201
|
Bhardwaj V, Cascone T, Cortez MA, Amini A, Evans J, Komaki RU, Heymach JV, Welsh JW. Modulation of c-Met signaling and cellular sensitivity to radiation: potential implications for therapy. Cancer 2013; 119:1768-75. [PMID: 23423860 DOI: 10.1002/cncr.27965] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
The c-Met/hepatocyte growth factor receptor and its family members are known to promote cancer cell migration and invasion. Signaling within and beyond this pathway contributes to the systemic spread of metastases through induction of the epithelial-mesenchymal transition, a process also implicated in mediating resistance to current anticancer therapies, including radiation. Induction of c-Met has also been observed after irradiation, suggesting that c-Met participates in radiation-induced disease progression through the epithelial-mesenchymal transition. Therefore, c-Met inhibition is an attractive target for potentially mitigating radiation resistance. This article summarizes key findings regarding crosstalk between radiotherapy and c-Met and discusses studies performed to date in which c-Met inhibition was used as a strategy to increase cellular radiosensitivity.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Sakai A, Kasahara K, Ohmori T, Kimura H, Sone T, Fujimura M, Nakao S. MET increases the sensitivity of gefitinib-resistant cells to SN-38, an active metabolite of irinotecan, by up-regulating the topoisomerase I activity. J Thorac Oncol 2013; 7:1337-44. [PMID: 22722827 DOI: 10.1097/jto.0b013e31825cca4c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Most non-small-cell lung cancer tumors with epidermal growth factor receptor mutations are responsive to EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib, but almost all such tumors ultimately acquire resistance. We previously found that a gefitinib-resistant cell line, PC-9/Met in which MET (MNNG-HOS transforming gene) is amplified, was more sensitive than its parent cell line (PC-9) to 7-ethyl-10-hydroxy-camptothecin (SN-38), an active metabolite of irinotecan. The purpose of this study was to investigate the mechanisms responsible for the increased sensitivity of the gefitinib-resistant cell line to SN-38. METHODS The sensitivity of PC-9 and PC-9/Met to SN-38 was assessed by performing water soluble tetrazolium salt (WST-1) assays. Topoisomerase I (topo I) activities were determined for the cell lines cultured in the presence of hepatocyte growth factor and for those of which MET expression was knocked down by introducing a MET-specific small interfering RNA. RESULTS PC-9/Met exhibited higher topo I activities, and higher topo I gene and protein expression levels than PC-9 did. Suppression of MET expression by a MET-specific small interfering RNA led to a decrease in the topo I protein expression in the PC-9/Met cells. The stimulation of PC-9 with hepatocyte growth factor caused an increase in the topo I protein level via the activation of MET. CONCLUSIONS The increased sensitivity of PC-9/Met cells to SN-38 compared with that of PC-9 cells was partially because of topo I activities resulting from increased topo I mRNA and protein expression caused by MET signaling.
Collapse
Affiliation(s)
- Asao Sakai
- Respiratory Medicine, Cellular Transplantation Biology, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
203
|
Broggini M, Garassino MC, Damia G. Evaluation of safety and efficacy of tivantinib in the treatment of inoperable or recurrent non-small-cell lung cancer. Cancer Manag Res 2013; 5:15-20. [PMID: 23378782 PMCID: PMC3559079 DOI: 10.2147/cmar.s29995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tivantinib is a selective, oral, non-ATP-competitive, small molecule inhibitor of the c-Met receptor, tyrosine kinase, which is implicated at different levels of tumor cell migration, invasion, proliferation, and metastasis. Tivantinib has shown antitumor activity in various human tumor cell lines and in xenograft models of human cancers, including non-small-cell lung cancer. Few therapeutic options are available at present for advanced non-small-cell lung cancer, so there is a pressing need for new therapeutic strategies to improve response and survival. Amplification of Met has been reported in more than 20% of lung tumors that have acquired resistance to epidermal growth factor receptor inhibitors, implying that treatment of these tumors with a c-Met inhibitor should overcome resistance. Tivantinib has shown interesting and promising results in advanced non-small-cell lung cancer and appears to be well tolerated, either alone or in combination with other drugs. An interesting additional feature is the ability of the drug to delay development of new metastasis, in agreement with the proposed role of Met in this particular setting.
Collapse
Affiliation(s)
- Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | | | |
Collapse
|
204
|
Hirsh V. Saudi Lung Cancer Guidelines Supplement 2012. Introduction from the Guest Editor. J Infect Public Health 2013; 5 Suppl 1:S2-3. [PMID: 23244182 DOI: 10.1016/j.jiph.2012.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
205
|
Bagai R, Ma PC. The Role of the Insulin-like Growth Factor-1 Receptor (IGF-1R), Phosphatase and Tensin Homolog (PTEN), c-Met, and the PI3-Kinase Pathway in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
206
|
Feng Y, Ma PC. Anti-MET targeted therapy has come of age: the first durable complete response with MetMAb in metastatic gastric cancer. Cancer Discov 2012; 1:550-4. [PMID: 22586678 DOI: 10.1158/2159-8290.cd-11-0289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MET/hepatocyte growth factor (HGF) signaling pathway plays important roles in oncogenesis and tumor progression in a variety of human cancers. MET/HGF drives an invasive signaling program that can be dysregulated in human cancers through a number of activating mechanisms, including mutations, overexpression, amplification, alternative splicing, and HGF ligand-induced autocrine/paracrine loop signaling. As a testimony of MET-targeting therapeutics is beginning to come to clinical fruition, Catenacci and colleagues report the first case of durable complete response under an anti-MET receptor monoclonal antibody, MetMAb, in a patient with chemotherapy-refractory, advanced gastric cancer metastatic to the liver, found to have high MET gene polysomy and remarkably high serum HGF level. Serum and tissue studies also revealed predictive biomarkers for therapeutic response to MET inhibition.
Collapse
Affiliation(s)
- Yan Feng
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
207
|
Abstract
The receptor tyrosine kinase c-MET and its ligand, hepatocyte growth factor (HGF), regulate multiple cellular processes that stimulate cell proliferation, invasion and angiogenesis. This review provides an overview of the evidence to support c-MET or the HGF/c-MET signaling pathway as relevant targets for personalized cancer treatment based on high frequencies of c-MET and/or HGF overexpression, activation, amplification in non-small cell lung carcinoma (NSCLC), gastric, ovarian, pancreatic, thyroid, breast, head and neck, colon and kidney carcinomas. Additionally, the current knowledge of small molecule inhibitors (tivantinib [ARQ 197]), c-MET/HGF antibodies (rilotumumab and MetMAb) and mechanisms of resistance to c-MET-targeted therapies are discussed.
Collapse
Affiliation(s)
- J Rafael Sierra
- Princess Margaret Hospital/Ontario Cancer Institute and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
208
|
Affiliation(s)
- Johann S de Bono
- Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey SM2 5PT, UK
| | | |
Collapse
|
209
|
Feng Y, Ma PC. MET targeted therapy for lung cancer: clinical development and future directions. LUNG CANCER-TARGETS AND THERAPY 2012; 3:53-67. [PMID: 28210125 DOI: 10.2147/lctt.s23423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MET, the receptor for hepatocyte growth factor, has been identified as a novel promising target in various human malignancies, including lung cancer. Research studies have demonstrated that MET signaling plays important physiologic roles in embryogenesis and early development, whereas its deregulation from an otherwise quiescent signaling state in mature adult tissues can lead to upregulated cell proliferation, survival, scattering, motility and migration, angiogenesis, invasion, and metastasis in tumorigenesis and tumor progression. The MET pathway can be activated through ligand (hepatocyte growth factor, HGF) or MET receptor overexpression, genomic amplification, MET mutations, and alternative splicing. A number of novel therapeutic agents that target the MET/hepatocyte growth factor pathway have been tested in early-phase clinical studies with promising results. Phase III studies of MET targeting agents have recently been initiated. This paper will review the MET signaling pathway and biology in lung cancer, and the recent clinical development and advances of MET/hepatocyte growth factor targeting agents. Emphasis will be placed on discussing various unanswered issues and key strategies needed to optimize further clinical development of MET targeting personalized lung cancer therapy.
Collapse
Affiliation(s)
- Yan Feng
- Translational Hematology and Oncology Research; Solid Tumor Oncology
| | - Patrick C Ma
- Translational Hematology and Oncology Research; Solid Tumor Oncology; Aerodigestive Oncology Translational Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| |
Collapse
|
210
|
Raghav KPS, Eng C. Role of the MET–HGF axis in colorectal cancer: precepts and prospects. COLORECTAL CANCER 2012. [DOI: 10.2217/crc.12.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SUMMARY Colorectal cancer (CRC) accounts for 10% of all cancer-related mortality globally. Despite significant therapeutic advances, overall survival is limited. The restricted repertoire of therapies necessitates investigation into novel pathways of colorectal carcinogenesis. The proto-oncogene MET encodes a receptor tyrosine kinase that acts as a receptor for the HGF. Dysregulation of this MET–HGF axis has been implicated in proliferation, survival and metastasis in various tumor types including CRC. Increased MET–HGF expression correlates with tumor progression and adverse survival outcome. The prognostic impact argues in favor of employing inhibition of the MET–HGF axis as a promising new therapeutic strategy. Future investigations should endeavor to assess the potential application of targeted MET–HGF therapy in CRC and towards patient selection.
Collapse
Affiliation(s)
- Kanwal Pratap Singh Raghav
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd. Unit # 463, Houston, TX 77030, USA
| | - Cathy Eng
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd. Unit # 463, Houston, TX 77030, USA
| |
Collapse
|
211
|
Pierscianek D, Kim YH, Motomura K, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, Wrede K, Nakazato Y, Tanaka Y, Mariani L, Vital A, Sure U, Ohgaki H. MET gain in diffuse astrocytomas is associated with poorer outcome. Brain Pathol 2012; 23:13-8. [PMID: 22672415 DOI: 10.1111/j.1750-3639.2012.00609.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/11/2012] [Indexed: 12/01/2022] Open
Abstract
Glioblastoma may develop rapidly without evidence for precursor lesions (primary glioblastomas), or progress from diffuse or anaplastic astrocytomas (secondary glioblastomas). Despite having distinct genetic profiles, these glioblastoma subtypes have similar histological features. We hypothesized that the highly malignant phenotype of glioblastoma may be attributable to genetic alterations that are common to both glioblastoma subtypes. In the present study, we first searched for commonly (>35%) amplified genes in glioblastomas with IDH1 mutation (a hallmark of secondary glioblastoma) and those without IDH1 mutation (typical for primary glioblastoma) in data from The Cancer Genome Atlas (TCGA). A total of 25 genes were identified, of which 21 were located at 7q31-34. We then screened 264 gliomas (70 glioblastomas, 112 diffuse astrocytomas, 82 oligodendrogliomas) for gain of the MET at 7q31.2 with quantitative polymerase chain reaction (PCR). MET gain was detected in primary glioblastomas (47%) and secondary glioblastomas (44%), suggesting that this genetic alteration plays a role in the pathogenesis of both glioblastoma subtypes. MET gain was also common in diffuse astrocytomas (38%), but less frequent in oligodendrogliomas (16%). MET gain in diffuse astrocytomas was associated with shorter survival (median, 43.0 vs. 70.7 months; P = 0.004), suggesting that MET gain is a useful prognostic marker for diffuse astrocytomas.
Collapse
Affiliation(s)
- Daniela Pierscianek
- Molecular Pathology, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Vincent M, Kuruvilla M, Leighl N, Kamel–Reid S. Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS. Curr Oncol 2012; 19:S33-44. [PMID: 22787409 PMCID: PMC3377752 DOI: 10.3747/co.19.1149] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
New drugs such as pemetrexed, the epidermal growth factor receptor (egfr) tyrosine kinase inhibitors, and the Alk inhibitor crizotinib have recently enabled progress in the management of advanced non-small-cell lung cancer (nsclc). More drugs, especially Met inhibitors, will follow. However, the benefits of these agents are not uniform across the spectrum of nsclc, and optimizing their utility requires some degree of subgrouping of nsclc by the presence or absence of certain biomarkers.The biomarkers of current or imminent value are EGFR and KRAS mutational status, ALK rearrangements, and MET immunohistochemistry. As a predictor of benefit for anti-egfr monoclonal antibodies, EGFR immunohistochemistry is also of potential interest.Some of the foregoing biomarkers (EGFR, ALK, MET) are direct drivers of the malignant phenotype. As such, they are, quite rationally, the direct targets of inhibitory drugs. However, KRAS, while definitely a driver, has resisted attempts at direct pharmacologic manipulation, and its main value might lie in its role as part of an efficient testing algorithm, because KRAS mutations appear to exclude EGFR and ALK mutations. The indirect value of KRAS in determining sensitivity to other targeted agents or to pemetrexed remains controversial. The other biomarkers (EGFR, ALK, MET) may also have indirect value as predictors of sensitivity to chemotherapy in general, to pemetrexed specifically, and to radiotherapy and molecularly targeted agents.These biomarkers have all enabled the co-development of new drugs with companion diagnostics, and they illustrate the paradigm that will govern progress in oncology in the immediate future. However, in nsclc, the acquisition of sufficient biopsy material remains a stubborn obstacle to the evolution of novel targeted therapies.
Collapse
Affiliation(s)
- M.D. Vincent
- Department of Medical Oncology, London Regional Cancer Program, London Health Sciences Centre, London, ON
| | - M.S. Kuruvilla
- Department of Medical Oncology, London Regional Cancer Program, London Health Sciences Centre, London, ON
| | - N.B. Leighl
- Departments of Medical Oncology and Pathology, University Health Network, Princess Margaret Hospital–Ontario Cancer Institute, Toronto, ON
| | - S. Kamel–Reid
- Departments of Medical Oncology and Pathology, University Health Network, Princess Margaret Hospital–Ontario Cancer Institute, Toronto, ON
| |
Collapse
|
213
|
Abstract
MET is a versatile receptor tyrosine kinase within the human kinome which is activated by its specific natural ligand hepatocyte growth factor (HGF). MET signaling plays an important physiologic role in embryogenesis and early development, whereas its deregulation from an otherwise quiescent signaling state in mature adult tissues can lead to upregulated cell proliferation, survival, scattering, motility and migration, angiogenesis, invasion, and metastasis in tumorigenesis and tumor progression. Studies have shown that MET pathway is activated in many solid and hematological malignancies, including lung cancer, and can be altered through ligand or receptor overexpression, genomic amplification, MET mutations, and alternative splicing. The MET signaling pathway is known to be an important novel target for therapeutic intervention in human cancer. A number of novel therapeutic agents that target the MET/HGF pathway have been tested in early-phase clinical studies with promising results. Phase 3 studies of MET targeting agents have just been initiated. We will review the MET signaling pathway and biology in lung cancer and the recent clinical development and advances of MET/HGF targeting agents with emphasis on discussion of issues and strategies needed to optimize the personalized therapy and further clinical development.
Collapse
|
214
|
Goldman JW, Laux I, Chai F, Savage RE, Ferrari D, Garmey EG, Just RG, Rosen LS. Phase 1 dose-escalation trial evaluating the combination of the selective MET (mesenchymal-epithelial transition factor) inhibitor tivantinib (ARQ 197) plus erlotinib. Cancer 2012; 118:5903-11. [PMID: 22605616 DOI: 10.1002/cncr.27575] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/20/2011] [Accepted: 02/09/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Amplification of the mesenchymal-epithelial transition factor (MET) gene can promote tumor resistance to epidermal growth factor receptor (EGFR) inhibition. Dual EGFR-MET inhibition may overcome this resistance. Tivantinib (ARQ 197) is a selective, oral, non-ATP-competitive, small-molecule inhibitor of the MET receptor tyrosine kinase. This phase 1 trial assessed the safety, pharmacokinetics, and preliminary antitumor activity of tivantinib combined with the EGFR inhibitor erlotinib. METHODS Patients with advanced solid malignancies were administered oral tivantinib at escalating doses of 120, 240, 360, and 480 mg twice daily (BID) plus 150 mg erlotinib once daily (QD). Single or multiple intrapatient dose escalation was planned in the absence of dose-limiting toxicity in the first cycle of therapy (21 days). RESULTS Thirty-two patients received combination treatment. Tivantinib serum concentrations were not dose-proportional. The most common (≥ 20%) adverse events (AEs) regardless of causality included rash (n = 17), fatigue (n = 12), nausea (n = 10), abdominal pain (n = 10), diarrhea (n = 9), bradycardia (n = 9), and anemia (n = 7). AEs considered related to study treatment occurred in 28 patients (87.5%), and 5 patients (15.6%) had treatment-related serious AEs, including neutropenia, leukopenia, syncope, sinus bradycardia, and sick sinus syndrome. Fifteen of 32 patients (46.8%) had a partial response (n = 1) or stable disease (n = 14) as assessed by Response Evaluation Criteria in Solid Tumors. Six of 8 patients with nonsmall cell lung cancer achieved stable disease. The recommended phase 2 dose is tivantinib 360 mg BID plus erlotinib 150 mg QD. CONCLUSIONS Tivantinib plus erlotinib was well tolerated with encouraging clinical activity, especially in patients with nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Jonathan W Goldman
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Correlation between MET gene copy number by silver in situ hybridization and protein expression by immunohistochemistry in non-small cell lung cancer. J Thorac Oncol 2012; 7:340-7. [PMID: 22237262 DOI: 10.1097/jto.0b013e318240ca0d] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE The MET receptor is involved in the pathogenesis and progression of non-small cell lung cancer (NSCLC). Clinical trials with MET inhibitors in NSCLC are planned with patient selection based on immunohistochemistry (IHC) and/or gene copy number assessment. Therefore, a detailed understanding of relationship between these markers and prognosis is essential. METHODS This study included tumors from 189 patients with NSCLC who underwent pulmonary resection (median follow-up, 5.3 years). MET expression was evaluated by IHC on tissue microarrays and scored according to hybrid (H) score (range: 0-400) and by scoring system used in the MetMAb trial (≥ 50% of cells with moderate or strong staining). MET gene copy number was assessed by silver in situ hybridization (n =140 patients). RESULTS Median MET IHC H score was 60 (range: 0-400; n =174). There were no associations between clinical and pathological characteristics, disease-free survival, and overall survival according to median value (p =0.36 and p =0.38, respectively), or other cut-points. According to MetMAb scoring criteria, IHC positivity rate was 25%, again with no associations to clinicopathological features or survival. In 140 tumors evaluable for MET copy number, 3 (2.1%) showed gene amplification and 14 (10%) had tumors with average of 5 or more copies per nucleus. There were no associations of MET copy number with clinical characteristics, disease-free survival, or overall survival with any analyzed cut-points. Correlation between MET copy number and protein expression was significant (Pearson's r =0.42, p < 0.0001). CONCLUSIONS There is a significant correlation between MET protein expression and MET gene copy number in operable NSCLC, but neither is associated with prognosis.
Collapse
|
216
|
Wagner AJ, Goldberg JM, DuBois SG, Choy E, Rosen L, Pappo A, Geller J, Judson I, Hogg D, Senzer N, Davis IJ, Chai F, Waghorne C, Schwartz B, Demetri GD. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors. Cancer 2012; 118:5894-902. [DOI: 10.1002/cncr.27582] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/02/2012] [Accepted: 02/27/2012] [Indexed: 11/07/2022]
|
217
|
Progress in cancer therapy targeting c-Met signaling pathway. Arch Pharm Res 2012; 35:595-604. [DOI: 10.1007/s12272-012-0402-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/13/2011] [Accepted: 11/19/2011] [Indexed: 01/09/2023]
|
218
|
Cagle PT, Chirieac LR. Advances in Treatment of Lung Cancer With Targeted Therapy. Arch Pathol Lab Med 2012; 136:504-9. [DOI: 10.5858/arpa.2011-0618-ra] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—Ongoing preclinical investigations and clinical trials involving new targeted therapies promise to improve survival for patients with lung cancer. Targeted therapeutic agents, based on genetic mutations and signaling pathways altered in lung cancer, have added significantly to our armamentarium for lung cancer treatment while minimizing drug toxicity. To date, 4 targeted therapies have been approved for treatment of lung cancer by the US Food and Drug Administration: gefitinib in 2002, erlotinib in 2003, bevacizumab in 2006, and crizotinib in 2011.
Objective.—To review targeted therapies in lung cancer, the molecular biomarkers that identify patients likely to benefit from these targeted therapies, the basic molecular biology principles, selected molecular diagnostic techniques, and pathologic features correlated with molecular abnormalities in lung cancer. To review new molecular abnormalities described in lung cancer that are predictive for response to novel promising targeted agents in various phases of clinical trials.
Data Sources.—Review of the literature covering the molecular abnormalities of lung cancer with a focus on the molecular diagnostics and targeted therapy. Special emphasis is placed on summarizing evolving technologies useful in the diagnosis and characterization of lung cancer.
Conclusions.—Molecular testing of lung cancer expands the expertise of the pathologist, who will identify the tumor markers that are predictive of sensitivity or resistance to various targeted therapies and allow patients with cancer to be selected for highly effective and less toxic therapies.
Collapse
|
219
|
Onvani S, Terakawa Y, Smith C, Northcott P, Taylor M, Rutka J. Molecular genetic analysis of the hepatocyte growth factor/MET signaling pathway in pediatric medulloblastoma. Genes Chromosomes Cancer 2012; 51:675-88. [PMID: 22447520 DOI: 10.1002/gcc.21954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 01/24/2023] Open
Abstract
The hepatocyte growth factor (HGF)/MET pathway plays a critical role in the development of the nervous system and has been implicated in medulloblastoma pathogenesis. Recent studies have shown a role for gene amplification of activators of this pathway, as well as silencing of its inhibitors in medulloblastoma pathogenesis. We analyzed exon array data from a cohort of 103 primary medulloblastomas to show that HGF/MET pathway elements are dysregulated in tumors compared to normal cerebellum. To determine if mutation of HGF/MET pathway genes is a mechanism for pathway dysregulation, we conducted a mutational analysis by exon resequencing of three key components of this pathway, including serine protease inhibitor Kunitz-type 1 (SPINT1), serine protease inhibitor Kunitz-type 2 (SPINT2), and MET, in 32 primary human medulloblastoma specimens. From this analysis, we identified multiple coding synonymous and nonsynonymous single nucleotide polymorphisms in these genes among the 32 tumor samples. Interestingly, we also discovered two unreported sequence variants in SPINT1 and SPINT2 in two tumors that resulted in Arginine to Histidine amino acid substitutions at codons 418 and 233, respectively. However, conservation assessment and functional assays of these two variants indicate that they involve nonconserved residues and that they do not affect the function of SPINT1 and SPINT2 as tumor suppressor genes. In conclusion, our data suggest that mutation alone plays a minor role in causing aberrancies of the HGF/MET pathway in medulloblastoma in comparison with other malignancies such as breast, hepatocellular, renal, and lung carcinomas.
Collapse
Affiliation(s)
- Sara Onvani
- Arthur and Sonia Labatt Brain Tumour Research Centre, Department of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
220
|
Scagliotti GV, Novello S, Schiller JH, Hirsh V, Sequist LV, Soria JC, von Pawel J, Schwartz B, Von Roemeling R, Sandler AB. Rationale and design of MARQUEE: a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin Lung Cancer 2012; 13:391-5. [PMID: 22440336 DOI: 10.1016/j.cllc.2012.01.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/13/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
We present the rationale and design for MARQUEE, a phase III, randomized, double-blind, placebo-controlled study of ARQ 197 plus erlotinib versus placebo plus erlotinib in previously treated subjects with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer (NSCLC). The design of MARQUEE is based on preclinical data, the current understanding of the role of cellular N-methyl-N'-nitroso-guanidine human osteosarcoma (MNNG HOS) transforming gene (MET) in NSCLC, and clinical data from a randomized phase II study. The available evidence suggests that dual inhibition of MET and the epidermal growth factor receptor (EGFR) may overcome resistance to EGFR inhibitors. In the phase II study, the combination of tivantinib plus erlotinib significantly improved progression-free survival (PFS) and overall survival (OS) compared with placebo plus erlotinib in the subset of patients with nonsquamous histology, a population enriched for MET overexpression. The primary endpoint in MARQUEE is OS. Secondary and exploratory objectives include determination of PFS, OS in molecular subgroups (defined by EGFR and KRAS mutation status, amplification or overexpression of MET, and serum hepatocyte growth factor), and safety. All patients will be tested for biomarkers, and the results will provide a wealth of information on the role of tivantinib in treating nonsquamous NSCLC.
Collapse
|
221
|
Wang W, Li Q, Takeuchi S, Yamada T, Koizumi H, Nakamura T, Matsumoto K, Mukaida N, Nishioka Y, Sone S, Nakagawa T, Uenaka T, Yano S. Met kinase inhibitor E7050 reverses three different mechanisms of hepatocyte growth factor-induced tyrosine kinase inhibitor resistance in EGFR mutant lung cancer. Clin Cancer Res 2012; 18:1663-1671. [PMID: 22317763 DOI: 10.1158/1078-0432.ccr-11-1171] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hepatocyte growth factor (HGF) induces resistance to reversible and irreversible epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) in EGFR mutant lung cancer cells by activating Met and the downstream phosphoinositide 3-kinase (PI3K)/Akt pathway. Moreover, continuous exposure to HGF accelerates the emergence of EGFR-TKI-resistant clones. We assayed whether a new Met kinase inhibitor, E7050, which is currently being evaluated in clinical trials, could overcome these three mechanisms of resistance to EGFR-TKIs. EXPERIMENTAL DESIGN The effects of E7050 on HGF-induced resistance to reversible (gefitinib), irreversible (BIBW2992), and mutant-selective (WZ4002) EGFR-TKIs were determined using the EGFR mutant human lung cancer cell lines PC-9 and HCC827 with an exon 19 deletion and H1975 with an T790M secondary mutation. PC-9 cells were mixed with HGF-producing fibroblasts, MRC-5 cells, and subcutaneously inoculated into severe combined immunodeficient mice, and the therapeutic effects of E7050 plus gefitinib were assayed. RESULTS E7050 circumvented resistance to all of the reversible, irreversible, and mutant-selective EGFR-TKIs induced by exogenous and/or endogenous HGF in EGFR mutant lung cancer cell lines, by blocking the Met/Gab1/PI3K/Akt pathway in vitro. E7050 also prevented the emergence of gefitinib-resistant HCC827 cells induced by continuous exposure to HGF. In the in vivo model, E7050 plus gefitinib resulted in marked regression of tumor growth associated with inhibition of Akt phosphorylation in cancer cells. CONCLUSIONS A new Met kinase inhibitor, E7050, reverses the three HGF-induced mechanisms of gefitinib resistance, suggesting that E7050 may overcome HGF-induced resistance to gefitinib and next-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Wei Wang
- Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN, Mills GB, Meric-Bernstam F, Blumenschein GR, Gonzalez-Angulo AM. cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res 2012; 18:2269-77. [PMID: 22374333 DOI: 10.1158/1078-0432.ccr-11-2830] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate cMET (mesenchymal-epithelial transition factor gene) and phospho-cMET (p-cMET) levels in breast cancer subtypes and its impact on survival outcomes. EXPERIMENTAL DESIGN We measured protein levels of cMET and p-cMET in 257 breast cancers using reverse phase protein array. Regression tree method and Martingale residual plots were applied to find best cutoff point for high and low levels. Kaplan-Meier survival curves were used to estimate relapse-free (RFS) and overall (OS) survival. Cox proportional hazards models were fit to determine associations of cMET/p-cMET with outcomes after adjustment for other characteristics. RESULTS Median age was 51 years. There were 140 (54.5%) hormone receptor (HR) positive, 53 (20.6%) HER2 positive, and 64 (24.9%) triple-negative tumors. Using selected cutoffs, 181 (70.4%) and 123 (47.9%) cancers had high levels of cMET and p-cMET, respectively. There were no significant differences in mean expression of cMET (P < 0.128) and p-cMET (P < 0.088) by breast cancer subtype. Dichotomized cMET and p-cMET level was a significant prognostic factor for RFS [HR: 2.44, 95% confidence interval (CI): 1.34-4.44, P = 0.003 and HR: 1.64, 95% CI: 1.04-2.60, P = 0.033] and OS (HR: 3.18, 95% CI: 1.43-7.11, P = 0.003 and HR: 1.92, 95% CI: 1.08-3.44, P = 0.025). Within breast cancer subtypes, high cMET levels were associated with worse RFS (P = 0.014) and OS (P = 0.006) in HR-positive tumors, and high p-cMET levels were associated with worse RFS (P = 0.019) and OS (P = 0.014) in HER2-positive breast cancers. In multivariable analysis, patients with high cMET had a significantly higher risk of recurrence (HR: 2.06, 95% CI: 1.08-3.94, P = 0.028) and death (HR: 2.81, 95% CI: 1.19-6.64, P = 0.019). High p-cMET level was associated with higher risk of recurrence (HR: 1.79, 95% CI: 1.08-2.95.77, P = 0.020). CONCLUSIONS High levels of cMET and p-cMET were seen in all breast cancer subtypes and correlated with poor prognosis.
Collapse
Affiliation(s)
- Kanwal P Raghav
- Department of Hematology/Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Yang JJ, Cho LY, Ko KP, Shin A, Ma SH, Choi BY, Han DS, Song KS, Kim YS, Lee JY, Han BG, Chang SH, Shin HR, Kang D, Yoo KY, Park SK. Genetic susceptibility on CagA-interacting molecules and gene-environment interaction with phytoestrogens: a putative risk factor for gastric cancer. PLoS One 2012; 7:e31020. [PMID: 22383989 PMCID: PMC3286459 DOI: 10.1371/journal.pone.0031020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/29/2011] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To evaluate whether genes that encode CagA-interacting molecules (SRC, PTPN11, CRK, CRKL, CSK, c-MET and GRB2) are associated with gastric cancer risk and whether an interaction between these genes and phytoestrogens modify gastric cancer risk. METHODS In the discovery phase, 137 candidate SNPs in seven genes were analyzed in 76 incident gastric cancer cases and 322 matched controls from the Korean Multi-Center Cancer Cohort. Five significant SNPs in three genes (SRC, c-MET and CRK) were re-evaluated in 386 cases and 348 controls in the extension phase. Odds ratios (ORs) for gastric cancer risk were estimated adjusted for age, smoking, H. pylori seropositivity and CagA strain positivity. Summarized ORs in the total study population (462 cases and 670 controls) were presented using pooled- and meta-analysis. Plasma concentrations of phytoestrogens (genistein, daidzein, equol and enterolactone) were measured using the time-resolved fluoroimmunoassay. RESULTS SRC rs6122566, rs6124914, c-MET rs41739, and CRK rs7208768 showed significant genetic effects for gastric cancer in both the pooled and meta-analysis without heterogeneity (pooled OR = 3.96 [95% CI 2.05-7.65], 1.24 [95% CI = 1.01-1.53], 1.19 [95% CI = 1.01-1.41], and 1.37 [95% CI = 1.15-1.62], respectively; meta OR = 4.59 [95% CI 2.74-7.70], 1.36 [95% CI = 1.09-1.70], 1.20 [95% CI = 1.00-1.44], and 1.32 [95% CI = 1.10-1.57], respectively). Risk allele of CRK rs7208768 had a significantly increased risk for gastric cancer at low phytoestrogen levels (p interaction<0.05). CONCLUSIONS Our findings suggest that SRC, c-MET and CRK play a key role in gastric carcinogenesis by modulating CagA signal transductions and interaction between CRK gene and phytoestrogens modify gastric cancer risk.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Lisa Y. Cho
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kwang-Pil Ko
- Department of Preventive Medicine, Gachon University of Medicine and Science, Incheon, Korea
| | - Aesun Shin
- Cancer Epidemiology Branch, National Cancer Center, Goyang-si, Korea
| | - Seung Hyun Ma
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Kyu Sang Song
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yong Sung Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jong-Young Lee
- Center for Genome Science, Korea National Institute of Health, Osong, Korea
| | - Bok Ghee Han
- Center for Genome Science, Korea National Institute of Health, Osong, Korea
| | - Soung-Hoon Chang
- Department of Preventive Medicine, Konkuk University, Chungju, Korea
| | - Hai-Rim Shin
- Cancer Epidemiology Branch, National Cancer Center, Goyang-si, Korea
- Non Communicable Diseases and Health Promotion, World Health Organization, Western Pacific Regional Office, Manila, Philippines
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| |
Collapse
|
224
|
|
225
|
Impact of the small molecule Met inhibitor BMS-777607 on the metastatic process in a rodent tumor model with constitutive c-Met activation. Clin Exp Metastasis 2012; 29:253-61. [DOI: 10.1007/s10585-011-9447-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/22/2011] [Indexed: 01/22/2023]
|
226
|
Abstract
Uncontrolled cell survival, growth, angiogenesis and metastasis are essential hallmarks of cancer. Genetic and biochemical data have demonstrated that the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, the tyrosine kinase MET, have a causal role in all of these processes, thus providing a strong rationale for targeting these molecules in cancer. Parallel progress in understanding the structure and function of HGF/SF, MET and associated signalling components has led to the successful development of blocking antibodies and a large number of small-molecule MET kinase inhibitors. In this Review, we discuss these advances, as well as results from recent clinical studies that demonstrate that inhibiting MET signalling in several types of solid human tumours has major therapeutic value.
Collapse
Affiliation(s)
- Ermanno Gherardi
- Medical Research Council (MRC) Centre, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|
227
|
Accumulative copy number increase of MET drives tumor development and histological progression in a subset of ovarian clear-cell adenocarcinomas. Mod Pathol 2012; 25:122-30. [PMID: 21983935 DOI: 10.1038/modpathol.2011.143] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Our previous study demonstrated that, among ovarian carcinomas, amplification of the MET gene and overexpression of MET specifically and commonly occur in clear-cell adenocarcinoma histology. This study was conducted to address how these alterations contribute to development and progression of this highly chemoresistant form of ovarian cancer. We histologically reviewed 21 previously described MET amplification-positive clear-cell adenocarcinoma cases, and selected 11 tumors with synchronous endometriosis and 2 tumors with adjacent clear-cell adenofibroma (CCAF) components. Using double in situ hybridization and immunohistochemistry, copy number alterations of the MET gene and levels of MET protein expression were analyzed in these putative precursor lesions and the corresponding invasive carcinoma components in this selected cohort. All of the non-atypical precursor lesions analyzed (ie, non-atypical endometrioses and the benign CCAFs) were negative for MET gain. However, low-level (≥3 MET copies in ≥10% and ≥4 MET copies in 10-40% of tumor cells) gain of MET was detected in 4 (40%) of the 10 atypical endometrioses and 1 of the 2 borderline CCAFs. Moreover, high-level (≥4 MET copies in ≥40% of tumor cells) gain of MET were detected in five (50%) of the atypical endometrioses. In 4 (31%) of the 13 cases enrolled, intratumoral heterogeneity for MET gain was documented in invasive carcinoma components, wherein all the relatively differentiated carcinoma components showed low-level gain of MET and all the corresponding poorly differentiated carcinomas showed high-level gain. The overall incidence of MET overexpression gradually increased from the precursors of non-atypical form (0%), through those of atypical form (67%) and the relatively differentiated carcinoma components (92%), to the poorly differentiated carcinoma components (100%). These results suggest that accumulative MET gene copy number alterations causing MET overexpression are associated with higher tumor grade and might drive the development and progression of the MET amplification-positive ovarian clear-cell adenocarcinoma.
Collapse
|
228
|
Surati M, Robinson M, Nandi S, Faoro L, Demchuk C, Rolle CE, Kanteti R, Ferguson BD, Hasina R, Gangadhar TC, Salama AK, Arif Q, Kirchner C, Mendonca E, Campbell N, Limvorasak S, Villaflor V, Hensing TA, Krausz T, Vokes EE, Husain AN, Ferguson MK, Karrison TG, Salgia R. Proteomic characterization of non-small cell lung cancer in a comprehensive translational thoracic oncology database. J Clin Bioinforma 2011; 1:1-11. [PMID: 21603121 PMCID: PMC3164615 DOI: 10.1186/2043-9113-1-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, there has been tremendous growth and interest in translational research, particularly in cancer biology. This area of study clearly establishes the connection between laboratory experimentation and practical human application. Though it is common for laboratory and clinical data regarding patient specimens to be maintained separately, the storage of such heterogeneous data in one database offers many benefits as it may facilitate more rapid accession of data and provide researchers access to greater numbers of tissue samples. DESCRIPTION The Thoracic Oncology Program Database Project was developed to serve as a repository for well-annotated cancer specimen, clinical, genomic, and proteomic data obtained from tumor tissue studies. The TOPDP is not merely a library-it is a dynamic tool that may be used for data mining and exploratory analysis. Using the example of non-small cell lung cancer cases within the database, this study will demonstrate how clinical data may be combined with proteomic analyses of patient tissue samples in determining the functional relevance of protein over and under expression in this disease. Clinical data for 1323 patients with non-small cell lung cancer has been captured to date. Proteomic studies have been performed on tissue samples from 105 of these patients. These tissues have been analyzed for the expression of 33 different protein biomarkers using tissue microarrays. The expression of 15 potential biomarkers was found to be significantly higher in tumor versus matched normal tissue. Proteins belonging to the receptor tyrosine kinase family were particularly likely to be over expressed in tumor tissues. There was no difference in protein expression across various histologies or stages of non-small cell lung cancer. Though not differentially expressed between tumor and non-tumor tissues, the over expression of the glucocorticoid receptor (GR) was associated improved overall survival. However, this finding is preliminary and warrants further investigation. CONCLUSION Though the database project is still under development, the application of such a database has the potential to enhance our understanding of cancer biology and will help researchers to identify targets to modify the course of thoracic malignancies.
Collapse
Affiliation(s)
- Mosmi Surati
- Pritzker School of Medicine, University of Chicago Pritzker School of Medicine, 924 E. 57 St., Chicago, IL 60637
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
The c-MET (mesenchymal-epithelial transition factor) receptor tyrosine kinase is an exciting novel drug target in view of its key role in oncogenesis, as well as its association with disease prognosis in a number of malignancies. Several drugs targeting c-MET are currently showing promise in clinical trials and will hopefully validate positive observations from preclinical studies. The potential efficacy of these different therapeutic agents is expected to be influenced by the mechanism of aberrant hepatocyte growth factor (HGF)/c-MET signaling pathway activation in a particular cancer, but presents a promising strategy for cancer treatment either as a single agent or as part of a combination therapeutic approach. However, there is an ongoing need to improve and accelerate the transition of preclinical research into improved therapeutic strategies for patients with cancer. The main challenges facing the development of HGF/c-MET-targeted agents for cancer treatment include the discovery of rationally designed anticancer drugs and combination strategies, as well as the validation of predictive biomarkers. This paper discusses these issues, with a particular focus on future directions in the evaluation of c-MET-driven malignancies.
Collapse
Affiliation(s)
- Johann S. de Bono
- Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
230
|
Ulasov IV, Kaverina NV, Pytel P, Thaci B, Liu F, Hurst DR, Welch DR, Sattar HA, Olopade OI, Baryshnikov AY, Kadagidze ZG, Lesniak MS. Clinical significance of KISS1 protein expression for brain invasion and metastasis. Cancer 2011; 118:2096-105. [PMID: 21928364 DOI: 10.1002/cncr.26525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/07/2011] [Accepted: 08/04/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Metastases to the brain represent a feared complication and contribute to the morbidity and mortality of breast cancer. Despite improvements in therapy, prognostic factors for development of metastases are lacking. KISS1 is a metastasis suppressor that demonstrates inhibition of metastases formation in several types of cancer. The purpose of this study was to determine the importance of KISS1 expression in breast cancer progression and the development of intracerebral lesions. METHODS In this study, we performed a comparative analysis of 47 brain metastases and 165 primary breast cancer specimens by using the antihuman KISS1 antibody. To compare KISS1 expression between different groups, we used a 3-tier score and the automated score computer software (ACIS) evaluation. To reveal association between mRNA and protein expression, we used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Significance of immunohistochemistry stainings was correlated with clinicopathological data. RESULTS We identified that KISS1 expression is significantly higher in primary breast cancer compared with brain metastases (P < .05). The mRNA analysis performed on 33 selected ductal carcinoma brain metastatic lesions and 36 primary ductal carcinomas revealed a statistically significant down-regulation of KISS1 protein in metastatic cases (P = .04). Finally, we observed a significant correlation between expression of KISS1 and metastasis-free survival (P = .04) along with progression of breast cancer and expression of KISS1 in primary breast cancer specimens (P = .044). CONCLUSIONS In conclusion, our study shows that breast cancer expresses KISS1. Cytoplasmic expression of KISS1 may be used as a prognostic marker for increased risk of breast cancer progression.
Collapse
Affiliation(s)
- Ilya V Ulasov
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGF-induced effects in MET mutant cell lines. Br J Cancer 2011; 105:814-23. [PMID: 21847116 PMCID: PMC3171012 DOI: 10.1038/bjc.2011.298] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Small cell lung carcinoma (SCLC) has poor prognosis and remains orphan from targeted therapy. MET is activated in several tumour types and may be a promising therapeutic target. Methods: To evaluate the role of MET in SCLC, MET gene status and protein expression were evaluated in a panel of SCLC cell lines. The MET inhibitor PHA-665752 was used to study effects of pathway inhibition in basal and hepatocyte growth factor (HGF)-stimulated conditions. Immunohistochemistry for MET and p-MET was performed in human SCLC samples and association with outcome was assessed. Results: In MET mutant SCLC cells, HGF induced MET phosphorylation, increased proliferation, invasiveness and clonogenic growth. PHA-665752 blocked MET phosphorylation and counteracted HGF-induced effects. In clinical samples, total MET and p-MET overexpression were detected in 54% and 43% SCLC tumours (n=77), respectively. MET phosphorylation was associated with poor median overall survival (132 days) vs p-MET negative cases (287 days)(P<0.001). Phospho-MET retained its prognostic value in a multivariate analysis. Conclusions: MET activation resulted in a more aggressive phenotype in MET mutant SCLC cells and its inhibition by PHA-665752 reversed this phenotype. In patients with SCLC, MET activation was associated with worse prognosis, suggesting a role in the adverse clinical behaviour in this disease.
Collapse
|
232
|
Lu Z, Ding L, Hong H, Hoggard J, Lu Q, Chen YH. Claudin-7 inhibits human lung cancer cell migration and invasion through ERK/MAPK signaling pathway. Exp Cell Res 2011; 317:1935-1946. [PMID: 21641901 PMCID: PMC3134522 DOI: 10.1016/j.yexcr.2011.05.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 02/05/2023]
Abstract
Tight junctions are the most apical component of the junctional complex critical for epithelial cell barrier and polarity functions. Although its disruption is well documented during cancer progression such as epithelial-mesenchymal transition, molecular mechanisms by which tight junction integral membrane protein claudins affect this process remain largely unknown. In this report, we found that claudin-7 was normally expressed in bronchial epithelial cells of human lungs but was either downregulated or disrupted in its distribution pattern in lung cancer. To investigate the function of claudin-7 in lung cancer cells, we transfected claudin-7 cDNA into NCI-H1299, a human lung carcinoma cell line that has no detectable claudin-7 expression. We found that claudin-7 expressing cells showed a reduced response to hepatocyte growth factor (HGF) treatment, were less motile, and formed fewer foot processes than the control cells did. In addition, cells transfected with claudin-7 dramatically decreased their invasive ability after HGF treatment. These effects were mediated through the MAPK signaling pathway since the phosphorylation level of ERK1/2 was significantly lower in claudin-7 transfected cells than in control cells. PD98059, a selective inhibitor of ERK/MAPK pathway, was able to block the motile effect. Claudin-7 formed stable complexes with claudin-1 and -3 and was able to recruit them to the cell-cell junction area in claudin-7 transfected cells. When control and claudin-7 transfected cells were inoculated into nude mice, claudin-7 expressing cells produced smaller tumors than the control cells. Taken together, our study demonstrates that claudin-7 inhibits cell migration and invasion through ERK/MAPK signaling pathway in response to growth factor stimulation in human lung cancer cells.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lei Ding
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Heng Hong
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - John Hoggard
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
233
|
Kłosek SK, Sporny S, Stasikowska-Kanicka O, Kurnatowska AJ. Cigarette smoking induces overexpression of c-Met receptor in microvessels of oral lichen planus. Arch Med Sci 2011; 7:706-12. [PMID: 22291809 PMCID: PMC3258762 DOI: 10.5114/aoms.2011.24143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 05/15/2010] [Accepted: 06/13/2010] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Cigarette smoking is related to many pathological conditions; however, chemical substances affect the oral cavity first, so it is important to consider its influence on oral mucosa and oral potentially pre-malignant lesions. The aim of this study was to investigate the effect of smoking on microvessel density in oral lichen planus. Special emphasis was placed on examining the relationship between the expression of c-Met receptor in blood vessels and smoking habits. MATERIAL AND METHODS This study included 34 patients with oral lichen planus diagnosed clinically and verified by histopathological examination and 12 healthy individuals as controls. Biopsy of oral mucosa was performed and specimens were examined for immunohistochemical CD34 and c-Met receptor expression. The microvessel density was established by evaluation of the five most vascular areas within a section. RESULTS Compared to normal oral mucosa, in lichen planus patients, significantly higher blood vessel density and c-Met expression were noted. Irregular distribution of microvessels was typical for oral lichen planus. Also, microvessel density was higher in cigarette smoking patients' tissues than in non-smoker specimens. Furthermore, the association of c-Met expression with smoking habit was statistically significant. CONCLUSIONS Cigarette smoking habit has a direct impact on the oral lichen planus course; therefore, close follow-up of these patients is mandatory.
Collapse
Affiliation(s)
- Sebastian K. Kłosek
- Department of Periodontology and Oral Mucosal Diseases, Medical University of Lodz, Poland
| | - Stanisław Sporny
- Department of Oral Pathology, Medical University of Lodz, Poland
| | | | - Anna J. Kurnatowska
- Department of Periodontology and Oral Mucosal Diseases, Medical University of Lodz, Poland
| |
Collapse
|
234
|
Goode EL, Chenevix-Trench G, Hartmann LC, Fridley BL, Kalli KR, Vierkant RA, Larson MC, White KL, Keeney GL, Oberg TN, Cunningham JM, Beesley J, Johnatty SE, Chen X, Goodman KE, Armasu SM, Rider DN, Sicotte H, Schmidt MM, Elliott EA, Høgdall E, Kjær SK, Fasching PA, Ekici AB, Lambrechts D, Despierre E, Høgdall C, Lundvall L, Karlan BY, Gross J, Brown R, Chien J, Duggan DJ, Tsai YY, Phelan CM, Kelemen LE, Peethambaram PP, Schildkraut JM, Shridhar V, Sutphen R, Couch FJ, Sellers TA. Assessment of hepatocyte growth factor in ovarian cancer mortality. Cancer Epidemiol Biomarkers Prev 2011; 20:1638-48. [PMID: 21724856 PMCID: PMC3153603 DOI: 10.1158/1055-9965.epi-11-0455] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Invasive ovarian cancer is a significant cause of gynecologic cancer mortality. METHODS We examined whether this mortality was associated with inherited variation in approximately 170 candidate genes/regions [993 single-nucleotide polymorphisms (SNPs)] in a multistage analysis based initially on 312 Mayo Clinic cases (172 deaths). Additional analyses used The Cancer Genome Atlas (TCGA; 127 cases, 62 deaths). For the most compelling gene, we immunostained Mayo Clinic tissue microarrays (TMA, 326 cases) and conducted consortium-based SNP replication analysis (2,560 cases, 1,046 deaths). RESULTS The strongest initial mortality association was in HGF (hepatocyte growth factor) at rs1800793 (HR = 1.7, 95% CI = 1.3-2.2, P = 2.0 × 10(-5)) and with overall variation in HGF (gene-level test, P = 3.7 × 10(-4)). Analysis of TCGA data revealed consistent associations [e.g., rs5745709 (r(2) = 0.96 with rs1800793): TCGA HR = 2.4, CI = 1.4-4.1, P = 2.2 × 10(-3); Mayo Clinic + TCGA HR = 1.6, CI = 1.3-1.9, P = 7.0 × 10(-5)] and suggested genotype correlation with reduced HGF mRNA levels (P = 0.01). In Mayo Clinic TMAs, protein levels of HGF, its receptor MET (C-MET), and phospho-MET were not associated with genotype and did not serve as an intermediate phenotype; however, phospho-MET was associated with reduced mortality (P = 0.01) likely due to higher expression in early-stage disease. In eight additional ovarian cancer case series, HGF rs5745709 was not associated with mortality (HR = 1.0, CI = 0.9-1.1, P = 0.87). CONCLUSIONS We conclude that although HGF signaling is critical to migration, invasion, and apoptosis, it is unlikely that HGF genetic variation plays a major role in ovarian cancer mortality. Furthermore, any minor role is not related to genetically-determined expression. IMPACT Our study shows the utility of multiple data types and multiple data sets in observational studies.
Collapse
Affiliation(s)
- Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
HGF/c-Met overexpressions, but not met mutation, correlates with progression of non-small cell lung cancer. Pathol Oncol Res 2011; 18:209-18. [PMID: 21779788 DOI: 10.1007/s12253-011-9430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Hepatocyte Growth Factor (HGF) and its receptor c-Met are suggested to play an important role in progression of solid organ tumors by mediating cell motility, invasion and metastasis. Overexpression of HGF and c-Met have been shown in non-small-cell lung cancer (NSCLC). However, their role in tumor progression is not clearly defined. The aim of this study is to determine the role of HGF/c-Met pathway and its association with invasion related markers and clinicopathologic parameters in NSCLC. Immunohistochemical analysis was performed on 63 paraffin-embedded NSCLC tumor sections. The expressions of invasion related markers such as Matrix Metalloproteinases (MMPs) 2 and 9, Tissue Inhibitor Metalloproteinase (TIMP) 1 and 3 and RhoA were also examined. Co-expression of HGF/c-Met was significantly associated with lymph node invasion and TIMP-3 and RhoA overexpressions. There were positive correlation between TIMP-3 overexpression and advanced stage and negative correlation between RhoA overexpression and survival. DNA sequencing for Met mutations in both nonkinase and tyrosine kinase (TK) domain was established. A single nucleotide polymorphism (SNP) in sema domain and two SNPs in TK domain of c-Met were found. There was no statistically significant correlation between the presence of c-Met alterations and clinicopathologic parameters except shorter survival time in cases with two SNPs in TK domain. These results suggest that HGF/c-Met might exert their effects in tumor progression in association with RhoA and probably with TIMP-3. The blockade of the HGF/c-Met pathway with RhoA and/or TIMP-3 inhibitors may be an effective therapeutic target for NSCLC treatment.
Collapse
|
236
|
Faoro L, Cervantes GM, Ferguson BD, Seiwert TY, Yala S, Vigneswaran WT, Westerhoff M, Tretiakova MS, Ferguson MK, Moura GL, Husain AN, Vokes EE, Salgia R. MET/PKCbeta expression correlate with metastasis and inhibition is synergistic in lung cancer. J Carcinog 2011; 8:15. [PMID: 19955662 PMCID: PMC2791827 DOI: 10.4103/1477-3163.57857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Treatment of non-small cell lung cancer (NSCLC) remains a difficult task in oncology. Targeted inhibition of oncogenic proteins is promising. In this study, we evaluate the expression of MET and PKCß and in vitro effects of their inhibition using SU11274 and enzastaurin (LY317615.HCl) respectively. Materials and Methods: Patient samples were analyzed by immunohistochemistry for expression of PKCß and MET, utilizing tissue microarrays under an IRB-approved protocol. Expression of PKCß and MET was evaluated in cell lines by immunoblotting. Treatment with SU1174 against MET and enzastaurin against PKCß was performed in H1993 and H358 cell lines, and cell proliferation and downstream signaling (phosphorylation of MET, AKT, FAK, and GSK3ß) were evaluated by immunoblotting. Statistical analysis was performed using SPSS 16.0. Results: Expression of MET positively correlated with lymph node metastases (p=.0004), whereas PKCß showed no correlation (p=0.204). MET and PKCß expression were also strongly correlated (p<0.001). Expression of MET was observed in 5/8 cell lines (H358, H1703, A549, H1993, H2170; absent from H522, H661, or SW1573), whereas PKCß expression was observed in 8/8 cell lines. Cell proliferation was significantly impaired by treatment with SU11274 and enzastaurin, and their effects were synergistic in combination (CI=0.32 and 0.09). Phosphorylation of MET, FAK, AKT, and GSK3ß were strongly inhibited with both agents in combination. Conclusions: Concomitant inhibition of MET and PKCß significantly increased cytotoxicity in vitro against NSCLC, disrupting important downstream signaling pathways. Further evaluation in animal models is warranted.
Collapse
Affiliation(s)
- Leonardo Faoro
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Pritzker School of Medicine, and University of Chicago Cancer Research Center, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Fan W, Tang Z, Yin L, Morrison B, Hafez-Khayyata S, Fu P, Huang H, Bagai R, Jiang S, Kresak A, Howell S, Vasanji A, Flask CA, Halmos B, Koon H, Ma PC. MET-independent lung cancer cells evading EGFR kinase inhibitors are therapeutically susceptible to BH3 mimetic agents. Cancer Res 2011; 71:4494-505. [PMID: 21555370 DOI: 10.1158/0008-5472.can-10-2668] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Targeted therapies for cancer are inherently limited by the inevitable recurrence of resistant disease after initial responses. To define early molecular changes within residual tumor cells that persist after treatment, we analyzed drug-sensitive lung adenocarcinoma cell lines exposed to reversible or irreversible epidermal growth factor receptor (EGFR) inhibitors, alone or in combination with MET-kinase inhibitors, to characterize the adaptive response that engenders drug resistance. Tumor cells displaying early resistance exhibited dependence on MET-independent activation of BCL-2/BCL-XL survival signaling. Further, such cells displayed a quiescence-like state associated with greatly retarded cell proliferation and cytoskeletal functions that were readily reversed after withdrawal of targeted inhibitors. Findings were validated in a xenograft model, showing BCL-2 induction and p-STAT3[Y705] activation within the residual tumor cells surviving the initial antitumor response to targeted therapies. Disrupting the mitochondrial BCL-2/BCL-XL antiapoptotic machinery in early survivor cells using BCL-2 Homology Domain 3 (BH3) mimetic agents such as ABT-737, or by dual RNAi-mediated knockdown of BCL-2/BCL-XL, was sufficient to eradicate the early-resistant lung-tumor-cells evading targeted inhibitors. Similarly, in a xenograft model the preemptive cotreatment of lung tumor cells with an EGFR inhibitor and a BH3 mimetic eradicated early TKI-resistant evaders and ultimately achieved a more durable response with prolonged remission. Our findings prompt prospective clinical investigations using BH3-mimetics combined with targeted receptor kinase inhibitors to optimize and improve clinical outcomes in lung-cancer treatment.
Collapse
Affiliation(s)
- Weiwen Fan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Torres KE, Zhu QS, Bill K, Lopez G, Ghadimi MP, Xie X, Young ED, Liu J, Nguyen T, Bolshakov S, Belousov R, Wang S, Lahat G, Liu J, Hernandez B, Lazar AJ, Lev D. Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clin Cancer Res 2011; 17:3943-55. [PMID: 21540237 DOI: 10.1158/1078-0432.ccr-11-0193] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE MET signaling has been suggested a potential role in malignant peripheral nerve sheath tumors (MPNST). Here, MET function and blockade were preclinically assessed. EXPERIMENTAL DESIGN Expression levels of MET, its ligand hepatocyte growth factor (HGF), and phosphorylated MET (pMET) were examined in a clinically annotated MPNST tissue microarray (TMA) incorporating univariable and multivariable statistical analyses. Human MPNST cells were studied in vitro and in vivo; Western blot (WB) and ELISA were used to evaluate MET and HGF expression, activation, and downstream signaling. Cell culture assays tested the impact of HGF-induced MET activation and anti-MET-specific siRNA inhibition on cell proliferation, migration, and invasion; in vivo gel-foam assays were used to evaluate angiogenesis. Cells stably transduced with anti-MET short hairpin RNA (shRNA) constructs were tested for growth and metastasis in severe combined immunodeficient (SCID) mice. The effect of the tyrosine kinase inhibitor XL184 (Exelixis) targeting MET/VEGFR2 (vascular endothelial growth factor receptor 2) on local and metastatic MPNST growth was examined in vivo. RESULTS All three markers were expressed in MPNST human samples; pMET expression was an independent prognosticator of poor patient outcome. Human MPNST cell lines expressed MET, HGF, and pMET. MET activation increased MPNST cell motility, invasion, angiogenesis, and induced matrix metalloproteinase-2 (MMP2) and VEGF expression; MET knockdown had inverse effects in vitro and markedly decreased local and metastatic growth in vivo. XL184 abrogated human MPNST xenograft growth and metastasis in SCID mice. CONCLUSIONS Informative prognosticators and novel therapies are crucially needed to improve MPNST management and outcomes. We show an important role for MET in MPNST, supporting continued investigation of novel anti-MET therapies in this clinical context.
Collapse
Affiliation(s)
- Keila E Torres
- Department of Cancer Biology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1104, Houston TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Stella GM, Benvenuti S, Gramaglia D, Scarpa A, Tomezzoli A, Cassoni P, Senetta R, Venesio T, Pozzi E, Bardelli A, Comoglio PM. MET mutations in cancers of unknown primary origin (CUPs). Hum Mutat 2010; 32:44-50. [DOI: 10.1002/humu.21374] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/13/2010] [Indexed: 12/12/2022]
|
240
|
Graveel CR, DeGroot JD, Sigler RE, Vande Woude GF. Germline met mutations in mice reveal mutation- and background-associated differences in tumor profiles. PLoS One 2010; 5:e13586. [PMID: 21049054 PMCID: PMC2963642 DOI: 10.1371/journal.pone.0013586] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/24/2010] [Indexed: 12/14/2022] Open
Abstract
Background The receptor tyrosine kinase Met is involved in the progression and metastasis of numerous human cancers. Although overexpression and autocrine activation of the Met signaling pathway are commonly found in human cancers, mutational activation of Met has been observed in small cell and non-small cell lung cancers, lung adenocarcinomas, renal carcinomas, and mesotheliomas. Methodology/Principal Findings To investigate the influence of mutationally activated Met in tumorigenesis, we utilized a novel mouse model. Previously, we observed that various Met mutations developed unique mutation-specific tumor spectra on a C57BL/6 background. Here, we assessed the effect of genetic background on the tumorigenic potential of mutationally activated Met. For this purpose, we created congenic knock-in lines of the Met mutations D1226N, M1248T, and Y1228C on the FVB/N background. Consistent with the mutation-specific tumor spectra, several of the mutations were associated with the same tumor types as observed on C57BL/6 background. However, on the FVB/N background most developed a high incidence of mammary carcinomas with diverse histopathologies. Conclusions/Significance This study demonstrates that on two distinct mouse backgrounds, Met is able to initiate tumorigenesis in multiple cell types, including epithelial, hematopoietic, and endothelial. Furthermore, these observations emphasize that even a modest increase in Met activation can initiate tumorigenesis with both the Met mutational spectra and host background having profound influence on the type of tumor generated. Greater insight into the interaction of genetic modifiers and Met signaling will significantly enhance our ability to tailor combination therapies for Met-driven cancers.
Collapse
Affiliation(s)
- Carrie R Graveel
- Department of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America.
| | | | | | | |
Collapse
|
241
|
Lee JC, Li CF, Fang FM, Wang JW, Jeng YM, Yu SC, Lin YT, Wu JM, Tsai JW, Li SH, Huang HY. Prognostic implication of MET overexpression in myxofibrosarcomas: an integrative array comparative genomic hybridization, real-time quantitative PCR, immunoblotting, and immunohistochemical analysis. Mod Pathol 2010; 23:1379-1392. [PMID: 20639860 DOI: 10.1038/modpathol.2010.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It remains obscure in myxofibrosarcoma about the basis of tumorigenesis, progression, and metastasis. Chromosome 7 gains are common in some sarcomas, including myxofibrosarcoma, whereas the specific oncogenes are yet to be characterized. We performed an integrative study of MET gene at 7q31.2 to elucidate its implication in myxofibrosarcoma. Focused on candidate oncogenes on chromosome 7, 385K array comparative genomic hybridization was used to profile DNA copy number alterations of 12 samples. MET transcript was successfully quantified by real-time RT-PCR for 16 laser-microdissected tumors and two myxofibrosarcoma cell lines (NMFH-1, OH931). MET immunoexpression was assessable in 86 primary localized tumors with follow-up. To analyze endogenous MET expression and activation, NMFH-1 and OH931 cells, both with wild-type MET gene, were subjected to Western blotting and hepatocyte growth factor-treated NMFH-1 cells were evaluated for the kinetics of MET tyrosine phosphorylation. Non-random large-scale gains on 7q were detected in five cases, delineating three recurrent amplicons, 7q21.11-7q21.3, 7q22.1-22.3, and 7q31.1-7q32.3, in which the locus of MET displayed increased copy number, among others. MET mRNA was upregulated in OH931, NMFH-1, and nine tumors (56%), whereas neither gene dosage nor mRNA expression of MET was associated with clinicopathological factors. In contrast, MET protein overexpression, present in 67% of cases, was highly related to deep location (P=0.004), higher grades (P=0.001), and more advanced stages (P<0.001). Importantly, MET overexpression independently portended inferior metastasis-free survival (P=0.004) and overall survival (P=0.0221). Expressing activating phospho-MET at Tyr(1234)/Tyr(1235), OH931 cells had more abundant total MET than NMFH-1 cells, whereas the latter became promptly phosphorylated on stimulation of hepatocyte growth factor. In primary myxofibrosarcomas, MET overexpression, as a frequent event, is likely driven by 7q gains with mRNA upregulation, associated with important prognosticators, and independently predictive of worse outcomes, highlighting its possible causative function in tumor aggressiveness and potentiality as a therapeutic target.
Collapse
Affiliation(s)
- Jen-Chieh Lee
- Department of Pathology, National Taiwan University Hospital, Medical College, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Affiliation(s)
- Stéphanie Kermorgant
- Department of Tumour Biology, Institute of Cancer, Bart’s & the London Queen Mary’s School of Medicine & Dentistry, London EC1M 6BQ, UK
| | - Jonna Nevo
- Turku Centre for Biotechnology, University of Turku & VTT Technical Research Centre of Finland, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Department of Biochemistry & Food Chemistry, University of Turku, Turku, Finland and VTT Medical Biotechnology, Turku FIN-20520, Finland
| |
Collapse
|
243
|
Wu C, Tang Z, Fan W, Zhu W, Wang C, Somoza E, Owino N, Li R, Ma PC, Wang Y. In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor. J Med Chem 2010; 53:139-46. [PMID: 19968287 DOI: 10.1021/jm900803q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report the radiosynthesis and evaluation of 3-[3,5-dimethyl-4-(4-[11C]methylpiperazinecarbonyl)-1H-pyrrol-2-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-5-sulfonic acid (3-chlorophenyl)methylamide, termed [11C]SU11274 ([11C]14) for in vivo imaging of mesenchymal-epithelial transition (MET) receptor by positron emission tomography (PET). Following the synthesis of the precursor (13) that was achieved in 10 steps with a total yield of 9.7%, [11C]14 was obtained through radiomethylation in a range of 5-10% radiochemical yield and over 95% radiochemical purity. For in vivo PET studies, two human lung cancer xenograft models were established using MET-positive NCI-H1975 and MET-negative NCI-H520 cell lines. Quantitative [11C]14-PET studies showed that the tumor uptake of [11C]14 in the NCI-H1975 xenografts was significantly higher than that in the NCI-H520 xenografts, which is consistent with their corresponding immunohistochemical tissue staining patterns of MET receptors from the same animals. These studies demonstrated that [11C]14-PET is an appropriate imaging marker for quantification of MET receptor in vivo, which can facilitate efficacy evaluation in the clinical development of MET-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Chunying Wu
- Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Wang X, Li K, Chen H, Wang D, Zhang Y, Bai C. Does hepatocyte growth factor/c-Met signal play synergetic role in lung cancer? J Cell Mol Med 2010; 14:833-9. [PMID: 20178463 PMCID: PMC3823115 DOI: 10.1111/j.1582-4934.2010.01040.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that the signal pathway between hepatocyte growth factor (HGF) and its receptor c-Met plays an important role in the development of lung cancer, although the specificity of such role is to be clarified. It seems clear that the HGF/c-Met signal contributes to the metastasis of cancer cells to the lung by stimulating the hyperproduction and overactivation of cytokines and enzymes, e.g. HGF, vascular endothelial growth factor and matrix metalloproteases. The HGF/c-Met signal may act as the candidate responsible for the development of epidermal growth factor receptor (EGFR) kinase inhibitor resistance. Experimental evidence showed that the combination of both EGFR and c-Met inhibitors had synergetic or additive therapeutic effects on lung cancer. Although the mechanism of interaction between HGF/c-Met and transforming growth factor-a/EGFR remains unclear, the cross-talk and balance between those two signal pathways are critical and necessary in the development of new therapies for lung cancer.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
245
|
|
246
|
Abstract
The MET tyrosine kinase signaling pathway is upregulated in many cancers, including lung cancer. The pathway normally promotes mitosis, cell motility and cell survival; but in cancer it can also promote cell proliferation, invasion, metastasis and angiogenesis. The activating ligand, hepatocyte growth factor (HGF) is normally secreted by fibroblasts and smooth muscle cells, but can also be produced by tumor cells. MET upregulation in lung cancer is caused by overexpression and mutation. These mutations can vary with ethnicity. MET signaling affects cytoskeletal proteins such as paxillin, which participates in cell adhesion, growth and motility. Therapeutic approaches that block MET signaling are being studied, and include the use of: small interference RNA, Geldanamycin, competitive HGF homologues, decoy receptors and direct MET inhibitors such as K252a, SU11274, PHA665752 and PF2341066. It is hoped that blocking MET signaling may one day become an effective treatment for some lung cancers.
Collapse
Affiliation(s)
- Ryan E Lawrence
- Pritzker School of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
247
|
Other Molecular Targeted Agents in Non-small Cell Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
248
|
Liu X, Newton RC, Scherle PA. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med 2009; 16:37-45. [PMID: 20031486 DOI: 10.1016/j.molmed.2009.11.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/02/2009] [Accepted: 11/23/2009] [Indexed: 02/06/2023]
Abstract
Successfully developed target-based therapies have significantly changed cancer treatment. Among many targets, the c-MET receptor tyrosine kinase and its ligand hepatocyte growth factor have recently gained considerable attention. The c-MET pathway is dysregulated in most human malignancies, and regulates tumor formation, progression and dissemination, and numerous c-MET pathway inhibitors are currently being evaluated in the clinic. Although some studies have shown impressive evidence of antitumor activity, the data should be interpreted with caution because of the distinct properties of these agents and diverse patient populations studied. Furthermore, in tumor types where patients might benefit from c-MET inhibition, rational combination treatments might ultimately provide maximal clinical benefit. Here, we review the evidence linking c-MET activation to cancer, and discuss the latest progress, opportunities and challenges in the clinical development of c-MET pathway inhibitors.
Collapse
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Experimental Station, Wilmington, DE 19880, USA.
| | | | | |
Collapse
|
249
|
Yamada T, Matsumoto K, Wang W, Li Q, Nishioka Y, Sekido Y, Sone S, Yano S. Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFR-T790M mutant lung cancer. Clin Cancer Res 2009; 16:174-83. [PMID: 20008840 DOI: 10.1158/1078-0432.ccr-09-1204] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The secondary T790M mutation in epidermal growth factor receptor (EGFR) is the most frequent cause of acquired resistance to the reversible EGFR tyrosine kinase inhibitors (EGFR-TKI), gefitinib and erlotinib, in lung cancer. Irreversible EGFR-TKIs are expected to overcome the reversible EGFR-TKI resistance of lung cancer harboring T790M mutation in EGFR. However, it is clear that resistance may also develop to this class of inhibitors. We showed previously that hepatocyte growth factor (HGF) induced gefitinib resistance of lung cancer harboring EGFR-activating mutations. Here, we investigated whether HGF induced resistance to the irreversible EGFR-TKI, CL-387,785, in lung cancer cells (H1975) harboring both L858R activating mutation and T790M secondary mutation in EGFR. EXPERIMENTAL DESIGN CL-387,785 sensitivity and signal transduction in H1975 cells were examined in the presence or absence of HGF or HGF-producing fibroblasts with or without HGF-MET inhibitors. RESULTS HGF reduced susceptibility to CL-387,785 in H1975 cells. Western blotting and small interfering RNA analyses indicated that HGF-induced hyposensitivity was mediated by the MET/phosphoinositide 3-kinase/Akt signaling pathway independent of EGFR, ErbB2, ErbB3, and ErbB4. Hyposensitivity of H1975 cells to CL-387,785 was also induced by coculture with high-level HGF-producing lung fibroblasts. The hyposensitivity was abrogated by treatment with anti-HGF neutralizing antibody, HGF antagonist NK4, or MET-TKI. CONCLUSIONS We showed HGF-mediated hyposensitivity as a novel mechanism of resistance to irreversible EGFR-TKIs. It will be clinically valuable to investigate the involvement of HGF-MET-mediated signaling in de novo and acquired resistance to irreversible EGFR-TKIs in lung cancer harboring T790M mutation in EGFR.
Collapse
Affiliation(s)
- Tadaaki Yamada
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Kanteti R, Yala S, Ferguson MK, Salgia R. MET, HGF, EGFR, and PXN gene copy number in lung cancer using DNA extracts from FFPE archival samples and prognostic significance. J Environ Pathol Toxicol Oncol 2009; 28:89-98. [PMID: 19817696 DOI: 10.1615/jenvironpatholtoxicoloncol.v28.i2.10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene copy number analysis for some of the important molecules in lung tumorogenesis, such as MET, hepatocyte growth factor [(HGF), ligand for MET), epidermal growth factor receptor (EGFR), and paxillin (PXN), is likely to determine both the type of treatment and prognosis. Formalin-fixed paraffin-embedded (FFPE) archival tumor tissue samples are an excellent source for determining key molecular changes in the OncoGenome; however, existing extraction procedures yield relatively poor quality genomic DNA fragments. Although FISH is the method of choice for determining amplification of a gene, a more rapid quantitative poly-merase chain reaction (qPCR) technique to determine gene copy number can be used when reasonably good quality genomic DNA is available. We report here a relatively rapid method based on microwave/chelex-100 treatment that gives rise to genomic DNA fragments ranging from 1 to 12 Kb and beyond, thereby attesting to its superior quality. Genomic PCR for beta-globin gene gave reliable and reproducible results. The number of steps for extracting the DNA was kept to a minimum, and instead of precipitating the DNA, we preserved the genomic DNA extracts so as to prevent a loss in DNA yield. We found the extracts to be stable and amenable to qPCR and mutational analysis. Using lung adenocarcinoma FFPE samples and cell lines derived from lung adenocarcinomas, we demonstrated that the gene copy number for MET in lung adenocarcinoma tissue samples was preferentially increased over EGFR, HGF, and PXN and that it positively correlated with a better prognosis. In contrast, the genomic DNA extracted from 25 NSCLC cell lines gave a relatively higher gene copy number for all four genes evaluated. Our results indicate that the microwave/chelex-100-based method yields good-quality genomic DNA extracts that can be used for complex DNA analysis, such as determination of gene copy number. In addition, our data demonstrated that the adenocarcinoma cell lines potentially evolved under ex vivo conditions, and therefore, in genetic studies it is imperative to use primary tumors for generalized conclusions about lung tumors.
Collapse
Affiliation(s)
- Rajani Kanteti
- Department of Medicine, Section of Hematology and Oncology University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|