201
|
Sialic Acid-Targeted Biointerface Materials and Bio-Applications. Polymers (Basel) 2017; 9:polym9070249. [PMID: 30970926 PMCID: PMC6432383 DOI: 10.3390/polym9070249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 02/07/2023] Open
Abstract
Sialic acids (SAs) are typically found as terminal monosaccharides attached to cell surface glycoconjugates, which play crucial roles in various biological processes, and aberrant sialylation is closely associated with many diseases, particularly cancers. As SAs are overexpressed in tumor-associated glycoproteins, the recognition and specific binding of SA are crucial for monitoring, analyzing and controlling cancer cells, which would have a considerable impact on diagnostic and therapeutic application. However, both effective and selective recognition of SA on the cancer cell surface remains challenging. In recent years, SA-targeted biointerface materials have attracted great attention in various bio-applications, including cancer detection and imaging, drug delivery for cancer therapy and sialylated glycopeptide separation or enrichment. This review provides an overview of recent advances in SA-targeted biointerface materials and related bio-applications.
Collapse
|
202
|
Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx062] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
The acidic tumor microenvironment (TME), which mainly results from the high glycolytic rate of tumor cells, has been characterized as a hallmark of solid tumors and found to be a pivotal factor participating in tumor progression. Recently, due to the increasing understanding of the acidic TME, it has been shown that the acidic TME could be utilized as a multifaceted target during the design of various pH-responsive nanoscale theranostic platforms for the precise diagnosis and effective treatment of cancers. In this article, we will give a focused overview on the latest progress in utilizing this characteristic acidic TME as the target of nano-theranostics to enable cancer-specific imaging and therapy. The future perspectives in the development of acidic TME-targeting nanomedicine strategies will be discussed afterwards.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Danlei Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yicheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
203
|
Cai Z, Zhang H, Wei Y, Wei Y, Xie Y, Cong F. Reduction- and pH-Sensitive Hyaluronan Nanoparticles for Delivery of Iridium(III) Anticancer Drugs. Biomacromolecules 2017; 18:2102-2117. [DOI: 10.1021/acs.biomac.7b00445] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhixiang Cai
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbin Zhang
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Wei
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanping Xie
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengsong Cong
- Department
of Biochemistry and Molecular Biology, School of life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
204
|
Chen WL, Li F, Tang Y, Yang SD, Li JZ, Yuan ZQ, Liu Y, Zhou XF, Liu C, Zhang XN. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int J Nanomedicine 2017; 12:4241-4256. [PMID: 28652730 PMCID: PMC5473598 DOI: 10.2147/ijn.s129748] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Fang Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Shu-di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Ji-Zhao Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Xiao-Feng Zhou
- Department of Ultrasound, Changshu Hospital of Traditional Chinese Medicine, Changshu
| | - Chun Liu
- Department of Pharmacy, The Hospital of Suzhou People's Hospital Affiliated to Nanjing Medical University, Suzhou, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| |
Collapse
|
205
|
Dai W, Wang X, Song G, Liu T, He B, Zhang H, Wang X, Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017; 115:23-45. [PMID: 28285944 DOI: 10.1016/j.addr.2017.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co-administration of conventional dosage forms is suboptimal, due to the short half-lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology-based targeted delivery systems show great promise in addressing the associated problems and providing superior therapeutic benefits. In this review, we focus on the combination of therapeutic strategies between different nanomedicines or drug-loaded nanocarriers, rather than the co-delivery of different drugs via a single nanocarrier. We introduce the general concept of various targeting strategies of nanomedicines, present the principles of combination antitumor therapy with dual-nanomedicines, analyze their advantages and limitations compared with co-delivery strategies, and overview the recent advances of combination therapy based on targeted nanomedicines. Finally, we reviewed the challenges and future perspectives regarding the selection of therapeutic agents, targeting efficiency and the gap between the preclinical and clinical outcome.
Collapse
Affiliation(s)
- Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Ge Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Tongzhou Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
206
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
207
|
Vicario-de-la-Torre M, Forcada J. The Potential of Stimuli-Responsive Nanogels in Drug and Active Molecule Delivery for Targeted Therapy. Gels 2017; 3:E16. [PMID: 30920515 PMCID: PMC6318695 DOI: 10.3390/gels3020016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
Nanogels (NGs) are currently under extensive investigation due to their unique properties, such as small particle size, high encapsulation efficiency and protection of active agents from degradation, which make them ideal candidates as drug delivery systems (DDS). Stimuli-responsive NGs are cross-linked nanoparticles (NPs), composed of polymers, natural, synthetic, or a combination thereof that can swell by absorption (uptake) of large amounts of solvent, but not dissolve due to the constituent structure of the polymeric network. NGs can undergo change from a polymeric solution (swell form) to a hard particle (collapsed form) in response to (i) physical stimuli such as temperature, ionic strength, magnetic or electric fields; (ii) chemical stimuli such as pH, ions, specific molecules or (iii) biochemical stimuli such as enzymatic substrates or affinity ligands. The interest in NGs comes from their multi-stimuli nature involving reversible phase transitions in response to changes in the external media in a faster way than macroscopic gels or hydrogels due to their nanometric size. NGs have a porous structure able to encapsulate small molecules such as drugs and genes, then releasing them by changing their volume when external stimuli are applied.
Collapse
Affiliation(s)
| | - Jacqueline Forcada
- Bionanoparticles Group, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain.
| |
Collapse
|
208
|
Wu S, Zheng L, Li C, Xiao Y, Huo S, Zhang B. Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shaohua Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
- University of the Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Shuaidong Huo
- University of the Chinese Academy of Sciences; Beijing 100049 People's Republic of China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beijing 100049 People's Republic of China
| | - Bo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| |
Collapse
|
209
|
Enhance chemotherapy efficacy and minimize anticancer drug side effects by using reversibly pH- and redox-responsive cross-linked unimolecular micelles. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
210
|
Qu JB, Chapman R, Chen F, Lu H, Stenzel MH. Swollen Micelles for the Preparation of Gated, Squeezable, pH-Responsive Drug Carriers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13865-13874. [PMID: 28374987 DOI: 10.1021/acsami.7b01120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural variations in pH levels of tissues in the body make it an attractive stimuli to trigger drug release from a delivery vehicle. A number of such carriers have been developed but achieving high drug loading combined with low leakage at physiological pH and tunable controlled release at the site of action is an ongoing challenge. Here we report a novel strategy for the synthesis of entirely hydrophilic stimuli-responsive nanocarriers with high passive loading efficiency of doxorubicin (DOX), which show good stability at pH 7 and rapid tunable drug release at intracellular pH. The particles (Dh = 120-150 nm), are prepared by cross-linking the core of swollen micelles of the triblock copolymer poly[poly(ethylene glycol) methyl ether methacrylate-b-N,N'-di(methylamino)ethyl methacrylate-b-tert-butyl methacrylate] (poly(PEGMEM A)-b- PDMAEMA-b-PtBMA)). After subsequent deprotection of the tert-butyl groups a hydrophilic poly(methacrylic acid) (PMAA) core is revealed. Due to the negative charge in the acidic core the particles absorb 100% of the DOX from solution at pH 7 at up to 50 wt % DOX/polymer, making them extremely simple to load. Unlike other systems, the DMAEMA "gating" shell ensures low drug leakage at pH 7, whereas physical shrinkage of the MAA core allows rapid release below pH 6. The particles deliver DOX with high efficiency to human pancreatic cancer AsPC-1 cell lines, even lowering the IC50 of DOX. As the particles are stable as a dry powder and can be loaded with any mixture of positively charged drugs without complex synthetic or purification steps, we propose they will find use in a range of delivery applications.
Collapse
Affiliation(s)
- Jian-Bo Qu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P.R. China
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
211
|
Zhou Q, Hou Y, Zhang L, Wang J, Qiao Y, Guo S, Fan L, Yang T, Zhu L, Wu H. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity. Am J Cancer Res 2017. [PMID: 28638469 PMCID: PMC5479270 DOI: 10.7150/thno.18607] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.
Collapse
|
212
|
Ding Y, Zhang L, Shi G, Sang X, Ni C. Preparations and doxorubicin controlled release of amino-acid based redox/pH dual-responsive nanomicelles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:920-926. [PMID: 28532112 DOI: 10.1016/j.msec.2017.03.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 11/17/2022]
Abstract
Terpolymers of poly (Lysine-co-N, N-Bis (acryloyl) cystamine-co-β-Phenethylamine) (PLBP) were synthesized in one-pot by Michael addition terpolymerization. The terpolymers self-assembled into nano-sized spherical micelles (84-123nm) with narrow distributions. The surface charge of the nanomicelles (NMs) was depended on solution's pH and showed negative values under physiological conditions (pH7.4), which was beneficial for long circulation without non-specific protein adsorption. Doxorubicin (DOX) was effectively loaded into the NMs for controlled release. The in vitro release profiles exhibited obvious pH and reduction sensitivities in response to the environment mimicking tumor cells. The MTT assays demonstrated that blank NMs were biocompatible, and drug-laden NMs showed a significant cytotoxicity on Hela cells. The NMs could be potentially applied as smart drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liping Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 China
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 China
| | - Caihua Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 China.
| |
Collapse
|
213
|
Yu M, Zhou C, Liu L, Zhang S, Sun S, Hankins JD, Sun X, Zheng J. Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angew Chem Int Ed Engl 2017; 56:4314-4319. [PMID: 28295960 PMCID: PMC5560109 DOI: 10.1002/anie.201612647] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/13/2017] [Indexed: 11/07/2022]
Abstract
The success of nanomedicines in the clinic depends on our comprehensive understanding of nano-bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pHe ) values. Herein, we investigated the accumulation of ultrasmall renal-clearable gold NPs (AuNPs) with and without acidity targeting in xenograft mouse models of two prostate cancer types, PC-3 and LNCaP, with distinct microenvironments. Our results show that both sets of AuNPs could easily penetrate into the tumors but their uptake and retention were mainly dictated by the tumor microvasculature and the enhanced permeability and retention effect over the entire targeting process. On the other hand, increased tumor acidity indeed enhanced the uptake of AuNPs with acidity targeting, but only for a limited period of time. By making use of simple surface chemistry, these two effects can be synchronized in time for high tumor targeting, opening new possibilities to further improve the targeting efficiencies of nanomedicines.
Collapse
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Chen Zhou
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shasha Sun
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Julia D Hankins
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Xiankai Sun
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| |
Collapse
|
214
|
Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606628. [PMID: 28234430 DOI: 10.1002/adma.201606628] [Citation(s) in RCA: 735] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Indexed: 05/21/2023]
Abstract
Current cancer nanomedicines can only mitigate adverse effects but fail to enhance therapeutic efficacies of anticancer drugs. Rational design of next-generation cancer nanomedicines should aim to enhance their therapeutic efficacies. Taking this into account, this review first analyzes the typical cancer-drug-delivery process of an intravenously administered nanomedicine and concludes that the delivery involves a five-step CAPIR cascade and that high efficiency at every step is critical to guarantee high overall therapeutic efficiency. Further analysis shows that the nanoproperties needed in each step for a nanomedicine to maximize its efficiency are different and even opposing in different steps, particularly what the authors call the PEG, surface-charge, size and stability dilemmas. To resolve those dilemmas in order to integrate all needed nanoproperties into one nanomedicine, stability, surface and size nanoproperty transitions (3S transitions for short) are proposed and the reported strategies to realize these transitions are comprehensively summarized. Examples of nanomedicines capable of the 3S transitions are discussed, as are future research directions to design high-performance cancer nanomedicines and their clinical translations.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| |
Collapse
|
215
|
Li R, Xie Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J Control Release 2017; 251:49-67. [DOI: 10.1016/j.jconrel.2017.02.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/18/2022]
|
216
|
Wang C, Zhao T, Li Y, Huang G, White MA, Gao J. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv Drug Deliv Rev 2017; 113:87-96. [PMID: 27612550 PMCID: PMC5339051 DOI: 10.1016/j.addr.2016.08.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH4Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes.
Collapse
Affiliation(s)
- Chensu Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
217
|
Harris M, Ahmed H, Barr B, LeVine D, Pace L, Mohapatra A, Morshed B, Bumgardner JD, Jennings JA. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release. Int J Biol Macromol 2017; 104:1407-1414. [PMID: 28365285 DOI: 10.1016/j.ijbiomac.2017.03.141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
Stimuli-responsive biomaterials offer a unique advantage over traditional local drug delivery systems in that the drug elution rate can be controllably increased to combat developing symptomology or maintain high local elution levels for disease treatment. In this study, superparamagnetic Fe3O4 nanoparticles and the antibiotic vancomycin were loaded into chitosan microbeads cross-linked with varying lengths of polyethylene glycol dimethacrylate. Beads were characterized using degradation, biocompatibility, and elution studies with successive magnetic stimulations at multiple field strengths and frequencies. Thirty-minute magnetic stimulation induced a temporary increase in daily elution rate of up to 45% that was dependent on field strength, field frequency and cross-linker length. Beads degraded by up to 70% after 3 days in accelerated lysozyme degradation tests, but continued to elute antibiotic for up to 8 days. No cytotoxic effects were observed in vitro compared to controls. These promising preliminary results indicate clinical potential for use in stimuli-controlled drug delivery.
Collapse
Affiliation(s)
- Michael Harris
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA.
| | - Hamza Ahmed
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Brandico Barr
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - David LeVine
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Leslie Pace
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Ankita Mohapatra
- Department of Electrical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Bashir Morshed
- Department of Electrical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Joel D Bumgardner
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Jessica Amber Jennings
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| |
Collapse
|
218
|
Xiang B, Jia XL, Qi JL, Yang LP, Sun WH, Yan X, Yang SK, Cao DY, Du Q, Qi XR. Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. Int J Nanomedicine 2017; 12:2385-2405. [PMID: 28405163 PMCID: PMC5378471 DOI: 10.2147/ijn.s129574] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As a potent therapeutic agent, small interfering RNA (siRNA) has been exploited to silence critical genes involved in tumor initiation and progression. However, development of a desirable delivery system is required to overcome the unfavorable properties of siRNA such as its high degradability, molecular size, and negative charge to help increase its accumulation in tumor tissues and promote efficient cellular uptake and endosomal/lysosomal escape of the nucleic acids. In this study, we developed a new activatable cell-penetrating peptide (ACPP) that is responsive to an acidic tumor microenvironment, which was then used to modify the surfaces of siRNA-loaded liposomes. The ACPP is composed of a cell-penetrating peptide (CPP), an acid-labile linker (hydrazone), and a polyanionic domain, including glutamic acid and histidine. In the systemic circulation (pH 7.4), the surface polycationic moieties of the CPP (polyarginine) are "shielded" by the intramolecular electrostatic interaction of the inhibitory domain. When exposed to a lower pH, a common property of solid tumors, the ACPP undergoes acid-catalyzed breakage at the hydrazone site, and the consequent protonation of histidine residues promotes detachment of the inhibitory peptide. Subsequently, the unshielded CPP would facilitate the cellular membrane penetration and efficient endosomal/lysosomal evasion of liposomal siRNA. A series of investigations demonstrated that once exposed to an acidic pH, the ACPP-modified liposomes showed elevated cellular uptake, downregulated expression of polo-like kinase 1, and augmented cell apoptosis. In addition, favorable siRNA avoidance of the endosome/lysosome was observed in both MCF-7 and A549 cells, followed by effective cytoplasmic release. In view of its acid sensitivity and therapeutic potency, this newly developed pH-responsive and ACPP-mediated liposome system represents a potential platform for siRNA-based cancer treatment.
Collapse
Affiliation(s)
- Bai Xiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Xue-Li Jia
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Jin-Long Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei
| | - Li-Ping Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Wei-Hong Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Xiao Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Shao-Kun Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - De-Ying Cao
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Qing Du
- Department of Pharmaceutics, School of Pharmaceutical Sciences
| | - Xian-Rong Qi
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
219
|
Yu M, Zhou C, Liu L, Zhang S, Sun S, Hankins JD, Sun X, Zheng J. Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Chen Zhou
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Li Liu
- Department of Radiology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Shanrong Zhang
- Advanced Imaging Research Center; The University of Texas Southwestern Medical Center; Dallas TX USA
| | - Shasha Sun
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Julia D. Hankins
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Xiankai Sun
- Department of Radiology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| |
Collapse
|
220
|
Luo Y, Huang L, Yang Y, Zhuang X, Hu S, Ju H, Yu BY, Tian J. A Programmed Nanoparticle with Self-Adapting for Accurate Cancer Cell Eradication and Therapeutic Self-Reporting. Am J Cancer Res 2017; 7:1245-1256. [PMID: 28435462 PMCID: PMC5399590 DOI: 10.7150/thno.18187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023] Open
Abstract
To achieve the best therapeutic efficacy and good prognosis, the drugs necessitate tailored profiles of excellent spatiotemporal control and therapeutic monitoring. Here we introduce a programmed theranostic nanoparticle with self-adapting properties for tumor-specific systemic treatment, including stealthy surface to prolong circulation time in blood, surface charge-reversion for tumor targeting, receptor-mediated internalization to increase intracellular accumulation, “proton sponge effect” for controllable drug release and escape from endo/lysosome. Encouragingly, in the process of drug-induced apoptosis, the therapeutic efficacy can be reported by fluorescence imaging in vivo, in situ and in real time. Therefore, this work provides a new paradigm for design of programmed theranositc nanomedicine and offers promising prospects for precise tumor treatment.
Collapse
|
221
|
Wang A, Zhou R, Zhou L, Sun K, Jiang J, Wei S. Positively charged phthalocyanine-arginine conjugates as efficient photosensitizer for photodynamic therapy. Bioorg Med Chem 2017; 25:1643-1651. [DOI: 10.1016/j.bmc.2017.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
|
222
|
Shih Y, Venault A, Tayo LL, Chen SH, Higuchi A, Deratani A, Chinnathambi A, Alharbi SA, Quemener D, Chang Y. A Zwitterionic-Shielded Carrier with pH-Modulated Reversible Self-Assembly for Gene Transfection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1914-1926. [PMID: 28147481 DOI: 10.1021/acs.langmuir.6b03685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cationic vectors are ideal candidates for gene delivery thanks to their capability to carry large gene inserts and their scalable production. However, their cationic density gives rise to high cytotoxicity. We present the proper designed core-shell polyplexes made of either poly(ethylene imine) (PEI) or poly(2-dimethylamino ethyl methacrylate) (PDMAEMA) as the core and zwitterionic poly(acrylic acid)-block-poly(sulfobetaine methacrylate) (PAA-b-PSBMA) diblock copolymer as the shell. Gel retardation and ethidium bromide displacement assays were used to determine the PEI/DNA or PDMAEMA/DNA complexation. At neutral pH, the copolymer serves as a protective shell of the complex. As PSBMA is a nonfouling block, the shell reduced the cytotoxicity and enhanced the hemocompatibility (lower hemolysis activity, longer plasma clotting time) of the gene carriers. PAA segments in the copolymer impart pH sensitivity by allowing deshielding of the core in acidic solution. Therefore, the transfection efficiency of polyplexes at pH 6.5 was better than at pH 7.0, from β-galactosidase assay, and for all PAA-b-PSBMA tested. These results were supported by more favorable physicochemical properties in acidic solution (zeta potential, particle size, and interactions between the polymer and DNA). Thus, the results of this study offer a potential route to the development of efficient and nontoxic pH-sensitive gene carriers.
Collapse
Affiliation(s)
- Yuju Shih
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
| | - Lemmuel L Tayo
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
- School of Chemical Engineering and Chemistry, Mapúa Institute of Technology , Intramuros, Manila 1002, Philippines
| | - Sheng-Han Chen
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University , Jhong-Li, Taoyuan 320, Taiwan
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Andre Deratani
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damien Quemener
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
223
|
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2017; 4:375-90. [PMID: 26806314 DOI: 10.1039/c5bm00532a] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China. and Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
224
|
Lyu L, Liu F, Wang X, Hu M, Mu J, Cheong H, Liu G, Xing B. Stimulus-Responsive Short Peptide Nanogels for Controlled Intracellular Drug Release and for Overcoming Tumor Resistance. Chem Asian J 2017; 12:744-752. [PMID: 28070974 DOI: 10.1002/asia.201601704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 02/02/2023]
Abstract
Multidrug resistance (MDR) poses a major burden to cancer treatment. As one important factor contributing to MDR, overexpression of P-glycoprotein (P-gp) results in a reduced intracellular drug accumulation. Hence, the ability to effectively block the efflux protein and to accumulate the therapeutics in cancer cells is of great significance in clinical practice. In this work, we successfully developed a smart stimulus-responsive short peptide-assembled system, termed as PD/VER nanogels, which synergistically combined the acid-activatable antitumor prodrug doxorubicin (Dox) with the P-gp inhibitor verapamil (VER) for reversing MDR. Systematic studies demonstrated that such an inhibitor-encapsulated nanogel could effectively enhance the accumulation of Dox in resistant cancer cells, thereby revealing significantly higher antitumor activity compared to free Dox molecules. This work showed that the assembly of bioactive agents with a synergistic effect into nano-drugs could provide a useful strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Linna Lyu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Fang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jing Mu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Haolun Cheong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 117602, Singapore
| |
Collapse
|
225
|
Wu L, Wu M, Lin X, Zhang X, Liu X, Liu J. Magnetite nanocluster and paclitaxel-loaded charge-switchable nanohybrids for MR imaging and chemotherapy. J Mater Chem B 2017; 5:849-857. [PMID: 32263853 DOI: 10.1039/c6tb02804g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Highly efficient accumulation of nanoscaled theranostic agents in a tumor site is crucial for cancer diagnosis and therapy. In this study, we designed a drug-loaded charge-switchable nanohybrid system (HNPs-DA) triggered by the low pH value of tumor microenvironment (pH 6.5) to enhance the uptake efficiency of NPs in cancer cells; the nanohybrid could exhibit T2-MR imaging enhancement and chemotherapy ability, ascribed to the loaded magnetite nanocluster (MNC) and paclitaxel (PTX), respectively. The HNPs-DA comprises two distinct functional components: (1) a biocompatible amphiphilic polymer (Pluronic F127) to act as a nanovehicle for MNC and PTX after self-assembly in an aqueous solution; and (2) a hydrophilic polymeric shell derived from stearoyl-polyethylenimine-2,3-dimethylmalefic anhydride (SC-g-PEI-DMMA). SC-g-PEI-DMMA switches the surface charge of the HNPs-DA from negative to positive by diminishing the anionic part of DMMA and sequentially recovering the cationic instinct of the PEI part at pH 6.5, which could facilitate the cellular uptake and therefore enhance the theranostic effects. In vitro studies demonstrated a darker T2-MRI image in the HNPs-DA-treated HepG2 cells at pH 6.5 as compared to that at pH 7.4. Moreover, CCK8 assay indicated that HNPs-DA exhibited a much higher cytotoxicity against HepG2 cells at pH 6.5, and flow cytometric analysis suggested that the cell death induced by HNPs-DA occurred via apoptosis, which was detected by Annexin V antibody and propidium iodide staining.
Collapse
Affiliation(s)
- Lingjie Wu
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China.
| | | | | | | | | | | |
Collapse
|
226
|
Yildirim T, Yildirim I, Yañez-Macias R, Stumpf S, Fritzsche C, Hoeppener S, Guerrero-Sanchez C, Schubert S, Schubert US. Dual pH and ultrasound responsive nanoparticles with pH triggered surface charge-conversional properties. Polym Chem 2017. [DOI: 10.1039/c6py01927g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel ultrasound responsive nanoparticle system with tunable surface charge-conversional properties is presented.
Collapse
Affiliation(s)
- Turgay Yildirim
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ilknur Yildirim
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Roberto Yañez-Macias
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Centro de Investigación en Química Aplicada
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Carolin Fritzsche
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Carlos Guerrero-Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Pharmacy
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
227
|
Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials 2017; 113:266-278. [DOI: 10.1016/j.biomaterials.2016.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022]
|
228
|
Yan G, Wang J, Zhang P, Hu L, Wang X, Yang G, Fu S, Cheng X, Tang R. Tunable dynamic fluorinated poly(orthoester)-based drug carriers for greatly enhanced chemotherapeutic efficacy. Polym Chem 2017. [DOI: 10.1039/c6py02204a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tunable dynamic fluorinated poly(orthoester)-based drug carriers were evaluatedin vitroandin vivoand showed greatly enhanced chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Guoqing Yan
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Jun Wang
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Panpan Zhang
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Liefeng Hu
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Guanqing Yang
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Shengxiang Fu
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Xu Cheng
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials
- Anhui University
- Hefei
- P. R. China
| |
Collapse
|
229
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
230
|
Wang Y, Tian Y, Zhu P, Ma Y, He J, Lei J. Self-assembled nanoparticles based on poly(ethylene glycol)–oleanolic acid conjugates for co-delivery of anticancer drugs. RSC Adv 2017. [DOI: 10.1039/c7ra04366j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oleanolic acid (OA) has shown promising antitumor activity.
Collapse
Affiliation(s)
- Yingsa Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
| | - Yajie Tian
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
| | - Pengbo Zhu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
| | - Yunyun Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
| | - Jing He
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Lignocellulosic Chemistry
| | - Jiandu Lei
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Lignocellulosic Chemistry
| |
Collapse
|
231
|
Li F, Chen WL, You BG, Liu Y, Yang SD, Yuan ZQ, Zhu WJ, Li JZ, Qu CX, Zhou YJ, Zhou XF, Liu C, Zhang XN. Enhanced Cellular Internalization and On-Demand Intracellular Release of Doxorubicin by Stepwise pH-/Reduction-Responsive Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32146-32158. [PMID: 27933846 DOI: 10.1021/acsami.6b09604] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficient delivery of antitumor agents to tumor sites faces numerous obstacles, such as poor cellular uptake and slow intracellular drug release. In this regard, smart nanoparticles (NPs) that respond to the unique microenvironment of tumor tissues have been widely used for drug delivery. In this study, novel charge-reversal and reduction-responsive histidine-grafted chitosan-lipoic acid NPs (HCSL-NPs) were selected for efficient therapy of breast cancer by enhancing cell internalization and intracellular pH- and reduction-triggered doxorubicin (DOX) release. The surface charge of HCSL-NPs presented as negative at physiological pH and reversed to positive at the extracellular and intracellular pH of the tumor. In vitro release investigation revealed that DOX/HCSL-NPs demonstrated a sustained drug release under the physiological condition, whereas rapid DOX release was triggered by both endolysosome pH and high-concentration reducing glutathione (GSH). These NPs exhibited enhanced internalization at extracellular pH, rapid intracellular drug release, and improved cytotoxicity against 4T1 cells in vitro. Excellent tumor penetrating efficacy was also found in 4T1 tumor spheroids and solid tumor slices. In vivo experiments demonstrated that HCSL-NPs exhibited excellent tumor-targeting ability in tumor tissues as well as excellent antitumor efficacy and low systemic toxicity in breast tumor-bearing BALB/c mice. These results indicated that the novel charge-reversal and reduction-responsive HCSL-NPs have great potential for targeted and efficient delivery of chemotherapeutic drugs in cancer treatments.
Collapse
Affiliation(s)
- Fang Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Wei-Liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Ben-Gang You
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Shu-di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Wen-Jing Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Ji-Zhao Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Chen-Xi Qu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Ye-Juan Zhou
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| | - Xiao-Feng Zhou
- Changshu Hospital of Traditional Chinese Medicine , Changshu 215500, PR China
| | - Chun Liu
- Suzhou People's Hospital, Nanjing Medical University , Suzhou, 215000, PR China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, PR China
| |
Collapse
|
232
|
Molina M, Wedepohl S, Miceli E, Calderón M. Overcoming drug resistance with on-demand charged thermoresponsive dendritic nanogels. Nanomedicine (Lond) 2016; 12:117-129. [PMID: 27879151 DOI: 10.2217/nnm-2016-0308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop nanogels (NG) able to modulate the encapsulation and release of drugs, in order to circumvent drug resistance mechanisms in cancer cells. MATERIALS & METHODS Poly-N-isopropylacrylamide-dendritic polyglycerol NG were semi-interpenetrated with 2-acrylamido-2-methylpropane sulfonic acid or (2-dimethylamino) ethyl methacrylate. Physico-chemical properties of the NGs as well as doxorubicin (DOXO) loading and release were characterized. Drug delivery performance was investigated in vitro and in vivo in a multidrug-resistant tumor model. RESULTS Both the DOXO loaded semi-interpenetrating polymer network NGs were more efficient in multidrug resistant cancer cell proliferation inhibition studies. In vivo, the DOXO loaded NG semi-interpenetrated with 2-acrylamido-2-methylpropane sulfonic acid was able to overcome drug resistance and reduce the tumor volume to about 25%. CONCLUSION The innovative semi-interpenetrating polymer network NGs appear to be promising drug carriers for drug resistant cancer therapy.
Collapse
Affiliation(s)
- Maria Molina
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stefanie Wedepohl
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Enrico Miceli
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Kantstr. 55, 14513 Teltow, Germany
| | - Marcelo Calderón
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Kantstr. 55, 14513 Teltow, Germany
| |
Collapse
|
233
|
Facile fabrication of poly(acrylic acid) coated chitosan nanoparticles with improved stability in biological environments. Eur J Pharm Biopharm 2016; 112:148-154. [PMID: 27890571 DOI: 10.1016/j.ejpb.2016.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 11/23/2022]
Abstract
Chitosan is one of the most important and commonly used natural polysaccharides in drug delivery for its biocompatible and biodegradable properties. However, poor blood circulation of the chitosan nanoparticles due to their cationic nature is one of the major bottlenecks of chitosan-based drug delivery systems. To address this problem, a versatile platform based on poly(acrylic acid) (PAA) coated ionically cross-linked chitosan/tripolyphosphate nanoparticles (CTS/TPP-PAA NPs), is reported. The zeta potentials of CTS/TPP and CTS/TPP-PAA NPs are approximately 33mV and -25mV, respectively. CTS/TPP NPs quickly aggregate in PBS (phosphate buffered saline) and DMEM (Dulbecco's modified Eagle's medium). Conversely, CTS/TPP-PAA NPs exhibit excellent colloidal stability in plasma solution for more than 24h. The PAA coating also endows CTS/TPP-PAA NPs with decreased protein adsorption capacity and improved buffering capacity. More importantly, the residual carboxyl and amino groups on CTS/TPP-PAA NPs provide abundant reactive sites for further functional modifications. Therefore, the CTS/TPP-PAA NPs reported here may be useful as an alternative drug delivery system.
Collapse
|
234
|
Incorporation of Fe@Au nanoparticles into multiresponsive pNIPAM-AAc colloidal gels modulates drug uptake and release. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3944-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
235
|
Ivey JW, Bonakdar M, Kanitkar A, Davalos RV, Verbridge SS. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett 2016; 380:330-9. [PMID: 26724680 PMCID: PMC4919249 DOI: 10.1016/j.canlet.2015.12.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
Tumors are highly heterogeneous at the patient, tissue, cellular, and molecular levels. This multi-scale heterogeneity poses significant challenges for effective therapies, which ideally must not only distinguish between tumorous and healthy tissue, but also fully address the wide variety of tumorous sub-clones. Commonly used therapies either leverage a biological phenotype of cancer cells (e.g. high rate of proliferation) or indiscriminately kill all the cells present in a targeted volume. Tumor microenvironment (TME) targeting represents a promising therapeutic direction, because a number of TME hallmarks are conserved across different tumor types, despite the underlying genetic heterogeneity. Historically, TME targeting has largely focused on the cells that support tumor growth (e.g. vascular endothelial cells). However, by viewing the intrinsic physical and chemical alterations in the TME as additional therapeutic opportunities rather than barriers, a new class of TME-inspired treatments has great promise to complement or replace existing therapeutic strategies. In this review we summarize the physical and chemical hallmarks of the TME, and discuss how these tumor characteristics either currently are, or may ultimately be targeted to improve cancer therapies.
Collapse
Affiliation(s)
- Jill W Ivey
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| | - Mohammad Bonakdar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Akanksha Kanitkar
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Scott S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA.
| |
Collapse
|
236
|
Dispenza C, Spadaro G, Jonsson M. Radiation Engineering of Multifunctional Nanogels. Top Curr Chem (Cham) 2016; 374:69. [PMID: 27645331 DOI: 10.1007/s41061-016-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 01/18/2023]
Abstract
Nanogels combine the favourable properties of hydrogels with those of colloids. They can be soft and conformable, stimuli-responsive and highly permeable, and can expose a large surface with functional groups for conjugation to small and large molecules, and even macromolecules. They are among the very few systems that can be generated and used as aqueous dispersions. Nanogels are emerging materials for targeted drug delivery and bio-imaging, but they have also shown potential for water purification and in catalysis. The possibility of manufacturing nanogels with a simple process and at relatively low cost is a key criterion for their continued development and successful application. This paper highlights the most important structural features of nanogels related to their distinctive properties, and briefly presents the most common manufacturing strategies. It then focuses on synthetic approaches that are based on the irradiation of dilute aqueous polymer solutions using high-energy photons or electron beams. The reactions constituting the basis for nanogel formation and the approaches for controlling particle size and functionality are discussed in the context of a qualitative analysis of the kinetics of the various reactions.
Collapse
Affiliation(s)
- C Dispenza
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128, Palermo, Italy. .,School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden.
| | - G Spadaro
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128, Palermo, Italy
| | - M Jonsson
- School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden
| |
Collapse
|
237
|
Peng H, Rübsam K, Jakob F, Pazdzior P, Schwaneberg U, Pich A. Reversible Deactivation of Enzymes by Redox-Responsive Nanogel Carriers. Macromol Rapid Commun 2016; 37:1765-1771. [DOI: 10.1002/marc.201600476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/20/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Huan Peng
- Functional and Interactive Polymers; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials e.V; Forckenbeckstraße 50 52074 Aachen Germany
| | - Kristin Rübsam
- DWI-Leibniz Institute for Interactive Materials e.V; Forckenbeckstraße 50 52074 Aachen Germany
| | - Felix Jakob
- DWI-Leibniz Institute for Interactive Materials e.V; Forckenbeckstraße 50 52074 Aachen Germany
| | - Patrizia Pazdzior
- DWI-Leibniz Institute for Interactive Materials e.V; Forckenbeckstraße 50 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials e.V; Forckenbeckstraße 50 52074 Aachen Germany
- Institute for Biotechnology; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Andrij Pich
- Functional and Interactive Polymers; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials e.V; Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
238
|
Wang Y, Luo Y, Zhao Q, Wang Z, Xu Z, Jia X. An Enzyme-Responsive Nanogel Carrier Based on PAMAM Dendrimers for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19899-19906. [PMID: 27420576 DOI: 10.1021/acsami.6b05567] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
G4 PAMAM dendrimer molecules were modified via covalently conjugating RGDC, RAADyC, and PEG chains on the periphery (Mac-1), by which a nanogel drug carrier with enzyme-sensitivity (NG-1) was constructed through an oxidation reaction by using NaIO4 to initiate the chemical cross-link of the functional groups on the periphery of dendrimers. Mac-1 and NG-1 both had a spherelike shape with a relatively uniform size of 20 nm for Mac-1 and 50 nm for NG-1 as evidenced by TEM, SEM, and DLS measurements. NG-1 showed much higher drug loading capacity as compared with that of Mac-1 although the cavities in the dendritic structure were used to encapsulate drug molecules as reported in many literatures. In addition, the size of NG-1 with embedded doxorubicin hydrochloride (DOX) decreased significantly to 15 nm in the presence of elastase, which indicated the decomposition of the nanogel triggered by enzyme, leading to drug release in a sustained manner in vitro. The NG-1 carrier was noncytotoxic and biocompatible, and it achieved the same cytotoxicity as free DOX when the drug molecules were loaded inside. From confocal images, the penetrative process of DOX from nanogel could be clearly observed in 8 h. Such a dendrimer-based nanogel may be a potential nanocarrier for drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education and ‡State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Yiyang Luo
- Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education and ‡State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Qiang Zhao
- Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education and ‡State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Zhijian Wang
- Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education and ‡State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Zejun Xu
- Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education and ‡State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Xinru Jia
- Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education and ‡State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| |
Collapse
|
239
|
Saxena S, Jayakannan M. Enzyme and pH dual responsive l
-amino acid based biodegradable polymer nanocarrier for multidrug delivery to cancer cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28216] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sonashree Saxena
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road; Pune 411008 Maharashtra India
| | - Manickam Jayakannan
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road; Pune 411008 Maharashtra India
| |
Collapse
|
240
|
Ye Z, Li Y, An Z, Wu P. Exploration of Doubly Thermal Phase Transition Process of PDEGA-b-PDMA-b-PVCL in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6691-6700. [PMID: 27299984 DOI: 10.1021/acs.langmuir.6b01785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding of phase transition mechanism of thermoresponsive polymers is the basis for the rational design of smart materials with predictable properties. Linear ABC triblock terpolymer poly(di(ethylene glycol)ethyl ether acrylate)-b-poly(N,N-dimethylacrylamide)-b-poly(N-vinylcaprolactam) (PDEGA-b-PDMA-b-PVCL) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The doubly thermal phase transition of PDEGA-b-PDMA-b-PVCL in aqueous solution was investigated by a combination of nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), turbidimetry, and dynamic light scattering (DLS). The terpolymer self-assembles into micelles with PDEGA being the core-forming block during the first lower critical solution temperature (LCST) transition corresponding to PDEGA, which is followed by a second LCST transition corresponding to PVCL, resulting in the formation of micellar aggregates. The PDMA middle segment plays an important role as an isolation zone to prevent cooperative dehydration of the PDEGA and PVCL segments, and therefore, two independent LCST transitions corresponding to PDEGA and PVCL were observed. Furthermore, FT-IR with perturbation correlation moving window (PCMW) and two-dimensional spectroscopy (2DCOS) was applied to elucidate the two-step phase transition mechanism of this terpolymer. It was observed that the CH, ester carbonyl, and ether groups of PDEGA change prior to the CH and amide carbonyl groups of PVCL, further supporting that the two phase transitions corresponding to PDEGA and PVCL indeed occur without mutual interferences.
Collapse
Affiliation(s)
- Zhangxin Ye
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| | - Youcheng Li
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| |
Collapse
|
241
|
Zhao D, Xu JQ, Yi XQ, Zhang Q, Cheng SX, Zhuo RX, Li F. pH-Activated Targeting Drug Delivery System Based on the Selective Binding of Phenylboronic Acid. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14845-14854. [PMID: 27229625 DOI: 10.1021/acsami.6b04737] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phenylboronic acid (PBA) is a tumor-targeting molecule, but its nonspecific interaction with normal cells or other components containing cis-diol residues undoubtedly limits its potential application in tumor-targeting drug delivery. Herein, we developed fructose-coated mixed micelles via PBA-terminated polyethylene glycol monostearate (PBA-PEG-C18) and Pluronic P123 (PEG20-PPG70-PEG20) to solve this problem, as the stability of borate formed by PBA and fructose was dramatically dependent on pH. The fluorescence spectroscopic results indicated that the borate formed by PBA and fructose decomposed at a decreased pH, and better binding between PBA and sialic acid (SA) was observed at a low pH. These results implied that the fructose groups decorated on the surface of the micelles could be out-competed by SA at a low pH. In vitro uptake and cytotoxicity studies demonstrated that the fructose coating on the mixed micelles improved the endocytosis and enhanced the cytotoxicity of drug-loaded mixed micelles in HepG2 cells but reduced the cytotoxicity in normal cells. These results demonstrate that a simple decorating strategy may facilitate PBA-targeted nanoparticles for tumor-specific drug delivery.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Jia-Qi Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Xiao-Qing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Quan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| |
Collapse
|
242
|
Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016; 6:1306-23. [PMID: 27375781 PMCID: PMC4924501 DOI: 10.7150/thno.14858] [Citation(s) in RCA: 607] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications.
Collapse
Affiliation(s)
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| | | | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
243
|
Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. MATERIALS TODAY 2016; 19:274-283. [DOI: 10.1016/j.mattod.2015.11.025] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
244
|
Chen Y, Shi J. Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3235-72. [PMID: 26936391 DOI: 10.1002/adma.201505147] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/22/2015] [Indexed: 05/22/2023]
Abstract
Organic-inorganic hybrid materials aiming to combine the individual advantages of organic and inorganic components while overcoming their intrinsic drawbacks have shown great potential for future applications in broad fields. In particular, the integration of functional organic fragments into the framework of mesoporous silica to fabricate mesoporous organosilica materials has attracted great attention in the scientific community for decades. The development of such mesoporous organosilica materials has shifted from bulk materials to nanosized mesoporous organosilica nanoparticles (designated as MONs, in comparison with traditional mesoporous silica nanoparticles (MSNs)) and corresponding applications in nanoscience and nanotechnology. In this comprehensive review, the state-of-art progress of this important hybrid nanomaterial family is summarized, focusing on the structure/composition-performance relationship of MONs of well-defined morphology, nanostructure, and nanoparticulate dimension. The synthetic strategies and the corresponding mechanisms for the design and construction of MONs with varied morphologies, compositions, nanostructures, and functionalities are overviewed initially. Then, the following part specifically concentrates on their broad spectrum of applications in nanotechnology, mainly in nanomedicine, nanocatalysis, and nanofabrication. Finally, some critical issues, presenting challenges and the future development of MONs regarding the rational synthesis and applications in nanotechnology are summarized and discussed. It is highly expected that such a unique molecularly organic-inorganic nanohybrid family will find practical applications in nanotechnology, and promote the advances of this discipline regarding hybrid chemistry and materials.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
| |
Collapse
|
245
|
Opoku-Damoah Y, Wang R, Zhou J, Ding Y. Versatile Nanosystem-Based Cancer Theranostics: Design Inspiration and Predetermined Routing. Theranostics 2016; 6:986-1003. [PMID: 27217832 PMCID: PMC4876623 DOI: 10.7150/thno.14860] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 01/10/2023] Open
Abstract
The relevance of personalized medicine, aimed at a more individualized drug therapy, has inspired research into nano-based concerted diagnosis and therapeutics (theranostics). As the intention is to "kill two birds with one stone", scientists have already described the emerging concept as a treasured tailor for the future of cancer therapy, wherein the main idea is to design "smart" nanosystems to concurrently discharge both therapeutic and diagnostic roles. These nanosystems are expected to offer a relatively clearer view of the ingenious cellular trafficking pathway, in-situ diagnosis, and therapeutic efficacy. We herein present a detailed review of versatile nanosystems, with prominent examples of recently developed intelligent delivery strategies which have gained attention in the field of theranostics. These nanotheranostics include various mechanisms programmed in novel platforms to enable predetermined delivery of cargo to specific sites, as well as techniques to overcome the notable challenges involved in the efficacy of theranostics.
Collapse
Affiliation(s)
| | | | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
246
|
Feng T, Ai X, An G, Yang P, Zhao Y. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. ACS NANO 2016; 10:4410-20. [PMID: 26997431 DOI: 10.1021/acsnano.6b00043] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon dots (CDs) are remarkable nanocarriers due to their promising optical and biocompatible capabilities. However, their practical applicability in cancer therapeutics is limited by their insensitive surface properties to complicated tumor microenvironment in vivo. Herein, a tumor extracellular microenvironment-responsive drug nanocarrier based on cisplatin(IV) prodrug-loaded charge-convertible CDs (CDs-Pt(IV)@PEG-(PAH/DMMA)) was developed for imaging-guided drug delivery. An anionic polymer with dimethylmaleic acid (PEG-(PAH/DMMA)) on the fabricated CDs-Pt(IV)@PEG-(PAH/DMMA) could undergo intriguing charge conversion to a cationic polymer in mildly acidic tumor extracellular microenvironment (pH ∼ 6.8), leading to strong electrostatic repulsion and release of positive CDs-Pt(IV). Importantly, positively charged nanocarrier displays high affinity to negatively charged cancer cell membrane, which results in enhanced internalization and effective activation of cisplatin(IV) prodrug in the reductive cytosol. The in vitro experimental results confirmed that this promising charge-convertible nanocarrier possesses better therapeutic efficiency under tumor extracellular microenvironment than normal physiological condition and noncharge-convertible nanocarrier. The in vivo experiments further demonstrated high tumor-inhibition efficacy and low side effects of the charge-convertible CDs, proving its capability as a smart drug nanocarrier with enhanced therapeutic effects. The present work provides a strategy to promote potential clinical application of CDs in the cancer treatment.
Collapse
Affiliation(s)
- Tao Feng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Guanghui An
- School of Chemistry and Materials Science, Heilongjiang University , Harbin, Heilongjiang 150080, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin, Heilongjiang 150001, China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin, Heilongjiang 150001, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
247
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1086] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
248
|
Hu Y, Gong X, Zhang J, Chen F, Fu C, Li P, Zou L, Zhao G. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy. Polymers (Basel) 2016; 8:E99. [PMID: 30979214 PMCID: PMC6432516 DOI: 10.3390/polym8040099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023] Open
Abstract
Various polymeric nanoparticles (NPs) with optimal size, tumor-targeting functionalization, or microenvironment sensitive characteristics have been designed to solve several limitations of conventional chemotherapy. Nano-sized polymeric drug carrier systems have remarkably great advantages in drug delivery and cancer therapy, which are still plagued with severe deficiencies, especially insufficient cellular uptake. Recently, surface charge of medical NPs has been demonstrated to play an important role in cellular uptake. NPs with positive charge show higher affinity to anionic cell membranes such that with more efficient cellular internalization, but otherwise cause severe aggregation and fast clearance in circulation. Thus, surface charge-reversal NPs, specifically activated at the tumor site, have shown to elegantly resolve the enhanced cellular uptake in cancer cells vs. non-specific protein adsorption dilemma. Herein, this review mainly focuses on the effect of tumor-site activated surface charge reversal NPs on tumor treatment, including the activated mechanisms and various applications in suppressing cancer cells, killing cancer stem cell and overcoming multidrug resistance, with the emphasis on recent research in these fields. With the comprehensive and in-depth understanding of the activated surface charge reversal NPs, this approach might arouse great interest of scientific research on enhanced efficient polymeric nano-carriers in cancer therapy.
Collapse
Affiliation(s)
- Yichen Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Fengqian Chen
- Department of Microbiology & Immunology, MCV Campus School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Liang Zou
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
249
|
He W, Zheng X, Zhao Q, Duan L, Lv Q, Gao GH, Yu S. pH-Triggered Charge-Reversal Polyurethane Micelles for Controlled Release of Doxorubicin. Macromol Biosci 2016; 16:925-35. [DOI: 10.1002/mabi.201500358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Wanying He
- School of Chemical Engineering; School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 P. R. China
| | - Xu Zheng
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Qi Zhao
- School of Chemical Engineering; School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 P. R. China
| | - Lijie Duan
- School of Chemical Engineering; School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 P. R. China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Qiang Lv
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Guang Hui Gao
- School of Chemical Engineering; School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 P. R. China
| | - Shuangjiang Yu
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| |
Collapse
|
250
|
Guo L, Wang C, Yang C, Wang X, Zhang T, Zhang Z, Yan H, Liu K. Morpholino-terminated dendrimer shows enhanced tumor pH-triggered cellular uptake, prolonged circulation time, and low cytotoxicity. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|