201
|
Spira A, Awada A, Isambert N, Lorente D, Penel N, Zhang Y, Ojalvo LS, Hicking C, Rolfe PA, Ihling C, Dussault I, Locke G, Borel C. Identification of HMGA2 as a predictive biomarker of response to bintrafusp alfa in a phase 1 trial in patients with advanced triple-negative breast cancer. Front Oncol 2022; 12:981940. [PMID: 36568239 PMCID: PMC9773992 DOI: 10.3389/fonc.2022.981940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background We report the clinical activity, safety, and identification of a predictive biomarker for bintrafusp alfa, a first-in-class bifunctional fusion protein composed of the extracellular domain of TGFβRII (a TGF-β "trap") fused to a human IgG1 mAb blocking PD-L1, in patients with advanced triple-negative breast cancer (TNBC). Methods In this expansion cohort of a global phase 1 study, patients with pretreated, advanced TNBC received bintrafusp alfa 1200 mg every 2 weeks intravenously until disease progression, unacceptable toxicity, or withdrawal. The primary objective was confirmed best overall response by RECIST 1.1 assessed per independent review committee (IRC). Results As of May 15, 2020, a total of 33 patients had received bintrafusp alfa, for a median of 6.0 (range, 2.0-48.1) weeks. The objective response rate was 9.1% (95% CI, 1.9%-24.3%) by IRC and investigator assessment. The median progression-free survival per IRC was 1.3 (95% CI, 1.2-1.4) months, and median overall survival was 7.7 (95% CI, 2.1-10.9) months. Twenty-five patients (75.8%) experienced treatment-related adverse events (TRAEs). Grade 3 TRAEs occurred in 5 patients (15.2%); no patients had a grade 4 TRAE. There was 1 treatment-related death (dyspnea, hemolysis, and thrombocytopenia in a patient with extensive disease at trial entry). Responses occurred independently of PD-L1 expression, and tumor RNAseq data identified HMGA2 as a potential biomarker of response. Conclusions Bintrafusp alfa showed clinical activity and manageable safety in patients with heavily pretreated advanced TNBC. HMGA2 was identified as a potential predictive biomarker of response. ClinicalTrialsgov identifier NCT02517398.
Collapse
Affiliation(s)
- Alexander Spira
- Department of Medical Oncology, Virginia Cancer Specialists, Fairfax, VA, United States
- US Oncology Research, The Woodlands, TX, United States
| | - Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Isambert
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - David Lorente
- Department of Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
- Department of Medical Oncology, Université de Lille, Lille, France
| | - Yue Zhang
- EMD Serono Research & Development Institute, Inc, an Affiliate of Merck KGaA, Billerica, MA, United States
| | - Laureen S. Ojalvo
- EMD Serono Research & Development Institute, Inc, an Affiliate of Merck KGaA, Billerica, MA, United States
| | | | - P. Alexander Rolfe
- EMD Serono Research & Development Institute, Inc, an Affiliate of Merck KGaA, Billerica, MA, United States
| | | | - Isabelle Dussault
- EMD Serono Research & Development Institute, Inc, an Affiliate of Merck KGaA, Billerica, MA, United States
| | - George Locke
- EMD Serono Research & Development Institute, Inc, an Affiliate of Merck KGaA, Billerica, MA, United States
| | - Christian Borel
- Department of Medical Oncology, Centre Paul Strauss, Strasbourg, France
| |
Collapse
|
202
|
Boissière-Michot F, Chateau MC, Thézenas S, Guiu S, Bobrie A, Jacot W. Correlation of the TIGIT-PVR immune checkpoint axis with clinicopathological features in triple-negative breast cancer. Front Immunol 2022; 13:1058424. [PMID: 36544779 PMCID: PMC9760730 DOI: 10.3389/fimmu.2022.1058424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background T cell immunoreceptor with Ig and ITIM domains (TIGIT) interacts with poliovirus receptor (PVR) to contribute to cancer immune escape. Recently, TIGIT and PVR have been identified as promising immunotherapy targets. Their gene expression is upregulated in many solid tumors, but their protein expression level is not well documented, particularly in triple negative breast cancer (TNBC), the breast cancer subtype that most benefit from immunotherapy. Methods TIGIT and PVR expression levels were assessed by immunohistochemistry in 243 surgically resected localized TNBC and then their relationship with clinical-pathological features and clinical outcome was analyzed. Results TIGIT expression was observed in immune cells from the tumor microenvironment, whereas PVR was mainly expressed by tumor cells. High TIGIT expression was significantly associated with age (p=0.010), histological grade (p=0.014), non-lobular histology (p=0.024), adjuvant chemotherapy (p=0.006), and various immune cell populations (tumor infiltrating lymphocytes (TILs), CD3+, CD8+, PD-1+ cells; all p<0.0001), PD-L1+ tumor cells (p<0.0001), and PD-L1+ stromal cells (p=0.003). Infiltration by TIGIT+ cells tended to be higher in non-molecular apocrine tumors (p=0.088). PVR was significantly associated with histological grade (p<0.0001), the basal-like (p=0.003) and non-molecular apocrine phenotypes (p=0.039), high TILs infiltration (p=0.011), CD3+ (p=0.002), CD8+ (p=0.024) T cells, and PD-L1 expression in tumor (p=0.003) and stromal cells (p=0.001). In univariate analysis, only known prognostic factors (age, tumor size, lymph node status, adjuvant chemotherapy, TILs and CD3+ T-cell infiltrate) were significantly associated with relapse-free survival (RFS) and overall survival. High TIGIT and PVR expression levels tended to be associated with longer RFS (p=0.079 and 0.045, respectively). The analysis that included only non-molecular apocrine TNBC revealed longer RFS for tumors that strongly expressed TIGIT or PVR (p=0.025 for TIGIT and 0.032 for PVR). Conclusions These results indicated that in TNBC, TIGIT+ cells can easily interact with PVR to exert their inhibitory effects. Their wide expression in TNBC and their association with other immune checkpoint components suggest the therapeutic interest of the TIGIT-PVR axis.
Collapse
Affiliation(s)
- Florence Boissière-Michot
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France,*Correspondence: Florence Boissière-Michot,
| | - Marie-Christine Chateau
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
| | - Simon Thézenas
- Biometrics Unit, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
| | - Angélique Bobrie
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
| | - William Jacot
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France,Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France,Faculty of Medicine, Montpellier University, Montpellier, France
| |
Collapse
|
203
|
Shahbandi A, Chiu FY, Ungerleider NA, Kvadas R, Mheidly Z, Sun MJS, Tian D, Waizman DA, Anderson AY, Machado HL, Pursell ZF, Rao SG, Jackson JG. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80. NATURE CANCER 2022; 3:1513-1533. [PMID: 36482233 PMCID: PMC9923777 DOI: 10.1038/s43018-022-00466-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/14/2022] [Indexed: 04/16/2023]
Abstract
Breast cancer cells must avoid intrinsic and extrinsic cell death to relapse following chemotherapy. Entering senescence enables survival from mitotic catastrophe, apoptosis and nutrient deprivation, but mechanisms of immune evasion are poorly understood. Here we show that breast tumors surviving chemotherapy activate complex programs of immune modulation. Characterization of residual disease revealed distinct tumor cell populations. The first population was characterized by interferon response genes, typified by Cd274, whose expression required chemotherapy to enhance chromatin accessibility, enabling recruitment of IRF1 transcription factor. A second population was characterized by p53 signaling, typified by CD80 expression. Treating mammary tumors with chemotherapy followed by targeting the PD-L1 and/or CD80 axes resulted in marked accumulation of T cells and improved response; however, even combination strategies failed to fully eradicate tumors in the majority of cases. Our findings reveal the challenge of eliminating residual disease populated by senescent cells expressing redundant immune inhibitory pathways and highlight the need for rational immune targeting strategies.
Collapse
Affiliation(s)
- Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Nathan A Ungerleider
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Raegan Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Di Tian
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Daniel A Waizman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ashlyn Y Anderson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Sonia G Rao
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
204
|
He R, Yuan X, Chen Z, Zheng Y. Combined immunotherapy for metastatic triple-negative breast cancer based on PD-1/PD-L1 immune checkpoint blocking. Int Immunopharmacol 2022; 113:109444. [DOI: 10.1016/j.intimp.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
205
|
Immune Checkpoint Inhibitors and Novel Immunotherapy Approaches for Breast Cancer. Curr Oncol Rep 2022; 24:1801-1819. [PMID: 36255603 DOI: 10.1007/s11912-022-01339-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To critically review the existing evidence on immune checkpoint inhibitors (ICIs) in early-stage and metastatic breast cancer and discuss emerging strategies in the different breast cancer subtypes. RECENT FINDINGS Immunotherapy has become one of the major milestones in contemporary oncology, revolutionizing the treatment of multiple solid tumors. ICI agents combined with chemotherapy have demonstrated significant efficacy in both early-stage and metastatic triple-negative breast cancer. However, only a subgroup of patients responds to those agents and some associated toxicities, although infrequent, can be life-disabling. Emerging data from immunotherapy studies in advanced hormone receptor-positive (HR +) breast cancer as well as HER2-positive disease are arising with mixed results. Although breast cancer has not classically been considered a hot tumor, ICIs have proven to be effective in a subset of breast cancer patients. However, much remains to be learned, and the identification of new biomarkers beyond PD-L1 expression is essential not only to improve the efficacy of ICI but also to identify patients who can avoid them, together with their toxicities and costs.
Collapse
|
206
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
207
|
Recent advances in atezolizumab-based programmed death-ligand 1 (PD-L1) blockade therapy for breast cancer. Int Immunopharmacol 2022; 113:109334. [DOI: 10.1016/j.intimp.2022.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
208
|
Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, Koklesova L, Kudela E, Kubatka P. Genetic Heterogeneity, Tumor Microenvironment and Immunotherapy in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms232314937. [PMID: 36499265 PMCID: PMC9735793 DOI: 10.3390/ijms232314937] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Heterogeneity of triple-negative breast cancer is well known at clinical, histopathological, and molecular levels. Genomic instability and greater mutation rates, which may result in the creation of neoantigens and enhanced immunogenicity, are additional characteristics of this breast cancer type. Clinical outcome is poor due to early age of onset, high metastatic potential, and increased likelihood of distant recurrence. Consequently, efforts to elucidate molecular mechanisms of breast cancer development, progression, and metastatic spread have been initiated to improve treatment options and improve outcomes for these patients. The extremely complex and heterogeneous tumor immune microenvironment is made up of several cell types and commonly possesses disorganized gene expression. Altered signaling pathways are mainly associated with mutated genes including p53, PIK3CA, and MAPK, and which are positively correlated with genes regulating immune response. Of note, particular immunity-associated genes could be used in prognostic indexes to assess the most effective management. Recent findings highlight the fact that long non-coding RNAs also play an important role in shaping tumor microenvironment formation, and can mediate tumor immune evasion. Identification of molecular signatures, through the use of multi-omics approaches, and effector pathways that drive early stages of the carcinogenic process are important steps in developing new strategies for targeted cancer treatment and prevention. Advances in immunotherapy by remodeling the host immune system to eradicate tumor cells have great promise to lead to novel therapeutic strategies. Current research is focused on combining immune checkpoint inhibition with chemotherapy, PARP inhibitors, cancer vaccines, or natural killer cell therapy. Targeted therapies may improve therapeutic response, eliminate therapeutic resistance, and improve overall patient survival. In the future, these evolving advancements should be implemented for personalized medicine and state-of-art management of cancer patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Smolar
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dana Dvorska
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence:
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
209
|
Conway JW, Braden J, Wilmott JS, Scolyer RA, Long GV, Pires da Silva I. The effect of organ-specific tumor microenvironments on response patterns to immunotherapy. Front Immunol 2022; 13:1030147. [DOI: 10.3389/fimmu.2022.1030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitors, have become widely used in various settings across many different cancer types in recent years. Whilst patients are often treated on the basis of the primary cancer type and clinical stage, recent studies have highlighted disparity in response to immune checkpoint inhibitors at different sites of metastasis, and their impact on overall response and survival. Studies exploring the tumor immune microenvironment at different organ sites have provided insights into the immune-related mechanisms behind organ-specific patterns of response to immunotherapy. In this review, we aimed to highlight the key learnings from clinical studies across various cancers including melanoma, lung cancer, renal cell carcinoma, colorectal cancer, breast cancer and others, assessing the association of site of metastasis and response to immune checkpoint inhibitors. We also summarize the key clinical and pre-clinical findings from studies exploring the immune microenvironment of specific sites of metastasis. Ultimately, further characterization of the tumor immune microenvironment at different metastatic sites, and understanding the biological drivers of these differences, may identify organ-specific mechanisms of resistance, which will lead to more personalized treatment approaches for patients with innate or acquired resistance to immunotherapy.
Collapse
|
210
|
Sharmni Vishnu K, Win TT, Aye SN, Basavaraj AK. Combined atezolizumab and nab-paclitaxel in the treatment of triple negative breast cancer: a meta-analysis on their efficacy and safety. BMC Cancer 2022; 22:1139. [PMID: 36335316 PMCID: PMC9637314 DOI: 10.1186/s12885-022-10225-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is clinically aggressive breast cancer with a poor prognosis. Approximately 20% of TNBC has been found to express programmed death ligand 1 (PD-L1), making it a potential therapeutic target. As a PD-L1 inhibitor, atezolizumab is a recently approved immunotherapeutic drug for TNBC, this meta-analysis (MA) was aimed to review the randomized controlled trial studies (RCTs) of combined atezolizumab and nab-paclitaxel in the treatment of TNBC and synthesize the evidence-based results on its effectiveness and safety. METHOD We searched PubMed, Embase, EBSCOhost and ClinicalTrials.gov for the eligible RCTs which compared the efficacy and safety of combined atezolizumab and nab-paclitaxel with nab-paclitaxel alone. The outcomes analyzed included overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and treatment-related adverse effects (AEs). RESULTS A total of six RCTs were included in this MA. For efficacy, although OS was not significantly prolonged with combined atezolizumab and nab-paclitaxel (HR 0.90, 95% CI [0.79, 1.01], p=0.08), this combination therapy significantly improved PFS (HR 0.72, 95% CI [0.59, 0.87], p=0.0006) and ORR (RR 1.25, 95% CI [0.79, 1.01] p<0.00001). For safety, any AEs, haematological, gastrointestinal, and liver AEs showed no statistically significant differences between the atezolizumab and nab-paclitaxel combination group and nab-paclitaxel alone group. However, serious AEs, high grade, dermatological, pulmonary, endocrine, and neurological AEs were significantly lower with nab-paclitaxel alone compared to atezolizumab and nab-paclitaxel combined (p-value range from <0.00001 to 0,02). CONCLUSION Atezolizumab combined with nab-paclitaxel was associated with improved outcomes in the treatment of TNBC; however, this combination resulted in more toxicity compared to nab-paclitaxel alone. While nab-paclitaxel alone produced chemotherapy-related AEs, the combination of atezolizumab with nab-paclitaxel produced AEs, especially immune-related AEs such as haematological, pulmonary, endocrine, and neurological AEs. TRIAL REGISTRATION This research work of systematic review has been registered on PROSPERO (Registration number: CRD42022297952).
Collapse
Affiliation(s)
- K. Sharmni Vishnu
- BMed Science, School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, 5005 Australia
| | - Thin Thin Win
- Pathology Department, School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Saint Nway Aye
- Pathology Department, School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Arun Kumar Basavaraj
- Pathology Department, School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
211
|
Song L, Zheng D, Xu J, Xu T, Liu Z, Zhang H, Li Y, Peng Y, Shi H. Improvement of TNBC immune checkpoint blockade with a microwave-controlled ozone release nanosystem. J Control Release 2022; 351:954-969. [PMID: 36183970 DOI: 10.1016/j.jconrel.2022.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
Abstract
Despite revolutionary achievements have been made in clinical cancer therapy, the immune checkpoint blockade regimen still presents limited efficacy on tumors lack of neoantigens exposure. Here, we designed and synthesized an on-demand microwave-controlled ozone release nanosystem to specifically generate reactive oxygen species in tumor mass. By taking advantage of iRGD modification, the synthesized nanosystem can be specifically enriched in the tumor microenvironment and subsequently internalized by tumor cells. Triggered by the low-power microwave, ozone was released from the nanocarriers and inhibited tumor cell growth in vitro and in vivo. Molecular mechanism investigation further unraveled that the released-ozone induced cytolytic cell death through the rapid generation of reactive oxygen species such as hydroxyl radical. The tumor-specific neoantigen derived from this immunogenic cell death promoted cytotoxic T-lymphocytes infiltration, which provided a fundament for immune checkpoint blockade therapy. In the triple-negative breast cancer animal model, tumor-specific delivery of ozone significantly improved the systematical anti-tumor efficacy of the PD-1 blockade antibody. Notably, tumor-locally confined microwave-controlled release avoided systematic toxicity in the tested animals. Collectively, our nanosystem provides a novel controllable strategy for promoting immune checkpoint blockade therapy, especially in tumor types deficient in infiltrated T-lymphocytes.
Collapse
Affiliation(s)
- Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dan Zheng
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Jinshun Xu
- Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianyue Xu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Huan Zhang
- Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yulan Peng
- Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
212
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
213
|
Varma R, Wright M, Abraham J, Kruse M. Immune checkpoint inhibition in early-stage triple-negative breast cancer. Expert Rev Anticancer Ther 2022; 22:1225-1238. [PMID: 36278877 DOI: 10.1080/14737140.2022.2139240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Breast cancer cells can evade immune recognition by upregulating programmed death-ligand 1 (PD-L1) leading to decreased T cell function. Anti-PD-1 agents, like pembrolizumab, and anti-PD-L1 agents, such as atezolizumab and durvalumab, in combination with chemotherapy were found to have efficacy in metastatic triple-negative breast cancer (TNBC). With sub-optimal long-term outcomes in early-stage TNBC, this combination of immune checkpoint inhibition with chemotherapy was subsequently investigated. A robust immune microenvironment and extensive tumor antigen exposure in early-stage breast cancer is believed to facilitate response to checkpoint inhibitors. AREAS COVERED This review focuses on studies that assess the role of neoadjuvant immune checkpoint inhibition along with chemotherapy. The results of key phase I, II and III trials using checkpoint inhibitors in early-stage breast cancer (ESBC) are reviewed along with foundational data from metastatic TNBC, including the role of biomarkers in predicting response to immunotherapy. EXPERT OPINION Despite a clear role for neoadjuvant immune checkpoint inhibition in TNBC, many questions remain. The benefit of these agents in the neoadjuvant versus adjuvant setting is unclear and immune-related toxicity is a major concern. Additional studies are needed to elucidate which immune checkpoint inhibitor is most efficacious and best tolerated in early-stage TNBC.
Collapse
Affiliation(s)
- Revati Varma
- Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Matthew Wright
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, Ohio, United States
| | - Jame Abraham
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, Ohio, United States
| | - Megan Kruse
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, Ohio, United States
| |
Collapse
|
214
|
K Patel K, Hassan D, Nair S, Tejovath S, Kahlon SS, Peddemul A, Sikandar R, Mostafa JA. Role of Immunotherapy in the Treatment of Triple-Negative Breast Cancer: A Literature Review. Cureus 2022; 14:e31729. [PMID: 36569674 PMCID: PMC9771573 DOI: 10.7759/cureus.31729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Numerous malignancies, including metastatic triple-negative breast cancer (TNBC), which has long been associated with a poor prognosis, have been transformed by the widespread use of immunotherapy. Immune checkpoint inhibitors (ICIs) that target and block programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1) have demonstrated encouraging outcomes in the treatment of patients with metastatic TNBC. The PD-1 inhibitor pembrolizumab is the first-line treatment of metastatic PD-L1+ TNBC in combination with chemotherapy, and the PD-L1 inhibitor atezolizumab has also shown clinical activity. The median progression-free survival for pembrolizumab or atezolizumab combined with chemotherapy increased by 4.1 months and 2.5 months, respectively, with the addition of immunotherapy. Despite this progress, there is still more to be desired. The addition of immunotherapy to chemotherapy improved the pathological complete response (PCR) rate compared to chemotherapy with placebo in landmark phase III trials in the early-stage neoadjuvant context, whereas others reported no meaningful improvement in PCR. There are various ongoing trials that show that more research and studies are needed for components in the TNBC microenvironment and to further explore its importance in the treatment of TNBC.
Collapse
Affiliation(s)
- Khushbu K Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Danial Hassan
- Health Care Profession, Ministry of Public Health, Doha, QAT
- Cardiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shaalina Nair
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sreedevi Tejovath
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Simranjit S Kahlon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aishwarya Peddemul
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rabia Sikandar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry, Professional Psychotherapy, Cognitive Behavioral Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
215
|
Deutschmann C, Bartsch R, Singer CF, Gschwantler-Kaulich D, Seifert M, Leser C, Marhold M, Bago-Horvath Z, Pfeiler G. Atezolizumab plus nab-paclitaxel for unresectable, locally advanced or metastatic breast cancer: real-world results from a single academic center in Austria. BMC Cancer 2022; 22:1099. [PMID: 36289467 PMCID: PMC9609239 DOI: 10.1186/s12885-022-10168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose IMpassion130 led to the approval of atezolizumab plus nab-paclitaxel as first-line treatment for patients with unresectable locally advanced or metastatic triple-negative, PD-L1 immune-cell positive breast cancer (BC) by the European Medicines Agency (EMA). The objective of the present study was to investigate the implementation, safety and efficacy of this combination in the initial phase after approval. Methods A retrospective data analysis including all BC patients who received atezolizumab and nab-paclitaxel between 1.1.2019 and 31.10.2020 at the Department of Obstetrics and Gynecology and the Department of Medicine 1, respectively, at the Medical University of Vienna, Austria, was performed. Progression-free survival (PFS) and overall survival (OS) were estimated with the Kaplan-Maier product-limit method. Owing to the retrospective nature of this study, all statistics must be considered exploratory. Results In total 20 patients were included in the study. Median follow-up was 7.1 months (IQR 5.2–9.1). Median PFS was 3.0 months (SE = .24; 95% CI [2.5; 3.5]). Median OS was 8.94 months (SE = 2.34, 95%CI [4.35; 13.53]). No new safety signals were observed. Conclusion The present study showed a considerably shorter PFS (3.0 vs. 7.5 months) and OS (8.94 vs. 25.0 months) than IMpassion130 putatively owing to the use of atezolizumab in later treatment lines, more aggressive tumors and a study population with higher morbidity compared to the pivotal trial.
Collapse
Affiliation(s)
- Christine Deutschmann
- grid.22937.3d0000 0000 9259 8492Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rupert Bartsch
- grid.22937.3d0000 0000 9259 8492Department of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Christian F Singer
- grid.22937.3d0000 0000 9259 8492Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daphne Gschwantler-Kaulich
- grid.22937.3d0000 0000 9259 8492Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Michael Seifert
- grid.22937.3d0000 0000 9259 8492Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Carmen Leser
- grid.22937.3d0000 0000 9259 8492Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maximilian Marhold
- grid.22937.3d0000 0000 9259 8492Department of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- grid.22937.3d0000 0000 9259 8492Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Pfeiler
- grid.22937.3d0000 0000 9259 8492Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
216
|
Sun K, Xu Y, Zhang L, Niravath P, Darcourt J, Patel T, Teh BS, Farach AM, Guerrero C, Mathur S, Sultenfuss MA, Gupta N, Schwartz MR, Haley SL, Nair S, Li X, Nguyen TTA, Butner JD, Ensor J, Mejia JA, Mei Z, Butler EB, Chen SH, Bernicker EH, Chang JC. A Phase 2 Trial of Enhancing Immune Checkpoint Blockade by Stereotactic Radiation and In Situ Virus Gene Therapy in Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:4392-4401. [PMID: 35877117 PMCID: PMC9561553 DOI: 10.1158/1078-0432.ccr-22-0622] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE A Phase 2 trial of stereotactic radiotherapy and in situ cytotoxic virus therapy in patients with metastatic triple-negative breast cancer (mTNBC) followed by pembrolizumab (STOMP) was designed to evaluate dual approach of enhancing single-agent immune checkpoint blockade with adenovirus-mediated expression of herpes-simplex-virus thymidine-kinase (ADV/HSV-tk) plus valacyclovir gene therapy and stereotactic body radiotherapy (SBRT) in patients with mTNBC. PATIENTS AND METHODS In this single-arm, open-label Phase 2 trial, patients with mTNBC were treated with ADV/HSV-tk [5 × 1011 virus particles (vp)] intratumoral injection, followed by SBRT to the injected tumor site, then pembrolizumab (200 mg, every 3 weeks). The primary endpoint was clinical benefit rate [CBR; complete response (CR), partial response (PR), or stable disease (SD) ≥ 24 weeks per RECIST version1.1 at non-irradiated site]. Secondary endpoints included duration on treatment (DoT), overall survival (OS), and safety. Exploratory endpoints included immune response to treatment assessed by correlative tissue and blood-based biomarkers. RESULTS Twenty-eight patients were enrolled and treated. CBR was seen in 6 patients (21.4%), including 2 CR (7.1%), 1 PR (3.6%), and 3 SD (10.7%). Patients with clinical benefit had durable responses, with median DoT of 9.6 months and OS of 14.7 months. The median OS was 6.6 months in the total population. The combination was well tolerated. Correlative studies with Cytometry by Time of Flight (CyTOF) and imaging mass cytometry (IMC) revealed a significant increase of CD8 T cells in responders and of myeloid cells in non-responders. CONCLUSIONS The median OS increased by more than 2-fold in patients with clinical benefit. The therapy is a well-tolerated treatment in heavily pretreated patients with mTNBC. Early detection of increased effector and effector memory CD8 T cells and myeloids correlate with response and non-response, respectively.
Collapse
Affiliation(s)
- Kai Sun
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Yitian Xu
- Houston Methodist Research Institute, Center for Immunotherapy Research, Houston, Texas
| | - Licheng Zhang
- Houston Methodist Research Institute, Center for Immunotherapy Research, Houston, Texas
| | | | | | - Tejal Patel
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Bin S. Teh
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Andrew M. Farach
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | | | - Sunil Mathur
- Houston Methodist Neal Cancer Center, Houston, Texas
| | | | - Nakul Gupta
- Department of Radiology, Houston Methodist Hospital, Houston, Texas
| | - Mary R. Schwartz
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Susan L. Haley
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sindhu Nair
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Thi Truc Anh Nguyen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Joseph D. Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas
| | - Joe Ensor
- Houston Methodist Neal Cancer Center, Houston, Texas
| | | | - Zhuyong Mei
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - E. Brian Butler
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Shu-hsia Chen
- Houston Methodist Research Institute, Center for Immunotherapy Research, Houston, Texas
| | | | - Jenny C. Chang
- Houston Methodist Neal Cancer Center, Houston, Texas.,Corresponding Author: Jenny C. Chang, Houston Methodist Research Institute, 6445 Main Street, Floor 24, Houston, TX 77030. Phone: 713-441-9948; Fax: 713-441-8791; E-mail:
| |
Collapse
|
217
|
Nicolini A, Ferrari P, Carpi A. Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy. Biomedicines 2022; 10:biomedicines10102511. [PMID: 36289773 PMCID: PMC9599105 DOI: 10.3390/biomedicines10102511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant tool against cancer. HER2+ and triple-negative breast cancers (TNBCs) are considered more immunogenic and suitable for this kind of treatment due to the higher rate of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression. In TNBC, genetic aberrations further favor immunogenicity due to more neo-antigens in cancer cells. Methods: This review summarizes the principal ongoing conventional and investigational immunotherapies in breast cancer. Particularly, immune checkpoint inhibitors (ICIs) and their use alone or combined with DNA damage repair inhibitors (DDRis) are described. Then, the issue on immunotherapy with monoclonal antibodies against HER-2 family receptors is updated. Other investigational immunotherapies include a new schedule based on the interferon beta-interleukin-2 sequence that was given in ER+ metastatic breast cancer patients concomitant with anti-estrogen therapy, which surprisingly showed promising results. Results: Based on the scientific literature and our own findings, the current evaluation of tumor immunogenicity and the conventional model of adjuvant chemotherapy (CT) are questioned. Conclusions: A novel strategy based on additional prolonged adjuvant immunotherapy combined with hormone therapy or alternated with CT is proposed.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, 56125 Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
218
|
Zhu X, Yuan Z, Cheng S, Wang H, Liao Y, Zhou D, Wu Z. TIMM8A is associated with dysfunction of immune cell in BRCA and UCEC for predicting anti-PD-L1 therapy efficacy. World J Surg Oncol 2022; 20:336. [PMID: 36207751 PMCID: PMC9541013 DOI: 10.1186/s12957-022-02736-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background TIMM8A is a protein-coding gene located on the X chromosome. There is evidence that TIMM8A plays an important role in mitochondrial morphology and fission. Studies have shown that mitophagy and fission could affect the function of immune cells. However, there is currently no research on this gene’s role in cancer occurrence and progression. Methods TIMM8A expression was analyzed via the Tumor Immune Estimation Resource (TIMER) site and UALCAN database. We evaluated the influence of TIMM8A on clinical prognosis using Kaplan-Meier plotter, the PrognoScan database, and Human Protein Atlas (HPA). The correlations between TIMM8A and cancer immune infiltrates were investigated via TIMER. Tumor Immune Dysfunction and Exclusion (TIDE) was used to evaluate the potential of tumor immune evasion. Functions of TIMM8A mutations and 50 genes significantly associated with TIMM8A mutations in breast cancer (BRCA) and uterine corpus endometrial cancer (UCEC) were analyzed by GO and KEGG in LinkedOmics database. Results We investigated the role of TIMM8A in multiple cancers and found that it was significantly associated with poor prognosis in BRCA and UCEC. After analyzing the effect of TIMM8A on immune infiltration, we found Th2 CD4+ T cells might be a common pathway by which TIMM8A contributed to poor prognosis in BRCA and UCEC. Our results suggested that myeloid-derived suppressor cells (MDSC) and tumor-associated M2 macrophages (TAM M2) might be important factors in immune evasion through T cell rejection in both cancers, and considered TIMM8A as a biomarker to predict the efficacy of this therapy in BRCA and UCEC. The results of TIMM8A enrichment analysis showed us that abnormally expressed TIMM8A might affect the mitochondrial protein in BRCA and UCEC. Conclusions Contributed to illustrating the value of TIMM8A as a prognostic biomarker, our findings suggested that TIMM8A was correlated with prognosis and immune infiltration, including CD8+ T cells, Th2 CD4+ T cells, and macrophages in BRCA and UCEC. In addition, TIMM8A might affect immune infiltration and prognosis in BRCA and UCEC by affecting mitophagy. We believed it could also be a biomarker to predict the efficacy of anti-PD-L1 therapy and proposed to improve the efficacy by eliminating MDSC and TAM M2. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02736-6.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Dermatology, The Fourth Hospital of Changsha, Changsha, Hunan, 410000, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Zile Yuan
- Department of Dermatology, The Fourth Hospital of Changsha, Changsha, Hunan, 410000, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Sheng Cheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hongyi Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yuxuan Liao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Dawei Zhou
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Zhiqiang Wu
- Department of Dermatology, The Fourth Hospital of Changsha, Changsha, Hunan, 410000, China.
| |
Collapse
|
219
|
Shafi S, Aung TN, Xirou V, Gavrielatou N, Vathiotis IA, Fernandez A, Moutafi M, Yaghoobi V, Herbst RS, Liu LN, Langermann S, Rimm DL. Quantitative assessment of Siglec-15 expression in lung, breast, head, and neck squamous cell carcinoma and bladder cancer. J Transl Med 2022; 102:1143-1149. [PMID: 35581307 PMCID: PMC10211373 DOI: 10.1038/s41374-022-00796-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Immune checkpoint blockade with programmed cell death (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors has resulted in significant progress in the treatment of various cancer types. However, not all patients respond to PD-1/PD-L1 blockade, underscoring the importance of identifying new potential targets for immunotherapy. One promising target is the immune system modulator Siglec-15. In this study, we assess Siglec-15 expression in solid tumors, with a focus on lung, breast, head and neck squamous and bladder cancers. Using quantitative immunofluorescence (QIF) with a previously validated antibody, we found increased Siglec-15 expression in both tumor and immune cells in all the four cancer types. Siglec-15 was seen to be predominantly expressed by the stromal immune cells (83% in lung, 70.1% in breast, 95.2% in head and neck squamous cell and 89% in bladder cancers). Considerable intra-tumoral heterogeneity was noted across cancer types. As previously described for non-small cell lung cancer (NSCLC), Siglec-15 expression was seen to be mutually exclusive to PD-L1 in all the four cancer types, although this differential expression was maintained but somewhat diminished in head and neck squamous cell carcinoma (HNSCC). Siglec-15 was not prognostic either for overall survival (OS) or progression-free survival (PFS). In summary, we show broad expression of this potential immune modulatory target in a wide range of cancer types. These data suggest potential future clinical trials in these tumor types.
Collapse
Affiliation(s)
- Saba Shafi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Vasiliki Xirou
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Niki Gavrielatou
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Ioannis A Vathiotis
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aileen Fernandez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Myrto Moutafi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Vesal Yaghoobi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Roy S Herbst
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
220
|
Waks AG, Keenan TE, Li T, Tayob N, Wulf GM, Richardson ET, Attaya V, Anderson L, Mittendorf EA, Overmoyer B, Winer EP, Krop IE, Agudo J, Van Allen EM, Tolaney SM. Phase Ib study of pembrolizumab in combination with trastuzumab emtansine for metastatic HER2-positive breast cancer. J Immunother Cancer 2022; 10:e005119. [PMID: 36252998 PMCID: PMC9577940 DOI: 10.1136/jitc-2022-005119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Preclinical and clinical data support potential synergy between anti-HER2 therapy plus immune checkpoint blockade. The safety and tolerability of trastuzumab emtansine (T-DM1) combined with pembrolizumab is unknown. METHODS This was a single-arm phase Ib trial (registration date January 26, 2017) of T-DM1 plus pembrolizumab in metastatic, human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Eligible patients had HER2-positive, metastatic breast cancer previously treated with taxane, trastuzumab, and pertuzumab, and were T-DM1-naïve. A dose de-escalation design was used, with a dose-finding cohort followed by an expansion cohort at the recommended phase 2 dose (RP2D), with mandatory baseline biopsies. The primary endpoint was safety and tolerability. Secondary endpoints included objective response rate (ORR) and progression-free survival (PFS). Immune biomarkers were assessed using histology, protein/RNA expression, and whole exome sequencing. Associations between immune biomarkers and treatment response, and biomarker changes before and during treatment, were explored. RESULTS 20 patients received protocol therapy. There were no dose-limiting toxicities. The RP2D was 3.6 mg/kg T-DM1 every 21 days plus 200 mg pembrolizumab every 21 days. 85% of patients experienced treatment-related adverse events (AEs) ≥grade 2, 20% of patients experienced grade 3 AEs, and no patients experienced grade >4 AEs. Four patients (20%) experienced pneumonitis (three grade 2 events; one grade 3 event). ORR was 20% (95% CI 5.7% to 43.7%), and median PFS was 9.6 months (95% CI 2.8 to 16.0 months). Programmed cell death ligand-1 and tumor infiltrating lymphocytes did not correlate with response in this small cohort. CONCLUSIONS T-DM1 plus pembrolizumab was a safe and tolerable regimen. Ongoing trials will define if there is a role for checkpoint inhibition in the management of HER2-positive metastatic breast cancer. TRIAL REGISTRATION NUMBER NCT03032107.
Collapse
Affiliation(s)
- Adrienne G Waks
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tanya E Keenan
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tianyu Li
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nabihah Tayob
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gerburg M Wulf
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Edward T Richardson
- Harvard Medical School, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Elizabeth A Mittendorf
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Beth Overmoyer
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eric P Winer
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Yale Cancer Center, New Haven, Connecticut, USA
| | - Ian E Krop
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Yale Cancer Center, New Haven, Connecticut, USA
| | - Judith Agudo
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eliezer M Van Allen
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sara M Tolaney
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
221
|
Apatinib plus vinorelbine versus vinorelbine for metastatic triple-negative breast cancer who failed first/second-line treatment: the NAN trial. NPJ Breast Cancer 2022; 8:110. [PMID: 36127351 PMCID: PMC9489776 DOI: 10.1038/s41523-022-00462-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
While therapies such as chemotherapy combined with immunotherapy, sacituzumab govitecan, and PARP inhibitors are available for metastatic TNBC, on disease progression after these therapies, the mainstay of therapy is chemotherapy. Apatinib is a small-molecule tyrosine kinase inhibitor that has promising anti-angiogenesis and antitumor activity for TNBC. We aimed to evaluate the safety and efficacy of adding apatinib to chemotherapy in patients with advanced TNBC with failed first/second-line treatment. A total of 66 patients were randomly assigned, in a 1:1 ratio, to receive vinorelbine or vinorelbine with apatinib in 28-day cycles. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), overall response rate (ORR) and safety. 33 received apatinib plus vinorelbine and 32 received vinorelbine (1 was withdrawal). Median PFS was significantly longer in the apatinib plus vinorelbine group than in the vinorelbine group (3.9 months vs. 2.0 months; hazard ratio, 1.82; 95% confidence interval [CI], 1.06 to 3.11; P = 0.026). Median OS was 11.5 months with apatinib plus vinorelbine and 9.9 months with vinorelbine (HR,1.01; 95% CI, 0.51 to 1.97; P = 0.985). The ORR was 9.1% in the apatinib plus vinorelbine group and 6.3% in the vinorelbine group (P = 0.667). The most common treatment-related hematologic grade 3–4 adverse events in apatinib plus vinorelbine group, were leukopenia, granulocytopenia, anemia, and thrombocytopenia. no treatment-related nonhematologic grade 4 adverse events or treatment-related deaths were observed. Collectively, adding apatinib to vinorelbine shows a promising benefit in PFS compared to vinorelbine monotherapy, with an excellent toxicity profile, warranting further exploration.
Collapse
|
222
|
Zhang J, Xia Y, Zhou X, Yu H, Tan Y, Du Y, Zhang Q, Wu Y. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol 2022; 13:977660. [PMID: 36188535 PMCID: PMC9523914 DOI: 10.3389/fphar.2022.977660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer (BC) with vicious behaviors. TNBC is usually associated with relatively poor clinical outcomes, earlier recurrence, and high propensity for visceral metastases than other BC types. TNBC has been increasingly recognized to constitute a very molecular heterogeneous subtype, which may offer additional therapeutic opportunities due to newly discovered cancer-causing drivers and targets. At present, there are multiple novel targeted therapeutic drugs in preclinical researches, clinical trial designs, and clinical practices, such as platinum drugs, poly ADP-ribose polymerase (PARP) inhibitors, immunocheckpoint inhibitors, androgen receptor inhibitors as well as PI3K/AKT/mTOR targeted inhibitors. These personalized, single, or combinational therapies based on molecular heterogeneity are currently showing positive results. The scope of this review is to highlight the latest knowledge about these potential TNBC therapeutic drugs, which will provide comprehensive insights into the personalized therapeutic strategies and options for combating TNBC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Yu Xia
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
223
|
Yuan K, Wu J, Zhao Y, Lyu S, Zhou Q, Shi F, Li Y, Song Q. Consistent expression of PD-L1 in tumor microenvironment with peripheral PD-1/PD-L1 in circulating T lymphocytes of operable breast cancer: a diagnostic test. Diagn Pathol 2022; 17:68. [PMID: 36088412 PMCID: PMC9464389 DOI: 10.1186/s13000-022-01249-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background The expression of PD-L1 in the immune microenvironment can guide the application of immunosuppressants. In order to monitor the immune status of the body, repeated biopsies have to be taken. Our research aims to find new and convenient means to evaluate this indicator. Methods Eighty-three cases of newly diagnosed operable breast cancer without receiving preoperative treatment, were recruited from Beijing Shijitan Hospital between November 2018 and November 2019. The expression of PD-1/PD-L1 on circulating T lymphocytes was detected by flow cytometry and the expression of PD-L1 on immune cells in tumor microenvironment was detected by immunohistochemistry. Results The median percentage of positive PD-1 and PD-L1 expression on circulating T lymphocytes was 15.2% and 0.7%, respectively. The peripheral PD-1 had no relationship with clinicopathological characteristics, but the peripheral PD-L1 expression had a correlation with lymph node metastasis (p = 0.005) and Her-2 expression (p = 0.034) (p < 0.05). The positive rate of PD-L1 expression was 32.9% in tumor microenvironment. PD-L1 expression in tumor microenvironment had a significant correlation with PD-1/PD-L1 expression on circulating T lymphocytes, the correlation coefficients being 0.24 (p < 0.05) and 0.26 (p < 0.05), respectively. To predict the PD-L1 expression in tumor microenvironment, the area under the receiver operating characteristic curve was 0.65 and 0.66 for peripheral PD-1 and PD-L1, respectively. High level of peripheral PD-1/PD-L1 expression was associated with the odds ratios of 5.42 and 4.76 for positive PD-L1 expression in tumor microenvironment. Conclusion Peripheral PD-1/PD-L1 expression had a significant consistency with PD-L1 expression in tumor microenvironment and could act as an alternative choice of tissue detection, for the patients intolerable of biopsy.
Collapse
|
224
|
Hasmim M, Xiao M, Van Moer K, Kumar A, Oniga A, Mittelbronn M, Duhem C, Chammout A, Berchem G, Thiery JP, Volpert M, Hollier B, Noman MZ, Janji B. SNAI1-dependent upregulation of CD73 increases extracellular adenosine release to mediate immune suppression in TNBC. Front Immunol 2022; 13:982821. [PMID: 36159844 PMCID: PMC9501677 DOI: 10.3389/fimmu.2022.982821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative subtype of breast cancer (TNBC) is hallmarked by frequent disease relapse and shows highest mortality rate. Although PD-1/PD-L1 immune checkpoint blockades have recently shown promising clinical benefits, the overall response rate remains largely insufficient. Hence, alternative therapeutic approaches are warranted. Given the immunosuppressive properties of CD73-mediated adenosine release, CD73 blocking approaches are emerging as attractive strategies in cancer immunotherapy. Understanding the precise mechanism regulating the expression of CD73 is required to develop effective anti-CD73-based therapy. Our previous observations demonstrate that the transcription factors driving epithelial-to-mesenchymal transition (EMT-TF) can regulate the expression of several inhibitory immune checkpoints. Here we analyzed the role of the EMT-TF SNAI1 in the regulation of CD73 in TNBC cells. We found that doxycycline-driven SNAI1 expression in the epithelial -like TNBC cell line MDA-MB-468 results in CD73 upregulation by direct binding to the CD73 proximal promoter. SNAI1-dependent upregulation of CD73 leads to increased production and release of extracellular adenosine by TNBC cells and contributes to the enhancement of TNBC immunosuppressive properties. Our data are validated in TNBC samples by showing a positive correlation between the mRNA expression of CD73 and SNAI1. Overall, our results reveal a new CD73 regulation mechanism in TNBC that participates in TNBC-mediated immunosuppression and paves the way for developing new treatment opportunities for CD73-positive TNBC.
Collapse
Affiliation(s)
- Meriem Hasmim
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Malina Xiao
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Kris Van Moer
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Akinchan Kumar
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Alexandra Oniga
- National Center of Pathology (NCP), Laboratoire Nationale de Santé (LNS), Luxembourg, Luxembourg
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire Nationale de Santé (LNS), Luxembourg, Luxembourg
| | - Caroline Duhem
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Anwar Chammout
- Department of Oncology, Faculty of Medicine, University of Aleppo, Aleppo, Syria
- Department of Oncology, Aleppo Hospital University, Aleppo, Syria
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | | | - Marianna Volpert
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), School of Biomedical Sciences, Faculty of Health, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD, Australia
| | - Brett Hollier
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), School of Biomedical Sciences, Faculty of Health, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD, Australia
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- *Correspondence: Bassam Janji,
| |
Collapse
|
225
|
Miglietta F, Visani L, Marini S, Griguolo G, Vernaci GM, Bottosso M, Dieci MV, Meattini I, Guarneri V. Oligometastatic breast cancer: Dissecting the clinical and biological uniqueness of this emerging entity. Can we pursue curability? Cancer Treat Rev 2022; 110:102462. [PMID: 36087503 DOI: 10.1016/j.ctrv.2022.102462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Metastatic breast cancer represents an incurable condition, however, the increasing interest towards the oligometastatic entity is now challenging this assumption. Up to 20% of patients with metastatic breast cancer present with oligometastatic disease, which refers to metastatic breast cancer presenting or recurring with limited metastatic burden. In the last years, progressive advancements in imaging techniques, the growing availability of minimally invasive locoregional treatments, alongside the increasing expectations from a patient perspective, have contributed to rising the awareness towards this emerging entity. In the present work we comprehensively reviewed available evidence regarding oligometastatic breast cancer, focusing on clinical and biological notions virtually supporting the adoption of a curative approach when treating this condition. We also discussed main areas of uncertainties, providing a research agenda that may guide and fine-tune the future investigation in this field.
Collapse
Affiliation(s)
- Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Luca Visani
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Sabrina Marini
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Gaia Griguolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Grazia Maria Vernaci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Michele Bottosso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Icro Meattini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy.
| |
Collapse
|
226
|
Abstract
PURPOSE OF REVIEW Recently, immune checkpoint inhibitors (ICI) have demonstrated survival benefits in triple-negative breast cancer (TNBC) patients, treated in both the advanced and the early settings. RECENT FINDINGS As monotherapy, ICI failed to demonstrate a superiority over chemotherapy in pretreated advanced TNBC. In the first-line setting, ICI in combination with chemotherapy have shown consistent gains in progression-free survival in programmed death-ligand 1-positive TNBC, but only pembrolizumab indisputably demonstrated a significant overall survival benefit. In early-stage TNBC patients treated with neoadjuvant chemotherapy (NAC), ICI may improve the pathological complete response (pCR) rate. In the KEYNOTE-522 trial enrolling stage II to III TNBC patients, pembrolizumab, in combination with a NAC composed of carboplatin-paclitaxel followed by anthracyclines, and continued in the adjuvant phase led to significant increases in both pCR and disease-free survival, a practice-changing result in the field. Importantly, no unexpected safety signal was observed, but the possibility of definitive ICI-related toxicities may be challenging in curable early disease. SUMMARY Immunotherapy is now an important component in the therapeutic management of TNBC. Unresolved issues include the best chemotherapy partners, additional biomarkers to maximize the clinical benefit, and the possible extension of its use to other breast cancer subtypes.
Collapse
|
227
|
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 2022; 15:121. [PMID: 36038913 PMCID: PMC9422136 DOI: 10.1186/s13045-022-01341-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer (BC) with a poor prognosis. Current treatment options are limited to surgery, adjuvant chemotherapy and radiotherapy; however, a proportion of patients have missed the surgical window at the time of diagnosis. TNBC is a highly heterogeneous cancer with specific mutations and aberrant activation of signaling pathways. Hence, targeted therapies, such as those targeting DNA repair pathways, androgen receptor signaling pathways, and kinases, represent promising treatment options against TNBC. In addition, immunotherapy has also been demonstrated to improve overall survival and response in TNBC. In this review, we summarize recent key advances in therapeutic strategies based on molecular subtypes in TNBC.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700. .,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
228
|
Live Biotherapeutic Lactococcus lactis GEN3013 Enhances Antitumor Efficacy of Cancer Treatment via Modulation of Cancer Progression and Immune System. Cancers (Basel) 2022; 14:cancers14174083. [PMID: 36077619 PMCID: PMC9455052 DOI: 10.3390/cancers14174083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Recent studies, which have revealed the strong relationship between gut microbiota and tumor progression, have driven the clinical application of microbiome-based treatments to increase the efficacy of anticancer therapies. In particular, the genome-editing Lactococcus lactis, which activates the host immune system by expressing immune-boosting cytokines or metabolites, is a candidate for microbiome treatment. While Lactococcus lactis has so far been studied in terms of its recombinant forms, we investigated the anticancer effects of the strain-specific Lactococcus lactis GEN3013 itself. In vitro cytotoxicity tests showed that L. lactis GEN3013 inhibited the cell growth of various human and murine cancer cell lines. Consistent with the in vitro results, L. lactis GEN3013 showed antitumor effects and enhanced the therapeutic efficacy of both chemotherapy and immunotherapy in syngeneic mice. In addition, the host immune system was activated both locally and systemically by the combinatorial treatment of L. lactis GEN3013 with chemotherapy and immunotherapy. For these reasons, we suggest that L. lactis GEN3013 could be utilized as a novel biotherapeutic agent for cancer treatment. Abstract The gut microbiota is responsible for differential anticancer drug efficacies by modulating the host immune system and the tumor microenvironment. Interestingly, this differential effect is highly strain-specific. For example, certain strains can directly suppress tumor growth and enhance antitumor immunity; however, others do not have such an effect or even promote tumor growth. Identifying effective strains that possess antitumor effects is key for developing live biotherapeutic anticancer products. Here, we found that Lactococcus lactis GEN3013 inhibits tumor growth by regulating tumor angiogenesis and directly inducing cancer cell death. Moreover, L. lactis GEN3013 enhanced the therapeutic effects of oxaliplatin and the PD-1 blockade. Comprehensive immune profiling showed that L. lactis GEN3013 augmented cytotoxic immune cell populations, such as CD4+ T cells, CD8+ effector T cells, and NK cells in the tumor microenvironment. Our results indicate that L. lactis GEN3013 is a promising candidate for potentiating cancer treatment in combination with current standard therapy.
Collapse
|
229
|
Wang H, Zhao C, Santa-Maria CA, Emens LA, Popel AS. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience 2022; 25:104702. [PMID: 35856032 PMCID: PMC9287616 DOI: 10.1016/j.isci.2022.104702] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/07/2022] Open
Abstract
Quantitative systems pharmacology (QSP) modeling is an emerging mechanistic computational approach that couples drug pharmacokinetics/pharmacodynamics and the course of disease progression. It has begun to play important roles in drug development for complex diseases such as cancer, including triple-negative breast cancer (TNBC). The combination of the anti-PD-L1 antibody atezolizumab and nab-paclitaxel has shown clinical activity in advanced TNBC with PD-L1-positive tumor-infiltrating immune cells. As tumor-associated macrophages (TAMs) serve as major contributors to the immuno-suppressive tumor microenvironment, we incorporated the dynamics of TAMs into our previously published QSP model to investigate their impact on cancer treatment. We show that through proper calibration, the model captures the macrophage heterogeneity in the tumor microenvironment while maintaining its predictive power of the trial results at the population level. Despite its high mechanistic complexity, the modularized QSP platform can be readily reproduced, expanded for new species of interest, and applied in clinical trial simulation. A mechanistic model of quantitative systems pharmacology in immuno-oncology Dynamics of tumor-associated macrophages are integrated into our previous work Conducting in silico clinical trials to predict clinical response to cancer therapy
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu211166, China
| | - Cesar A Santa-Maria
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Leisha A Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
230
|
Ribeiro R, Carvalho MJ, Goncalves J, Moreira JN. Immunotherapy in triple-negative breast cancer: Insights into tumor immune landscape and therapeutic opportunities. Front Mol Biosci 2022; 9:903065. [PMID: 36060249 PMCID: PMC9437219 DOI: 10.3389/fmolb.2022.903065] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that represents 15-20% of breast tumors and is more prevalent in young pre-menopausal women. It is the subtype of breast cancers with the highest metastatic potential and recurrence at the first 5 years after diagnosis. In addition, mortality increases when a complete pathological response is not achieved. As TNBC cells lack estrogen, progesterone, and HER2 receptors, patients do not respond well to hormone and anti-HER2 therapies, and conventional chemotherapy remains the standard treatment. Despite efforts to develop targeted therapies, this disease continues to have a high unmet medical need, and there is an urgent demand for customized diagnosis and therapeutics. As immunotherapy is changing the paradigm of anticancer treatment, it arises as an alternative treatment for TNBC patients. TNBC is classified as an immunogenic subtype of breast cancer due to its high levels of tumor mutational burden and presence of immune cell infiltrates. This review addresses the implications of these characteristics for the diagnosis, treatment, and prognosis of the disease. Herein, the role of immune gene signatures and tumor-infiltrating lymphocytes as biomarkers in TNBC is reviewed, identifying their application in patient diagnosis and stratification, as well as predictors of efficacy. The expression of PD-L1 expression is already considered to be predictive of response to checkpoint inhibitor therapy, but the challenges regarding its value as biomarker are described. Moreover, the rationales for different formats of immunotherapy against TNBC currently under clinical research are discussed, and major clinical trials are highlighted. Immune checkpoint inhibitors have demonstrated clinical benefit, particularly in early-stage tumors and when administered in combination with chemotherapy, with several regimens approved by the regulatory authorities. The success of antibody-drug conjugates and research on other emerging approaches, such as vaccines and cell therapies, will also be addressed. These advances give hope on the development of personalized, more effective, and safe treatments, which will improve the survival and quality of life of patients with TNBC.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| | - Maria João Carvalho
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
- CHUC—Coimbra Hospital and University Centre, Department of Gynaecology, Coimbra, Portugal
- Univ Coimbra—University Clinic of Gynaecology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR—Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - João Goncalves
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - João Nuno Moreira
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
231
|
Ren Y, Song J, Li X, Luo N. Rationale and Clinical Research Progress on PD-1/PD-L1-Based Immunotherapy for Metastatic Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168878. [PMID: 36012144 PMCID: PMC9408844 DOI: 10.3390/ijms23168878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 01/23/2023] Open
Abstract
Metastatic triple-negative breast cancer (mTNBC), a highly aggressive and malignant tumor, currently lacks an effective treatment. There has been some progress in the treatment of mTNBC with programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) immunotherapy in recent years. The combination of PD-1/PD-L1 inhibitors with other therapies is a noteworthy treatment strategy. Immunotherapy in combination with chemotherapy or small-molecule inhibitors still faces many challenges. Additionally, there are some new immunotherapy targets in development. We aimed to further evaluate the effectiveness and usefulness of immunotherapy for treating mTNBC and to propose new immunotherapy strategies. This review explains the rationale and results of existing clinical trials evaluating PD-1/PD-L1 inhibitors alone or in combination for the treatment of mTNBC. For patients with aggressive tumors and poor health, PD-1/PD-L1 inhibitors, either alone or in combination with other modalities, have proven to be effective. However, more research is needed to explore more effective immunotherapy regimens that will lead to new breakthroughs in the treatment of mTNBC.
Collapse
|
232
|
Wesolowski J, Tankiewicz-Kwedlo A, Pawlak D. Modern Immunotherapy in the Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14163860. [PMID: 36010854 PMCID: PMC9406094 DOI: 10.3390/cancers14163860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This review summarizes reports from the latest clinical trials assessing the safety and clinical effectiveness of new biological drugs stimulating the immune system to fight cancer. The aim of this study is to show the enormous therapeutic potential of monoclonal antibodies in the treatment of cancer, in particular triple negative breast cancer (TNBC). Introduction of these innovative drugs to the standard clinical cancer therapies, including TNBC, allows for an increase in the response rate to the applied treatment, and consequently extending the lives of patients suffering from cancer. We hope to draw attention to the extremely difficult-to-treat TNBC, as well as the importance of the development of clinical trials evaluating drugs modulating the immune system in TNBC therapy. Abstract Triple-Negative Breast Cancer is a subtype of breast cancer characterized by the lack of expression of estrogen receptors, progesterone receptors, as well as human epidermal growth factor receptor 2. This cancer accounts for 15–20% of all breast cancers and is especially common in patients under 40 years of age, as well as with the occurring BRCA1 mutation. Its poor prognosis is reflected in the statistical life expectancy of 8–15 months after diagnosis of metastatic TNBC. So far, the lack of targeted therapy has narrowed therapeutic possibilities to classic chemotherapy. The idea behind the use of humanized monoclonal antibodies, as inhibitors of immunosuppressive checkpoints used by the tumor to escape from immune system control, is to reduce immunotolerance and direct an intensified anti-tumor immune response. An abundance of recent studies has provided numerous pieces of evidence about the safety and clinical benefits of immunotherapy using humanized monoclonal antibodies in the fight against many types of cancer, including TNBC. In particular, phase three clinical trials, such as the IMpassion 130, the KEYNOTE-355 and the KEYNOTE-522 resulted in the approval of immunotherapeutic agents, such as atezolizumab and pembrolizumab by the US Food and Drug Administration in TNBC therapy. This review aims to present the huge potential of immunotherapy using monoclonal antibodies directed against immunosuppressive checkpoints—such as atezolizumab, avelumab, durvalumab, pembrolizumab, nivolumab, cemiplimab, tremelimumab, ipilimumab—in the fight against difficult to treat TNBCs as monotherapy as well as in more advanced combination strategies.
Collapse
Affiliation(s)
- Jakub Wesolowski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
- Correspondence:
| | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
233
|
Yang M, Olaoba OT, Zhang C, Kimchi ET, Staveley-O’Carroll KF, Li G. Cancer Immunotherapy and Delivery System: An Update. Pharmaceutics 2022; 14:1630. [PMID: 36015256 PMCID: PMC9413869 DOI: 10.3390/pharmaceutics14081630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
With an understanding of immunity in the tumor microenvironment, immunotherapy turns out to be a powerful tool in the clinic to treat many cancers. The strategies applied in cancer immunotherapy mainly include blockade of immune checkpoints, adoptive transfer of engineered cells, such as T cells, natural killer cells, and macrophages, cytokine therapy, cancer vaccines, and oncolytic virotherapy. Many factors, such as product price, off-target side effects, immunosuppressive tumor microenvironment, and cancer cell heterogeneity, affect the treatment efficacy of immunotherapies against cancers. In addition, some treatments, such as chimeric antigen receptor (CAR) T cell therapy, are more effective in treating patients with lymphoma, leukemia, and multiple myeloma rather than solid tumors. To improve the efficacy of targeted immunotherapy and reduce off-target effects, delivery systems for immunotherapies have been developed in past decades using tools such as nanoparticles, hydrogel matrix, and implantable scaffolds. This review first summarizes the currently common immunotherapies and their limitations. It then synopsizes the relative delivery systems that can be applied to improve treatment efficacy and minimize side effects. The challenges, frontiers, and prospects for applying these delivery systems in cancer immunotherapy are also discussed. Finally, the application of these approaches in clinical trials is reviewed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Olamide Tosin Olaoba
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
234
|
Cao J, Wang B, Zhang J, Tao Z, Wang L, Hu X. Phase 1b clinical trial of pucotenlimab (HX008), a novel anti-PD-1 monoclonal antibody, combined with gemcitabine and cisplatin in the first-line treatment of metastatic triple-negative breast cancer. Front Oncol 2022; 12:837963. [PMID: 35982961 PMCID: PMC9379318 DOI: 10.3389/fonc.2022.837963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPucotenlimab, also called HX008, is a humanized anti-PD-1 antagonist IgG4 mAb. It blocks programmed cell death protein 1 (PD-1), programmed-death ligand 1 (PD-L1), and programmed death ligand-2 (PD-L2). In the CBCSG 006 trial, gemcitabine plus cisplatin (GP) has shown impressive antitumor activity as first-line therapy for metastatic triple-negative breast cancer (mTNBC). The phase 1b study was conducted to assess the safety and preliminary antitumor activity of pucotenlimab when combined with GP in patients with mTNBC in the first-line setting.MethodsEligible patients with mTNBC with ≥6 months of DFI (disease-free interval) who have never received antitumor therapy for metastatic disease were screened. Participants received pucotenlimab at 3 mg/kg (d1, q3w) plus gemcitabine at 1,250 mg/m2 (d1, 8, q3w) and cisplatin at 75 mg/m2 (d1, q3w). Eligible patients received up to six cycles of pucotenlimab along with GP chemotherapy, while pucotenlimab could be maintained until disease progression or unacceptable toxicity occurred or withdrawal of informed consent. This study was registered in China under registration number CTR20191353.ResultsBetween July 2019 and March 2020, 31 patients were enrolled in this study. The median age was 50 (range 28–68) years. Among 31 patients who were evaluated, 25 (80.6%) experienced objective response and the other six (19.4%) experienced stable disease (SD). As of 4 August, the median progression-free survival (PFS) was 9.0 months (95% CI, 6.2–9.2). The most common grade 3 or 4 treatment-related adverse events included neutropenia (74.1%), anemia (35.5%), thrombocytopenia (32.3%), hypocalcemia (9.7%), hypokalemia (9.7%), and alanine aminotransferase increased (6.5%). There were no treatment-related deaths.ConclusionPucotenlimab plus GP demonstrated promising activity and a manageable safety profile in patients with mTNBC in the first-line setting.
Collapse
Affiliation(s)
- Jun Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leiping Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xichun Hu,
| |
Collapse
|
235
|
Howard FM, Pearson AT, Nanda R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res Treat 2022; 195:1-15. [PMID: 35834065 PMCID: PMC9338129 DOI: 10.1007/s10549-022-06665-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Immunotherapy has started to transform the treatment of triple-negative breast cancer (TNBC), in part due to the unique immunogenicity of this breast cancer subtype. This review summarizes clinical studies of immunotherapy in advanced and early-stage TNBC. FINDINGS Initial studies of checkpoint blockade monotherapy demonstrated occasional responses, especially in patients with untreated programmed death-ligand 1 (PD-L1) positive advanced TNBC, but failed to confirm a survival advantage over chemotherapy. Nonetheless, pembrolizumab monotherapy has tumor agnostic approval for microsatellite instability-high or high tumor mutational burden cancers, and thus can be considered for select patients with advanced TNBC. Combination chemoimmunotherapy approaches have been more successful, and pembrolizumab is approved for PD-L1 positive advanced TNBC in combination with chemotherapy. This success has been translated to the curative setting, where pembrolizumab is now approved in combination with neoadjuvant chemotherapy for high-risk early-stage TNBC. CONCLUSION Immunotherapy has been a welcome addition to the growing armamentarium for TNBC, but responses remain limited to a subset of patients. Innovative strategies are under investigation in an attempt to induce immune responses in resistant tumors-with regimens incorporating small-molecule inhibitors, novel immune checkpoint targets, and intratumoral injections that directly alter the tumor microenvironment. As the focus shifts toward the use of immunotherapy for early-stage TNBC, it will be critical to identify those who derive the most benefit from treatment, given the potential for irreversible autoimmune toxicity and the lack of predictive accuracy of PD-L1 expression in the early-stage setting.
Collapse
Affiliation(s)
- Frederick M Howard
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA.
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| | - Rita Nanda
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| |
Collapse
|
236
|
Zhang X, Ge X, Jiang T, Yang R, Li S. Research progress on immunotherapy in triple‑negative breast cancer (Review). Int J Oncol 2022; 61:95. [PMID: 35762339 PMCID: PMC9256074 DOI: 10.3892/ijo.2022.5385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) is a highly heterogeneous and aggressive malignancy. Due to the absence of estrogen receptors and progesterone receptors and the lack of overexpression of human epidermal growth factor receptor 2, TNBC responds poorly to endocrine and targeted therapies. As a neoadjuvant therapy, chemotherapy is usually the only option for TNBC; however, chemotherapy may induce tumor resistance. The emergence of immunotherapy as an adjuvant therapy is expected to make up for the deficiency of chemotherapy. Most of the research on immunotherapies has been performed on advanced metastatic TNBC, which has provided significant clinical benefits. In the present review, possible immunotherapy targets and ongoing immunotherapy strategies were discussed. In addition, progress in research on immune checkpoint inhibitors in early TNBC was outlined.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xueying Ge
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Tinghan Jiang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ruming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
237
|
Tumor infiltrating lymphocytes (TILs) as a predictive biomarker of response to checkpoint blockers in solid tumors: a systematic review. Crit Rev Oncol Hematol 2022; 177:103773. [PMID: 35917885 DOI: 10.1016/j.critrevonc.2022.103773] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy is a standard of care in many solid tumors but many patients derive limited benefit from it. There is increasing interest toward tumor infiltrating lymphocytes (TILs) since their presence may be related with good outcomes from treatment with immune checkpoint blockers. We aimed at systematically reviewing existing evidence about the role of TILs as possible predictors of response to immunotherapy in solid tumors. We reviewed 1193 records published from January 2010 until December 2021. Associations between TILs and outcomes were observed mainly in melanoma and breast cancer. Overall survival and overall response rate for advanced disease and pathological complete response for early-phase tumors were the most commonly assessed endpoints. No definitive conclusion can be drawn on the predictive role of TILs. Additional studies, exploiting data from prospective, randomized clinical trials should further evaluate TILs also with the aim of identifying standard cut-off to differentiate between high and low TILs.
Collapse
|
238
|
Zheng D, Hou X, Yu J, He X. Combinatorial Strategies With PD-1/PD-L1 Immune Checkpoint Blockade for Breast Cancer Therapy: Mechanisms and Clinical Outcomes. Front Pharmacol 2022; 13:928369. [PMID: 35935874 PMCID: PMC9355550 DOI: 10.3389/fphar.2022.928369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
As an emerging antitumor strategy, immune checkpoint therapy is one of the most promising anticancer therapies due to its long response duration. Antibodies against the programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) axis have been extensively applied to various cancers and have demonstrated unprecedented efficacy. Nevertheless, a poor response to monotherapy with anti-PD-1/PD-L1 has been observed in metastatic breast cancer. Combination therapy with other standard treatments is expected to overcome this limitation of PD-1/PD-L1 blockade in the treatment of breast cancer. In the present review, we first illustrate the biological functions of PD-1/PD-L1 and their role in maintaining immune homeostasis as well as protecting against immune-mediated tissue damage in a variety of microenvironments. Several combination therapy strategies for the combination of PD-1/PD-L1 blockade with standard treatment modalities have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including chemotherapy, radiotherapy, targeted therapy, antiangiogenic therapy, and other immunotherapies. The corresponding clinical trials provide valuable estimates of treatment effects. Notably, several combination options significantly improve the response and efficacy of PD-1/PD-L1 blockade. This review provides a PD-1/PD-L1 clinical trial landscape survey in breast cancer to guide the development of more effective and less toxic combination therapies.
Collapse
Affiliation(s)
- Dan Zheng
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaolin Hou
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiujing He
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- *Correspondence: Xiujing He,
| |
Collapse
|
239
|
Cortes J, Rugo HS, Cescon DW, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Perez-Garcia J, Iwata H, Masuda N, Torregroza Otero M, Gokmen E, Loi S, Guo Z, Zhou X, Karantza V, Pan W, Schmid P. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N Engl J Med 2022; 387:217-226. [PMID: 35857659 DOI: 10.1056/nejmoa2202809] [Citation(s) in RCA: 521] [Impact Index Per Article: 173.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In an interim analysis of this phase 3 trial, the addition of pembrolizumab to chemotherapy resulted in longer progression-free survival than chemotherapy alone among patients with advanced triple-negative breast cancer whose tumors expressed programmed death ligand 1 (PD-L1) with a combined positive score (CPS; the number of PD-L1-staining tumor cells, lymphocytes, and macrophages, divided by the total number of viable tumor cells, multiplied by 100) of 10 or more. The results of the final analysis of overall survival have not been reported. METHODS We randomly assigned patients with previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer in a 2:1 ratio to receive pembrolizumab (200 mg) every 3 weeks plus the investigator's choice of chemotherapy (nanoparticle albumin-bound paclitaxel, paclitaxel, or gemcitabine-carboplatin) or placebo plus chemotherapy. The primary end points were progression-free survival (reported previously) and overall survival among patients whose tumors expressed PD-L1 with a CPS of 10 or more (the CPS-10 subgroup), among patients whose tumors expressed PD-L1 with a CPS of 1 or more (the CPS-1 subgroup), and in the intention-to-treat population. Safety was also assessed. RESULTS A total of 847 patients underwent randomization: 566 were assigned to the pembrolizumab-chemotherapy group, and 281 to the placebo-chemotherapy group. The median follow-up was 44.1 months. In the CPS-10 subgroup, the median overall survival was 23.0 months in the pembrolizumab-chemotherapy group and 16.1 months in the placebo-chemotherapy group (hazard ratio for death, 0.73; 95% confidence interval [CI], 0.55 to 0.95; two-sided P = 0.0185 [criterion for significance met]); in the CPS-1 subgroup, the median overall survival was 17.6 and 16.0 months in the two groups, respectively (hazard ratio, 0.86; 95% CI, 0.72 to 1.04; two-sided P = 0.1125 [not significant]); and in the intention-to-treat population, the median overall survival was 17.2 and 15.5 months, respectively (hazard ratio, 0.89; 95% CI, 0.76 to 1.05 [significance not tested]). Adverse events of grade 3, 4, or 5 that were related to the trial regimen occurred in 68.1% of the patients in the pembrolizumab-chemotherapy group and in 66.9% in the placebo-chemotherapy group, including death in 0.4% of the patients in the pembrolizumab-chemotherapy group and in no patients in the placebo-chemotherapy group. CONCLUSIONS Among patients with advanced triple-negative breast cancer whose tumors expressed PD-L1 with a CPS of 10 or more, the addition of pembrolizumab to chemotherapy resulted in significantly longer overall survival than chemotherapy alone. (Funded by Merck Sharp and Dohme; KEYNOTE-355 ClinicalTrials.gov number, NCT02819518.).
Collapse
Affiliation(s)
- Javier Cortes
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Hope S Rugo
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - David W Cescon
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Seock-Ah Im
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Mastura M Yusof
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Carlos Gallardo
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Oleg Lipatov
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Carlos H Barrios
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Jose Perez-Garcia
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Hiroji Iwata
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Norikazu Masuda
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Marco Torregroza Otero
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Erhan Gokmen
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Sherene Loi
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Zifang Guo
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Xuan Zhou
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Vassiliki Karantza
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Wilbur Pan
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Peter Schmid
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| |
Collapse
|
240
|
Rodrigues-Ferreira S, Nahmias C. Predictive biomarkers for personalized medicine in breast cancer. Cancer Lett 2022; 545:215828. [PMID: 35853538 DOI: 10.1016/j.canlet.2022.215828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer is one of the most frequent malignancies among women worldwide. Based on clinical and molecular features of breast tumors, patients are treated with chemotherapy, hormonal therapy and/or radiotherapy and more recently with immunotherapy or targeted therapy. These different therapeutic options have markedly improved patient outcomes. However, further improvement is needed to fight against resistance to treatment. In the rapidly growing area of research for personalized medicine, predictive biomarkers - which predict patient response to therapy - are essential tools to select the patients who are most likely to benefit from the treatment, with the aim to give the right therapy to the right patient and avoid unnecessary overtreatment. The search for predictive biomarkers is an active field of research that includes genomic, proteomic and/or machine learning approaches. In this review, we describe current strategies and innovative tools to identify, evaluate and validate new biomarkers. We also summarize current predictive biomarkers in breast cancer and discuss companion biomarkers of targeted therapy in the context of precision medicine.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Inovarion, 75005, Paris, France
| | - Clara Nahmias
- Gustave Roussy Institute, INSERM U981, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France; LabEx LERMIT, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
241
|
Hobbs EA, Chen N, Kuriakose A, Bonefas E, Lim B. Prognostic/predictive markers in systemic therapy resistance and metastasis in breast cancer. Ther Adv Med Oncol 2022; 14:17588359221112698. [PMID: 35860831 PMCID: PMC9290149 DOI: 10.1177/17588359221112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/23/2022] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is a highly heterogeneous group of diseases posing a significant challenge in biomarker-driven research and the development of effective targeted therapies. Especially the treatment of metastatic breast cancer poses even more challenges, as we still lose more than 42,000 women and men each year in the United States alone. New biological insight helps to improve breast cancer treatment through early detection, adaptation to chemotherapy resistance, and tailoring to find the right size of care. This review focuses on existing and new areas of predictive biomarkers under development to tailor the management of breast cancer and the application of integrative approaches that have resulted in the promising candidate biomarker discovery. Furthermore, we review new methods to detect metastatic progression using imaging, and blood-based assays. We hope to increase the attention and awareness of a new generation of therapeutic development strategies in metastatic breast cancer.
Collapse
Affiliation(s)
- Evthokia A. Hobbs
- Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Natalie Chen
- Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Alphi Kuriakose
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Bora Lim
- Hematology and Oncology, Baylor College of Medicine, One Baylor Plaza, BCM600, Houston, TX 70030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
242
|
Yi Y, Xu T, Tan Y, Lv W, Zhao C, Wu M, Wu Y, Zhang Q. CCDC69 is a prognostic marker of breast cancer and correlates with tumor immune cell infiltration. Front Surg 2022; 9:879921. [PMID: 35910470 PMCID: PMC9334777 DOI: 10.3389/fsurg.2022.879921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related death among women worldwide. Early detection, treatment, and metastasis monitoring are very important for the prognosis of BC patients. Therefore, effective biomarkers need to be explored to help monitor the prognosis of BC patients and guide treatment decisions. Methods In this study, the relationship between CCDC69 expression levels and tumor clinical characteristics were analyzed using RNA-seq information in BC samples from the TCGA database. Kaplan-Meier survival analysis was performed to analyze the prognostic value of CCDC69 in BC patients. Besides, gene enrichment analysis in BC samples was used to confirm the main function of CCDC69 in BC. The correlation between the expression of CCDC69 and the number of tumor-infiltrating lymphocytes was confirmed by interaction analysis of TIMER and GEPIA. Results The results showed that CCDC69 expression was significantly lower in cancer samples than in normal tissues, and was significantly lower in highly invasive BC than in carcinoma in situ. Meanwhile, low levels of CCDC69 were associated with a further poor prognosis. CDCC69 expression was positively correlated with the amount of different tumor-infiltrating lymphocytes. Mechanically, it could be presumed that the low expression of CCDC69 in BC might be caused by hypermethylation of the promoter region. Conclusions Summarily, CDCC69 could be used as a potential biomarker to predict the prognosis of BC and the sensitivity to immunotherapy such as PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence: Yiping Wu Qi Zhang
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence: Yiping Wu Qi Zhang
| |
Collapse
|
243
|
Barroso-Sousa R, Forman J, Collier K, Weber ZT, Jammihal TR, Kao KZ, Richardson ET, Keenan T, Cohen O, Manos MP, Brennick RC, Ott PA, Hodi FS, Dillon DA, Attaya V, O'Meara T, Lin NU, Van Allen EM, Rodig S, Winer EP, Mittendorf EA, Wu CJ, Wagle N, Stover DG, Shukla SA, Tolaney SM. Multidimensional Molecular Profiling of Metastatic Triple-Negative Breast Cancer and Immune Checkpoint Inhibitor Benefit. JCO Precis Oncol 2022; 6:e2100413. [PMID: 35797509 PMCID: PMC9848556 DOI: 10.1200/po.21.00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 01/22/2023] Open
Abstract
PURPOSE In metastatic triple-negative breast cancer (mTNBC), consistent biomarkers of immune checkpoint inhibitor (ICI) therapy benefit remain elusive. We evaluated the immune, genomic, and transcriptomic landscape of mTNBC in patients treated with ICIs. METHODS We identified 29 patients with mTNBC treated with pembrolizumab or atezolizumab, either alone (n = 9) or in combination with chemotherapy (n = 14) or targeted therapy (n = 6), who had tumor tissue and/or blood available before ICI therapy for whole-exome sequencing. RNA sequencing and CIBERSORTx-inferred immune population analyses were performed (n = 20). Immune cell populations and programmed death-ligand 1 expression were assessed using multiplexed immunofluorescence (n = 18). Clonal trajectories were evaluated via serial tumor/circulating tumor DNA whole-exome sequencing (n = 4). Association of biomarkers with progression-free survival and overall survival (OS) was assessed. RESULTS Progression-free survival and OS were longer in patients with high programmed death-ligand 1 expression and tumor mutational burden. Patients with longer survival also had a higher relative inferred fraction of CD8+ T cells, activated CD4+ memory T cells, M1 macrophages, and follicular helper T cells and enrichment of inflammatory gene expression pathways. A mutational signature of defective repair of DNA damage by homologous recombination was enriched in patients with both shorter OS and primary resistance. Exploratory analysis of clonal evolution among four patients treated with programmed cell death protein 1 blockade and a tyrosine kinase inhibitor suggested that clonal stability post-treatment was associated with short time to progression. CONCLUSION This study identified potential biomarkers of response to ICIs among patients with mTNBC: high tumor mutational burden; presence of CD8+, CD4 memory T cells, follicular helper T cells, and M1 macrophages; and inflammatory gene expression pathways. Pretreatment deficiencies in the homologous recombination DNA damage repair pathway and the absence of or minimal clonal evolution post-treatment may be associated with worse outcomes.
Collapse
Affiliation(s)
| | - Juliet Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Tejas R. Jammihal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Katrina Z. Kao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Tanya Keenan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ofir Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ryan C. Brennick
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Patrick A. Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Victoria Attaya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tess O'Meara
- Internal Medicine, Brigham and Women's Hospital, Boston, MA
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | | | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Elizabeth A. Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Divison of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | | | - Sachet A. Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| |
Collapse
|
244
|
Liu Y, Ni M, Li L, Wang J, Tu Z, Zhou H, Zhang S. A novel four-gene signature predicts immunotherapy response of patients with different cancers. J Clin Lab Anal 2022; 36:e24494. [PMID: 35588138 PMCID: PMC9279975 DOI: 10.1002/jcla.24494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy has demonstrated favorable clinical efficacy, particularly for advanced or difficult-to-treat cancer types. However, this therapy is ineffective for many patients displaying lack of immune response or resistance to ICB. This study aimed to establish a novel four-gene signature (CD8A, CD8B, TCF7, and LEF1) to provide a prognostic immunotherapy biomarker for different cancers. METHODS Transcriptome profiles and clinical data were obtained from The Cancer Genome Atlas database. Multivariate Cox regression analysis was used to establish a four-gene signature. The R package estimate was used to obtain the immune score for every patient. RESULTS Risk scores of the novel four-gene signature could effectively divided all patients into high- and low-risk groups, with distinct outcomes. The immune score calculated via the estimate package demonstrated that the four-gene signature was significantly associated with the immune infiltration level. Furthermore, the four-gene signature could predict the response to atezolizumab immunotherapy in patients with metastatic urothelial cancer. CONCLUSIONS The novel four-gene signature developed in this study is a good prognostic biomarker, as it could identify many kinds of patients with cancer who are likely to respond to and benefit from immunotherapy.
Collapse
Affiliation(s)
- Yuanli Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Mingyue Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Lamei Li
- Department of DermatologyAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| | - Junyan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Department of Clinical Medicine (5+3 Programme)Anhui Medical UniversityHefeiChina
| | - Zhenzhen Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Siping Zhang
- Department of DermatologyAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| |
Collapse
|
245
|
Chen L, Jiang YZ, Wu SY, Wu J, Di GH, Liu GY, Yu KD, Fan L, Li JJ, Hou YF, Hu Z, Chen CM, Huang XY, Cao AY, Hu X, Zhao S, Ma XY, Xu Y, Sun XJ, Chai WJ, Guo X, Chen X, Xu Y, Zhu XY, Zou JJ, Yang WT, Wang ZH, Shao ZM. Famitinib with Camrelizumab and Nab-Paclitaxel for Advanced Immunomodulatory Triple-Negative Breast Cancer (FUTURE-C-Plus): An Open-Label, Single-Arm, Phase II Trial. Clin Cancer Res 2022; 28:2807-2817. [PMID: 35247906 PMCID: PMC9365373 DOI: 10.1158/1078-0432.ccr-21-4313] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Camrelizumab, an mAb against programmed cell death protein 1 (PD-1), plus nab-paclitaxel exhibited promising antitumor activity in refractory metastatic immunomodulatory triple-negative breast cancer (TNBC). Famitinib is a tyrosine kinase inhibitor targeting VEGFR2, PDGFR, and c-kit. We aimed to assess the efficacy and safety of a novel combination of famitinib, camrelizumab, and nab-paclitaxel in advanced immunomodulatory TNBC. PATIENTS AND METHODS This open-label, single-arm, phase II study enrolled patients with previously untreated, advanced, immunomodulatory TNBC (CD8 IHC staining ≥10%). Eligible patients received 20 mg of oral famitinib on days 1 to 28, 200 mg of i.v. camrelizumab on days 1 and 15, and i.v. nab-paclitaxel 100 mg/m2 on days 1, 8, and 15 in 4-week cycles. The primary endpoint was objective response rate (ORR), as assessed by investigators per RECIST v1.1. Key secondary endpoints were progression-free survival (PFS), overall survival (OS), duration of response (DOR), safety, and exploratory biomarkers. RESULTS Forty-eight patients were enrolled and treated. Median follow-up was 17.0 months (range, 8.7-24.3). Confirmed ORR was 81.3% [95% confidence interval (CI), 70.2-92.3], with five complete and 34 partial responses. Median PFS was 13.6 months (95% CI, 8.4-18.8), and median DOR was 14.9 months [95% CI, not estimable (NE)-NE]. Median OS was not reached. No treatment-related deaths were reported. Among 30 patients with IHC, 13 (43.3%) were programmed death-ligand 1 (PD-L1)-negative, and PD-L1 was associated with favorable response. PKD1 and KAT6A somatic mutations were associated with therapy response. CONCLUSIONS The triplet regimen was efficacious and well tolerated in previously untreated, advanced, immunomodulatory TNBC. The randomized controlled FUTURE-SUPER trial is under way to validate our findings. See related commentary by Salgado and Loi, p. 2728.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Song-Yang Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jiong Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Guang-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ke-Da Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei Fan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jun-Jie Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yi-Feng Hou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhen Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Can-Ming Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiao-Yan Huang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - A-Yong Cao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiao-Yan Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiang-Jie Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wen-Jun Chai
- Department of Laboratory Animal Science, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiao-Yu Zhu
- Jiangsu Hengrui Pharmaceuticals Co. Ltd, Shanghai, China
| | - Jian-Jun Zou
- Jiangsu Hengrui Pharmaceuticals Co. Ltd, Shanghai, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Corresponding Authors: Zhi-Ming Shao, Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, 270 Dong-An Road, Xuhui District, Shanghai 200032, China. E-mail: ; Zhong-Hua Wang, E-mail: ; and Wen-Tao Yang, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, 270 Dong-An Road, Xuhui District, Shanghai 200032, China. E-mail:
| | - Zhong-Hua Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Corresponding Authors: Zhi-Ming Shao, Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, 270 Dong-An Road, Xuhui District, Shanghai 200032, China. E-mail: ; Zhong-Hua Wang, E-mail: ; and Wen-Tao Yang, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, 270 Dong-An Road, Xuhui District, Shanghai 200032, China. E-mail:
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Corresponding Authors: Zhi-Ming Shao, Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, 270 Dong-An Road, Xuhui District, Shanghai 200032, China. E-mail: ; Zhong-Hua Wang, E-mail: ; and Wen-Tao Yang, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, 270 Dong-An Road, Xuhui District, Shanghai 200032, China. E-mail:
| |
Collapse
|
246
|
Xiao Y, Gao W. Therapeutic pattern and progress of neoadjuvant treatment for triple-negative breast cancer. Oncol Lett 2022; 24:219. [PMID: 35720488 PMCID: PMC9178680 DOI: 10.3892/ol.2022.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease, accounting for about 15.0-20.0% of all breast cancer cases. TNBC is associated with early recurrence and metastasis, strong invasiveness and a poor prognosis. Chemotherapy is currently the mainstay of treatment for TNBC, and achievement of a pathological complete response is closely associated with a long-term good prognosis. Improving the long-term prognosis in patients with TNBC is a challenge in breast cancer treatment, and more clinical evidence is needed to guide the choice of treatment strategies. The current study reviews the conventional treatment modality for TNBC and the selection of neoadjuvant chemotherapy (NACT) regimens available. The research progress on optimizing NACT regimens is also reviewed, and the uniqueness of the treatment of this breast cancer subtype is emphasized, in order to provide reference for the clinical practice and research with regard to TNBC treatment.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Wencheng Gao
- Department of General Surgery, Dongguan Houjie Town People's Hospital, Dongguan, Guangdong 523962, P.R. China
| |
Collapse
|
247
|
Liu J, Zhu J, Wang X, Zhou Z, Liu H, Zhu D. A Novel YTHDF3-Based Model to Predict Prognosis and Therapeutic Response in Breast Cancer. Front Mol Biosci 2022; 9:874532. [PMID: 35755811 PMCID: PMC9218665 DOI: 10.3389/fmolb.2022.874532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Due to high tumor heterogeneity, breast cancer (BC) patients still suffer poor survival outcomes. YTHDF3 plays a critical role in the prognosis of BC patients. Hence, we aimed to construct a YTHDF3-based model for the prediction of the overall survival (OS) and the sensitivity of therapeutic agents in BC patients. Methods: Based on The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database, we obtained BC patients’ data (n = 999) with YTHDF3 expression profiles. The association between YTHDF3 expression and 5-year OS was determined via Cox proportional hazards regression (CPHR) analysis. By integrating the variables, we established a prognostic nomogram. The model was estimated via discrimination, calibration ability, and decision curve analysis (DCA). The performance of the model was compared with the TNM stage system through receiver operating characteristic (ROC) curves and DCA. By means of the Genomics of Drug Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/), the therapeutic agents’ response was estimated. Gene set enrichment analysis (GSEA) demonstrated possible biological mechanisms related to YTHDF3. TIMER and CIBERSORTx were employed to analyze the association between YTHDF3 and tumor-infiltrating immune cells. Results: The high YTHDF3 expression was significantly correlated with poor 5-year OS in BC patients. Through multivariate CPHR, four independent prognostic variables (age, TNM stage, YTHDF3 expression, and molecular subtype) were determined. On the basis of the four factors, a YTHDF3-based nomogram was built. The area under the curve (AUC) of the ROC curve for the model surpassed that of the TNM stage system (0.72 vs. 0.63, p = 0.00028). The model predictions showed close consistency with the actual observations via the calibration plot. Therapeutic response prediction was conducted in high- and low-risk groups and compared with each other. The BC patients with higher risk scores showed more therapeutic resistance than those with a lower risk score. Conclusion: YTHDF3 was verified as a prognostic biomarker of BC, and a novel YTHDF3-based model was constructed to predict the 5-year OS of BC patients. Our model could be applied to effectively predict the therapeutic response of commonly used agents for BC patients.
Collapse
Affiliation(s)
- Jie Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jing Zhu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xin Wang
- Group of Ultrasonography in Obstetrics, Department of Obstetrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Zhisheng Zhou
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Haiyan Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Dajiang Zhu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
248
|
SP142 PD-L1 Assays in Multiple Samples from the Same Patients with Early or Advanced Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14133042. [PMID: 35804813 PMCID: PMC9265054 DOI: 10.3390/cancers14133042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The IMpassion130 trial suggests that metastatic triple-negative breast cancer (TNBC) patients with PD-L1+ derived a clinical benefit from atezolizumab-combined treatment regardless of the sample collection time or origin. Therefore, if the PD-L1 test is positive at least once in multiple samples, the patient could have an opportunity to receive atezolizumab-based treatments. We aimed to know whether multiple PD-L1 testing might increase a rate of PD-L1+ in patients with TNBC. SP142 PD-L1 assays were performed in multiple samples from 77 patients in early TNBC. Multiple PD-L1 test using multiple samples raised the PD-L1+ rate more than a single biopsied sample test (68.8% vs. 37.6%, p = 0.00002). Among the group with metastatic TNBC treated with atezolizumab and nab-paclitaxel, PD-L1 assays were performed at least twice in 8/12 patients; 5/8 had heterogeneous results of PD-L1 assays. Consequently, a vigorous PD-L1 test using multiple samples was considered necessary in TNBC because a single test might be insufficient to represent the PD-L1 status. Abstract Purpose: The discernible PD-L1 staining of tumor-infiltrating lymphocytes occupying ≥ 1% of the tumor area is considered SP142 PD-L1 positive for atezolizumab, and the PD-L1 status of multiple samples within a single patient could be discrepant. In this study, we evaluated the PD-L1 status by using the SP142 clone in serially collected matched samples from the same individuals with early or metastatic triple-negative breast cancer (TNBC). Method: the SP142 PD-L1 assay was performed using biopsies and surgical specimens from 77 patients with early TNBC. Among these patients, 47 underwent upfront surgery, and 30 underwent neoadjuvant chemotherapy (NAC) between biopsy and surgery. PD-L1 assays were performed at least twice in 8/12 (66.7%) patients with metastatic TNBC treated with atezolizumab and nab-paclitaxel. Results: Of the 47 patients who underwent upfront surgery, 15/47 (31.9%) had PD-L1+ on biopsied samples. PD-L1+ rates in the biopsy and surgical specimens increased to 66.0% (33 of 47) after subsequent surgery. Similarly, in the 30 patients with residual invasive cancer who underwent neoadjuvant chemotherapy, the PD-L1+ rate increased from 46.6% at baseline to 74.2% after surgery. In the 77 patients with early TNBC, multiple PD-L1 testing in the biopsies and surgical specimens significantly increased the number of patients with PD-L1+ compared with the number of patients with PD-L1+ assessed with initial biopsy samples alone (68.8% vs. 37.6%; p = 0.00002). Among the metastatic TNBC patients, those with constant PD-L1+ over 1% positivity in multiple samples showed a response which was longer than 12 months. Conclusions: Our findings reveal the heterogeneous SP142 PD-L1 expression in TNBC and suggest that PD-L1 evaluation in baseline biopsy might be insufficient to represent the PD-L1 status of whole tumors. In TNBC, vigorous PD-L1 examination using multiple available tumor samples could identify more patients eligible for immune checkpoint blockade.
Collapse
|
249
|
Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23126806. [PMID: 35743249 PMCID: PMC9224686 DOI: 10.3390/ijms23126806] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Metastasis is the leading cause of high mortality in most cancers. Although predicting the early stage of breast cancer before metastasis can increase the survival rate, breast cancer is often discovered or diagnosed after metastasis has occurred. In general, breast cancer has a poor prognosis because it starts as a local disease and can spread to lymph nodes or distant organs, contributing to a significant impediment in breast cancer treatment. Metastatic breast cancer cells acquire aggressive characteristics from the tumor microenvironment (TME) through several mechanisms including epithelial–mesenchymal transition (EMT) and epigenetic regulation. Therefore, understanding the nature and mechanism of breast cancer metastasis can facilitate the development of targeted therapeutics focused on metastasis. This review discusses the mechanisms leading to metastasis and the current therapies to improve the early diagnosis and prognosis in patients with metastatic breast cancer.
Collapse
|
250
|
Hou Y, Peng Y, Li Z. Update on prognostic and predictive biomarkers of breast cancer. Semin Diagn Pathol 2022; 39:322-332. [PMID: 35752515 DOI: 10.1053/j.semdp.2022.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer represents a heterogeneous group of human cancer at both histological and molecular levels. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) are the most commonly used biomarkers in clinical practice for making treatment plans for breast cancer patients by oncologists. Recently, PD-L1 testing plays an important role for immunotherapy for triple-negative breast cancer. With the increased understanding of the molecular characterization of breast cancer and the emergence of novel targeted therapies, more potential biomarkers are needed for the development of more personalized treatments. In this review, we summarized several main prognostic and predictive biomarkers in breast cancer at genomic, transcriptomic and proteomic levels, including hormone receptors, HER2, Ki67, multiple gene expression assays, PD-L1 testing, mismatch repair deficiency/microsatellite instability, tumor mutational burden, PIK3CA, ESR1 andNTRK and briefly introduced the roles of digital imaging analysis in breast biomarker evaluation.
Collapse
Affiliation(s)
- Yanjun Hou
- Department of Pathology, Atrium Health Wake Forest Baptist Medical Center, Winston Salem, NC
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zaibo Li
- Department of pathology, The Ohio State University Wexner Medical Center, Columbus OH.
| |
Collapse
|