201
|
González-Delgado JA, Romero MA, Boscá F, Arteaga JF, Pischel U. Visible Light-Gated Organocatalysis Using a Ru II -Photocage. Chemistry 2020; 26:14229-14235. [PMID: 32449554 DOI: 10.1002/chem.202001893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Indexed: 12/23/2022]
Abstract
The light-gated organocatalysis via the release of 4-N,N-dimethylaminopyridine (DMAP) by irradiation of the [Ru(bpy)2 (DMAP)2 ]2+ complex with visible light was investigated. As model reaction the acetylation of benzyl alcohols with acetic anhydride was chosen. The pre-catalyst releases one DMAP molecule on irradiation at wavelengths longer than 455 nm. The photochemical process was characterized by steady-state irradiation and ultrafast transient absorption spectroscopy. The latter enabled the observation of the 3 MLCT state and the spectral features of the penta-coordinated intermediate [Ru(bpy)2 (DMAP)]2+ . The released DMAP catalyzes the acetylation of a wide range of benzyl alcohols with chemical yields of up to 99 %. Control experiments revealed unequivocally that it is the released DMAP which takes the role of the catalyst.
Collapse
Affiliation(s)
- José A González-Delgado
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Miguel A Romero
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Francisco Boscá
- Instituto Universitario Mixto de Tecnología Química (ITQ-UPV), Universitat Politècnica de València, Av. de los Naranjos s/n, 46022, Valencia, Spain
| | - Jesús F Arteaga
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Uwe Pischel
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| |
Collapse
|
202
|
Dudek M, Tarnowicz-Staniak N, Deiana M, Pokładek Z, Samoć M, Matczyszyn K. Two-photon absorption and two-photon-induced isomerization of azobenzene compounds. RSC Adv 2020; 10:40489-40507. [PMID: 35520821 PMCID: PMC9057575 DOI: 10.1039/d0ra07693g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/18/2020] [Indexed: 01/05/2023] Open
Abstract
The process of two-photon-induced isomerization occurring in various organic molecules, among which azobenzene derivatives hold a prominent position, offers a wide range of functionalities, which can be used in both material and life sciences. This review provides a comprehensive description of nonlinear optical (NLO) properties of azobenzene (AB) derivatives whose geometries can be switched through two-photon absorption (TPA). Employing the nonlinear excitation process allows for deeper penetration of light into the tissues and provides opportunities to regulate biological systems in a non-invasive manner. At the same time, the tight focus of the beam needed to induce nonlinear absorption helps to improve the spatial resolution of the photoinduced structures. Since near-infrared (NIR) wavelengths are employed, the lower photon energies compared to usual one-photon excitation (typically, the azobenzene geometry change from trans to cis form requires the use of UV photons) cause less damage to the biological samples. Herein, we present an overview of the strategies for optimizing azobenzene-based photoswitches for efficient two-photon excitation (TPE) and the potential applications of two-photon-induced isomerization of azobenzenes in biological systems: control of ion flow in ion channels or control of drug release, as well as in materials science, to fabricate data storage media, optical filters, diffraction elements etc., based on phenomena like photoinduced anisotropy, mass transport and phase transition. The extant challenges in the field of two-photon switchable azomolecules are discussed.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Nina Tarnowicz-Staniak
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Ziemowit Pokładek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
203
|
Tang J, Yu C, Loredo A, Chen Y, Xiao H. Site-Specific Incorporation of a Photoactivatable Fluorescent Amino Acid. Chembiochem 2020; 22:501-504. [PMID: 32961013 DOI: 10.1002/cbic.202000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Photoactivatable fluorophores are emerging optical probes for biological applications. Most photoactivatable fluorophores are relatively large in size and need to be activated by ultraviolet light; this dramatically limits their applications. To introduce photoactivatable fluorophores into proteins, recent investigations have explored several protein-labeling technologies, including fluorescein arsenical hairpin (FlAsH) Tag, HaloTag labeling, SNAPTag labeling, and other bioorthogonal chemistry-based methods. However, these technologies require a multistep labeling process. Here, by using genetic code expansion and a single sulfur-for-oxygen atom replacement within an existing fluorescent amino acid, we have site-specifically incorporated the photoactivatable fluorescent amino acid thioacridonylalanine (SAcd) into proteins in a single step. Moreover, upon exposure to visible light, SAcd can be efficiently desulfurized to its oxo derivatives, thus restoring the strong fluorescence of labeled proteins.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
204
|
Light-induced formation of silver(I)-mediated base pairs in DNA: Possibilities and limitations. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
205
|
Hogenkamp F, Hilgers F, Knapp A, Klaus O, Bier C, Binder D, Jaeger KE, Drepper T, Pietruszka J. Effect of Photocaged Isopropyl β-d-1-thiogalactopyranoside Solubility on the Light Responsiveness of LacI-controlled Expression Systems in Different Bacteria. Chembiochem 2020; 22:539-547. [PMID: 32914927 PMCID: PMC7894499 DOI: 10.1002/cbic.202000377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Indexed: 01/02/2023]
Abstract
Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non‐invasive as well as easily tuneable. In the recent past, photo‐responsive inducer molecules such as 6‐nitropiperonyl‐caged IPTG (NP‐cIPTG) have been used as optochemical tools for Lac repressor‐controlled microbial expression systems. To further expand the applicability of the versatile optochemical on‐switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light‐mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water‐soluble cIPTG derivative proved to be particularly suitable for light‐mediated gene expression in these alternative expression hosts.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Claus Bier
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| |
Collapse
|
206
|
Takano Y, Miyake K, Sobhanan J, Biju V, Tkachenko NV, Imahori H. Near-infrared light control of membrane potential by an electron donor-acceptor linked molecule. Chem Commun (Camb) 2020; 56:12562-12565. [PMID: 32940286 DOI: 10.1039/d0cc05326k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Near-infrared (NIR) light control of living cellular activities is a highly desired technique for living cell manipulation because of its advantage of high penetrability towards living tissue. In this study, (π-extended porphyrin)-fullerene linked molecules are designed and synthesized to achieve NIR light control of the membrane potential. A donor-(π-extended porphyrin)-acceptor linked molecule exhibited the formation of the charge-separated state with a relatively long lifetime (0.68 μs) and a moderate quantum yield (27-31%). The hydrophilic trimethylammonium-linked triad molecule successfully altered PC12 cells' membrane potential via photoinduced intramolecular charge separation.
Collapse
Affiliation(s)
- Yuta Takano
- Research Institute for Electronic Science, Hokkaido University, Kita-20, Nishi-10, Sapporo 001-0020, Japan. and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. and Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Sapporo 060-810, Japan
| | - Kazuaki Miyake
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Sapporo 060-810, Japan
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, Kita-20, Nishi-10, Sapporo 001-0020, Japan. and Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Sapporo 060-810, Japan
| | - Nikolai V Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, Tampere FI-33720, Finland.
| | - Hiroshi Imahori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. and Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
207
|
Eivgi O, Phatake RS, Nechmad NB, Lemcoff NG. Light-Activated Olefin Metathesis: Catalyst Development, Synthesis, and Applications. Acc Chem Res 2020; 53:2456-2471. [PMID: 32990427 PMCID: PMC7584343 DOI: 10.1021/acs.accounts.0c00495] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/30/2022]
Abstract
The most important means for tuning and improving a catalyst's properties is the delicate exchange of the ligand shell around the central metal atom. Perhaps for no other organometallic-catalyzed reaction is this statement more valid than for ruthenium-based olefin metathesis. Indeed, even the simple exchange of an oxygen atom for a sulfur atom in a chelated ruthenium benzylidene about a decade ago resulted in the development of extremely stable, photoactive catalysts. This Account presents our perspective on the development of dormant olefin metathesis catalysts that can be activated by external stimuli and, more specifically, the use of light as an attractive inducing agent.The insight gained from a deeper understanding of the properties of cis-dichlororuthenium benzylidenes opened the doorway for the systematic development of new and efficient light-activated olefin metathesis catalysts and catalytic chromatic-orthogonal synthetic schemes. Following this, ways to disrupt the ligand-to-metal bond to accelerate the isomerization process that produced the active precatalyst were actively pursued. Thus, we summarize herein the original thermal activation experiments and how they brought about the discoveries of photoactivation in the sulfur-chelated benzylidene family of catalysts. The specific wavelengths of light that were used to dissociate the sulfur-ruthenium bond allowed us to develop noncommutative catalytic chromatic-orthogonal processes and to combine other photochemical reactions with photoinduced olefin metathesis, including using external light-absorbing molecules as "sunscreens" to achieve novel selectivities. Alteration of the ligand sphere, including modifications of the N-heterocyclic carbene (NHC) ligand and the introduction of cyclic alkyl amino carbene (CAAC) ligands, produced more efficient light-induced activity and special chemical selectivity. The use of electron-rich sulfoxides and, more prominently, phosphites as the agents that induce latency widened the spectrum of light-induced olefin metathesis reactions even further by expanding the colors of light that may now be used to activate the catalysts, which can be used in applications such as stereolithography and 3D printing of tough metathesis-derived polymers.
Collapse
Affiliation(s)
- Or Eivgi
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel
| | - Ravindra S. Phatake
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel
| | - Noy B. Nechmad
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel
| | - N. Gabriel Lemcoff
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel
- Ilse
Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
208
|
Rodat T, Krebs M, Döbber A, Jansen B, Steffen-Heins A, Schwarz K, Peifer C. Restricted suitability of BODIPY for caging in biological applications based on singlet oxygen generation. Photochem Photobiol Sci 2020; 19:1319-1325. [PMID: 32820789 DOI: 10.1039/d0pp00097c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent studies report the boron-dipyrromethene (BODIPY) moiety to be interesting for caging applications in photopharmacology based on its response to irradiation with wavelengths in the biooptical window. Thus, in a model study, we investigated the meso-methyl-BODIPY caged CDK2 inhibitor AZD5438 and aimed to assess the usability of BODIPY as a photoremovable protecting group in photoresponsive kinase inhibitor applications. Photochemical analysis and biological characterisation in vitro revealed significant limitations of the BODIPY-caged inhibitor concept regarding solubility and uncaging in aqueous solution. Notably, we provide evidence for BODIPY-caged compounds generating singlet oxygen/radicals upon irradiation, followed by photodegradation of the caged compound system. Consequently, instead of caging, a non-specific induction of necrosis in cells suggests the potential usage of BODIPY derivatives for photodynamic approaches.
Collapse
Affiliation(s)
- Theo Rodat
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Melanie Krebs
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Alexander Döbber
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Björn Jansen
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Anja Steffen-Heins
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
209
|
Chen C, Jing N, Wang Z, Zhang Y, Chen W, Tang X. Multimerized self-assembled caged two-in-one siRNA nanoparticles for photomodulation of RNAi-induced gene silencing. Chem Sci 2020; 11:12289-12297. [PMID: 34094437 PMCID: PMC8162473 DOI: 10.1039/d0sc03562a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We rationally designed and developed caged siRNA nanoparticles (Multi-Chol-siRNA) self-assembled with cholesterol-modified multimerized caged siRNAs for photomodulation of siRNA gene silencing activity. Strong resistance to serum nuclease and RNase A was observed for these cholesterol-modified caged siRNA nanoparticles due to the formation of nanostructures with high intensity of siRNA. These caged Multi-Chol-siRNA self-assembled nanoparticles were successfully used to achieve photochemical regulation of both exogenous GFP and endogenous Eg5 gene expressions with a GFP/RFP transient transfection system and Eg5-associated assays, respectively. Further, Two-in-One caged Multi-Chol-siGFP/siEg5 self-assembled nanoparticles simultaneously targeting GFP and Eg5 genes were also developed. The caged Multi-Chol-siRNA self-assembled nanoparticles have demonstrated the effectiveness of enhancing photomodulation of multiple RNAi-induced gene silencing activities in cells. Upon light irradiation, multimerized self-assembled caged Two-in-One siRNA nanoparticles (Multi-Chol-siRNA) were collapsed to release trapped siRNAs for multiple RNAi-induced gene silencing activity.![]()
Collapse
Affiliation(s)
- Changmai Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Wei Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| |
Collapse
|
210
|
Manicardi A, Cadoni E, Madder A. Visible-light triggered templated ligation on surface using furan-modified PNAs. Chem Sci 2020; 11:11729-11739. [PMID: 34094412 PMCID: PMC8162948 DOI: 10.1039/d0sc04875e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022] Open
Abstract
Oligonucleotide-templated reactions are frequently exploited for target detection in biosensors and for the construction of DNA-based materials and probes in nanotechnology. However, the translation of the specifically used template chemistry from solution to surfaces, with the final aim of achieving highly selective high-throughput systems, has been difficult to reach and therefore, poorly explored. Here, we show the first example of a visible light-triggered templated ligation on a surface, employing furan-modified peptide nucleic acids (PNAs). Tailored photo-oxidation of the pro-reactive furan moiety is ensured by the simultaneous introduction of a weak photosensitizer as well as a nucleophilic moiety in the reacting PNA strand. This allows one to ensure a localized production of singlet oxygen for furan activation, which is not affected by probe dilution or reducing conditions. Simple white light irradiation in combination with target-induced proximity between reactive functionalities upon recognition of a short 22mer DNA or RNA sequence that functions as a template, allows sensitive detection of nucleic acid targets in a 96 well plate format.
Collapse
Affiliation(s)
- Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| |
Collapse
|
211
|
Rustler K, Maleeva G, Gomila AMJ, Gorostiza P, Bregestovski P, König B. Optical Control of GABA A Receptors with a Fulgimide-Based Potentiator. Chemistry 2020; 26:12722-12727. [PMID: 32307732 PMCID: PMC7589408 DOI: 10.1002/chem.202000710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 01/04/2023]
Abstract
Optogenetic and photopharmacological tools to manipulate neuronal inhibition have limited efficacy and reversibility. We report the design, synthesis, and biological evaluation of Fulgazepam, a fulgimide derivative of benzodiazepine that behaves as a pure potentiator of ionotropic γ‐aminobutyric acid receptors (GABAARs) and displays full and reversible photoswitching in vitro and in vivo. The compound enables high‐resolution studies of GABAergic neurotransmission, and phototherapies based on localized, acute, and reversible neuroinhibition.
Collapse
Affiliation(s)
- Karin Rustler
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Galyna Maleeva
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, 13005, Marseille, France.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020, Barcelona, Spain.,Network Biomedical Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-bbn)
| | - Piotr Bregestovski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, 13005, Marseille, France.,M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Burkhard König
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
212
|
Nakad EA, Chaud J, Morville C, Bolze F, Specht A. Monitoring of uncaging processes by designing photolytical reactions. Photochem Photobiol Sci 2020; 19:1122-1133. [PMID: 32756690 DOI: 10.1039/d0pp00169d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of photolabile protecting groups (PPGs) has been growing in emphasis for decades, and nowadays they enable cutting-edge results in numerous fields ranging from organic synthesis to neurosciences. PPGs are chemical entities that can be conjugated to a biomolecule to hide its biological activity, forming a stable so called "caged compound". This conjugate can be simply cleaved by light and therefore, the functionality of the biomolecule is restored with the formation of a PPG by-product. However, there is a sizeable need for PPGs that are able to quantify the "uncaging" process. In this review, we will discuss several strategies leading to an acute quantification of the uncaging events by fluorescence. In particular, we will focus on how molecular engineering of PPG could open new opportunities by providing easy access to photoactivation protocols.
Collapse
Affiliation(s)
- E Abou Nakad
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| | - J Chaud
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| | - C Morville
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| | - F Bolze
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France.
| | - A Specht
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| |
Collapse
|
213
|
Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment. Int J Mol Sci 2020; 21:E6380. [PMID: 32887466 PMCID: PMC7504550 DOI: 10.3390/ijms21176380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stimulus-responsive drug delivery systems generally aim to release the active pharmaceutical ingredient (API) in response to specific conditions and have recently been explored for disease treatments. These approaches can also be extended to molecular imaging to report on disease diagnosis and management. The stimuli used for activation are based on differences between the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide variety of stimulus-responsive systems have been developed-responsive to both a single stimulus or multiple stimuli-and represent a theranostic tool for disease treatment. In this review, stimuli commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis on chemical structure and property relationships is provided, aiming to focus on insights for the design of stimulus-responsive delivery systems. Several examples of theranostic applications of these stimulus-responsive nanomedicines are discussed.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
214
|
Tang X, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal‐Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| |
Collapse
|
215
|
Tang XJ, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal-Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020; 59:18386-18389. [PMID: 32671906 DOI: 10.1002/anie.202005310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The photorelease of bioactive molecules has emerged as a valuable tool in biochemistry. Nevertheless, many important bioactive molecules, such as pyridine derivatives, cannot benefit from currently available organic photoremovable protecting groups (PPGs). We found that the inefficient photorelease of pyridines is attributed to intramolecular photoinduced electron transfer (PET) from PPGs to pyridinium ions. To alleviate PET, we rationally designed a strategy to drive the excited state of PPG from S1 to T1 with a heavy atom, and synthesized a new PPG by substitution of the H atom at the 3-position of 7-dietheylamino-coumarin-4-methyl (DEACM) with Br or I. This resulted in an improved photolytic efficiency of the pyridinium ion by hundreds-fold in aqueous solution. The PPG can be applied to various pyridine derivatives. The successful photorelease of a microtubule inhibitor, indibulin, in living cells was demonstrated for the potential application of this strategy in biochemical research.
Collapse
Affiliation(s)
- Xiao-Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
216
|
Grebenovsky N, Hermanns V, Heckel A. Photoswitchable 2‐Phenyldiazenyl‐Purines and their Influence on DNA Hybridization. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nikolai Grebenovsky
- Institute for Organic Chemistry and Chemical Biology Goethe-University Frankfurt Max-von-Laue-Straße 7 D 60438 Frankfurt am Main Germany
| | - Volker Hermanns
- Institute for Organic Chemistry and Chemical Biology Goethe-University Frankfurt Max-von-Laue-Straße 7 D 60438 Frankfurt am Main Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology Goethe-University Frankfurt Max-von-Laue-Straße 7 D 60438 Frankfurt am Main Germany
| |
Collapse
|
217
|
Linden G, Vázquez O. Bioorthogonal Turn-On BODIPY-Peptide Photosensitizers for Tailored Photodynamic Therapy. Chemistry 2020; 26:10014-10023. [PMID: 32638402 PMCID: PMC7496803 DOI: 10.1002/chem.202001718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) leads to cancer remission via the production of cytotoxic species under photosensitizer (PS) irradiation. However, concomitant damage and dark toxicity can both hinder its use. With this in mind, we have implemented a versatile peptide-based platform of bioorthogonally activatable BODIPY-tetrazine PSs. Confocal microscopy and phototoxicity studies demonstrated that the incorporation of the PS, as a bifunctional module, into a peptide enabled spatial and conditional control of singlet oxygen (1 O2 ) generation. Comparing subcellular distribution, PS confined in the cytoplasmic membrane achieved the highest toxicities (IC50 =0.096±0.003 μm) after activation and without apparent dark toxicity. Our tunable approach will inspire novel probes towards smart PDT.
Collapse
Affiliation(s)
- Greta Linden
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Olalla Vázquez
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
218
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
219
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|
220
|
Lineros‐Rosa M, Miranda MA, Lhiaubet‐Vallet V. A Sunscreen‐Based Photocage for Carbonyl Groups. Chemistry 2020; 26:7205-7211. [DOI: 10.1002/chem.202000123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/05/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Mauricio Lineros‐Rosa
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaConsejo Superior de Investigaciones Científicas Avda de los Naranjos, s/n 46022 Valencia Spain
| | - Miguel A. Miranda
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaConsejo Superior de Investigaciones Científicas Avda de los Naranjos, s/n 46022 Valencia Spain
| | - Virginie Lhiaubet‐Vallet
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaConsejo Superior de Investigaciones Científicas Avda de los Naranjos, s/n 46022 Valencia Spain
| |
Collapse
|
221
|
Nguyen DT, Freitag M, Gutheil C, Sotthewes K, Tyler BJ, Böckmann M, Das M, Schlüter F, Doltsinis NL, Arlinghaus HF, Ravoo BJ, Glorius F. Ein auf Arylazopyrazol basierendes N‐heterocyclisches Carben als Photoschalter auf Goldoberflächen: Lichtschaltbare Benetzbarkeit, Austrittsarbeit und Leitwert. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. Thao Nguyen
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Matthias Freitag
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Gutheil
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials MESA+ Institute for Nanotechnology University of Twente P.O. Box 217 7500 AE Enschede Niederlande
| | - Bonnie J. Tyler
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Mowpriya Das
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Friederike Schlüter
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Nikos L. Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Heinrich F. Arlinghaus
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
222
|
Nguyen DT, Freitag M, Gutheil C, Sotthewes K, Tyler BJ, Böckmann M, Das M, Schlüter F, Doltsinis NL, Arlinghaus HF, Ravoo BJ, Glorius F. An Arylazopyrazole-Based N-Heterocyclic Carbene as a Photoswitch on Gold Surfaces: Light-Switchable Wettability, Work Function, and Conductance. Angew Chem Int Ed Engl 2020; 59:13651-13656. [PMID: 32271973 DOI: 10.1002/anie.202003523] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/08/2020] [Indexed: 12/13/2022]
Abstract
A novel photoresponsive and fully conjugated N-heterocyclic carbene (NHC) has been synthesized that combines the excellent photophysical properties of arylazopyrazoles (AAPs) with an NHC that acts as a robust surface anchor (AAP-BIMe). The formation of self-assembled monolayers (SAMs) on gold was proven by ToF-SIMS and XPS, and the organic film displayed a very high stability at elevated temperatures. This stability was also reflected in a high desorption energy, which was determined by temperature-programmed SIMS measurements. E-/Z-AAP-BIMe@Au photoisomerization resulted in reversible alterations of the surface energy (i.e. wettability), the surface potential (i.e. work function), and the conductance (i.e. resistance). The effects could be explained by the difference in the dipole moment of the isomers. Furthermore, sequential application of a dummy ligand by microcontact printing and subsequent backfilling with AAP-BIMe allowed its patterning on gold. To the best of our knowledge, this is the first example of a photoswitchable NHC on a gold surface. These properties of AAP-BIMe@Au illustrate its suitability as a molecular switch for electronic devices.
Collapse
Affiliation(s)
- D Thao Nguyen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Matthias Freitag
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Christian Gutheil
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Bonnie J Tyler
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Friederike Schlüter
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
223
|
Zhao D, Yang G, Liu Q, Liu W, Weng Y, Zhao Y, Qu F, Li L, Huang Y. A photo-triggerable aptamer nanoswitch for spatiotemporal controllable siRNA delivery. NANOSCALE 2020; 12:10939-10943. [PMID: 32207496 DOI: 10.1039/d0nr00301h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A photo-triggerable aptamer nanoswitch was proposed for spatiotemporal regulation of siRNA delivery. Recognition between AS1411 and nucleolin was effectively blocked by a photo-labile complementary oligonucleotide, which could be reactivated with photo-irradiation, resulting in efficient tumor-targeted siRNA internalization and gene silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Deyao Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China
| | - Ge Yang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenjing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Yi Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Feng Qu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
224
|
Moroz-Omori E, Satyapertiwi D, Ramel MC, Høgset H, Sunyovszki IK, Liu Z, Wojciechowski JP, Zhang Y, Grigsby CL, Brito L, Bugeon L, Dallman MJ, Stevens MM. Photoswitchable gRNAs for Spatiotemporally Controlled CRISPR-Cas-Based Genomic Regulation. ACS CENTRAL SCIENCE 2020; 6:695-703. [PMID: 32490186 PMCID: PMC7256956 DOI: 10.1021/acscentsci.9b01093] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 05/06/2023]
Abstract
The recently discovered CRISPR-Cas gene editing system and its derivatives have found numerous applications in fundamental biology research and pharmaceutical sciences. The need for precise external control over the gene editing and regulatory events has driven the development of inducible CRISPR-Cas systems. While most of the light-controllable CRISPR-Cas systems are based on protein engineering, we developed an alternative synthetic approach based on modification of crRNA/tracrRNA duplex (guide RNA or gRNA) with photocaging groups, preventing the gRNA from recognizing its genome target sequence until its deprotection is induced within seconds of illumination. This approach relies on a straightforward solid-phase synthesis of the photocaged gRNAs, with simpler purification and characterization processes in comparison to engineering a light-responsive protein. We have demonstrated the feasibility of photocaging of gRNAs and light-mediated DNA cleavage upon brief exposure to light in vitro. We have achieved light-mediated spatiotemporally resolved gene editing as well as gene activation in cells, whereas photocaged gRNAs showed virtually no detectable gene editing or activation in the absence of light irradiation. Finally, we have applied this system to spatiotemporally control gene editing in zebrafish embryos in vivo, enabling the use of this strategy for developmental biology and tissue engineering applications.
Collapse
Affiliation(s)
- Elena
V. Moroz-Omori
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Dwiantari Satyapertiwi
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marie-Christine Ramel
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Håkon Høgset
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ilona K. Sunyovszki
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Division
of Cardiovascular Sciences, Myocardial Function, National Heart and
Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Ziqian Liu
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan P. Wojciechowski
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yueyun Zhang
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christopher L. Grigsby
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Liliana Brito
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Division
of Cardiovascular Sciences, Myocardial Function, National Heart and
Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Laurence Bugeon
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Margaret J. Dallman
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 65, Sweden
| |
Collapse
|
225
|
de Mos J, Jakob A, Becker-Baldus J, Heckel A, Glaubitz C. Light-Induced Uncaging for Time-Resolved Observations of Biochemical Reactions by MAS NMR Spectroscopy. Chemistry 2020; 26:6789-6792. [PMID: 32240561 PMCID: PMC7317521 DOI: 10.1002/chem.202000770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/23/2022]
Abstract
Light‐induced activation of biomolecules by uncaging of photolabile protection groups has found many applications for triggering biochemical reactions with minimal perturbations directly within cells. Such an approach might also offer unique advantages for solid‐state NMR experiments on membrane proteins for initiating reactions within or at the membrane directly within the closed MAS rotor. Herein, we demonstrate that the integral membrane protein E. coli diacylglycerol kinase (DgkA), which catalyzes the phosphorylation of diacylglycerol, can be controlled by light under MAS‐NMR conditions. Uncaging of NPE‐ATP or of lipid substrate NPE‐DOG by in situ illumination triggers its enzymatic activity, which can be monitored by real‐time 31P‐MAS NMR. This proof‐of‐concept illustrates that combining MAS‐NMR with uncaging strategies and illumination methods offers new possibilities for controlling biochemical reactions at or within lipid bilayers.
Collapse
Affiliation(s)
- Julian de Mos
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Jakob
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
226
|
Halder D, Paul A. Understanding the Role of Aromaticity and Conformational Changes in Bond Dissociation Processes of Photo-Protecting Groups. J Phys Chem A 2020; 124:3976-3983. [PMID: 32338513 DOI: 10.1021/acs.jpca.9b11731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoremovable protecting groups (PPGs) provide spatial and temporal control over the release of various chemicals. Using surface hopping studies with multireference electronic structure methods we have unravelled the nuclear and the electronic events at play. Furthermore, the electronic changes along the reaction path were probed using excited state aromaticity quantifiers and orbital analysis. We find that upon irradiation with light of appropriate wavelength on the substituted coumarin system a π-π* electronic excitation occurs which is followed by an electron loss from the aromatic ring on gaining proper alignment between the π* and the C-LG (LG = leaving group) σ*. This alignment is brought about by a critical dihedral angle change in the molecule, which subsequently triggers C-LG bond cleavage. The sequence of events is indicative of an intramolecular electron catalyzed process which is established through investigations of changes in aromaticity of the phenyl ring which acts as an electron reservoir.
Collapse
Affiliation(s)
- Debabrata Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| |
Collapse
|
227
|
Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. Proc Natl Acad Sci U S A 2020; 117:12080-12086. [PMID: 32430319 DOI: 10.1073/pnas.2003425117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.
Collapse
|
228
|
Sunscreen-Assisted Selective Photochemical Transformations. Molecules 2020; 25:molecules25092125. [PMID: 32370013 PMCID: PMC7248769 DOI: 10.3390/molecules25092125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
In this review, we describe a simple and general procedure to accomplish selective photochemical reaction sequences for two chromophores that are responsive to similar light frequencies. The essence of the method is based on the exploitation of differences in the molar absorptivity at certain wavelengths of the photosensitive groups, which is enhanced by utilizing light-absorbing auxiliary filter molecules, or “sunscreens”. Thus, the filter molecule hinders the reaction pathway of the least absorbing molecule or group, allowing for the selective reaction of the other. The method was applied to various photochemical reactions, from photolabile protecting group removal to catalytic photoinduced olefin metathesis in different wavelengths and using different sunscreen molecules. Additionally, the sunscreens were shown to be effective also when applied externally to the reaction mixture, avoiding any potential chemical interactions between sunscreen and substrates and circumventing the need to remove the light-filtering molecules from the reaction mixture, adding to the simplicity and generality of the method.
Collapse
|
229
|
Hammill ML, Islam G, Desaulniers JP. Synthesis, Derivatization and Photochemical Control of ortho-Functionalized Tetrachlorinated Azobenzene-Modified siRNAs. Chembiochem 2020; 21:2367-2372. [PMID: 32232952 DOI: 10.1002/cbic.202000188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 12/12/2022]
Abstract
We report the chemical synthesis and derivatization of an ortho-functionalized tetrachlorinated azobenzene diol. A 4',4-dimethoxytrityl (DMT) phosphoramidite was synthesized for its site-specific incorporation within the sense strand of an siRNA duplex to form ortho-functionalized tetrachlorinated azobenzene-containing siRNAs (Cl-siRNAzos). Compared to a non-halogenated azobenzene, ortho-functionalized tetrachlorinated azobenzenes are capable of red-shifting the π→π* transition from the ultraviolet (UV) portion of the electromagnetic spectrum into the visible range. Within this visible range, the azobenzene molecule can be reliably converted from trans to cis with red light (660 nm), and converted back to trans with violet wavelength light (410 nm) and/or thermal relaxation. We also report the gene-silencing ability of these Cl-siRNAzos in cell culture as well as their reversible control with visible light for up to 24 hours.
Collapse
Affiliation(s)
- Matthew L Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Golam Islam
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
230
|
Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q. On-demand regulation of photochromic behavior through various counterions for high-level security printing. SCIENCE ADVANCES 2020; 6:eaaz2386. [PMID: 32494612 PMCID: PMC7164943 DOI: 10.1126/sciadv.aaz2386] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/22/2020] [Indexed: 05/28/2023]
Abstract
Materials exhibiting reversible changes in optical properties upon light irradiation have shown great potential in diverse optoelectronic areas. In particular, the modulation of photochromic behavior on demand for such materials is of fundamental importance, but it remains a formidable challenge. Here, we report a facile and effective strategy to engineer controllable photochromic properties by varying the counterions in a series of zinc complexes consisting of a spirolactam-based photochromic ligand. Colorability and coloration rate can be finely tuned by conveniently changing their counterions. Through utilization of the reversible feature of the metal-ligand coordination bond between Zn2+ and the spirolactam-based ligand, dynamic manipulation of photochromic behavior was achieved. Furthermore, we demonstrated the practical applications of the tunable photochromic properties for these complexes by creating photochromic films and developing multilevel security printing. These findings show opportunities for the development of smart materials with dynamically controllable responsive behavior in advanced optoelectronic applications.
Collapse
Affiliation(s)
- Yun Ma
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Yaxin Yu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Pengfei She
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Jinyu Lu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
231
|
Palei S, Buchmuller B, Wolffgramm J, Muñoz-Lopez Á, Jung S, Czodrowski P, Summerer D. Light-Activatable TET-Dioxygenases Reveal Dynamics of 5-Methylcytosine Oxidation and Transcriptome Reorganization. J Am Chem Soc 2020; 142:7289-7294. [DOI: 10.1021/jacs.0c01193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shubhendu Palei
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Benjamin Buchmuller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Jan Wolffgramm
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Álvaro Muñoz-Lopez
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Sascha Jung
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Paul Czodrowski
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
232
|
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, and photochemical release of glutamate (or uncaging) is a chemical technique widely used by biologists to interrogate its physiology. A basic prerequisite of these optical probes is bio-inertness before photolysis. However, all caged glutamates are known to have strong antagonism toward receptors of γ-aminobutyric acid, the major inhibitory transmitter. We have developed a caged glutamate probe that is inert toward these receptors at concentrations that are effective for photolysis with violet light. Pharmacological tests in vitro revealed that attachment of a fifth-generation (G5) dendrimer (i.e., cloaking) to the widely used 4-methoxy-7-nitro-indolinyl(MNI)-Glu probe prevented such off-target effects while not changing the photochemical properties of MNI-Glu significantly. G5-MNI-Glu was used with optofluidic delivery to stimulate dopamine neurons of the ventral tegmental area of freely moving mice in a conditioned place-preference protocol so as to mediate Pavlovian conditioning.
Collapse
|
233
|
Konrad DB, Savasci G, Allmendinger L, Trauner D, Ochsenfeld C, Ali AM. Computational Design and Synthesis of a Deeply Red-Shifted and Bistable Azobenzene. J Am Chem Soc 2020; 142:6538-6547. [PMID: 32207943 PMCID: PMC7307923 DOI: 10.1021/jacs.9b10430] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
We computationally
dissected the electronic and geometrical influences
of ortho-chlorinated azobenzenes on their photophysical
properties. X-ray analysis provided the insight that trans-tetra-ortho-chloro azobenzene is conformationally
flexible and thus subject to molecular motions. This allows the photoswitch
to adopt a range of red-shifted geometries, which account for the
extended n → π* band tails. On the basis of our results,
we designed the di-ortho-fluoro di-ortho-chloro (dfdc) azobenzene and provided computational
evidence for the superiority of this substitution pattern to tetra-ortho-chloro azobenzene. Thereafter, we synthesized dfdc azobenzene by ortho-chlorination via
2-fold C–H activation and experimentally confirmed its structural
and photophysical properties through UV–vis, NMR, and X-ray
analyses. The advantages include near-bistable isomers and an increased
separation of the n → π* bands between the trans- and cis-conformations, which allows for the generation
of unusually high levels of the cis-isomer by irradiation
with green/yellow light as well as red light within the biooptical
window.
Collapse
Affiliation(s)
- David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gökcen Savasci
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, New York 10003, United States
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Ahmed M Ali
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
234
|
Tang S, Cannon J, Yang K, Krummel MF, Baker JR, Choi SK. Spacer-Mediated Control of Coumarin Uncaging for Photocaged Thymidine. J Org Chem 2020; 85:2945-2955. [PMID: 32020803 PMCID: PMC7293860 DOI: 10.1021/acs.joc.9b02617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite its importance in the design of photocaged molecules, less attention is focused on linker chemistry than the cage itself. Here, we describe unique uncaging properties displayed by two coumarin-caged thymidine compounds, each conjugated with (2) or without (1) an extended, self-immolative spacer. Photolysis of 1 using long-wavelength UVA (365 nm) or visible (420, 455 nm) light led to the release of free thymidine along with the competitive generation of a thymidine-bearing recombination product. The occurrence of this undesired side reaction, which is previously unreported, was not present with the photolysis of 2, which released thymidine exclusively with higher quantum efficiency. We propose that the spatial separation between the cage and the substrate molecule conferred by the extended linker can play a critical role in circumventing this unproductive reaction. This report reinforces the importance of linker selection in the design of coumarin-caged oligonucleosides and other conjugates.
Collapse
Affiliation(s)
- Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Kelly Yang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States of America
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| |
Collapse
|
235
|
Wang C, Liu Y, Bao C, Xue Y, Zhou Y, Zhang D, Lin Q, Zhu L. Phototriggered labeling and crosslinking by 2-nitrobenzyl alcohol derivatives with amine selectivity. Chem Commun (Camb) 2020; 56:2264-2267. [PMID: 31984385 DOI: 10.1039/c9cc09449k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we report the use of 2-nitrobenzyl alcohol (NB) as a photoreactive group with amine selectivity and explore its applications for photoaffinity labeling and crosslinking of biomolecules. This work confirms that NB is an efficient photoreactive group and has great potential in drug discovery, chemical biology and protein engineering.
Collapse
Affiliation(s)
- Chenxi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yuan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Chunyan Bao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yuan Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yaowu Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Dasheng Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Qiuning Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Linyong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
236
|
Rustler K, Nitschke P, Zahnbrecher S, Zach J, Crespi S, König B. Photochromic Evaluation of 3(5)-Arylazo-1H-pyrazoles. J Org Chem 2020; 85:4079-4088. [DOI: 10.1021/acs.joc.9b03097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karin Rustler
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Philipp Nitschke
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sophie Zahnbrecher
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Zach
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
237
|
Anhäuser L, Klöcker N, Muttach F, Mäsing F, Špaček P, Studer A, Rentmeister A. A Benzophenone-Based Photocaging Strategy for the N7 Position of Guanosine. Angew Chem Int Ed Engl 2020; 59:3161-3165. [PMID: 31747109 PMCID: PMC7012642 DOI: 10.1002/anie.201914573] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Selective modification of nucleobases with photolabile caging groups enables the study and control of processes and interactions of nucleic acids. Numerous positions on nucleobases have been targeted, but all involve formal substitution of a hydrogen atom with a photocaging group. Nature, however, also uses ring-nitrogen methylation, such as m7 G and m1 A, to change the electronic structure and properties of RNA and control biomolecular interactions essential for translation and turnover. We report that aryl ketones such as benzophenone and α-hydroxyalkyl ketone are photolabile caging groups if installed at the N7 position of guanosine or the N1 position of adenosine. Common photocaging groups derived from the ortho-nitrobenzyl moiety were not suitable. Both chemical and enzymatic methods for site-specific modification of N7G in nucleosides, dinucleotides, and RNA were developed, thereby opening the door to studying the molecular interactions of m7 G and m1 A with spatiotemporal control.
Collapse
Affiliation(s)
- Lea Anhäuser
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Nils Klöcker
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Fabian Muttach
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Florian Mäsing
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Petr Špaček
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Andrea Rentmeister
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| |
Collapse
|
238
|
Mallo N, Tron A, Andréasson J, Harper JB, Jacob LSD, McClenaghan ND, Jonusauskas G, Beves JE. Hydrogen‐Bonding Donor‐Acceptor Stenhouse Adducts. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900295] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Neil Mallo
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Arnaud Tron
- Univ. Bordeaux/CNRS 351 cours de la Libération 33405 Talence Cedex France
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | | | | | | | | | | |
Collapse
|
239
|
Myrhammar A, Rosik D, Karlström AE. Photocontrolled Reversible Binding between the Protein A-Derived Z Domain and Immunoglobulin G. Bioconjug Chem 2020; 31:622-630. [DOI: 10.1021/acs.bioconjchem.9b00786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anders Myrhammar
- Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology AlbaNova University Center, S−106 91 Stockholm, Sweden
| | - Daniel Rosik
- Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology AlbaNova University Center, S−106 91 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology AlbaNova University Center, S−106 91 Stockholm, Sweden
| |
Collapse
|
240
|
Jedlitzke B, Yilmaz Z, Dörner W, Mootz HD. Photobodies: Light-Activatable Single-Domain Antibody Fragments. Angew Chem Int Ed Engl 2020; 59:1506-1510. [PMID: 31755215 PMCID: PMC7004160 DOI: 10.1002/anie.201912286] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Indexed: 12/16/2022]
Abstract
Photocaged antibody fragments, termed photobodies, have been developed that are impaired in their antigen-binding capacity and can be activated by irradiation with UV light (365 nm). This rational design concept builds on the selective photocaging of a single tyrosine in a nanobody (a single-domain antibody fragment). Tyrosine is a frequently occurring residue in central positions of the paratope region. o-Nitrobenzyl-protected tyrosine variants were incorporated into four nanobodies, including examples directed against EGFR and HER2, and photodeprotection restores the native sequence. An anti-GFP photobody exhibited an at least 10 000-fold impaired binding affinity before photodeprotection compared with the parent nanobody. A bispecific nanobody-photobody fusion protein was generated to trigger protein heterodimerization by light. Photoactivatable antibodies are expected to become versatile protein reagents and to enable novel approaches in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Benedikt Jedlitzke
- Institute of BiochemistryDepartment of Chemistry and PharmacyUniversity of MuensterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Zahide Yilmaz
- Institute of BiochemistryDepartment of Chemistry and PharmacyUniversity of MuensterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Wolfgang Dörner
- Institute of BiochemistryDepartment of Chemistry and PharmacyUniversity of MuensterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Henning D. Mootz
- Institute of BiochemistryDepartment of Chemistry and PharmacyUniversity of MuensterWilhelm-Klemm-Str. 248149MünsterGermany
| |
Collapse
|
241
|
Hornung JE, Hellwig N, Göbel MW. Peptide Nucleic Acid Conjugates of Quinone Methide Precursors Alkylate Ribonucleic Acid after Activation with Light. Bioconjug Chem 2020; 31:639-645. [PMID: 31904221 DOI: 10.1021/acs.bioconjchem.9b00796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quinone methide precursors 2 and 3 were protected with a photoreactive 2-nitrobenzyl group and conjugated to peptide nucleic acids (PNA) using a Huisgen click reaction. After brief irradiation at 365 nm, cross-linking with complementary RNA strands started and was analyzed with an ALFexpress sequencer. When this method was used, the gel temperature had a major influence on apparent rates. Quinone methides are known to form transient as well as stable bonds with nucleotides. Although both were detected at 25 °C, analysis at 57 °C only recorded the stable types of cross-links, suggesting much slower alkylation kinetics. Linker 11 allowed us to attach quinone methides to internal positions of the PNA/RNA duplex and to capture a model of miR-20a with good efficiency.
Collapse
|
242
|
Müller S, Paulus J, Mattay J, Ihmels H, Dodero VI, Sewald N. Photocontrolled DNA minor groove interactions of imidazole/pyrrole polyamides. Beilstein J Org Chem 2020; 16:60-70. [PMID: 31976017 PMCID: PMC6964667 DOI: 10.3762/bjoc.16.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Azobenzenes are photoswitchable molecules capable of generating significant structural changes upon E-to-Z photoisomerization in peptides or small molecules, thereby controlling geometry and functionality. E-to-Z photoisomerization usually is achieved upon irradiation at 350 nm (π–π* transition), while the Z-to-E isomerization proceeds photochemically upon irradiation at >400 nm (n–π* transition) or thermally. Photoswitchable compounds have frequently been employed as modules, e.g., to control protein–DNA interactions. However, their use in conjunction with minor groove-binding imidazole/pyrrole (Im/Py) polyamides is yet unprecedented. Dervan-type Im/Py polyamides were equipped with an azobenzene unit, i.e., 3-(3-(aminomethyl)phenyl)azophenylacetic acid, as the linker between two Im/Py polyamide strands. Only the (Z)-azobenzene-containing polyamides bound to the minor groove of double-stranded DNA hairpins. Photoisomerization was exemplarily evaluated by 1H NMR experiments, while minor groove binding of the (Z)-azobenzene derivatives was proven by CD titration experiments. The resulting induced circular dichroism (ICD) bands of the bound ligands, together with the photometric determination of the dsDNA melting temperature, revealed a significant stabilization of the DNA upon association with the ligand. The (Z)-azobenzene acted as a building block inducing a reverse turn, which favored hydrogen bonds between the pyrrole/imidazole amide and the DNA bases. In contrast, the E-configured polyamides did not induce any ICD characteristic for minor groove binding. The incorporation of the photoswitchable azobenzene unit is a promising strategy to obtain photoswitchable Im/Py hairpin polyamides capable of interacting with the dsDNA minor groove only in the Z-configuration.
Collapse
Affiliation(s)
- Sabrina Müller
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, D-33501 Bielefeld, Germany
| | - Jannik Paulus
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, D-33501 Bielefeld, Germany
| | - Jochen Mattay
- Organic Chemistry I, Department of Chemistry, Bielefeld University, PO Box 100131, D-33501 Bielefeld, Germany
| | - Heiko Ihmels
- Organic Chemistry II, Department Chemistry - Biology, Siegen University, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Veronica I Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, D-33501 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
243
|
Peptide drugs for photopharmacology: how much of a safety advantage can be gained by photocontrol? FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To verify whether photocontrol of biological activity could augment safety of a chemotherapeutic agent. Materials & methods: LD50 values for gramicidin S and photoisomeric forms of its photoswitchable diarylethene-containing analogs were determined using mice. The results were compared with data obtained from cell viability measurements taken for the same compounds. Absorption, Distribution, Metabolism, and Elimination (ADME) tests using a murine cancer model were conducted to get insight into the underlying reasons for the observed in vivo toxicity. Results: While in vitro cytotoxicity values of the photoisomers differed substantially, the differences in the observed LD50 values were less pronounced due to unfavorable pharmacokinetic parameters. Conclusion: Despite unfavorable pharmacokinetic properties as in the representative case studied here, there is an overall advantage to be gained in the safety profile of a chemotherapeutic agent via photocontrol. Nevertheless, optimization of the pharmacokinetic parameters of photoisomers is an important issue to be addressed during the development of photopharmacological drugs.
Collapse
|
244
|
Bhunia S, Dolai A, Samanta S. Robust bi-directional photoswitching of thiomethyl substituted arylazopyrazoles under visible light. Chem Commun (Camb) 2020; 56:10247-10250. [DOI: 10.1039/d0cc04098c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mono-ortho- and para-thiomethyl substituted arylazopyrazoles display excellent isomerization in both directions under visible light, and show long cis half-lives. These switches are also resistant to photobleaching and reduction by glutathione.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Anirban Dolai
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Subhas Samanta
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
245
|
Hammill ML, Islam G, Desaulniers JP. Reversible control of RNA interference by siRNAzos. Org Biomol Chem 2020; 18:41-46. [DOI: 10.1039/c9ob02509j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we report the reversible control of RNA interference using siRNAzos, a class of siRNAs that contain azobenzene.
Collapse
Affiliation(s)
- Matthew L. Hammill
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | - Golam Islam
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | | |
Collapse
|
246
|
|
247
|
Trebacz M, Wang Y, Makotta L, Henschke L, Köhn M. Development of a Photoactivatable Protein Phosphatase-1-Disrupting Peptide. J Org Chem 2019; 85:1712-1717. [PMID: 31841001 PMCID: PMC7011174 DOI: 10.1021/acs.joc.9b02548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
We describe here the development of a photoreleasable
version of
a protein phosphatase-1 (PP1)-disrupting peptide (PDP-Nal) that triggers protein phosphatase-1 activity. PDP-Nal is a 23 mer that binds to PP1 through several interactions. It was
photocaged on a tyrosine residue, which required the exchange of phenylalanine
in PDP-Nal to tyrosine in order to disrupt the most
important binding interface. This PDP-caged can
be light-controlled in live cells.
Collapse
Affiliation(s)
- Malgorzata Trebacz
- Faculty of Biology, Institute of Biology III , University of Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany.,Signalling Research Centres BIOSS and CIBSS , University of Freiburg , 79104 Freiburg , Germany.,European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Yansong Wang
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Leslie Makotta
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Lars Henschke
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III , University of Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany.,Signalling Research Centres BIOSS and CIBSS , University of Freiburg , 79104 Freiburg , Germany.,European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| |
Collapse
|
248
|
Anhäuser L, Klöcker N, Muttach F, Mäsing F, Špaček P, Studer A, Rentmeister A. Eine auf dem Benzophenongerüst basierende Strategie für die Photoschützung der N7‐Position des Guanosins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201914573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lea Anhäuser
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Nils Klöcker
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Fabian Muttach
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Florian Mäsing
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Deutschland
| | - Petr Špaček
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Deutschland
| | - Andrea Rentmeister
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| |
Collapse
|
249
|
Naskar S, Müller J. Light-Induced Formation of Thymine-Containing Mercury(II)-Mediated Base Pairs. Chemistry 2019; 25:16214-16218. [PMID: 31682036 PMCID: PMC6972992 DOI: 10.1002/chem.201903789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Indexed: 12/16/2022]
Abstract
By applying caged thymidine residues, DNA duplexes were created in which HgII -mediated base pair formation can be triggered by irradiation with light. When a bidentate ligand was used as the complementary nucleobase, an unprecedented stepwise formation of different metal-mediated base pairs was achieved.
Collapse
Affiliation(s)
- Shuvankar Naskar
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstr. 3048149MünsterGermany
| | - Jens Müller
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstr. 3048149MünsterGermany
| |
Collapse
|
250
|
Nguyen L, Li M, Woo S, You Y. Development of Prodrugs for PDT-Based Combination Therapy Using a Singlet-Oxygen-Sensitive Linker and Quantitative Systems Pharmacology. J Clin Med 2019; 8:jcm8122198. [PMID: 31847080 PMCID: PMC6947033 DOI: 10.3390/jcm8122198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) has become an effective treatment for certain types of solid tumors. The combination of PDT with other therapies has been extensively investigated in recent years to improve its effectiveness and expand its applications. This focused review summarizes the development of a prodrug system in which anticancer drugs are activated locally at tumor sites during PDT treatment. The development of a singlet-oxygen-sensitive linker that can be conveniently conjugated to various drugs and efficiently cleaved to release intact drugs is recapitulated. The initial design of prodrugs, preliminary efficacy evaluation, pharmacokinetics study, and optimization using quantitative systems pharmacology is discussed. Current treatment optimization in animal models using physiologically based a pharmacokinetic (PBPK) modeling approach is also explored.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
- Correspondence: ; Tel.: +1-716-645-4843
| |
Collapse
|