201
|
Du G, Zhang Z, He P, Zhang Z, Sun X. Determination of the mechanical properties of polymeric microneedles by micromanipulation. J Mech Behav Biomed Mater 2021; 117:104384. [PMID: 33592344 DOI: 10.1016/j.jmbbm.2021.104384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/14/2023]
Abstract
Precise characterization of the mechanical properties of polymeric microneedles is crucial for their successful penetration into skin and delivery of the loaded active ingredients. However, most available strategies for this purpose are based on compression of the whole patch, which only provide the average rupture force of the needles and can not give information on the variations across individual microneedles in the patch. In this study, we determined the mechanical strength of individual microneedles of two types of hyaluronic acid microneedles with or without loaded model drugs using a micromanipulation technique. The applied force as a function of displacement of the microneedles was recorded, which was used to determine the rupture displacement, rupture force, and then to derive and calculate normal stress-deformation curve, rupture stress and Young's modulus of individual microneedles. The obtained data suggest that the molecular weight of the polymer and the loading of drug into the microneedles can significantly affect the rupture behavior and mechanical properties of the microneedles, which provides a foundation for preparing sufficiently strong microneedles for controlled drug delivery.
Collapse
Affiliation(s)
- Guangsheng Du
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Penghui He
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Xun Sun
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
202
|
Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, Peng K, Raj Singh Thakur R, Donnelly RF. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm 2021; 159:44-76. [DOI: 10.1016/j.ejpb.2020.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
|
203
|
Li Y, Yang J, Zheng Y, Ye R, Liu B, Huang Y, Zhou W, Jiang L. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomater 2021; 121:349-358. [PMID: 33340733 DOI: 10.1016/j.actbio.2020.12.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/09/2023]
Abstract
A transdermal patch that combines microneedle array (MA) with iontophoresis can achieve synergistic and remarkable enhancement of drug delivery with precise electronic control. However, the development of an MA patch combined with iontophoresis that can enable in situ treatment, easy self-administration, and controllable delivery of liquid macromolecular drugs is still a challenge. Here, we presented an iontophoresis-driven porous MA patch (IDPMAP) for in situ, patient-friendly, and active delivery of charged macromolecular drugs. IDPMAP integrates porous MA with iontophoresis into a single transdermal patch, thus realizing the one-step drug administration strategy of "Penetration, Diffusion, and Iontophoresis." Moreover, a matching portable iontophoresis-driven device was developed for drug self-administration of IDPMAP. In vitro and in vivo studies showed that IDPMAP had approximately 99% skin penetration rate, negligible cytotoxicity, and good biocompatibility without skin irritation and hypersensitivity. In vivo transdermal delivery of insulin in type 1 diabetic rats demonstrated that IDPMAP could effectively deliver insulin nanovesicles and produce a robust hypoglycemic effect on the rats (maintain normal blood glucose for approximately 5.4 h), with more advanced controllability and efficiency than that achieved by pristine MA or iontophoresis. IDPMAP and its portable iontophoresis-driven device are user-friendly and thus show a promising potential for drug self-administration at home.
Collapse
|
204
|
McAlister E, Dutton B, Vora LK, Zhao L, Ripolin A, Zahari DSZBPH, Quinn HL, Tekko IA, Courtenay AJ, Kelly SA, Rodgers AM, Steiner L, Levin G, Levy‐Nissenbaum E, Shterman N, McCarthy HO, Donnelly RF. Directly Compressed Tablets: A Novel Drug-Containing Reservoir Combined with Hydrogel-Forming Microneedle Arrays for Transdermal Drug Delivery. Adv Healthc Mater 2021; 10:e2001256. [PMID: 33314714 DOI: 10.1002/adhm.202001256] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/15/2020] [Indexed: 01/19/2023]
Abstract
Microneedle (MN) patches consist of a hydrogel-forming MN array and a drug-containing reservoir. Drug-containing reservoirs documented in the literature include polymeric films and lyophilized wafers. While effective, both reservoir formulations are aqueous based, and so degradation can occur during formulation and drying for drugs inherently unstable in aqueous media. The preparation and characterization of novel, nonaqueous-based, directly compressed tablets (DCTs) for use in combination with hydrogel-forming MN arrays are described for the first time. In this work, a range of drug molecules are investigated. Precipitation of amoxicillin (AMX) and primaquine (PQ) in conventional hydrogel-forming MN arrays leads to use of poly(vinyl alcohol)-based MN arrays. Following in vitro permeation studies, in vivo pharmacokinetic studies are conducted in rats with MN patches containing AMX, levodopa/carbidopa (LD/CD), and levofloxacin (LVX). Therapeutically relevant concentrations of AMX (≥2 µg mL-1 ), LD (≥0.5 µg mL-1 ), and LVX (≥0.2 µg mL-1 ) are successfully achieved at 1, 2, and 1 h, respectively. Thus, the use of DCTs offers promise to expand the range of drug molecules that can be delivered transdermally using MN patches.
Collapse
Affiliation(s)
- Emma McAlister
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Bridie Dutton
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Lalitkumar K. Vora
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Li Zhao
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Anastasia Ripolin
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | | | - Helen L. Quinn
- Health and Social Care Board 12‐22 Linenhall Street Belfast BT2 8BS Ireland
| | - Ismaiel A. Tekko
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Aaron J. Courtenay
- School of Pharmacy and Pharmaceutical Sciences Ulster University Cromore Road Coleraine BT52 1SA Ireland
| | - Stephen A. Kelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Aoife M. Rodgers
- Department of Biology Maynooth University Co. Kildare Maynooth Ireland
| | - Lilach Steiner
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | - Galit Levin
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | | | - Nava Shterman
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | - Helen O. McCarthy
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Ryan F. Donnelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| |
Collapse
|
205
|
Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat Commun 2021; 12:658. [PMID: 33510169 PMCID: PMC7843990 DOI: 10.1038/s41467-021-20948-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
A microneedle array is an attractive option for a minimally invasive means to break through the skin barrier for efficient transdermal drug delivery. Here, we report the applications of solid polymer-based ion-conductive porous microneedles (PMN) containing interconnected micropores for improving iontophoresis, which is a technique of enhancing transdermal molecular transport by a direct current through the skin. The PMN modified with a charged hydrogel brings three innovative advantages in iontophoresis at once: (1) lowering the transdermal resistance by low-invasive puncture of the highly resistive stratum corneum, (2) transporting of larger molecules through the interconnected micropores, and (3) generating electroosmotic flow (EOF). In particular, the PMN-generated EOF greatly enhances the transdermal molecular penetration or extraction, similarly to the flow induced by external pressure. The enhanced efficiencies of the EOF-assisted delivery of a model drug (dextran) and of the extraction of glucose are demonstrated using a pig skin sample. Furthermore, the powering of the PMN-based transdermal EOF system by a built-in enzymatic biobattery (fructose / O2 battery) is also demonstrated as a possible totally organic iontophoresis patch.
Collapse
|
206
|
Thakur RRS, Adwan S, Tekko I, Soliman K, Donnelly RF. Laser irradiation of ocular tissues to enhance drug delivery. Int J Pharm 2021; 596:120282. [PMID: 33508342 DOI: 10.1016/j.ijpharm.2021.120282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Scleral and corneal membranes represent substantial barriers against drug delivery to the eye. Conventional hypodermic needles-based intraocular injections are clinically employed to overcome these barriers. This study, for the first time, investigated a non-invasive alternative to intraocular injections by laser irradiation of ocular tissues. The P.L.E.A.S.E.® laser device was applied on excised porcine scleral and corneal tissues, which showed linear relationships between depths of laser-created micropores and laser fluences at range 8.9-444.4 J/cm2. Deeper and wider micropores were observed in scleral relative to corneal tissues. The permeation of rhodamine B and fluorescein isothiocyanate (FITC)-dextran were investigated through ocular tissues at different laser parameters (laser fluences 0-44.4 J/cm2 and micropore densities 7.5 and 15%). Both molecules showed enhanced permeation through ocular tissues on laser irradiation. Maximum transscleral permeation of the molecules was attained at laser fluence 8.9 J/cm2 and micropore density 15%. Transcorneal permeation of rhodamine B increased with increasing either laser fluence or micropore density, while that of FITC-dextran was not affected by either parameter. The transscleral water loss increased significantly after laser irradiation then returned to the baseline values within 24 h, indicating healing of the laser-created micropores. Laser irradiation is a promising technique to enhance intraocular delivery of both small and large molecule drugs.
Collapse
Affiliation(s)
- Raghu Raj Singh Thakur
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom.
| | - Samer Adwan
- Faculty of Pharmacy, Zarqa University, Zarqa 132222, Jordan
| | - Ismaiel Tekko
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Karim Soliman
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| |
Collapse
|
207
|
Hossain MK, Ahmed T, Bhusal P, Subedi RK, Salahshoori I, Soltani M, Hassanzadeganroudsari M. Microneedle Systems for Vaccine Delivery: the story so far. Expert Rev Vaccines 2021; 19:1153-1166. [PMID: 33427523 DOI: 10.1080/14760584.2020.1874928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Vaccine delivery via a microneedle (MN) system has been identified as a potential alternative to conventional vaccine delivery. MN can be self-administered, is pain-free and is capable of producing superior immunogenicity. Over the last few decades, significant research has been carried out in this area, and this review aims to provide a comprehensive picture on the progress of this delivery platform. AREAS COVERED This review highlights the potential role of skin as a vaccine delivery route using a microneedle system, examines recent advancements in microneedle fabrication techniques, and provides an update on potential preclinical and clinical studies on vaccine delivery through microneedle systems against various infectious diseases. Articles for the review study were searched electronically in PubMed, Google, Google Scholar, and Science Direct using specific keywords to cover the scope of the article. The advanced search strategy was employed to identify the most relevant articles. EXPERT OPINION A significant number of MN mediated vaccine candidates have shown promising results in preclinical and clinical trials. The recent emergence of cleanroom free, 3D or additive manufacturing of MN systems and stability, together with the dose-sparing capacity of the Nanopatch® system, have made this platform, commercially, highly lucrative.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University , Melbourne, VIC, Australia
| | - Taksim Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
| | - Prabhat Bhusal
- School of Pharmacy, University of Otago , Dunedin New Zealand
| | | | - Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University , Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology , Tehran, Iran.,Department of Electrical and Computer Engineering, Faculty of Engineering, School of Optometry and Vision Science, Faculty of Science, University of Waterloo , Waterloo, Ontario, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo , Waterloo, Ontario, Canada.,Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology , Tehran, Iran
| | - Majid Hassanzadeganroudsari
- Institute for Health and Sport, Victoria University , Melbourne, VIC, Australia.,Department of Chemical Engineering, Science and Research Branch, Islamic Azad University , Tehran, Iran
| |
Collapse
|
208
|
Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res 2021; 12:758-791. [PMID: 33474709 PMCID: PMC7817074 DOI: 10.1007/s13346-021-00909-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Transdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems.
Collapse
|
209
|
McAlister E, Kearney MC, Martin EL, Donnelly RF. From the laboratory to the end-user: a primary packaging study for microneedle patches containing amoxicillin sodium. Drug Deliv Transl Res 2021; 11:2169-2185. [PMID: 33452653 PMCID: PMC8421291 DOI: 10.1007/s13346-020-00883-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 11/24/2022]
Abstract
Abstract As microneedle (MN) patches progress towards commercialisation, there is a need to address issues surrounding their translation from the laboratory to the end-user. One important aspect of MN patches moving forward is appropriate primary packaging. This research focuses on MN patches containing amoxicillin (AMX) sodium for the potential treatment of neonatal sepsis in hot and humid countries. A MN patch consists of a hydrogel-forming MN array and a drug-containing reservoir. Improper primary packaging in hot and humid countries may result in degradation of active pharmaceutical ingredients, with the use of substandard medicines a major health concern. The research presented here, for the first time, seeks to investigate the integrity of MN patches in different primary packaging when stored under accelerated storage conditions, according to international guidelines. At pre-defined intervals, the performance of the MN patch was investigated. Major causes of drug instability are moisture and temperature. To avoid unnecessary degradation, suitable primary packaging was sought. After 168 days, the percentage of AMX sodium recovered from drug-containing reservoirs packaged in Protect™ 470 foil was 103.51 ± 7.03%. However, packaged in poly(ester) foil, the AMX sodium content decreased significantly (p = 0.0286), which is likely due to the degradation of AMX sodium by the imbibed moisture. Therefore, convincing evidence was provided as to the importance of investigating the stability of MN patches in primary packaging intended for MN-mediated transdermal delivery so that they are ‘fit for purpose’ when it reaches the end-user. Future work will include qualitative studies to assess MN patch usability. Graphical abstract ![]()
Collapse
Affiliation(s)
- Emma McAlister
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Mary-Carmel Kearney
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - E Linzi Martin
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
210
|
Permana AD, Nainu F, Moffatt K, Larrañeta E, Donnelly RF. Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1690. [PMID: 33401339 DOI: 10.1002/wnan.1690] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Numerous diseases have been reported to affect the lymphatic system. As such, several strategies have been developed to deliver chemotherapeutics to this specific network of tissues and associated organs. Nanotechnology has been exploited as one of the main approaches to improve the lymphatic uptake of drugs. Different nanoparticle approaches utilized for both active and passive targeting of the lymphatic system are discussed here. Specifically, due to the rich abundance of lymphatic capillaries in the dermis, particular attention is given to this route of administration, as intradermal administration could potentially result in higher lymphatic uptake compared to other routes of administration. Recently, progress in microneedle research has attracted particular attention as an alternative for the use of conventional hypodermic injections. The benefits of microneedles, when compared to intradermal injection, are subsequently highlighted. Importantly, microneedles exhibit particular benefit in relation to therapeutic targeting of the lymphatic system, especially when combined with nanoparticles, which are further discussed. However, despite the apparent benefits provided by this combination approach, further comprehensive preclinical and clinical studies are now necessary to realize the potential extent of this dual-delivery platform, further taking into consideration eventual usability and acceptability in the intended patient end-users. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
211
|
Pahal S, Badnikar K, Ghate V, Bhutani U, Nayak MM, Subramanyam DN, Vemula PK. Microneedles for Extended Transdermal Therapeutics: A Route to Advanced Healthcare. Eur J Pharm Biopharm 2021; 159:151-169. [PMID: 33388372 DOI: 10.1016/j.ejpb.2020.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Sustained release of drugs over a pre-determined period is required to maintain an effective therapeutic dose for variety of drug delivery applications. Transdermal devices such as polymeric microneedle patches and other microneedle-based devices have been utilized for sustained release of their payload. Swift clearing of drugs can be prevented either by designing a slow-degrading polymeric matrix or by providing physiochemical triggers to different microneedle-based devices for on-demand release. These long-acting transdermal devices prevent the burst release of drugs. This review highlights the recent advances of microneedle-based devices for sustained release of vaccines, hormones, and antiretrovirals with their prospective safe clinical translation.
Collapse
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| | - Kedar Badnikar
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Ghate
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Utkarsh Bhutani
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Mangalore Manjunatha Nayak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| |
Collapse
|
212
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
213
|
Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, Yang G. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int J Pharm 2021; 593:120106. [DOI: 10.1016/j.ijpharm.2020.120106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
|
214
|
Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur J Pharm Biopharm 2021; 158:294-312. [DOI: 10.1016/j.ejpb.2020.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/08/2023]
|
215
|
Turner JG, White LR, Estrela P, Leese HS. Hydrogel-Forming Microneedles: Current Advancements and Future Trends. Macromol Biosci 2020; 21:e2000307. [PMID: 33241641 DOI: 10.1002/mabi.202000307] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/21/2020] [Indexed: 12/17/2022]
Abstract
In this focused progress review, the recent developments and trends of hydrogel-forming microneedles (HFMs) and potential future directions are presented. Previously, microneedles (solid, hollow, coated, and dissolving microneedles) have primarily been used to enhance the effectiveness of transdermal drug delivery to facilitate a wide range of applications such as vaccinations and antibiotic delivery. However, the recent trend in microneedle development has resulted in microneedles formed from hydrogels which have the ability to offer transdermal drug delivery and, due to the hydrogel swelling nature, passively extract interstitial fluid from the skin, meaning they have the potential to be used for biocompatible minimally invasive monitoring devices. Thus, in this review, these recent trends are highlighted, which consolidate microneedle design considerations, hydrogel formulations, fabrication processes, applications of HFMs and the potential future opportunities for utilizing HFMs for personalized healthcare monitoring and treatment.
Collapse
Affiliation(s)
- Joseph G Turner
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.,Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK
| | - Leah R White
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Hannah S Leese
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.,Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
216
|
Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. iScience 2020; 23:101749. [PMID: 33241197 PMCID: PMC7672307 DOI: 10.1016/j.isci.2020.101749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nature does nothing in vain. Through millions of years of revolution, living organisms have evolved hierarchical and anisotropic structures to maximize their survival in complex and dynamic environments. Many of these structures are intrinsically heterogeneous and often with functional gradient distributions. Understanding the convergent and divergent gradient designs in the natural material systems may lead to a new paradigm shift in the development of next-generation high-performance bio-/nano-materials and devices that are critically needed in energy, environmental remediation, and biomedical fields. Herein, we review the basic design principles and highlight some of the prominent examples of gradient biological materials/structures discovered over the past few decades. Interestingly, despite the anisotropic features in one direction (i.e., in terms of gradient compositions and properties), these natural structures retain certain levels of symmetry, including point symmetry, axial symmetry, mirror symmetry, and 3D symmetry. We further demonstrate the state-of-the-art fabrication techniques and procedures in making the biomimetic counterparts. Some prototypes showcase optimized properties surpassing those seen in the biological model systems. Finally, we summarize the latest applications of these synthetic functional gradient materials and structures in robotics, biomedical, energy, and environmental fields, along with their future perspectives. This review may stimulate scientists, engineers, and inventors to explore this emerging and disruptive research methodology and endeavors.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Melvin A Ramos
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
217
|
Seetharam AA, Choudhry H, Bakhrebah MA, Abdulaal WH, Gupta MS, Rizvi SMD, Alam Q, Siddaramaiah, Gowda DV, Moin A. Microneedles Drug Delivery Systems for Treatment of Cancer: A Recent Update. Pharmaceutics 2020; 12:E1101. [PMID: 33212921 PMCID: PMC7698361 DOI: 10.3390/pharmaceutics12111101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Microneedles (MNs) are tiny needle like structures used in drug delivery through layers of the skin. They are non-invasive and are associated with significantly less or no pain at the site of administration to the skin. MNs are excellent in delivering both small and large molecules to the subjects in need thereof. There exist several strategies for drug delivery using MNs, wherein each strategy has its pros and cons. Research in this domain lead to product development and commercialization for clinical use. Additionally, several MN-based products are undergoing clinical trials to evaluate its safety, efficacy, and tolerability. The present review begins by providing bird's-eye view about the general characteristics of MNs followed by providing recent updates in the treatment of cancer using MNs. Particularly, we provide an overview of various aspects namely: anti-cancerous MNs that work based on sensor technology, MNs for treatment of breast cancer, skin carcinoma, prostate cancer, and MNs fabricated by additive manufacturing or 3 dimensional printing for treatment of cancer. Further, the review also provides limitations, safety concerns, and latest updates about the clinical trials on MNs for the treatment of cancer. Furthermore, we also provide a regulatory overview from the "United States Food and Drug Administration" about MNs.
Collapse
Affiliation(s)
- Aravindram Attiguppe Seetharam
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (A.A.S.); (M.S.G.)
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (W.H.A.)
| | - Muhammed A. Bakhrebah
- Life Science & Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (W.H.A.)
| | - Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (A.A.S.); (M.S.G.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81481, Saudi Arabia;
| | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Siddaramaiah
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570016, India;
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (A.A.S.); (M.S.G.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81481, Saudi Arabia;
| |
Collapse
|
218
|
Sabri AH, Cater Z, Gurnani P, Ogilvie J, Segal J, Scurr DJ, Marlow M. Intradermal delivery of imiquimod using polymeric microneedles for basal cell carcinoma. Int J Pharm 2020; 589:119808. [DOI: 10.1016/j.ijpharm.2020.119808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023]
|
219
|
Fernández-García R, Statts L, de Jesus JA, Dea-Ayuela MA, Bautista L, Simão R, Bolás-Fernández F, Ballesteros MP, Laurenti MD, Passero LFD, Lalatsa A, Serrano DR. Ultradeformable Lipid Vesicles Localize Amphotericin B in the Dermis for the Treatment of Infectious Skin Diseases. ACS Infect Dis 2020; 6:2647-2660. [PMID: 32810398 DOI: 10.1021/acsinfecdis.0c00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cutaneous fungal and parasitic diseases remain challenging to treat, as available therapies are unable to permeate the skin barrier. Thus, treatment options rely on systemic therapy, which fail to produce high local drug concentrations but can lead to significant systemic toxicity. Amphotericin B (AmB) is highly efficacious in the treatment of both fungal and parasitic diseases such as cutaneous leishmaniasis but is reserved for parenteral administration in patients with severe pathophysiology. Here, we have designed and optimized AmB-transfersomes [93.5% encapsulation efficiency, 150 nm size, and good colloidal stability (-35.02 mV)] that can remain physicochemically stable (>90% drug content) at room temperature and 4 °C over 6 months when lyophilized and stored under desiccated conditions. AmB-transfersomes possessed good permeability across mouse skin (4.91 ± 0.41 μg/cm2/h) and 10-fold higher permeability across synthetic Strat-M membranes. In vivo studies after a single topical application in mice showed permeability and accumulation within the dermis (>25 μg AmB/g skin 6 h postadministration), indicating the delivery of therapeutic amounts of AmB for mycoses and cutaneous leishmaniasis, while a single daily administration in Leishmania (Leishmania) amazonensis infected mice over 10 days, resulted in excellent efficacy (98% reduction in Leishmania parasites). Combining the application of AmB-transfersomes with metallic microneedles in vivo increased the levels in the SC and dermis but was unlikely to elicit transdermal levels. In conclusion, AmB-transfersomes are promising and stable topical nanomedicines that can be readily translated for parasitic and fungal infectious diseases.
Collapse
Affiliation(s)
| | - Larry Statts
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | - Jéssica A. de Jesus
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Maria Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Carrer Santiago Ramón y Cajal s/n, 46113 Valencia, Spain
| | - Liliana Bautista
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | | | | | | | - Marcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Luiz F. D. Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente Praça Infante Dom Henrique s/n, 11330-900 São Vicente, SP, Brazil
- São Paulo State University (UNESP), Institute for Advanced Studies of Ocean, São Vicente Av. João Francisco Bensdorp 1178, 11350-011 São Vicente, SP (Brazil)
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | | |
Collapse
|
220
|
Feng L, Jia S, Chen Y, Liu Y. Highly Elastic Slide‐Ring Hydrogel with Good Recovery as Stretchable Supercapacitor. Chemistry 2020; 26:14080-14084. [DOI: 10.1002/chem.202001729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Li Feng
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Shan‐Shan Jia
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yong Chen
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 China
| |
Collapse
|
221
|
Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000171] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering University of Naples Federico II Naples 80125 Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Pooyan Makvandi
- Center for Micro‐BioRobotics Istituto Italiano di Tecnologia (IIT) Viale R. Piaggio 34, 56025 Pontedera Pisa Italy
| | - Cynthia K. Y. Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Prince Philip Dental Hospital The University of Hong Kong Hong Kong SAR China
| | - Tarun Agarwal
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Wujin Sun
- Department of Bioengineering Center for Minimally Invasive Therapeutics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Tapas Kumar Maiti
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| |
Collapse
|
222
|
Ahmed Saeed AL-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm 2020; 587:119673. [PMID: 32739388 PMCID: PMC7392082 DOI: 10.1016/j.ijpharm.2020.119673] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.
Collapse
Affiliation(s)
- Khater Ahmed Saeed AL-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Jayarama Reddy Venugopal
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Ayah Rebhi Hilles
- Faculty of Health Sciences, Department of Medical Science and Technology, PICOMS International University College of Medical Sciences, 68100 Kuala Lumpur, Malaysia
| | - Motia Azmana
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| | - Subashini Raman
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| |
Collapse
|
223
|
Li D, Hu D, Xu H, Patra HK, Liu X, Zhou Z, Tang J, Slater N, Shen Y. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials 2020; 264:120410. [PMID: 32979655 DOI: 10.1016/j.biomaterials.2020.120410] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Transdermal drug delivery exhibited encouraging prospects, especially through superficial drug administration routes. However, only a few limited lipophilic drug molecules could cross the skin barrier, those are with low molecular weight and rational Log P value. Microneedles (MNs) can overcome these limitations to deliver numerous drugs into the dermal layer by piercing the outermost skin layer of the body. In the case of superficial cancer treatments, topical drug administration faces severely low transfer efficiency, and systemic treatments are always associated with side effects and premature drug degradation. MN-based systems have achieved excellent technical capabilities and been tested for pre-clinical chemotherapy, photothermal therapy, photodynamic therapy, and immunotherapy. In this review, we will focus on the features, progress, and opportunities of MNs in the anticancer drug delivery system. Then, we will discuss the strategies and advantages in these works and summarize challenges, perspectives, and translational potential for future applications.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hirak K Patra
- Wolfson College, University of Cambridge, Cambridge, CB3 9BB, United Kingdom; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Nigel Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
224
|
Hettinga J, Carlisle R. Vaccination into the Dermal Compartment: Techniques, Challenges, and Prospects. Vaccines (Basel) 2020; 8:E534. [PMID: 32947966 PMCID: PMC7564253 DOI: 10.3390/vaccines8030534] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
In 2019, an 'influenza pandemic' and 'vaccine hesitancy' were listed as two of the top 10 challenges to global health by the WHO. The skin is a unique vaccination site, due to its immune-rich milieu, which is evolutionarily primed to respond to challenge, and its ability to induce both humoral and cellular immunity. Vaccination into this dermal compartment offers a way of addressing both of the challenges presented by the WHO, as well as opening up avenues for novel vaccine formulation and dose-sparing strategies to enter the clinic. This review will provide an overview of the diverse range of vaccination techniques available to target the dermal compartment, as well as their current state, challenges, and prospects, and touch upon the formulations that have been developed to maximally benefit from these new techniques. These include needle and syringe techniques, microneedles, DNA tattooing, jet and ballistic delivery, and skin permeabilization techniques, including thermal ablation, chemical enhancers, ablation, electroporation, iontophoresis, and sonophoresis.
Collapse
Affiliation(s)
| | - Robert Carlisle
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
225
|
Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. ACTA ACUST UNITED AC 2020; 65:243-272. [PMID: 31926064 DOI: 10.1515/bmt-2019-0019] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Pay-load deliveries across the skin barrier to the systemic circulation have been one of the most challenging delivery options. Necessitated requirements of the skin and facilitated skin layer cross-over delivery attempts have resulted in development of different non-invasive, non-oral methods, devices and systems which have been standardized, concurrently used and are in continuous upgrade and improvements. Iontophoresis, electroporation, sonophoresis, magnetophoresis, dermal patches, nanocarriers, needled and needle-less shots, and injectors are among some of the methods of transdermal delivery. The current review covers the current state of the art, merits and shortcomings of the systems, devices and transdermal delivery patches, including drugs' and other payloads' passage facilitation techniques, permeation and absorption feasibility studies, as well as physicochemical properties affecting the delivery through different transdermal modes along with examples of drugs, vaccines, genes and other payloads.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Pharmacy,Buraydah Colleges, PO Box 31717, Qassim 51418, Saudi Arabia
| | - Varsha Singh
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India
| | - Mohammad Yusuf
- College of Pharmacy, University of Taif, Taif Al-Haweiah, Taif, Saudi Arabia.https://orcid.org/0000-0003- 1417-7774
| | - Riaz A Khan
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India.,Department of Medicinal Chemistry, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
226
|
Song JE, Jun SH, Park SG, Kang NG. A Semi-Dissolving Microneedle Patch Incorporating TEMPO-Oxidized Bacterial Cellulose Nanofibers for Enhanced Transdermal Delivery. Polymers (Basel) 2020; 12:polym12091873. [PMID: 32825232 PMCID: PMC7564169 DOI: 10.3390/polym12091873] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Although dissolving microneedles have garnered considerable attention as transdermal delivery tools, insufficient drug loading remains a challenge owing to their small dimension. Herein, we report a one-step process of synthesizing semi-dissolving microneedle (SDMN) patches that enable effective transdermal drug delivery without loading drugs themselves by introducing TEMPO-oxidized bacterial cellulose nanofibers (TOBCNs), which are well dispersed, while retaining their unique properties in the aqueous phase. The SDMN patch fabricated by the micro-molding of a TOBCN/hydrophilic biopolymer mixture had a two-layer structure comprising a water-soluble needle layer and a TOBCN-containing insoluble backing layer. Moreover, the SDMN patch, which had a hole in the backing layer where TOBCNs are distributed uniformly, could offer novel advantages for the delivery of large quantities of active ingredients. In vitro permeation analysis confirmed that TOBCNs with high water absorption capacity could serve as drug reservoirs. Upon SDMN insertion and the application of drug aqueous solution through the drug inlet hole, the TOBCNs rapidly absorbed the solution and supplied it to the needle layer. Simultaneously, the needle layer dissolved in body fluids and the drug solution to form micro-channels, which enabled the delivery of larger quantities of drugs to the skin compared to that enabled by solution application alone.
Collapse
|
227
|
Ramadon D, Permana AD, Courtenay AJ, McCrudden MTC, Tekko IA, McAlister E, Anjani QK, Utomo E, McCarthy HO, Donnelly RF. Development, Evaluation, and Pharmacokinetic Assessment of Polymeric Microarray Patches for Transdermal Delivery of Vancomycin Hydrochloride. Mol Pharm 2020; 17:3353-3368. [PMID: 32706591 DOI: 10.1021/acs.molpharmaceut.0c00431] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can cause harmful and potentially deadly infections. Vancomycin remains the first-line antibiotic treatment for MRSA-derived infections. Nevertheless, as a peptide drug, it is poorly absorbed when administered orally because of its high molecular weight and low permeability in the gastrointestinal tract and is therefore administered intravenously for the treatment of systemic diseases. In order to circumvent some of the many drawbacks associated with intravenous injection, other routes of drug delivery should be investigated. One of the strategies which has been employed to enhance transdermal drug delivery is based on microarray patches (MAPs). This work, for the first time, describes successful transdermal delivery of vancomycin hydrochloride (VCL) using dissolving MAPs (DMAPs) and hydrogel-forming MAPs (HFMAPs). VCL was formulated into DMAPs and reservoirs [film dosage forms, lyophilized wafers, and compressed tablets (CSTs)] using excipients such as poly(vinyl pyrrolidone), poly(vinyl alcohol), sodium hyaluronate, d-sorbitol, and glycerol. In this study, HFMAPs were manufactured using aqueous blends containing poly(methylvinyl ether-co-maleic acid) cross-linked by esterification with poly(ethylene glycol). The VCL-loaded CSTs (60% w/w VCL) were the most promising reservoirs to be integrated with HFMAPs based on the physicochemical evaluations performed. Both HFMAPs and DMAPs successfully delivered VCL in ex vivo studies with the percentage of drug that permeated across the neonatal porcine skin recorded at 46.39 ± 8.04 and 7.99 ± 0.98%, respectively. In in vivo studies, the area under the plasma concentration time curve from time zero to infinity (AUC0-∞) values of 162.04 ± 61.84 and 61.01 ± 28.50 μg h/mL were achieved following the application of HFMAPs and DMAPs, respectively. In comparison, the AUC0-∞ of HFMAPs was significantly greater than that of the oral administration control group, which showed an AUC0-∞ of 30.50 ± 9.18 μg h/mL (p < 0.05). This work demonstrates that transdermal delivery of VCL is feasible using DMAPs and HFMAPs and could prove effective in the treatment of infectious diseases caused by MRSA, such as skin and soft tissue infections, lymphatic-related infections, and neonatal sepsis.
Collapse
Affiliation(s)
- Delly Ramadon
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Aaron J Courtenay
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, United Kingdom
| | - Maelíosa T C McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo 12289, Syria
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
228
|
Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm 2020; 586:119580. [DOI: 10.1016/j.ijpharm.2020.119580] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
|
229
|
Chen Z, He J, Qi J, Zhu Q, Wu W, Lu Y. Long-acting microneedles: a progress report of the state-of-the-art techniques. Drug Discov Today 2020; 25:1462-1468. [DOI: 10.1016/j.drudis.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/31/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
|
230
|
Pires LR, Amado IR, Gaspar J. Dissolving microneedles for the delivery of peptides – Towards tolerance-inducing vaccines. Int J Pharm 2020; 586:119590. [DOI: 10.1016/j.ijpharm.2020.119590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023]
|
231
|
|
232
|
Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Deliv Transl Res 2020; 11:788-816. [PMID: 32740799 DOI: 10.1007/s13346-020-00819-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regarding the increasing prevalence of cancer throughout the globe, the development of novel alternatives for conventional therapies is inevitable to circumvent limitations such as low efficacy, complications, and high cost. Recently, microneedle arrays (MNs) have been introduced as a novel, minimally invasive, and low-cost approach. MNs can delivery both small molecule and macromolecular drugs or even nanoparticles (NPs) to the tumor tissue in a safe and controlled manner. Relying on the recent promising outcomes of MNs in transdermal delivery of anticancer agents, this review is aimed to summarize constituent materials, fabrication methods, advantages, and limitations of different types of MNs used in cancer therapy applications. This review paper also presents the potential use of MNs in transdermal delivery of NPs for effective chemotherapy, gene therapy, immunotherapy, photodynamic, and photothermal therapy. Additionally, MNs are currently explored as routine point-of-care health monitoring devices for transdermal detection of cancer biomarkers or physiologically relevant analytes which will be addressed in this paper. Despite the promising potential of MNs for cancer therapy and diagnosis, several limitations have impeded their therapeutic efficacy and real-time applicability that are addressed in this paper.
Collapse
|
233
|
Liu T, Luo G, Xing M. Biomedical Applications of Polymeric Microneedles for Transdermal Therapeutic Delivery and Diagnosis: Current Status and Future Perspectives. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research State Key Laboratory of Trauma Burn and Combined Injury Southwest Hospital Third Military Medical University (Army Medical University) Gaotanyan Street Chongqing 400038 China
- Department of Mechanical Engineering University of Manitoba Winnipeg Manitoba R3T 5V6 Canada
| | - Gaoxing Luo
- Institute of Burn Research State Key Laboratory of Trauma Burn and Combined Injury Southwest Hospital Third Military Medical University (Army Medical University) Gaotanyan Street Chongqing 400038 China
| | - Malcolm Xing
- Department of Mechanical Engineering University of Manitoba Winnipeg Manitoba R3T 5V6 Canada
| |
Collapse
|
234
|
Chen BZ, Zhang LQ, Xia YY, Zhang XP, Guo XD. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. SCIENCE ADVANCES 2020; 6:eaba7260. [PMID: 32832606 PMCID: PMC7439566 DOI: 10.1126/sciadv.aba7260] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 05/02/2023]
Abstract
Multiple daily insulin injections have been a common regimen worldwide for the management of diabetes mellitus but involved potential safety and compliance problems. In this context, a single integrated microneedle patch (IMP) with multiple release kinetics is demonstrated to provide better physiologic insulin coverage for postprandial glycemic excursion in a convenient and pain-free manner. The combination of rapid separating technique and multiple individual microneedle arrays provides the combined ability to efficiently deliver insulin into the skin within seconds and to independently control insulin release kinetics. In addition, the diabetic rats with a traditional breakfast-lunch-dinner lifestyle exhibit obvious intraday glucose fluctuations, while the hypoglycemic experiments indicate that the IMP is capable of simultaneous bolus and sustained insulin delivery to closely match the glucose rise that occurs in response to meals and efficiently minimize excessive fluctuations, suggesting the potential of this new transdermal insulin delivery system as substitutes for multiple daily injections.
Collapse
Affiliation(s)
- Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Li Qin Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yun Xia
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | | |
Collapse
|
235
|
Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-Based Delivery: An Overview of Current Applications and Trends. Pharmaceutics 2020; 12:pharmaceutics12060569. [PMID: 32575392 PMCID: PMC7355570 DOI: 10.3390/pharmaceutics12060569] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microneedle arrays (MNA) are considered as one of the most promising resources to achieve systemic effects by transdermal delivery of drugs. They are designed as a minimally invasive, painless system which can bypass the stratum corneum, overcoming the potential drawbacks of subcutaneous injections and other transdermal delivery systems such as chemical enhancers, nano and microparticles, or physical treatments. As a trendy field in pharmaceutical and biomedical research, its applications are constantly evolving, even though they are based on very well-established techniques. The number of molecules administered by MNA are also increasing, with insulin and vaccines administration being the most investigated. Furthermore, MNA are being used to deliver cells and applied in other organs and tissues like the eyes and buccal mucosae. This review intends to offer a general overview of the current state of MNA research, focusing on the strategies, applications, and types of molecules delivered recently by these systems. In addition, some information about the materials and manufacturing processes is presented and safety data is discussed.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - M. Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
- Center of Molecular Recognition and Technological Development (IDM), 46100 Burjassot, Spain
- Correspondence: (M.C.M.); (T.M.G.)
| | - Teresa M. Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
- Correspondence: (M.C.M.); (T.M.G.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| |
Collapse
|
236
|
Courtenay AJ, McAlister E, McCrudden MTC, Vora L, Steiner L, Levin G, Levy-Nissenbaum E, Shterman N, Kearney MC, McCarthy HO, Donnelly RF. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J Control Release 2020; 322:177-186. [PMID: 32200001 PMCID: PMC7262583 DOI: 10.1016/j.jconrel.2020.03.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 01/19/2023]
Abstract
Treatment resistant depression is, by definition, difficult to treat using standard therapeutic interventions. Recently, esketamine has been shown as a viable rescue treatment option in patients in depressive crisis states. However, IV administration is associated with a number of drawbacks and advanced delivery platforms could provide an alternative parenteral route of esketamine dosing in patients. Hydrogel-forming microneedle arrays facilitate transdermal delivery of drugs by penetrating the outer layer of the skins surface, absorbing interstitial skin fluid and swelling. This subsequently facilitates permeation of medicines into the dermal microcirculation. This paper outlines the in vitro formulation development for hydrogel-forming microneedle arrays containing esketamine. Analytical methods for the detection and quantitation of esketamine were developed and validated according to International Conference on Harmonisation standards. Hydrogel-forming microneedle arrays were fully characterised for their mechanical strength and skin insertion properties. Furthermore, a series of esketamine containing polymeric films and lyophilised reservoirs were assessed as drug reservoir candidates. Dissolution testing and content drug recovery was carried out, followed by permeation studies using 350 μm thick neonatal porcine skin in modified Franz cell apparatus. Lead reservoir candidates were selected based on measured physicochemical properties and brought forward for testing in female Sprague-Dawley rats. Plasma samples were analysed using reverse phase high performance liquid chromatography for esketamine. Both polymeric film and lyophilised reservoirs candidate patches achieved esketamine plasma concentrations higher than the target concentration of 0.15-0.3 μg/ml over 24 h. Mean plasma concentrations in rats, 24 h post-application of microneedle patches with drug reservoir F3 and LW3, were 0.260 μg/ml and 0.498 μg/ml, respectively. This developmental study highlights the potential success of hydrogel-forming microneedle arrays as a transdermal drug delivery platform for ESK and supports moving to in vivo tests in a larger animal model.
Collapse
Affiliation(s)
- Aaron J Courtenay
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, United Kingdom
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Maelíosa T C McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Lalit Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Lilach Steiner
- TEVA Pharmaceuticals, Basel Street 5, Petah Tikvah, Netanya Area, Israel
| | - Galit Levin
- TEVA Pharmaceuticals, Basel Street 5, Petah Tikvah, Netanya Area, Israel
| | | | - Nava Shterman
- TEVA Pharmaceuticals, Basel Street 5, Petah Tikvah, Netanya Area, Israel
| | - Mary-Carmel Kearney
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
237
|
Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm Res 2020; 37:117. [PMID: 32488611 PMCID: PMC7266419 DOI: 10.1007/s11095-020-02844-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
The success of protein, peptide and antibody based therapies is evident - the biopharmaceuticals market is predicted to reach $388 billion by 2024 [1], and more than half of the current top 20 blockbuster drugs are biopharmaceuticals. However, the intrinsic properties of biopharmaceuticals has restricted the routes available for successful drug delivery. While providing 100% bioavailability, the intravenous route is often associated with pain and needle phobia from a patient perspective, which may translate as a reluctance to receive necessary treatment. Several non-invasive strategies have since emerged to overcome these limitations. One such strategy involves the use of microneedles (MNs), which are able to painlessly penetrate the stratum corneum barrier to dramatically increase transdermal drug delivery of numerous drugs. This review reports the wealth of studies that aim to enhance transdermal delivery of biopharmaceutics using MNs. The true potential of MNs as a drug delivery device for biopharmaceuticals will not only rely on acceptance from prescribers, patients and the regulatory authorities, but the ability to upscale MN manufacture in a cost-effective manner and the long term safety of MN application. Thus, the current barriers to clinical translation of MNs, and how these barriers may be overcome are also discussed.
Collapse
|
238
|
Al-Kasasbeh R, Brady AJ, Courtenay AJ, Larrañeta E, McCrudden MTC, O'Kane D, Liggett S, Donnelly RF. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv Transl Res 2020; 10:690-705. [PMID: 32103450 PMCID: PMC7228965 DOI: 10.1007/s13346-020-00727-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hydrogel-forming microneedle array patches (MAPs) have been proposed as viable clinical tools for patient monitoring purposes, providing an alternative to traditional methods of sample acquisition, such as venepuncture and intradermal sampling. They are also undergoing investigation in the management of non-melanoma skin cancers. In contrast to drug or vaccine delivery, when only a small number of MAP applications would be required, hydrogel MAPs utilised for sampling purposes or for tumour eradication would necessitate regular, repeat applications. Therefore, the current study was designed to address one of the key translational aspects of MAP development, namely patient safety. We demonstrate, for the first time in human volunteers, that repeat MAP application and wear does not lead to prolonged skin reactions or prolonged disruption of skin barrier function. Importantly, concentrations of specific systemic biomarkers of inflammation (C-reactive protein (CRP); tumour necrosis factor-α (TNF-α)); infection (interleukin-1β (IL-1β); allergy (immunoglobulin E (IgE)) and immunity (immunoglobulin G (IgG)) were all recorded over the course of this fixed study period. No biomarker concentrations above the normal, documented adult ranges were recorded over the course of the study, indicating that no systemic reactions had been initiated in volunteers. Building upon the results of this study, which serve to highlight the safety of our hydrogel MAP, we are actively working towards CE marking of our MAP technology as a medical device.
Collapse
Affiliation(s)
- Rehan Al-Kasasbeh
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron J Brady
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Belfast Health and Social Care Trust, Belfast City Hospital, 51 Lisburn Road, Belfast, BT9 7AB, UK
| | - Aaron J Courtenay
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Donal O'Kane
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast, BT12 6BA, UK
| | - Stephen Liggett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
239
|
Targeting proinsulin to local immune cells using an intradermal microneedle delivery system; a potential antigen-specific immunotherapy for type 1 diabetes. J Control Release 2020; 322:593-601. [DOI: 10.1016/j.jconrel.2020.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
|
240
|
Ramöller IK, McAlister E, Bogan A, Cordeiro AS, Donnelly RF. Novel Design Approaches in the Fabrication of Polymeric Microarray Patches via Micromoulding. MICROMACHINES 2020; 11:mi11060554. [PMID: 32486123 PMCID: PMC7345874 DOI: 10.3390/mi11060554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
The focus on novel systems for transdermal delivery of therapeutic agents has increased considerably over recent years, as this administration route comes with many advantages. Polymeric microarray patches (MAPs) are minimally invasive devices that enable systemic delivery of a wide range of drugs by overcoming the outer skin barrier. Conventionally, MAPs fabricated by micromoulding have a low needle density. In this study, the performance of hydrogel-forming MAPs cast using novel industrially manufactured micromoulds with a high needle density (600 needles/0.75 cm2) was compared to that of MAPs obtained using conventional moulds with a lower density (196 needles/0.89 cm2). Surrounding holders for micromoulds were designed for time-efficient fabrication of MAPs. The influence of needle densities on mechanical strength, insertion efficiency and in vitro permeation of ibuprofen sodium (IBU) was analysed. Insertion of both MAPs into an artificial skin model and neonatal porcine skin was comparable. No significant difference was observed in permeation studies of IBU (p > 0.05), with a delivery of 8.7 ± 1.7 mg for low-density and 9.5 ± 0.1 mg for high-density MAPs within 24 h. This highlights the potential of these novel micromoulds for manufacturing polymeric MAPs with a higher needle density for future applications.
Collapse
|
241
|
Cárcamo-Martínez Á, Anjani QK, Permana AD, Cordeiro AS, Larrañeta E, Donnelly RF. Coated polymeric needles for rapid and deep intradermal delivery. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100048. [PMID: 32420541 PMCID: PMC7218294 DOI: 10.1016/j.ijpx.2020.100048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 04/18/2020] [Indexed: 11/19/2022]
Abstract
Two groups of single polymeric needles (crosslinked Gantrez®S-97 and poly(ethylene glycol)) of different lengths (2 mm and 4.5 mm) with defined base widths were fabricated and tested in terms of their mechanical strength and insertion abilities using two skin models (Parafilm® and porcine skin). For the shorter needles, application of an axial force (32 N) resulted in a height reduction of approximately 80%. Nonetheless, around 80% of total needle length was successfully inserted in both skin models. Optical coherence tomography showed that base width highly impacted insertion capabilities of the longer needles as only the thicker one (0.922 mm width at base) inserted into porcine skin. Additionally, needles were coated with rhodamine B and inserted into porcine skin. In comparison to a control, penetration depth of the model drug increased 2-fold for short and 4.5-fold for long needles, respectively. Moreover, quantification across skin sections showed that shorter needles delivered 10 μg of the compound in a depth of 1.5–2.0 mm while long needles were capable of delivering 5 μg into even deeper skin layers (2.0–3.0 mm), confirming the potential of coated polymeric needles for rapid and deep intradermal delivery.
Collapse
Affiliation(s)
- Álvaro Cárcamo-Martínez
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.,Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
242
|
Zhu M, Liu Y, Jiang F, Cao J, Kundu SC, Lu S. Combined Silk Fibroin Microneedles for Insulin Delivery. ACS Biomater Sci Eng 2020; 6:3422-3429. [PMID: 33463180 DOI: 10.1021/acsbiomaterials.0c00273] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To reduce the pain caused by subcutaneous injections, microneedle patches as the new transdermal drug delivery method are gaining increased attention. In this study, we fabricated a composite insulin-loaded microneedle patch. Silk fibroin, a natural polymer material, was used as the raw material. The tip of the microneedle had good dissolving property and was able to dissolve rapidly to promote the release of insulin. The pedestal had the property of swelling without dissolving and was carrying insulin as a drug store. The insulin carried by the pedestal could release continuously through the micropore channels created by the microneedles. This kind of microneedle could achieve a sustained release effect. It was observed that the insulin had good storage stability in this kind of microneedle, and it maintained more than 90% of its biological activity after 30 days. The results of transdermal delivery to diabetic rats showed that the microneedle patches displayed an apparent hypoglycemic effect and indicated a sustained release effect. These drug-loaded silk microneedle patches may act as potential delivery systems for the treatment of diabetes.
Collapse
Affiliation(s)
- Mingmei Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fujian Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jiaxin Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs Research Institute on Biomaterials, Biodegradable and Biomimetics, University of Minho, AvePark Guimaraes 4805-017, Portugal
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
243
|
Amer M, Chen RK. Self‐Adhesive Microneedles with Interlocking Features for Sustained Ocular Drug Delivery. Macromol Biosci 2020; 20:e2000089. [DOI: 10.1002/mabi.202000089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Maher Amer
- School of Mechanical and Materials Engineering Washington State University PO Box 642920 Pullman WA 99164 USA
| | - Roland K. Chen
- School of Mechanical and Materials Engineering Washington State University PO Box 642920 Pullman WA 99164 USA
| |
Collapse
|
244
|
Cárcamo-Martínez Á, Anjani QK, Permana AD, Cordeiro AS, Larrañeta E, Donnelly RF. WITHDRAWN: Coated polymeric needles for rapid and deep intradermal delivery. Int J Pharm 2020:119355. [PMID: 32325241 DOI: 10.1016/j.ijpharm.2020.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 04/18/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Álvaro Cárcamo-Martínez
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
245
|
Hutton ARJ, McCrudden MTC, Larrañeta E, Donnelly RF. Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel low molecular weight biotherapeutics. J Mater Chem B 2020; 8:4202-4209. [PMID: 32292995 DOI: 10.1039/d0tb00021c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a view to improve the current monoclonal antibody-based therapies dominating the pharmaceutical market, low molecular weight (MW) protein-based macromolecules, such as recombinant antibody fragments, typically within the range of 10-70 kDa, have been developed. Previously, our group successfully delivered Avastin®, a monoclonal antibody (mAb) across the skin using hydrogel-forming microneedles (MN). However, it is thought that this delivery system can be further enhanced using novel, lower MW biomolecules. To address this perception, in the current study, FITC-dextran of different MWs (10, 70 and 150 kDa) was used to model the transdermal delivery of low MW biotherapeutics and mAbs with MWs of approximately 150 kDa. Conversely, fluorescein sodium was the compound selected to model hydrophilic, low MW drugs. As expected, fluorescein sodium produced the greatest cumulative permeation (637.4 ± 42.69 μg). The amounts of FITC-dextran 10 kDa and 150 kDa which permeated across neonatal porcine skin in vitro were 462.17 ± 65.85 μg and 213.54 ± 15.19 μg after 24 h, respectively. The results collated here suggest that the delivery of emerging novel biotherapeutics, via'super swelling' hydrogel-forming MNs, have the potential to result in greater permeation across human skin, compared to the delivery of mAbs delivered via the same route.
Collapse
Affiliation(s)
- Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | |
Collapse
|
246
|
Swathi HP, Anusha Matadh V, Paul Guin J, Narasimha Murthy S, Kanni P, Varshney L, Suresh S, Shivakumar HN. Effect of gamma sterilization on the properties of microneedle array transdermal patch system. Drug Dev Ind Pharm 2020; 46:606-620. [DOI: 10.1080/03639045.2020.1742144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | | | - Sathyanarayana Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
- The University of Mississippi, School of Pharmacy, University, MS, USA
| | - Paranjothy Kanni
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | | | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | - Hagalavadi Nanjappa Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
- Department of Pharmaceutics, K.L.E. College of Pharmacy, Bengaluru, India
| |
Collapse
|
247
|
Pagneux Q, Ye R, Chengnan L, Barras A, Hennuyer N, Staels B, Caina D, Osses JIA, Abderrahmani A, Plaisance V, Pawlowski V, Boukherroub R, Melinte S, Szunerits S. Electrothermal patches driving the transdermal delivery of insulin. NANOSCALE HORIZONS 2020; 5:663-670. [PMID: 32226966 DOI: 10.1039/c9nh00576e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transdermal patches have become a widely used approach for painless delivery of drugs. One major current limitation of these systems remains the restricted skin permeation of proteins and peptides as exemplified by insulin, necessitating different considerations for their successful transdermal delivery. We present a novel patch design based on the integration of nano-engineered heating elements on polyimide substrates for electrothermal transdermal therapy. The results reveal that tuning of the electrical resistivity of an array of gold nanoholes, patterned on polyimide, facilitates a fast-responding electrothermal skin patch, while post-coating with reduced graphene oxide offers capabilities for drug encapsulation, like insulin. Application of insulin-loaded patches to the skin of mice resulted in blood glucose regulation within minutes. While demonstrated for insulin, the skin patches might be well adapted to other low and high molecular weight therapeutic drugs, enabling on-demand electrothermal transdermal delivery.
Collapse
Affiliation(s)
- Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
249
|
Ye R, Yang J, Li Y, Zheng Y, Yang J, Li Y, Liu B, Jiang L. Fabrication of Tip-Hollow and Tip-Dissolvable Microneedle Arrays for Transdermal Drug Delivery. ACS Biomater Sci Eng 2020; 6:2487-2494. [PMID: 33455301 DOI: 10.1021/acsbiomaterials.0c00120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We developed a modified micromolding method for the mass production of a novel tip-hollow microneedle array (MA). The tip-hollow MA was fabricated by tuning of the vacuum degree at -80 kPa for 60 s during the micromolding process. Subsequently, a tip-dissolvable MA encapsulated with drugs in the microcraters was fabricated from tip-hollow MA using repeated dipping and the freeze-drying process. Both the tip-hollow and tip-dissolvable MAs could easily penetrate in the rabbit skin without breakage, while the tip-hollow MA can just create a shallow loop hole in the skin. The drug-loaded tip-dissolvable MA can rapidly dissolve, releasing and diffusing the drug in the skin. The tip-dissolvable MA exhibited the best drug permeation ability in that the corresponding flux through the punctured skin using tip-dissolvable MA loaded with Rhodamine B is about 1.7- and 5.8-fold of that through the punctured skin using solid MA and the intact skin, respectively. The tip-dissolvable MA loaded with 5 IU insulin was fabricated to in vivo treat the type 1 diabetic SD rats. The tip-dissolvable MA had a good hypoglycemic effect and exhibited longer normoglycemic period in comparison with subcutaneous injection (5 IU). Therefore, our tip-dissolve MA is a promising medical device for transdermal drug delivery.
Collapse
Affiliation(s)
- Rui Ye
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, P. R. China
| |
Collapse
|
250
|
Md S, Karim S, Saker SR, Gie OA, Hooi LC, Yee PH, Kang AWC, Zhe CK, Ian N, Aldawsari HM, Hosny KM, Alhakamy NA. Current Status and Challenges in Rotigotine Delivery. Curr Pharm Des 2020; 26:2222-2232. [PMID: 32175832 DOI: 10.2174/1381612826666200316154300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Rotigotine is a non-ergoline, high lipophilic dopamine agonist. It is indicated as the first-line therapy for Parkinson's disease (PD) and Restless Leg Syndrome (RLS). However, the precise mechanism of rotigotine is yet to be known. Rotigotine has similar safety and tolerability to the other oral non-ergolinic dopamine antagonists in clinical trials, which include nausea, dizziness and somnolence. Neupro® was the first marketed transdermal patch formulation having rotigotine. The transdermal delivery system is advantageous as it enables continuous administration of the drug, thus providing steady-state plasma drug concentration for 24-hours. Intranasal administration of rotigotine allows the drug to bypass the blood-brain barrier enabling it to reach the central nervous system within minutes. Rotigotine can also be formulated as an extended-release microsphere for injection. Some challenges remain in other routes of rotigotine administration such as oral, parenteral and pulmonary, whereby resolving these challenges will be beneficial to patients as they are less invasive and comfortable in terms of administration. This review compiles recent work on rotigotine delivery, challenges and its future perspective.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sanggetha R Saker
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ooi A Gie
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Lim C Hooi
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Phua H Yee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Alvin W C Kang
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chen K Zhe
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ng Ian
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni- Suef University, Beni-Suef, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|