheng
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xueying Ling
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Guo
- Epilepsy Center, Guangdong 999 Brain Hospital, Affiliated Brain Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
210
|
Zhang M, Huang H, Liu W, Tang L, Li Q, Wang J, Huang X, Lin X, Meng H, Wang J, Zhan S, Li B, Luo J. Combined quantitative T2 mapping and [ 18F]FDG PET could improve lateralization of mesial temporal lobe epilepsy. Eur Radiol 2022; 32:6108-6117. [PMID: 35347363 PMCID: PMC9381472 DOI: 10.1007/s00330-022-08707-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To investigate whether quantitative T2 mapping is complementary to [18F]FDG PET in epileptogenic zone detection, thus improving the lateralization accuracy for drug-resistant mesial temporal lobe epilepsy (MTLE) using hybrid PET/MR. METHODS We acquired routine structural MRI, T2-weighted FLAIR, whole brain T2 mapping, and [18F]FDG PET in 46 MTLE patients and healthy controls on a hybrid PET/MR scanner, followed with computing voxel-based z-score maps of patients in reference to healthy controls. Asymmetry indexes of the hippocampus were calculated for each imaging modality, which then enter logistic regression models as univariate or multivariate for lateralization. Stereoelectroencephalography (SEEG) recordings and clinical decisions were collected as gold standard. RESULTS Routine structural MRI and T2w-FLAIR lateralized 47.8% (22/46) of MTLE patients, and FDG PET lateralized 84.8% (39/46). T2 mapping combined with [18F]FDG PET improved the lateralization accuracy by correctly lateralizing 95.6% (44/46) of MTLE patients. The asymmetry indexes of hippocampal T2 relaxometry and PET exhibit complementary tendency in detecting individual laterality, especially for MR-negative patients. In the quantitative analysis of z-score maps, the ipsilateral hippocampus had significantly lower SUVR (LTLE, p < 0.001; RTLE, p < 0.001) and higher T2 value (LTLE, p < 0.001; RTLE, p = 0.001) compared to the contralateral hippocampus. In logistic regression models, PET/T2 combination resulted in the highest AUC of 0.943 in predicting lateralization for MR-negative patients, followed by PET (AUC = 0.857) and T2 (AUC = 0.843). CONCLUSIONS The combination of quantitative T2 mapping and [18F]FDG PET could improve lateralization for temporal lobe epilepsy. KEY POINTS • Quantitative T2 mapping and18F-FDG PET are complementary in the characterization of hippocampal alterations of MR-negative temporal lobe epilepsy patients. • The combination of quantitative T2 and18F-FDG PET obtained from hybrid PET/MR could improve lateralization for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Miao Zhang
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hui Huang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wei Liu
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lihong Tang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Qikang Li
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jia Wang
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xinyun Huang
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaozhu Lin
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hongping Meng
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jin Wang
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shikun Zhan
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Biao Li
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China ,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, 200025 China
| | - Jie Luo
- grid.16821.3c0000 0004 0368 8293School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
211
|
Asadi-Pooya AA, Farazdaghi M. Cluster analysis: Predicting the seizure outcome in temporal lobe epilepsy. Epilepsy Behav 2022; 126:108495. [PMID: 34923259 DOI: 10.1016/j.yebeh.2021.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We applied the Two-Step cluster analysis on a large cohort of patients with temporal lobe epilepsy (TLE). We hypothesized that there are distinct clusters of patients with TLE based on their clinical characteristics and these clusters may predict their seizure outcome. METHODS This was a longitudinal study of a prospectively developed database. All patients with a diagnosis of TLE were studied at the outpatient epilepsy clinic, Shiraz, Iran, from 2008 until 2021. The Two-Step cluster analysis (Schwarz's Bayesian Criterion: BIC) was applied to the whole dataset considering the demographic data, clinical characteristics, imaging, and electroencephalography data. The seizure outcome was compared between the clusters of patients. RESULTS Three hundred and seventy-four patients had the inclusion criteria and were studied. The Two-Step cluster analysis showed that there were two distinct clusters of patients with TLE. The most important clinical predictors were the presence (or absence) of focal impaired awareness seizures or focal to bilateral tonic-clonic seizures, aura with seizures, and the brain imaging findings. The seizure outcomes were significantly different between these two clusters (p = 0.008). CONCLUSION The Two-Step cluster analysis could identify two distinct clusters of patients with TLE; these data are helpful in providing prognosis and counseling for patients and their care-givers. These data may also be used to develop a practical outcome prediction tool for patients with TLE.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mohsen Farazdaghi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
212
|
Kozlova A, Korsakova M, Pitskhelauri D, Kudieva E, Dombaanai B, Vlasov P, Kamenetskaya M. Neurophysiological aspects of multiple hippocampal transection in intractable temporal lobe epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:104-111. [DOI: 10.17116/jnevro2022122011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
213
|
Aura Type and Outcome Following Anterior Temporal Lobectomy. World Neurosurg 2022; 161:e199-e209. [DOI: 10.1016/j.wneu.2022.01.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
214
|
Alim-Marvasti A, Romagnoli G, Dahele K, Modarres H, Pérez-García F, Sparks R, Ourselin S, Clarkson MJ, Chowdhury F, Diehl B, Duncan JS. Probabilistic landscape of seizure semiology localizing values. Brain Commun 2022; 4:fcac130. [PMID: 35663381 PMCID: PMC9156627 DOI: 10.1093/braincomms/fcac130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Semiology describes the evolution of symptoms and signs during epileptic seizures and contributes to the evaluation of individuals with focal drug-resistant epilepsy for curative resection. Semiology varies in complexity from elementary sensorimotor seizures arising from primary cortex to complex behaviours and automatisms emerging from distributed cerebral networks. Detailed semiology interpreted by expert epileptologists may point towards the likely site of seizure onset, but this process is subjective. No study has captured the variances in semiological localizing values in a data-driven manner to allow objective and probabilistic determinations of implicated networks and nodes. We curated an open data set from the epilepsy literature, in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, linking semiology to hierarchical brain localizations. A total of 11 230 data points were collected from 4643 patients across 309 articles, labelled using ground truths (postoperative seizure-freedom, concordance of imaging and neurophysiology, and/or invasive EEG) and a designation method that distinguished between semiologies arising from a predefined cortical region and descriptions of neuroanatomical localizations responsible for generating a particular semiology. This allowed us to mitigate temporal lobe publication bias by filtering studies that preselected patients based on prior knowledge of their seizure foci. Using this data set, we describe the probabilistic landscape of semiological localizing values as forest plots at the resolution of seven major brain regions: temporal, frontal, cingulate, parietal, occipital, insula, and hypothalamus, and five temporal subregions. We evaluated the intrinsic value of any one semiology over all other ictal manifestations. For example, epigastric auras implicated the temporal lobe with 83% probability when not accounting for the publication bias that favoured temporal lobe epilepsies. Unbiased results for a prior distribution of cortical localizations revised the prevalence of temporal lobe epilepsies from 66% to 44%. Therefore, knowledge about the presence of epigastric auras updates localization to the temporal lobe with an odds ratio (OR) of 2.4 [CI95% (1.9, 2.9); and specifically, mesial temporal structures OR: 2.8 (2.3, 2.9)], attesting the value of epigastric auras. As a further example, although head version is thought to implicate the frontal lobes, it did not add localizing value compared with the prior distribution of cortical localizations [OR: 0.9 (0.7, 1.2)]. Objectification of the localizing values of the 12 most common semiologies provides a complementary view of brain dysfunction to that of lesion-deficit mappings, as instead of linking brain regions to phenotypic-deficits, semiological phenotypes are linked back to brain sources. This work enables coupling of seizure propagation with ictal manifestations, and clinical support algorithms for localizing seizure phenotypes.
Collapse
Affiliation(s)
- Ali Alim-Marvasti
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, UCL, London, UK.,Department of Medical Physics and Biomedical Engineering, UCL, London, UK.,Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, UK.,National Hospital for Neurology and Neurosurgery, London, UK
| | - Gloria Romagnoli
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, UCL, London, UK.,National Hospital for Neurology and Neurosurgery, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karan Dahele
- University College London Medical School, London, UK
| | - Hadi Modarres
- Faculty of Engineering, University of Cambridge, Cambridge, UK
| | - Fernando Pérez-García
- Department of Medical Physics and Biomedical Engineering, UCL, London, UK.,Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, UK.,School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Rachel Sparks
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Sébastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Matthew J Clarkson
- Department of Medical Physics and Biomedical Engineering, UCL, London, UK.,Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, UK
| | - Fahmida Chowdhury
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, UCL, London, UK.,National Hospital for Neurology and Neurosurgery, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, UCL, London, UK.,National Hospital for Neurology and Neurosurgery, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, UCL, London, UK.,National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
215
|
Pandya V, Bauer P, Thompson S, Anderson CT, Raghavan M, Carlson C. Anti-seizure medication treatment trials prior to pre-surgical evaluation. Epilepsy Behav Rep 2022; 20:100565. [PMID: 36119947 PMCID: PMC9474306 DOI: 10.1016/j.ebr.2022.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022] Open
Abstract
Only 17% of patients were tried on only 1or anti-seizure medications. The mean number of ASMs tried at the time of referral was 5.62 (ranging from 1-15). Race and ethnicity were not associated with an increased number of ASM trials. Female sex was associated with a larger number of ASM trials.n. ASM trials may be determined by patient/provider preferences or barriers to care.
Purpose Our study evaluates patterns of anti-seizure medication (ASM) usage prior to pre-surgical evaluation in drug resistant epilepsy (DRE). Methods We conducted a retrospective study of patients with DRE presenting for pre-surgical evaluation from 1/1/2017 to 12/31/2018. We abstracted demographic data, ASM usage, MRI and EEG findings, and distance from home to our center. Results In total, 54 patients (23 female) were included. The mean number of ASM trials at the time of pre-surgical evaluation was 5.62 (±3.3; range 1–15). A mean of 0.4 ASMs (±1.1; range 0–6) were initiated at our center prior to pre-surgical evaluation. MRI localization to regions other than the hippocampal or temporal region (p = 0.002) was associated with higher numbers of ASM trials. A trend for a larger number of ASM trials was seen for increased distance of patient primary residence from our center, right-sided ictal EEG laterality, and posterior quadrant or non-localized ictal EEG patterns. Conclusions Only 17% of patients were referred for pre-surgical evaluation after a trial of 1–2 ASMs. On average, patients tried 5.6 different ASMs with most of those trials predating referral to our center. Temporal lobe lesions were associated with fewer ASM trials prior to referral. Female sex was associated with an average of two more ASM trials than males. Our data do not allow us to determine how access to care, patient choice, and physician opinions impact the variability of ASM trials prior to referral for surgical evaluation. Our data indicate that delays to pre-surgical evaluation continue to occur.
Collapse
|
216
|
Sureshbabu S, Padmanabhan MV, Alappat J, Mohanlal S, Janardhanan S, Karunanidhi S, Kannan L, Nayak D, Shekhar B. Therapeutic Challenge in a Case of Recent Onset Refractory Cluster Seizures. J Epilepsy Res 2021; 11:146-149. [PMID: 35087724 PMCID: PMC8767224 DOI: 10.14581/jer.21022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
A dilemma exists in context to the timing of surgery in a case presenting with explosive onset seizures secondary to a focal cortical dysplasia (FCD). This case report highlights the challenges faced in the management of a 4-year-old child with recent onset cluster seizures refractory to anti-epileptic drugs. A 4-year-old girl presented with an acute onset of cluster seizures (up to 32 in a day), semiologically characterized by tonic upper limb extension and laughter lasting for few seconds with no response to multiple anti-epileptic drugs. The clinical, electrographic, neuroimaging and interictal positron emission tomography data were concordant and consistent with a left middle frontal gyrus dysplasia which was successfully resected under electrocorticographic guidance. Patient is seizure free at 2 months of follow up. (Engel Class 1). Surgical resection is feasible and potentially more effective in the early phase of clinical presentation of FCD.
Collapse
Affiliation(s)
- Sachin Sureshbabu
- Department of Neurology, Aster Malabar Institute of Medical Sciences Hospital, Kozhikode, India
| | | | - Jacob Alappat
- Department of Neurology, Aster Malabar Institute of Medical Sciences Hospital, Kozhikode, India
| | - Smilu Mohanlal
- Department of Neurology, Aster Malabar Institute of Medical Sciences Hospital, Kozhikode, India
| | - Sujith Janardhanan
- Department of Radiology, Aster Malabar Institute of Medical Sciences Hospital, Kozhikode, India
| | - Sellam Karunanidhi
- Department of Nuclear Medicine, Aster Malabar Institute of Medical Sciences Hospital, Kozhikode, India
| | | | - Dinesh Nayak
- Department of Neurology, Glaenagles Global Hospital, Chennai, India
| | - Biju Shekhar
- Department of Neuroanaesthesia, Aster Malabar Institute of Medical Sciences Hospital, Kozhikode, India
| |
Collapse
|
217
|
Dewar SR, Pieters HC, Fried I. Surgical Decision-Making for Temporal Lobe Epilepsy: Patient Experiences of the Informed Consent Process. Front Neurol 2021; 12:780306. [PMID: 34956062 PMCID: PMC8692943 DOI: 10.3389/fneur.2021.780306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Surgical resection is frequently the recommended treatment for drug-resistant temporal lobe epilepsy (TLE), yet many factors play a role in patients' perceptions of brain surgery that ultimately impact decision-making. The purpose of the current study was to explore how people with epilepsy, in their own words, experienced the overall process of consenting to surgery for drug-resistant TLE. Methods and Materials: Data was drawn from in-person, semi-structured interviews of 19 adults with drug-resistant TLE eligible to undergo epilepsy surgery. A systematic thematic analysis was performed to code, sort and compare participant responses. The mean age of these 12 (63%) women and seven (37%) men was 37.6 years (18–68 years), with average duration of epilepsy of 13 years (2–30 years). Results: Meeting the neurosurgeon and consenting to surgery represented an important treatment milestone across a prolonged treatment trajectory. Four themes were identified: (1) Understanding the language of risk; (2) Overcoming risk; (3) Family-centered, shared decision-making, and (4) Building decisional-confidence. Conclusion: Despite living with the restrictions of chronic uncontrolled seizures, considering an elective brain procedure raised unique and complex questions. Personal beliefs and expectations related to treatment outcomes influenced how the consent process was ultimately experienced. Decisions to pursue surgery had frequently been made ahead of meeting the surgeon, with many describing the act of signing as personally empowering. Overall, satisfaction was expressed with the information provided during the surgical visit, despite later inaccurate recall of the facts. These findings support the resultant recommendation that the practice of informed consent be conceptualized as a systematic, structured interdisciplinary process which occurs over time and encompasses three stages: preparation, signing and follow-up after signing.
Collapse
Affiliation(s)
- Sandra R Dewar
- Center of Nursing Excellence, UCLA Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Huibrie C Pieters
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
218
|
Tatum WO, Mani J, Jin K, Halford JJ, Gloss D, Fahoum F, Maillard L, Mothersill I, Beniczky S. Minimum standards for inpatient long-term video-EEG monitoring: A clinical practice guideline of the international league against epilepsy and international federation of clinical neurophysiology. Clin Neurophysiol 2021; 134:111-128. [PMID: 34955428 DOI: 10.1016/j.clinph.2021.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of this clinical practice guideline is to provide recommendations on the indications and minimum standards for inpatient long-term video-electroencephalographic monitoring (LTVEM). The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology develop guidelines aligned with the Epilepsy Guidelines Task Force. We reviewed published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. We found limited high-level evidence aimed at specific aspects of diagnosis for LTVEM performed to evaluate patients with seizures and nonepileptic events (see Table S1). For classification of evidence, we used the Clinical Practice Guideline Process Manual of the American Academy of Neurology. We formulated recommendations for the indications, technical requirements, and essential practice elements of LTVEM to derive minimum standards used in the evaluation of patients with suspected epilepsy using GRADE (Grading of Recommendations, Assessment, Development, and Evaluation). Further research is needed to obtain evidence about long-term outcome effects of LTVEM and establish its clinical utility.
Collapse
Affiliation(s)
- William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| | - Jayanti Mani
- Department of Neurology, Kokilaben Dhirubai Ambani Hospital, Mumbai, India
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Japan
| | - Jonathan J Halford
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.
| | - David Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, WV, USA
| | - Firas Fahoum
- Department of Neurology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Louis Maillard
- Department of Neurology, University of Nancy, UMR7039, University of Lorraine, France.
| | - Ian Mothersill
- Department of Clinical Neurophysiology, Swiss Epilepsy Center, Zurich Switzerland.
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Danish Epilepsy Center, Dianalund, Denmark.
| |
Collapse
|
219
|
Tatum WO, Mani J, Jin K, Halford JJ, Gloss D, Fahoum F, Maillard L, Mothersill I, Beniczky S. Minimum standards for inpatient long-term video-electroencephalographic monitoring: A clinical practice guideline of the International League Against Epilepsy and International Federation of Clinical Neurophysiology. Epilepsia 2021; 63:290-315. [PMID: 34897662 DOI: 10.1111/epi.16977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023]
Abstract
The objective of this clinical practice guideline is to provide recommendations on the indications and minimum standards for inpatient long-term video-electroencephalographic monitoring (LTVEM). The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology develop guidelines aligned with the Epilepsy Guidelines Task Force. We reviewed published evidence using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statement. We found limited high-level evidence aimed at specific aspects of diagnosis for LTVEM performed to evaluate patients with seizures and nonepileptic events. For classification of evidence, we used the Clinical Practice Guideline Process Manual of the American Academy of Neurology. We formulated recommendations for the indications, technical requirements, and essential practice elements of LTVEM to derive minimum standards used in the evaluation of patients with suspected epilepsy using GRADE (Grading of Recommendations Assessment, Development, and Evaluation). Further research is needed to obtain evidence about long-term outcome effects of LTVEM and to establish its clinical utility.
Collapse
Affiliation(s)
- William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jayanti Mani
- Department of Neurology, Kokilaben Dhirubai Ambani Hospital, Mumbai, India
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jonathan J Halford
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, West Virginia, USA
| | - Firas Fahoum
- Department of Neurology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Louis Maillard
- Department of Neurology, University of Nancy, UMR7039, University of Lorraine, Nancy, France
| | - Ian Mothersill
- Department of Clinical Neurophysiology, Swiss Epilepsy Center, Zurich,, Switzerland
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Danish Epilepsy Center, Dianalund, Denmark
| |
Collapse
|
220
|
Waloschková E, Gonzalez-Ramos A, Mikroulis A, Kudláček J, Andersson M, Ledri M, Kokaia M. Human Stem Cell-Derived GABAergic Interneurons Establish Efferent Synapses onto Host Neurons in Rat Epileptic Hippocampus and Inhibit Spontaneous Recurrent Seizures. Int J Mol Sci 2021; 22:ijms222413243. [PMID: 34948040 PMCID: PMC8705828 DOI: 10.3390/ijms222413243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons.
Collapse
Affiliation(s)
- Eliška Waloschková
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
- Correspondence: (E.W.); (M.K.)
| | - Ana Gonzalez-Ramos
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Apostolos Mikroulis
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Jan Kudláček
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Marco Ledri
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
- Correspondence: (E.W.); (M.K.)
| |
Collapse
|
221
|
Yu S, Gu Y, Wang T, Mu L, Wang H, Yan S, Wang A, Wang J, Liu L, Shen H, Na M, Lin Z. Study of Neuronal Apoptosis ceRNA Network in Hippocampal Sclerosis of Human Temporal Lobe Epilepsy by RNA-Seq. Front Neurosci 2021; 15:770627. [PMID: 34867172 PMCID: PMC8633546 DOI: 10.3389/fnins.2021.770627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Hippocampal sclerosis (HS) is one of the most common pathological type of intractable temporal lobe epilepsy (TLE), often characterized by hippocampal atrophy, neuronal apoptosis, and gliogenesis. However, the molecular mechanisms of neuronal apoptosis in patients with HS are still not fully understood. We therefore conducted a pilot study focusing on the neuronal apoptosis ceRNA network in the sclerotic hippocampus of intractable TLE patients. In this research, RNA sequencing (RNA-seq) was utilized to quantify the expression levels of lncRNAs, miRNAs, and mRNAs in TLE patients with HS (HS-TLE) and without HS (non-HS-TLE), and reverse transcription-quantitative PCR (qRT-PCR). The interactions of differential expression (DE) lncRNAs-miRNAs or DEmiRNAs-mRNAs were integrated by StarBase v3.0, and visualized using Cytoscape. Subsequently, we annotate the functions of lncRNA-associated competitive endogenous RNA (ceRNA) network through analysis of their interactions with mRNAs. RNA-seq analyses showed 381 lncRNAs, 42 miRNAs, and 457 mRNAs were dysregulated expression in HS-TLE compared to non-HS-TLE. According to the ceRNA hypothesis, 5 HS-specific ceRNA network were constructed. Among them, the core ceRNA regulatory network involved in neuronal apoptosis was constituted by 10 DElncRNAs (CDKN2B-AS1, MEG3, UBA6-AS1, etc.), 7 DEmiRNAs (hsa-miR-155-5p, hsa-miR-195-5p, hsa-miR-200c-3p, etc.), and 3 DEmRNAs (SCN2A, DYRK2, and MAPK8), which belonging to apoptotic and epileptic terms. Our findings established the first ceRNA network of lncRNA-mediated neuronal apoptosis in HS-TLE based on transcriptome sequencing, which provide a new perspective on the disease pathogenesis and precise treatments of HS.
Collapse
Affiliation(s)
- Shengkun Yu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yifei Gu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Aoweng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiabin Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
222
|
Ko AL, Tong APS, Mossa-Basha M, Weaver KE, Ojemann JG, Miller JW, Hakimian S. Effects of laser interstitial thermal therapy for mesial temporal lobe epilepsy on the structural connectome and its relationship to seizure freedom. Epilepsia 2021; 63:176-189. [PMID: 34817885 DOI: 10.1111/epi.17059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Laser interstitial thermal therapy (LITT) is a minimally invasive surgery for mesial temporal lobe epilepsy (mTLE), but the effects of individual patient anatomy and location of ablation volumes affect seizure outcomes. The purpose of this study is to see if features of individual patient structural connectomes predict surgical outcomes after LITT for mTLE. METHODS This is a retrospective analysis of seizure outcomes of LITT for mTLE in 24 patients. We use preoperative diffusion tensor imaging (DTI) to simulate changes in structural connectivity after laser ablation. A two-step machine-learning algorithm is applied to predict seizure outcomes from the change in connectomic features after surgery. RESULTS Although node-based network features such as clustering coefficient and betweenness centrality have some predictive value, changes in connection strength between mesial temporal regions predict seizure outcomes significantly better. Changes in connection strength between the entorhinal cortex (EC), and the insula, hippocampus, and amygdala, as well as between the temporal pole and hippocampus, predict Engel Class I outcomes with an accuracy of 88%. Analysis of the ablation location, as well as simulated, alternative ablations, reveals that a more medial, anterior, and inferior ablation volume is associated with a greater effect on these connections, and potentially on seizure outcomes. SIGNIFICANCE Our results indicate (1) that seizure outcomes can be retrospectively predicted with excellent accuracy using changes in structural connectivity, and (2) that favorable connectomic changes are associated with an ablation volume involving relatively mesial, anterior, and inferior locations. These results may provide a framework whereby individual pre-operative structural connectomes can be used to optimize ablation volumes and improve outcomes in LITT for mTLE.
Collapse
Affiliation(s)
- Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Ai Phuong S Tong
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Kurt E Weaver
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - John W Miller
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Shahin Hakimian
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
223
|
Maimaiti B, Meng H, Lv Y, Qiu J, Zhu Z, Xie Y, Li Y, Yu-Cheng, Zhao W, Liu J, Li M. An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field. Neuroscience 2021; 481:197-218. [PMID: 34793938 DOI: 10.1016/j.neuroscience.2021.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.
Collapse
Affiliation(s)
- Buajieerguli Maimaiti
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| | - Yudan Lv
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiqing Qiu
- Department of Neurological Surgery, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhanpeng Zhu
- Department of Neurological Surgery, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yinyin Xie
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Li
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yu-Cheng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Weixuan Zhao
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiayu Liu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Mingyang Li
- Department of Communication Engineering, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
224
|
Soni A, Pan EL, Tucker L. Anterior temporal lobectomy: A cross-sectional observational study of potential surgical candidates at a single institute. Surg Neurol Int 2021; 12:565. [PMID: 34877051 PMCID: PMC8645475 DOI: 10.25259/sni_796_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Epilepsy is a common neurological disorder, associated with serious cognitive, physical, and psychosocial burdens. Mesial temporal lobe epilepsy (mTLE) is the commonest form of focal epilepsy. The aim of this study was to establish the incidence of patients with electroencephalographic epileptiform discharges consistent with mTLE attending a tertiary hospital in South Africa, and determine whether these patients may be candidates for anterior temporal lobectomy. METHODS This was a cross-sectional observational study of all patients receiving scalp electroencephalograms (EEG) performed at the Groote Schuur Hospital Neurophysiology laboratory during the period January 1, 2017-December 31, 2019. Where magnetic resonance imaging (MRI) brain scans had been performed, these were assessed for corroborative evidence of mTLE. RESULTS Over the 3-year period, 4 342 EEGs were assessed. A total of 411 (11%) showed epileptiform discharges consistent with all epilepsy types. Of these, 327 (69%) were of focal onset and 108 (33% of all focal onset epilepsies) were consistent with mTLE. Of the patients with electroencephalographic features of mTLE, only 27 (25%) had had MRI brain scans performed according to an epilepsy surgery protocol. None of these patients had been considered for surgery. CONCLUSION Surgery, especially anterior temporal lobectomy, is widely acknowledged to be an efficacious and cost-effective intervention in patients with drug-resistant mTLE. The findings of our study suggest that patients with mTLE in our setting are under-investigated for potential surgery; and that it is under-utilized. These findings are in line with similar studies in both well-resourced and resource-constrained countries. Our study also highlights the utility of EEG as a practical screening tool to identify potential surgical candidates, as well as the establishment of an EEG and MRI database to assist in recognizing these patients.
Collapse
Affiliation(s)
- Aayesha Soni
- Department of Neurology, University of Cape Town, Western Cape, South Africa
| | | | | |
Collapse
|
225
|
MIKUNI N, USUI N, OTSUBO H, KAWAI K, KISHIMA H, MAEHARA T, MINE S, YAMAMOTO T. Current Status and Future Objectives of Surgical Therapies for Epilepsy in Japan. Neurol Med Chir (Tokyo) 2021; 61:619-628. [PMID: 34629353 PMCID: PMC8592817 DOI: 10.2176/nmc.st.2021-0230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022] Open
Abstract
This study investigated the number of epilepsy surgeries performed over time in Japan, and conducted a questionnaire survey of the Japan Neurosurgical Society (JNS) training program core hospitals to determine the current status and future objectives of surgical therapies and epilepsy training programs for physicians in Japan. This article presents part of a presentation delivered as a presidential address at the 44th Annual Meeting of the Epilepsy Surgery Society of Japan held in January 2021. The number of epilepsy surgeries performed per year has increased in Japan since 2011 to around 1,200 annually between 2015 and 2018. The questionnaire survey showed that 50% of the responding hospitals performed epilepsy surgery and 29% had an epilepsy center, and that these hospitals provided senior residents with education regarding epilepsy surgery. The presence of an epilepsy center in a hospital was positively correlated with the availability of long-term video electroencephalography monitoring beds as well as the number of epilepsy surgeries performed at the hospital. In regions with no medical facilities offering specialized surgical therapies for epilepsy, the JNS training program core hospitals may help improve epilepsy diagnosis and treatment. They may also increase the number of safe and effective surgeries by establishing epilepsy centers that can perform long-term video electroencephalography monitoring, providing junior neurosurgeons with training regarding epilepsy, and playing a core role in surgical therapies for epilepsy in tertiary medical areas in close cooperation with neighboring medical facilities.
Collapse
Affiliation(s)
- Nobuhiro MIKUNI
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Naotaka USUI
- Department of Neurosurgery, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Shizuoka, Japan
| | - Hiroshi OTSUBO
- Department of Clinical Neurophysiology, The Hospital for Sick Children of University of Toronto, Toronto, Canada
| | - Kensuke KAWAI
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Haruhiko KISHIMA
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taketoshi MAEHARA
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiichiro MINE
- Department of Neurosurgery, Gyotoku General Hospital, Ichikawa, Chiba, Japan
| | - Takamichi YAMAMOTO
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
226
|
Zhang Y, Lu Q, Monsoor T, Hussain SA, Qiao JX, Salamon N, Fallah A, Sim MS, Asano E, Sankar R, Staba RJ, Engel J, Speier W, Roychowdhury V, Nariai H. Refining epileptogenic high-frequency oscillations using deep learning: a reverse engineering approach. Brain Commun 2021; 4:fcab267. [PMID: 35169696 PMCID: PMC8833577 DOI: 10.1093/braincomms/fcab267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
Intracranially recorded interictal high-frequency oscillations have been proposed as a promising spatial biomarker of the epileptogenic zone. However, its visual verification is time-consuming and exhibits poor inter-rater reliability. Furthermore, no method is currently available to distinguish high-frequency oscillations generated from the epileptogenic zone (epileptogenic high-frequency oscillations) from those generated from other areas (non-epileptogenic high-frequency oscillations). To address these issues, we constructed a deep learning-based algorithm using chronic intracranial EEG data via subdural grids from 19 children with medication-resistant neocortical epilepsy to: (i) replicate human expert annotation of artefacts and high-frequency oscillations with or without spikes, and (ii) discover epileptogenic high-frequency oscillations by designing a novel weakly supervised model. The ‘purification power’ of deep learning is then used to automatically relabel the high-frequency oscillations to distill epileptogenic high-frequency oscillations. Using 12 958 annotated high-frequency oscillation events from 19 patients, the model achieved 96.3% accuracy on artefact detection (F1 score = 96.8%) and 86.5% accuracy on classifying high-frequency oscillations with or without spikes (F1 score = 80.8%) using patient-wise cross-validation. Based on the algorithm trained from 84 602 high-frequency oscillation events from nine patients who achieved seizure-freedom after resection, the majority of such discovered epileptogenic high-frequency oscillations were found to be ones with spikes (78.6%, P < 0.001). While the resection ratio of detected high-frequency oscillations (number of resected events/number of detected events) did not correlate significantly with post-operative seizure freedom (the area under the curve = 0.76, P = 0.06), the resection ratio of epileptogenic high-frequency oscillations positively correlated with post-operative seizure freedom (the area under the curve = 0.87, P = 0.01). We discovered that epileptogenic high-frequency oscillations had a higher signal intensity associated with ripple (80–250 Hz) and fast ripple (250–500 Hz) bands at the high-frequency oscillation onset and with a lower frequency band throughout the event time window (the inverted T-shaped), compared to non-epileptogenic high-frequency oscillations. We then designed perturbations on the input of the trained model for non-epileptogenic high-frequency oscillations to determine the model’s decision-making logic. The model confidence significantly increased towards epileptogenic high-frequency oscillations by the artificial introduction of the inverted T-shaped signal template (mean probability increase: 0.285, P < 0.001), and by the artificial insertion of spike-like signals into the time domain (mean probability increase: 0.452, P < 0.001). With this deep learning-based framework, we reliably replicated high-frequency oscillation classification tasks by human experts. Using a reverse engineering technique, we distinguished epileptogenic high-frequency oscillations from others and identified its salient features that aligned with current knowledge.
Collapse
Affiliation(s)
- Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Qiujing Lu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Tonmoy Monsoor
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Shaun A. Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Joe X. Qiao
- Division of Neuroradiology, Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Noriko Salamon
- Division of Neuroradiology, Department of Radiology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Myung Shin Sim
- Department of Medicine, Statistics Core, University of California, Los Angeles, CA 90095, USA
| | - Eishi Asano
- Department of Pediatrics and Neurology, Children’s Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Richard J. Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jerome Engel
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
- The Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | - William Speier
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
227
|
Abdallah C, Brissart H, Colnat-Coulbois S, Pierson L, Aron O, Forthoffer N, Vignal JP, Tyvaert L, Jonas J, Maillard L. Stereoelectroencephalographic language mapping of the basal temporal cortex predicts postoperative naming outcome. J Neurosurg 2021; 135:1466-1476. [PMID: 33636700 DOI: 10.3171/2020.8.jns202431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In drug-resistant temporal lobe epilepsy (TLE) patients, the authors evaluated early and late outcomes for decline in visual object naming after dominant temporal lobe resection (TLR) according to the resection status of the basal temporal language area (BTLA) identified by cortical stimulation during stereoelectroencephalography (SEEG). METHODS Twenty patients who underwent SEEG for drug-resistant TLE met the inclusion criteria. During language mapping, a site was considered positive when stimulation of two contiguous contacts elicited at least one naming impairment during two remote sessions. After TLR ipsilateral to their BTLA, patients were classified as BTLA+ when at least one positive language site was resected and as BTLA- when all positive language sites were preserved. Outcomes in naming and verbal fluency tests were assessed using pre- and postoperative (means of 7 and 25 months after surgery) scores at the group level and reliable change indices (RCIs) for clinically meaningful changes at the individual level. RESULTS BTLA+ patients (n = 7) had significantly worse naming scores than BTLA- patients (n = 13) within 1 year after surgery but not at the long-term evaluation. No difference in verbal fluency tests was observed. When RCIs were used, 5 of 18 patients (28%) had naming decline within 1 year postoperatively (corresponding to 57% of BTLA+ and 9% of BTLA- patients). A significant correlation was found between BTLA resection and naming decline. CONCLUSIONS BTLA resection is associated with a specific and early naming decline. Even if this decline is transient, naming scores in BTLA+ patients tend to remain lower compared to their baseline. SEEG mapping helps to predict postoperative language outcome after dominant TLR.
Collapse
Affiliation(s)
- Chifaou Abdallah
- Departments of1Neurology and
- 4Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | - Louise Tyvaert
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| | - Jacques Jonas
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| | - Louis Maillard
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| |
Collapse
|
228
|
Croce P, Ricci L, Pulitano P, Boscarino M, Zappasodi F, Lanzone J, Narducci F, Mecarelli O, Di Lazzaro V, Tombini M, Assenza G. Machine learning for predicting levetiracetam treatment response in temporal lobe epilepsy. Clin Neurophysiol 2021; 132:3035-3042. [PMID: 34717224 DOI: 10.1016/j.clinph.2021.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the predictive power for seizure-freedom of 19-channels EEG, measured both before and after three months the initiation of the use of Levetiracetam (LEV), in a cohort of people after a new diagnosis of temporal-lobe epilepsy (TLE) using a machine-learning approach. METHODS Twenty-three individuals with TLE were examined. We dichotomized clinical outcome into seizure-free (SF) and non-seizure-free (NSF) after two years of LEV. EEG effective power in different frequency bands was compared using baseline EEG (T0) and the EEG after three months of LEV therapy (T1) between SF and NSF patients. Partial Least Square (PLS) analysis was used to test and validate the prediction of the model for clinical outcome. RESULTS A total of 152 features were extracted from the EEG recordings. When considering only the features calculated at T1, a predictive power for seizure-freedom (AUC = 0.750) was obtained. When employing both T0 and T1 features, an AUC = 0.800 was obtained. CONCLUSIONS This study provides a proof-of-concept pipeline for predicting the clinical response to anti-seizure medications in people with epilepsy. SIGNIFICANCE Future studies may benefit from the pipeline proposed in this study in order to develop a model that can match each patient to the most effective anti-seizure medication.
Collapse
Affiliation(s)
- Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - Patrizia Pulitano
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Jacopo Lanzone
- Department of Systems Medicine, Neuroscience, University of Rome Tor Vergata, Rome, Italy; Neurorehabilitation Department, IRCCS Salvatore Maugeri Foundation, Institute of Milan, Milan, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Oriano Mecarelli
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Mario Tombini
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
229
|
Pitskhelauri DI, Kudieva ES, Melikyan AG, Vlasov PA, Kamenetskaya MI, Zaitsev OS, Kozlova AB, Eliseeva NM, Shishkina LV, Danilov GV, Nagorskaya IA, Sanikidze AZ, Melnikova-Pitskhelauri TV, Pronin IN, Konovalov AN. [Surgical treatment of drug-resistant epilepsy following hippocampal sclerosis]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:31-40. [PMID: 34714001 DOI: 10.17116/neiro20218505131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgery is an effective approach for drug-resistant temporal lobe epilepsy following hippocampal sclerosis. There is still no clear and unanimous opinion about advantages and disadvantages of certain surgical technique. MATERIAL AND METHODS There were 103 surgical interventions in 101 patients. Females prevailed (1.45:1). Age of patients ranged from 16 to 56 years (median 28). Anteromedial temporal lobectomy and selective amygdaloghippocampectomy were performed in 49 (47.6%) and 54 (52.4%) patients, respectively. In the latter group, 30 patients were operated via a 14-mm burr hole-subtemporal approach. Postoperative outcomes were assessed using the Engel grading system. The follow-up period ranged from 2 to 8 years (median 4 years). RESULTS By the 2nd year, Engel class I was observed in 74 (72%) patients, Engel II, III and IV - in 20 (19.4%), 6 (5.8%) and 3 (2.9%) patients, respectively. Engel class I was achieved after anteromedial temporal lobectomy in 68% of cases, selective amygdaloghippocampectomy via standard approaches in 75% of cases, amygdaloghippocampectomy via subtemporal burr hole approach - in 80% of cases. Neurocognitive impairments after anteromedial lobectomy and selective amygdaloghippocampectomy were similar. At the same time, mental disorders de novo prevailed in the group of anteromedial lobectomy (p<0.05). There were no severe visual field disorders after subtemporal burr-hole access. In other cases, these disorders occurred in 36.2% of patients (p<0.05). There were 8 (7.8%) postoperative complications: 5 (10.2%) - after anterior temporal lobectomy, 3 (5.5%) - after selective surgeries via standard approaches. There were no complications after burr-hole surgery. CONCLUSION Selective amygdaloghippocampectomy is not inferior to anteromedial lobectomy. Moreover, this procedure is associated with a lower risk of complications and adverse events.
Collapse
Affiliation(s)
| | - E S Kudieva
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - P A Vlasov
- Burdenko Neurosurgical Center, Moscow, Russia.,Center for Epileptology and Neurology, Moscow, Russia
| | | | - O S Zaitsev
- Burdenko Neurosurgical Center, Moscow, Russia.,Privolzhskiy Research Medical University, Nizhniy Novgorod, Russia
| | - A B Kozlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - G V Danilov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
230
|
Sinha N, Davis KA. Mapping Epileptogenic Tissues in MRI-Negative Focal Epilepsy: Can Deep Learning Uncover Hidden Lesions? Neurology 2021; 97:754-755. [PMID: 34521690 DOI: 10.1212/wnl.0000000000012696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nishant Sinha
- From the Department of Neurology (N.S., K.A.D.) and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia.
| | - Kathryn Adamiak Davis
- From the Department of Neurology (N.S., K.A.D.) and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia
| |
Collapse
|
231
|
Hines K, Stefanelli A, Haddad T, Matias CM, Sharan A, Wu C. Costs Associated with Laser Interstitial Thermal Therapy Are Lower Than Anterior Temporal Lobectomy for Treatment of Temporal Lobe Epilepsy. World Neurosurg 2021; 157:e215-e222. [PMID: 34653705 DOI: 10.1016/j.wneu.2021.09.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a minimally invasive alternative to anterior temporal lobectomy (ATL) for treatment of temporal lobe epilepsy. It has gained popularity as familiarity with technique increases and outcomes are better characterized. There has been no direct cost comparison between the 2 techniques in literature to date. The current study directly compares hospital costs associated with LITT with those of ATL patients and analyzes the factors potentially responsible for those costs. METHODS Patients who underwent ATL (27) and LITT (15) were retrospectively reviewed for total hospital costs along with demographic, surgical, and postoperative factors potentially affecting cost. T-tests were used to compare costs and independent linear regressions, and hierarchical regressions were used to examine predictors of cost for each procedure. RESULTS Mean hospital costs of admission for single-trajectory LITT ($104,929.88) were significantly less than for ATL ($134,980.04) (P = 0.001). In addition, length of stay, anesthesia costs, operative room costs, and postoperative hospitalization costs were all significantly lower in LITT. CONCLUSIONS Given the minimally invasive nature of LITT, it is associated with shorter length of stay and lower hospital costs than ATL in the first head-to-head comparison of procedural costs in literature to date. Long-term efficacy as it relates to these costs associated with LITT and ATL should be further investigated to better characterize the utility of LITT in temporal lobe epilepsy patients.
Collapse
Affiliation(s)
- Kevin Hines
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA.
| | - Anthony Stefanelli
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Taylor Haddad
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Caio M Matias
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| |
Collapse
|
232
|
Middlebrooks EH, Jain A, Okromelidze L, Lin C, Westerhold EM, O'Steen CA, Ritaccio AL, Quiñones-Hinojosa A, Tatum WO, Grewal SS. Acute Brain Activation Patterns of High- Versus Low-Frequency Stimulation of the Anterior Nucleus of the Thalamus During Deep Brain Stimulation for Epilepsy. Neurosurgery 2021; 89:901-908. [PMID: 34460925 DOI: 10.1093/neuros/nyab306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an increasingly utilized treatment of drug-resistant epilepsy. To date, the effect of high-frequency stimulation (HFS) vs low-frequency stimulation (LFS) in ANT DBS is poorly understood. OBJECTIVE To assess differences in the acute effect of LFS vs HFS in ANT DBS utilizing blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). METHODS In this prospective study of 5 patients with ANT DBS for epilepsy, BOLD activation and deactivation were modeled for 145-Hz and 30-Hz ANT stimulation using an fMRI block design. Data were analyzed with a general linear model and combined via 2-stage mixed-effects analysis. Z-score difference maps were nonparametrically thresholded using cluster threshold of z > 3.1 and a (corrected) cluster significance threshold of P = .05. RESULTS HFS produced significantly greater activation within multiple regions, in particular the limbic and default mode network (DMN). LFS produced minimal activation and failed to produce significant activation within these same networks. HFS produced widespread cortical and subcortical deactivation sparing most of the limbic and DMN regions. Meanwhile, LFS produced deactivation in most DMN and limbic structures. CONCLUSION Our results show that HFS and LFS produce substantial variability in both local and downstream network effects. In particular, largely opposing effects were identified within the limbic network and DMN. These findings may serve as a mechanistic basis for understanding the potential of HFS vs LFS in various epilepsy syndromes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA.,Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Ayushi Jain
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lela Okromelidze
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chen Lin
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Erin M Westerhold
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chad A O'Steen
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
233
|
Kerezoudis P, Singh R, Parisi V, Worrell GA, Miller KJ, Marsh WR, Van Gompel JJ. Outcomes of epilepsy surgery in the older population: not too old, not too late. J Neurosurg 2021:1-10. [PMID: 34624847 DOI: 10.3171/2021.5.jns204211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The prevalence of epilepsy in the older adult population is increasing. While surgical intervention in younger patients is supported by level I evidence, the safety and efficacy of epilepsy surgery in older individuals is less well established. The aim of this study was to evaluate seizure freedom rates and surgical outcomes in older epilepsy patients. METHODS The authors' institutional electronic database was queried for patients older than 50 who had undergone epilepsy surgery during 2002-2018. Cases were grouped into 50-59, 60-69, and 70+ years old. Seizure freedom at the last follow-up constituted the primary outcome of interest. The institutional analysis was supplemented by a literature review and meta-analysis (random effects model) of all published studies on this topic as well as by an analysis of complication rates, mortality rates, and cost data from a nationwide administrative database (Vizient Inc., years 2016-2019). RESULTS A total of 73 patients (n = 16 for 50-59 years, n = 47 for 60-69, and n = 10 for 70+) were treated at the authors' institution. The median age was 63 years, and 66% of the patients were female. At a median follow-up of 24 months, seizure freedom was 73% for the overall cohort, 63% for the 50-59 group, 77% for the 60-69 group, and 70% for the 70+ group. The literature search identified 15 additional retrospective studies (474 cases). Temporal lobectomy was the most commonly performed procedure (73%), and mesial temporal sclerosis was the most common pathology (52%), followed by nonspecific gliosis (19%). The pooled mean follow-up was 39 months (range 6-114.8 months) with a pooled seizure freedom rate of 65% (95% CI 59%-72%). On multivariable meta-regression analysis, an older mean age at surgery (coefficient [coeff] 2.1, 95% CI 1.1-3.1, p < 0.001) and the presence of mesial temporal sclerosis (coeff 0.3, 95% CI 0.1-0.6, p = 0.015) were the most important predictors of seizure freedom. Finally, analysis of the Vizient database revealed mortality rates of 0.5%, 1.1%, and 9.6%; complication rates of 7.1%, 10.1%, and 17.3%; and mean hospital costs of $31,977, $34,586, and $40,153 for patients aged 50-59, 60-69, and 70+ years, respectively. CONCLUSIONS While seizure-free outcomes of epilepsy surgery are excellent, there is an expected increase in morbidity and mortality with increasing age. Findings in this study on the safety and efficacy of epilepsy surgery in the older population may serve as a useful guide during preoperative decision-making and patient counseling.
Collapse
Affiliation(s)
| | - Rohin Singh
- 2Mayo Clinic Alix School of Medicine, Scottsdale, Arizona
| | - Veronica Parisi
- 3IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; and
| | | | - Kai J Miller
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - W Richard Marsh
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
234
|
Lundstrom BN, Brinkmann BH, Worrell GA. Low frequency novel interictal EEG biomarker for localizing seizures and predicting outcomes. Brain Commun 2021; 3:fcab231. [PMID: 34704030 PMCID: PMC8536865 DOI: 10.1093/braincomms/fcab231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Localizing hyperexcitable brain tissue to treat focal seizures remains challenging. We want to identify the seizure onset zone from interictal EEG biomarkers. We hypothesize that a combination of interictal EEG biomarkers, including a novel low frequency marker, can predict mesial temporal involvement and can assist in prognosis related to surgical resections. Interictal direct current wide bandwidth invasive EEG recordings from 83 patients implanted with 5111 electrodes were retrospectively studied. Logistic regression was used to classify electrodes and patient outcomes. A feed-forward neural network was implemented to understand putative mechanisms. Interictal infraslow frequency EEG activity was decreased for seizure onset zone electrodes while faster frequencies such as delta (2-4 Hz) and beta-gamma (20-50 Hz) activity were increased. These spectral changes comprised a novel interictal EEG biomarker that was significantly increased for mesial temporal seizure onset zone electrodes compared to non-seizure onset zone electrodes. Interictal EEG biomarkers correctly classified mesial temporal seizure onset zone electrodes with a specificity of 87% and positive predictive value of 80%. These interictal EEG biomarkers also correctly classified patient outcomes after surgical resection with a specificity of 91% and positive predictive value of 87%. Interictal infraslow EEG activity is decreased near the seizure onset zone while higher frequency power is increased, which may suggest distinct underlying physiologic mechanisms. Narrowband interictal EEG power bands provide information about the seizure onset zone and can help predict mesial temporal involvement in seizure onset. Narrowband interictal EEG power bands may be less useful for predictions related to non-mesial temporal electrodes. Together with interictal epileptiform discharges and high-frequency oscillations, these interictal biomarkers may provide prognostic information prior to surgical resection. Computational modelling suggests changes in neural adaptation may be related to the observed low frequency power changes.
Collapse
|
235
|
Li A, Huynh C, Fitzgerald Z, Cajigas I, Brusko D, Jagid J, Claudio AO, Kanner AM, Hopp J, Chen S, Haagensen J, Johnson E, Anderson W, Crone N, Inati S, Zaghloul KA, Bulacio J, Gonzalez-Martinez J, Sarma SV. Neural fragility as an EEG marker of the seizure onset zone. Nat Neurosci 2021; 24:1465-1474. [PMID: 34354282 PMCID: PMC8547387 DOI: 10.1038/s41593-021-00901-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Over 15 million patients with epilepsy worldwide do not respond to drugs. Successful surgical treatment requires complete removal or disconnection of the seizure onset zone (SOZ), brain region(s) where seizures originate. Unfortunately, surgical success rates vary between 30 and 70% because no clinically validated biological marker of the SOZ exists. We develop and retrospectively validate a new electroencephalogram (EEG) marker-neural fragility-in a retrospective analysis of 91 patients by using neural fragility of the annotated SOZ as a metric to predict surgical outcomes. Fragility predicts 43 out of 47 surgical failures, with an overall prediction accuracy of 76% compared with the accuracy of clinicians at 48% (successful outcomes). In failed outcomes, we identify fragile regions that were untreated. When compared to 20 EEG features proposed as SOZ markers, fragility outperformed in predictive power and interpretability, which suggests neural fragility as an EEG biomarker of the SOZ.
Collapse
Affiliation(s)
- Adam Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Chester Huynh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Damian Brusko
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan Jagid
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Angel O Claudio
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andres M Kanner
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Hopp
- Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Stephanie Chen
- Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | | | - Emily Johnson
- Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Nathan Crone
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sara Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Jorge Gonzalez-Martinez
- Neurosurgery and Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
236
|
Marashly A, Karia S, Zonjy B. Epilepsy Surgery: Special Circumstances. Semin Pediatr Neurol 2021; 39:100921. [PMID: 34620459 DOI: 10.1016/j.spen.2021.100921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Epilepsy surgery has proven to be very effective in treating refractory focal epilepsies in children, producing seizure freedom or partial seizure control well beyond any other medical or dietary therapies. While surgery is mostly utilized in certain clinical phenotypes, either based on the location such as temporal lobe epilepsy, or based on the presence of known epileptogenic lesions such as focal cortical dysplasia, tumors or hemimegalencephaly, there is a growing body of evidence to support the role of surgery in other patients' cohorts that were classically not thought of as surgical candidates. These include patients with rare genetic disorders, electrical status epilepticus in sleep, status epilepticus and the very young patients. Furthermore, epilepsy surgery is not considered as a "last resort" as seizure and cognitive outcomes of surgery are considerably better when done earlier rather than later in relation to the time of onset of epilepsy and age of surgery especially in the context of known focal cortical dysplasia. This article examines the accumulating evidence of the utility of epilepsy surgery in these special circumstances.
Collapse
Affiliation(s)
- Ahmad Marashly
- Assistant Professor, University of Washington/Seattle Children's Hospital, Seattle, WA.
| | - Samir Karia
- Associate Professor, Univeristy of Louisville, Luisiville, KY
| | - Bilal Zonjy
- Assistant Professor, University of Washington/Seattle Children's Hospital, Seattle, WA
| |
Collapse
|
237
|
Madaan P, Gupta A, Gulati S. Pediatric Epilepsy Surgery: Indications and Evaluation. Indian J Pediatr 2021; 88:1000-1006. [PMID: 33740232 DOI: 10.1007/s12098-021-03668-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Epilepsy is a common neurological condition in children. It is usually amenable to drug therapy. However, nearly one-third of patients may be refractory to antiseizure drugs. Poor compliance and nonepileptic events should be ruled out as possible causes of drug-resistant epilepsy (DRE). After failing adequate trials of two appropriate antiseizure drugs, patients with focal DRE or poorly classifiable epilepsy or epileptic encephalopathy with focal electro-clinical features should be worked up for surgical candidacy. A randomized controlled trial provided a class I evidence for epilepsy surgery in pediatric DRE. Pre-surgical screening workup typically includes a high-resolution epilepsy protocol brain magnetic resonance imaging (MRI) and a high-quality in-patient video electroencephalography evaluation. Advanced investigations such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) may be required in selected cases especially when brain MRI is normal, and further evidence for anatomo-electro-clinical concordance is necessary to refine candidacy for surgery and surgical strategy. Some children may also need functional MRI to map eloquent regions of interest such as motor, sensory, and language functions to avoid unacceptable neurological deficits after surgery. Selected children may need invasive long-term electroencephalographic monitoring using stereotactically implanted intracranial depth electrodes or subdural grids. Surgical options include resective surgeries (lesionectomy, lobectomy, multilobar resections) and disconnective surgeries (corpus callosotomy, etc.) with the potential to obtain seizure freedom. Other surgical procedures, typically considered to be palliative are neuromodulation [deep brain stimulation (DBS), vagal nerve stimulation (VNS), and responsive neural stimulation (RNS)]. DBS and RNS are currently not approved in children. Pediatric DRE should be evaluated early considering the risk of epileptic encephalopathy and negative impact on cognition.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Gupta
- Pediatric Epilepsy, Epilepsy Center, Department of Neurology/Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sheffali Gulati
- Center of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
238
|
Athreya A, Fasano RE, Drane DL, Millis SR, Willie JT, Gross RE, Karakis I. Withdrawal of antiepileptic drugs after stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Epilepsy Res 2021; 176:106721. [PMID: 34273722 DOI: 10.1016/j.eplepsyres.2021.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This retrospective study investigated the success rate of withdrawal of antiepileptic drugs (AEDs) following stereotactic laser amygdalohippocampotomy (SLAH) for mesial temporal lobe epilepsy (MTLE), and identified predictors of seizure recurrence. MATERIALS AND METHODS We retrospectively assessed 65 patients who underwent SLAH for MTLE (59 lesional). Patients' demographics, disease characteristics and post-surgical outcomes were evaluated for their potential to predict seizure recurrence associated with withdrawal of AEDs. RESULTS The mean period of observation post SLAH was 51 months (range 12-96 months) and the mean period to initial reduction of AEDs was 21 months (range 12-60 months). Reduction of AEDs was attempted in 37 patients (57 %) who were seizure free post SLAH and it was successful in approximately 2/3 of them. From the remainder 1/3 who relapsed, nearly all regained seizure control after reinstitution of their AEDs. The likelihood of relapse after reduction of AEDs was predicted only by pre-operative seizure frequency. At the end of the observation period, approximately 14 % of all SLAH patients were seizure free without AEDs and approximately 54 % remained seizure free on AEDs. Compared with preoperative status, the number of AEDs were reduced in 37 % of patients, unchanged in 51 % of them and increased in 12 % of them. CONCLUSIONS Successful SLAH for MTLE allows for reduction of AEDs in a significant portion of patients and complete withdrawal of AEDs in a subset of them. Patients with higher pre-operative seizure frequency exhibit a greater chance of relapse post reduction of AEDs.
Collapse
Affiliation(s)
- Arjun Athreya
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca E Fasano
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington, Seattle, WA, USA
| | - Scott R Millis
- Department of Neurology, Physical Medicine & Rehabilitation, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ioannis Karakis
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
239
|
Knowledge, attitude, and barriers for epilepsy surgery: A survey among resident doctors in a tertiary care center in India. Epilepsy Behav 2021; 123:108280. [PMID: 34500435 DOI: 10.1016/j.yebeh.2021.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Knowledge and attitude of doctors toward epilepsy surgery are essential for management and timely referral of people with Drug refractory epilepsy (DRE). This study aimed at analyzing knowledge, attitude, and barriers for epilepsy surgery among medical residents. METHODS A survey consisting of 16 statements in a Likert-like scale and one open-ended question was conducted among residents joining different postgraduate courses after MBBS (GR) and super-specialty courses after MD (PG) within 2 months of joining the institute. PGs with a postgraduate degree in internal medicine, pediatrics, or psychiatry were included. Demographic data were analyzed using descriptive statistics. Difference in response to the survey statements was analyzed using independent t test. RESULTS 115 participated in the survey of which 97 were GRs. Participants belonged to 22 different states and 3 were foreign nationals. 45% of participants did not know the definition of DRE. There was a difference of opinion among GRs and PGs regarding surgery as a treatment option for epilepsy and feasibility of epilepsy surgery in children (p < .05). PGs were more confident in treating PWE and preferred to refer people with DRE to a higher center early (p < .05). Lack of knowledge was the commonest barrier for epilepsy surgery. CONCLUSION A substantial number of participants lacked the basic knowledge of DRE and epilepsy surgery. Lack of knowledge was perceived to be the commonest barrier for epilepsy surgery. Dissemination of basic knowledge and development of protocols for identification and referral of people with DRE are the need of the hour.
Collapse
|
240
|
Nowak A, Bala A. Occult focal cortical dysplasia may predict poor outcome of surgery for drug-resistant mesial temporal lobe epilepsy. PLoS One 2021; 16:e0257678. [PMID: 34591859 PMCID: PMC8483375 DOI: 10.1371/journal.pone.0257678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The results of surgery in patients with mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are favorable, with a success rate over 70% following resection. An association of HS with focal cortical dysplasia (FCD) in the temporal lobe is one of the potential causes for poor surgical outcome in MTLE. We aimed to analyzed seizure outcome in a population of MTLE patients and recognize the role of occult FCD in achieving postoperative seizure control. METHODS We retrospectively analyzed postoperative outcomes for 82 consecutive adult patients with the syndrome of MTLE due to HS, who had no concomitant lesions within temporal lobe in MRI and who underwent surgical treatment in the years 2005-2016, and correlated factors associated with seizure relapse. RESULTS At the latest follow-up evaluation after surgery, 59 (72%) were free of disabling seizures (Engel Class I) and 48 (58,5%) had an Engel Class Ia. HS associated with FCD in neocortical structures were noted in 33 patients (40%). Analyzes have shown that dual pathology was the most significant negative predictive factor for Engel class I and Engel class Ia outcome. CONCLUSIONS The incidence of dual pathology in patients with temporal lobe epilepsy seems to be underestimated. An incomplete epileptogenic zone resection of occult focal temporal dysplasia within temporal lobe is supposed to be the most important negative prognostic factor for seizure freedom after epilepsy surgery in MTLE-HS patients. The study indicates the need to improve diagnostics for other temporal lobe pathologies, despite the typical clinical and radiological picture of MTLE-HS.
Collapse
Affiliation(s)
- Arkadiusz Nowak
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | | |
Collapse
|
241
|
Silva JC, Vivash L, Malpas CB, Hao Y, McLean C, Chen Z, O'Brien TJ, Jones NC, Kwan P. Low prevalence of amyloid and tau pathology in drug-resistant temporal lobe epilepsy. Epilepsia 2021; 62:3058-3067. [PMID: 34595752 DOI: 10.1111/epi.17086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Cognitive impairment is common in patients with chronic drug-resistant temporal lobe epilepsy (TLE). Hyperphosphorylated tau (pTau) and amyloid-β (Aβ) plaques, pathological hallmarks of Alzheimer disease, have been hypothesized to play a mechanistic role. We investigated Aβ plaques and pTau prevalence in TLE patients who underwent resective surgery and correlated their presence with preoperative psychometric test scores and clinical factors. METHODS Patients were retrospectively selected from the epilepsy surgery register of the Royal Melbourne Hospital, Australia. Sections from the resected temporal lobe were immunostained for pTau and Aβ plaques (antibodies: AT8, 1E8). The presence and severity of pathology were correlated with clinical characteristics, and verbal and visual learning functions as measured by the Verbal Pair Associates (VPA) test and Rey Complex Figure Test. RESULTS Fifty-six patients (55% female) aged 20-68 years (median = 34 years) at surgery were included. Aβ plaques were detected in four patients (7%), all at the moderate level. There was no difference in duration, age at onset of epilepsy, or side of resection between patients with and without Aβ plaques. Sparse pTau was found in two patients (3.5%). Both had moderate Aβ plaques and were >50 years of age. Patients with Aβ plaques had a lower median score for the VPA hard assessment compared to those without (0 vs. 4; p = .02). There was otherwise no correlation between pathology and psychometric test scores. SIGNIFICANCE Aβ plaques and pTau were uncommon in the resected brain tissue of patients who have undergone temporal lobectomy, and did not correlate with clinical characteristics or preoperative psychometric test scores, except for a lower VPA median score in patients with Aβ plaques. Therefore, considering the low prevalence of Aβ plaques and pTau herein observed, it is unlikely that cognitive impairment in TLE is driven by the same mechanisms as in Alzheimer disease.
Collapse
Affiliation(s)
- Juliana C Silva
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Charles B Malpas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Yong Hao
- Department of Neurology, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
242
|
Izadi A, Schedlbauer A, Ondek K, Disse G, Ekstrom AD, Cowen SL, Shahlaie K, Gurkoff GG. Early Intervention via Stimulation of the Medial Septal Nucleus Improves Cognition and Alters Markers of Epileptogenesis in Pilocarpine-Induced Epilepsy. Front Neurol 2021; 12:708957. [PMID: 34557145 PMCID: PMC8452867 DOI: 10.3389/fneur.2021.708957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Over one-third of patients with temporal lobe epilepsy are refractory to medication. In addition, anti-epileptic drugs often exacerbate cognitive comorbidities. Neuromodulation is an FDA treatment for refractory epilepsy, but patients often wait >20 years for a surgical referral for resection or neuromodulation. Using a rodent model, we test the hypothesis that 2 weeks of theta stimulation of the medial septum acutely following exposure to pilocarpine will alter the course of epileptogenesis resulting in persistent behavioral improvements. Electrodes were implanted in the medial septum, dorsal and ventral hippocampus, and the pre-frontal cortex of pilocarpine-treated rats. Rats received 30 min/day of 7.7 Hz or theta burst frequency on days 4-16 post-pilocarpine, prior to the development of spontaneous seizures. Seizure threshold, spikes, and oscillatory activity, as well as spatial and object-based learning, were assessed in the weeks following stimulation. Non-stimulated pilocarpine animals exhibited significantly decreased seizure threshold, increased spikes, and cognitive impairments as compared to vehicle controls. Furthermore, decreased ventral hippocampal power (6-10 Hz) correlated with both the development of spikes and impaired cognition. Measures of spikes, seizure threshold, and cognitive performance in both acute 7.7 Hz and theta burst stimulated animals were statistically similar to vehicle controls when tested during the chronic phase of epilepsy, weeks after stimulation was terminated. These data indicate that modulation of the septohippocampal circuit early after pilocarpine treatment alters the progression of epileptic activity, resulting in elevated seizure thresholds, fewer spikes, and improved cognitive outcome. Results from this study support that septal theta stimulation has the potential to serve in combination or as an alternative to high frequency thalamic stimulation in refractory cases and that further research into early intervention is critical.
Collapse
Affiliation(s)
- Ali Izadi
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Amber Schedlbauer
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States
| | - Katelynn Ondek
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Gregory Disse
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Stephen L Cowen
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
243
|
Watson GDR, Afra P, Bartolini L, Graf DA, Kothare SV, McGoldrick P, Thomas BJ, Saxena AR, Tomycz LD, Wolf SM, Yan PZ, Hagen EC. A journey into the unknown: An ethnographic examination of drug-resistant epilepsy treatment and management in the United States. Epilepsy Behav 2021; 124:108319. [PMID: 34563807 DOI: 10.1016/j.yebeh.2021.108319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Patients often recognize unmet needs that can improve patient-provider experiences in disease treatment management. These needs are rarely captured and may be hard to quantify in difficult-to-treat disease states such as drug-resistant epilepsy (DRE). To further understand challenges living with and managing DRE, a team of medical anthropologists conducted ethnographic field assessments with patients to qualitatively understand their experience with DRE across the United States. In addition, healthcare provider assessments were conducted in community clinics and Comprehensive Epilepsy Centers to further uncover patient-provider treatment gaps. We identified four distinct stages of the treatment and management journey defined by patients' perceived control over their epilepsy: Gripped in the Panic Zone, Diligently Tracking to Plan, Riding a Rollercoaster in the Dark, and Reframing Priorities to Redefine Treatment Success. We found that patients sought resources to streamline communication with their care team, enhanced education on treatment options beyond medications, and long-term resources to protect against a decline in control over managing their epilepsy once drug-resistant. Likewise, treatment management optimization strategies are provided to improve current DRE standard of care with respect to identified patient-provider gaps. These include the use of digital disease management tools, standardizing neuropsychiatrists into patients' initial care team, and introducing surgical and non-pharmacological treatment options upon epilepsy and DRE diagnoses, respectively. This ethnographic study uncovers numerous patient-provider gaps, thereby presenting a conceptual framework to advance DRE treatment. Further Incentivization from professional societies and healthcare systems to support standardization of the treatment optimization strategies provided herein into clinical practice is needed.
Collapse
Affiliation(s)
| | - Pegah Afra
- Department of Neurology, Weill-Cornell Medicine, New York, NY 10065, USA
| | - Luca Bartolini
- Division of Pediatric Neurology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Daniel A Graf
- Department of Neurology, Geisinger Health System, Danville, PA 17822, USA
| | - Sanjeev V Kothare
- Department of Pediatric Neurology, Northwell Health, New York, NY 10011, USA
| | - Patricia McGoldrick
- Boston Children's Health Physicians and Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY 10595, USA
| | - Bethany J Thomas
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aneeta R Saxena
- Epilepsy Division, Department of Neurology, Boston Medical Center, Boston University School of Medicine, MA, USA
| | | | - Steven M Wolf
- Boston Children's Health Physicians and Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY 10595, USA
| | - Peter Z Yan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eliza C Hagen
- LivaNova, Neuromodulation Unit, Houston, TX 77058, USA; Department of Neurology, Alameda County Medical Center, Oakland, CA 94602, USA
| |
Collapse
|
244
|
Pitskhelauri D, Kudieva E, Kamenetskaya M, Kozlova A, Vlasov P, Dombaanai B, Eliseeva N, Shishkina L, Sanikidze A, Shults E, Moshev D, Pronin I, Melikyan A. Multiple hippocampal transections for mesial temporal lobe epilepsy. Surg Neurol Int 2021; 12:372. [PMID: 34513139 PMCID: PMC8422472 DOI: 10.25259/sni_350_2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The purpose of this study was to evaluate the effectiveness of multiple hippocampal transections (MHT) in the treatment of drug-resistant mesial temporal lobe epilepsy. Methods: Six patients underwent MHT at Burdenko Neurosurgery Center in 2018. The age of the patients varied from 18 to 43 years. All patients suffered from refractory epilepsy caused by focal lesions of the mesial temporal complex or temporal pole in dominant side. Postoperative pathology revealed neuronal-glial tumors in two patients, focal cortical dysplasia (FCD) of the temporal pole – in two patients, cavernous angioma – in one patient, and encephalocele of the preuncal area – in one patient. Results: All patients underwent surgery satisfactorily. There were no postoperative complications except for homonymous superior quadrantanopia. This kind of visual field loss was noted in four cases out of six. During the follow-up period five patients out of six had Engel Class I outcome (83.3%). In one case, seizures developed after 1 month in a patient with FCD in the uncus (Engel IVA). After surgery, three out of six patients developed significant nominative aphasia. Two patients relative to the preoperative level demonstrated improvement in delayed verbal memory after MHT. Two patients showed a decrease level in delayed verbal memory. In preoperative period, visual memory was below the normal in one patient. Delayed visual memory in two cases impaired compared to the preoperative level. Conclusion: MHT can be considered as an effective method of drug-resistant mesial temporal lobe epilepsy caused by tumors of the medial temporal complex. At the same time, MHT makes it possible to preserve memory in patients with structurally preserved hippocampus. However, MHT do not guarantee the preservation of memory after surgery.
Collapse
Affiliation(s)
- David Pitskhelauri
- Department of Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Elina Kudieva
- Department of Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Maria Kamenetskaya
- Department of Neuropsychiatric Research, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Antonina Kozlova
- Department of Neurophysiological Research, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Pavel Vlasov
- Department of Pediatric Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Baiyr Dombaanai
- Department of Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Natalia Eliseeva
- Department of Neuroophthalmological Research, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Lyudmila Shishkina
- Department of Neuropathology, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Alexander Sanikidze
- Department of Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Evgeniy Shults
- Department of X-ray and Radioisotope Research, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Dmitriy Moshev
- Department of Neuroanesthesiology, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Igor Pronin
- Department of X-ray and Radioisotope Research, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Armen Melikyan
- Department of Pediatric Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| |
Collapse
|
245
|
Alexandratou I, Patrikelis P, Messinis L, Alexoudi A, Verentzioti A, Stefanatou M, Nasios G, Panagiotopoulos V, Gatzonis S. Long-Term Neuropsychological Outcomes Following Temporal Lobe Epilepsy Surgery: An Update of the Literature. Healthcare (Basel) 2021; 9:healthcare9091156. [PMID: 34574930 PMCID: PMC8466433 DOI: 10.3390/healthcare9091156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
We present an update of the literature concerning long-term neuropsychological outcomes following surgery for refractory temporal lobe epilepsy (TLE). A thorough search was conducted through the PubMed and Medline electronic databases for studies investigating neuropsychological function in adult patients undergoing resective TLE surgery and followed for a mean/median > five years period. Two independent reviewers screened citations for eligibility and assessed relevant studies for the risk of bias. We found eleven studies fulfilling the above requirements. Cognitive function remained stable through long-term follow up despite immediate post-surgery decline; a negative relation between seizure control and memory impairment has emerged and a possible role of more selective surgery procedures is highlighted.
Collapse
Affiliation(s)
- Ioanna Alexandratou
- Department of Neurology, Evangelismos Hospital, Ipsilantou 45-47, 10676 Athens, Greece
- Correspondence:
| | - Panayiotis Patrikelis
- First Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece; (P.P.); (A.A.); (A.V.); (M.S.); (S.G.)
| | - Lambros Messinis
- Lab of Cognitive Neuroscience, Department of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Psychiatry, University of Patras Medical School, 26504 Patras, Greece
| | - Athanasia Alexoudi
- First Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece; (P.P.); (A.A.); (A.V.); (M.S.); (S.G.)
| | - Anastasia Verentzioti
- First Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece; (P.P.); (A.A.); (A.V.); (M.S.); (S.G.)
| | - Maria Stefanatou
- First Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece; (P.P.); (A.A.); (A.V.); (M.S.); (S.G.)
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | | | - Stylianos Gatzonis
- First Department of Neurosurgery, School of Medicine, National and Kapodistrian University of Athens, 10676 Athens, Greece; (P.P.); (A.A.); (A.V.); (M.S.); (S.G.)
| |
Collapse
|
246
|
Samanta D, Leigh Hoyt M, Scott Perry M. Healthcare professionals' knowledge, attitude, and perception of epilepsy surgery: A systematic review. Epilepsy Behav 2021; 122:108199. [PMID: 34273740 PMCID: PMC8429204 DOI: 10.1016/j.yebeh.2021.108199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The epilepsy surgery treatment gap is well defined and secondary to a broad range of issues, including healthcare professionals' (HCPs') knowledge, attitude, and perception (KAP) toward epilepsy surgery. However, no previous systematic reviews investigated this important topic. METHODS The systematic review was conducted according to Preferred Reporting Items for the Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We identified a total of 652 articles from multiple databases using database-specific queries and included 65 articles for full-text review after screening the titles and abstracts of the articles. Finally, we selected 11 papers for qualitative analysis. We critically appraised the quality of the studies using the Joanna Briggs critical appraisal tool. RESULTS The qualitative analysis of the content identified several key reasons causing healthcare professional-related barriers to epilepsy surgery: inadequate knowledge and awareness about the role of epilepsy surgery in drug-resistant epilepsy (DRE), poor identification and referral of patients with DRE, insufficient selection of candidates for presurgical workup, negative or ambivalent attitudes and perceptions regarding epilepsy surgery, deficient communication practices with patients regarding risk-benefit analysis of epilepsy surgery, and challenging coordination issues with the surgical referral. Neurologists with formal instruction in epilepsy, surgical exposure during training, participation in high volume epilepsy practice, or prior experience in surgical referral may refer more patients for surgical evaluation. CONCLUSIONS While significant work has been conducted in a limited number of studies to explore HCPs' knowledge gap and educational need regarding epilepsy surgery, further research is needed in defining the learning goals, assessing and validating specific learning gaps among providers, defining the learning outcomes, optimizing the educational format, content, and outcome measures, and appraising the achieved results following the educational intervention.
Collapse
Affiliation(s)
- Debopam Samanta
- Neurology Division, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | |
Collapse
|
247
|
Seizure and social outcomes in patients with non-surgically treated temporal lobe epilepsy. Epilepsy Behav 2021; 122:108227. [PMID: 34343960 DOI: 10.1016/j.yebeh.2021.108227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To investigate the seizure outcome with medical treatment in patients with temporal lobe epilepsy (TLE) and its associated factors. We also investigated the social outcome of the patients. METHODS This was a retrospective study of a prospectively built electronic database of patients with epilepsy. All patients with a diagnosis of TLE were studied at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2019. In a phone call to the patients, at least 24 months after their diagnosis at our center, we investigated their current seizure control and social status. RESULTS Two hundred and twenty-two patients were studied; 101 patients (45.5%) were seizure free. A lower number of the prescribed drugs was the only factor with a significant association with the seizure-free outcome (Odds Ratio: 1.460; p = 0.001). At the time of the phone call, 76 patients (37.6%) reported having a college education, 103 patients (51%) were employed, 146 patients (72.3%) were married, and 81 patients (40%) reported driving a motor vehicle. The employment status, college education, and driving a motor vehicle were significantly associated with a seizure-free outcome status. The social achievements of the patients, who were partially responsive to medical therapy, were significantly worse than those who were seizure free. CONCLUSION Many patients with TLE may suffer from drug-resistant seizures. Ongoing seizures in these patients may affect their social lives substantially. Seizure reduction (not freedom) is not good enough to help the patients with TLE enjoy a healthy life with satisfactory social achievements.
Collapse
|
248
|
Lévesque M, Biagini G, de Curtis M, Gnatkovsky V, Pitsch J, Wang S, Avoli M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci Biobehav Rev 2021; 130:274-291. [PMID: 34437936 DOI: 10.1016/j.neubiorev.2021.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally. However, the use of transgenic mice has revealed novel information regarding this animal model. Here, we review recent findings showing the existence of specific neuronal events during both latent and chronic states, and how optogenetic activation of specific cell populations modulate spontaneous seizures. We also address neuronal damage induced by pilocarpine treatment, the role of neuroinflammation, and the influence of circadian and estrous cycles. Updating these findings leads us to propose that the rodent pilocarpine model continues to represent a valuable tool for identifying the basic pathophysiology of MTLE.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, 41100 Modena, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada; Departments of Physiology, McGill University, Montreal, QC, H3A 2B4, Canada; Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy.
| |
Collapse
|
249
|
Kerezoudis P, Singh R, Goyal A, Worrell GA, Marsh WR, Van Gompel JJ, Miller KJ. Insular epilepsy surgery: lessons learned from institutional review and patient-level meta-analysis. J Neurosurg 2021; 136:523-535. [PMID: 34450581 DOI: 10.3171/2021.1.jns203104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Insular lobe epilepsy is a challenging condition to diagnose and treat. Due to anatomical intricacy and proximity to eloquent brain regions, resection of epileptic foci in that region can be associated with significant postoperative morbidity. The aim of this study was to review available evidence on postoperative outcomes following insular epilepsy surgery. METHODS A comprehensive literature search (PubMed/MEDLINE, Scopus, Cochrane) was conducted for studies investigating the postoperative outcomes for seizures originating in the insula. Seizure freedom at last follow-up (at least 12 months) comprised the primary endpoint. The authors also present their institutional experience with 8 patients (4 pediatric, 4 adult). RESULTS A total of 19 studies with 204 cases (90 pediatric, 114 adult) were identified. The median age at surgery was 23 years, and 48% were males. The median epilepsy duration was 8 years, and 17% of patients had undergone prior epilepsy surgery. Epilepsy was lesional in 67%. The most common approach was transsylvian (60%). The most commonly resected area was the anterior insular region (n = 42, 21%), whereas radical insulectomy was performed in 13% of cases (n = 27). The most common pathology was cortical dysplasia (n = 68, 51%), followed by low-grade neoplasm (n = 16, 12%). In the literature, seizure freedom was noted in 60% of pediatric and 69% of adult patients at a median follow-up of 29 months (75% and 50%, respectively, in the current series). A neurological deficit occurred in 43% of cases (10% permanent), with extremity paresis comprising the most common deficit (n = 35, 21%), followed by facial paresis (n = 32, 19%). Language deficits were more common in left-sided approaches (24% vs 2%, p < 0.001). Univariate analysis for seizure freedom revealed a significantly higher proportion of patients with lesional epilepsy among those with at least 12 months of follow-up (77% vs 59%, p = 0.032). CONCLUSIONS These findings may serve as a benchmark when tailoring decision-making for insular epilepsy, and may assist surgeons in their preoperative discussions with patients. Although seizure freedom rates are quite high with insular epilepsy treatment, the associated morbidity needs to be weighed against the potential for seizure freedom.
Collapse
Affiliation(s)
| | - Rohin Singh
- 2Mayo Clinic Alix School of Medicine, Scottsdale, Arizona; and
| | - Anshit Goyal
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - W Richard Marsh
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Kai J Miller
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
250
|
Pototskiy E, Vinokuroff K, Ojeda A, Major CK, Sharma D, Anderson T, Howard K, Borenstein R, Musto AE. Downregulation of CD40L-CD40 attenuates seizure susceptibility and severity of seizures. Sci Rep 2021; 11:17262. [PMID: 34446808 PMCID: PMC8390750 DOI: 10.1038/s41598-021-96760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Unregulated neuro-inflammation mediates seizures in temporal lobe epilepsy (TLE). Our aim was to determine the effect of CD40-CD40L activation in experimental seizures. CD40 deficient mice (CD40KO) and control mice (wild type, WT) received pentenyltetrazole (PTZ) or pilocarpine to evaluate seizures and status epilepticus (SE) respectively. In mice, anti-CD40L antibody was administered intranasally before PTZ. Brain samples from human TLE and post-seizure mice were processed to determine CD40-CD40L expression using histological and molecular techniques. CD40 expression was higher in hippocampus from human TLE and in cortical neurons and hippocampal neural terminals after experimental seizures. CD40-CD40L levels increased after seizures in the hippocampus and in the cortex. After SE, CD40L/CD40 levels increased in cortex and showed an upward trend in the hippocampus. CD40KO mice demonstrated reduction in seizure severity and in latency compared to WT mice. Anti-CD40L antibody limited seizure susceptibility and seizure severity. CD40L-CD40 interaction can serve as a target for an immuno-therapy for TLE.
Collapse
Affiliation(s)
- Esther Pototskiy
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA
| | | | - Andrew Ojeda
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA
| | | | | | | | | | - Ronen Borenstein
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Alberto E Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA.
- Department of Neurology, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA.
| |
Collapse
|