201
|
Abstract
Liver fibrosis is the pathological consequence of chronic liver diseases, where an excessive deposition of extracellular matrix (ECM) proteins occurs, concomitantly with the processes of repair and regeneration. It is characterized by increased production of matrix proteins, in particular collagens, and decreased matrix remodelling. The principal source of ECM accumulation is myofibroblasts (MFB). Most fibrogenic MFB are endogenous to the liver, coming from hepatic stellate cells (HSC) and portal fibroblasts. Dysregulated inflammatory responses have been associated with most (if not all) hepatotoxic insults and chronic oxidative stress play a role during the initial liver inflammatory phase and its progression to fibrosis. Redox-regulated processes are responsible for activation of HSC to MFB, as well as maintenance of the MFB function. Increased oxidative stress also induces hepatocyte apoptosis, which contributes to increase the liver injury and to transdifferentiate HSC to MFB, favouring the fibrogenic process. Mitochondria and other redox-active enzymes can generate superoxide and hydrogen peroxide as a by-product in liver cells. Moreover, accumulating evidence indicates that NADPH oxidases (NOXs), which play a critical role in the inflammatory response, may contribute to reactive oxygen species (ROS) production during liver fibrosis, being important players in HSC activation and hepatocyte apoptosis. Based on the knowledge of the pathogenic role of ROS, different strategies to prevent or reverse the oxidative damage have been developed to be used as therapeutic tools in liver fibrosis. This review will update all these concepts, highlighting the relevance of redox biology in chronic fibrogenic liver pathologies. Oxidative stress is a major cause for initiation/progression of liver fibrosis. Redox-regulated processes activate hepatic stellate cells to myofibroblasts. Increased oxidative stress induces hepatocyte apoptosis. NOX inhibitors are considered as a new strategy to prevent/reverse liver fibrosis. NADPH oxidases (NOX) have been involved in liver fibrogenic responses.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain; Department of Physiological Sciences II, University of Barcelona, L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
202
|
Jaroszewicz J, Flisiak-Jackiewicz M, Lebensztejn D, Flisiak R. Current drugs in early development for treating hepatitis C virus-related hepatic fibrosis. Expert Opin Investig Drugs 2015; 24:1229-39. [DOI: 10.1517/13543784.2015.1057568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
203
|
Liepelt A, Tacke F. Healing the scars of life-targeting redox imbalance in fibrotic disorders of the elderly. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S13. [PMID: 26046058 DOI: 10.3978/j.issn.2305-5839.2015.03.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/05/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
204
|
Marinković G, Heemskerk N, van Buul JD, de Waard V. The Ins and Outs of Small GTPase Rac1 in the Vasculature. J Pharmacol Exp Ther 2015; 354:91-102. [PMID: 26036474 DOI: 10.1124/jpet.115.223610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2015] [Indexed: 12/16/2022] Open
Abstract
The Rho family of small GTPases forms a 20-member family within the Ras superfamily of GTP-dependent enzymes that are activated by a variety of extracellular signals. The most well known Rho family members are RhoA (Ras homolog gene family, member A), Cdc42 (cell division control protein 42), and Rac1 (Ras-related C3 botulinum toxin substrate 1), which affect intracellular signaling pathways that regulate a plethora of critical cellular functions, such as oxidative stress, cellular contacts, migration, and proliferation. In this review, we describe the current knowledge on the role of GTPase Rac1 in the vasculature. Whereas most recent reviews focus on the role of vascular Rac1 in endothelial cells, in the present review we also highlight the functional involvement of Rac1 in other vascular cells types, namely, smooth muscle cells present in the media and fibroblasts located in the adventitia of the vessel wall. Collectively, this overview shows that Rac1 activity is involved in various functions within one cell type at distinct locations within the cell, and that there are overlapping but also cell type-specific functions in the vasculature. Chronically enhanced Rac1 activity seems to contribute to vascular pathology; however, Rac1 is essential to vascular homeostasis, which makes Rac1 inhibition as a therapeutic option a delicate balancing act.
Collapse
Affiliation(s)
- Goran Marinković
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels Heemskerk
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
205
|
Wedgwood S, Lakshminrusimha S, Schumacker PT, Steinhorn RH. Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L196-203. [PMID: 26024892 DOI: 10.1152/ajplung.00097.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
This study was designed to determine whether cyclic stretch induces a persistent pulmonary hypertension of the newborn (PPHN) phenotype of increased NADPH oxidase (Nox) 4 signaling in control pulmonary artery smooth muscle cells (PASMC), and to identify the signal transduction molecules involved. To achieve this, PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and PASMC were isolated from control (twin) and PPHN lambs. Control PASMC were exposed to cyclic stretch at 1 Hz and 15% elongation for 24 h. Stretch-induced Nox4 expression was attenuated by inhibition of mitochondrial complex III and NF-κB, and stretch-induced protein thiol oxidation was attenuated by Nox4 small interfering RNA and complex III inhibition. NF-κB activity was increased by stretch in a complex III-dependent fashion, and stretch-induced cyclin D1 expression was attenuated by complex III inhibition and Nox4 small interfering RNA. This is the first study to show that cyclic stretch increases Nox4 expression via mitochondrial complex III-induced activation of NF-κB in fetal PASMC, resulting in ROS signaling and increased cyclin D1 expression. Targeting these signaling molecules may attenuate pulmonary vascular remodeling associated with PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California;
| | - Satyan Lakshminrusimha
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, New York; and
| | - Paul T Schumacker
- Department of Pediatrics, Northwestern University, Chicago, Illinois
| | - Robin H Steinhorn
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
206
|
Abstract
Significant progress has been made in understanding the principles underlying the development of liver fibrosis. This includes appreciating its dynamic nature, the importance of active fibrolysis in fibrosis regression, and the plasticity of cell populations endowing them with fibrogenic or fibrolytic properties. This is complemented by an increasing array of therapeutic targets with known roles in the progression or regression of fibrosis. With a key role for fibrosis in determining clinical outcomes and encouraging data from recently Food and Drug Administration-approved antifibrotics for pulmonary fibrosis, the development and validation of antifibrotic therapies has taken center stage in translational hepatology. In addition to summarizing the recent progress in antifibrotic therapies, the authors discuss some of the challenges ahead, such as achieving a better understanding of the interindividual heterogeneity of the fibrotic response, how to match interventions with the ideal patient population, and the development of better noninvasive methods to assess the dynamics of fibrogenesis and fibrolysis. Together, these advances will permit a better targeting and dose titration of individualized therapies. Finally, the authors discuss combination therapy with different antifibrotics as possibly the most potent approach for treating fibrosis in the liver.
Collapse
Affiliation(s)
- W. Z. Mehal
- Section of Digestive Diseases, Yale University, New Haven, Connecticut,West Haven Veterans Medical Center, West Haven, Connecticut
| | - D. Schuppan
- Department of Medicine, Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
207
|
Abstract
Despite the wealth of pre-clinical support for a role for reactive oxygen and nitrogen species (ROS/RNS) in the aetiology of diabetic complications, enthusiasm for antioxidant therapeutic approaches has been dampened by less favourable outcomes in large clinical trials. This has necessitated a re-evaluation of pre-clinical evidence and a more rational approach to antioxidant therapy. The present review considers current evidence, from both pre-clinical and clinical studies, to address the benefits of antioxidant therapy. The main focus of the present review is on the effects of direct targeting of ROS-producing enzymes, the bolstering of antioxidant defences and mechanisms to improve nitric oxide availability. Current evidence suggests that a more nuanced approach to antioxidant therapy is more likely to yield positive reductions in end-organ injury, with considerations required for the types of ROS/RNS involved, the timing and dosage of antioxidant therapy, and the selective targeting of cell populations. This is likely to influence future strategies to lessen the burden of diabetic complications such as diabetes-associated atherosclerosis, diabetic nephropathy and diabetic retinopathy.
Collapse
|
208
|
Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015; 165:512-30. [PMID: 25176603 PMCID: PMC4326607 DOI: 10.1016/j.trsl.2014.07.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on antifibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of profibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for antifibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.
Collapse
Affiliation(s)
- So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sung I Kim
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
209
|
Gorin Y, Wauquier F. Upstream regulators and downstream effectors of NADPH oxidases as novel therapeutic targets for diabetic kidney disease. Mol Cells 2015; 38:285-96. [PMID: 25824546 PMCID: PMC4400302 DOI: 10.14348/molcells.2015.0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas,
USA
| | - Fabien Wauquier
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas,
USA
| |
Collapse
|
210
|
|
211
|
Bijli KM, Kleinhenz JM, Murphy TC, Kang BY, Adesina SE, Sutliff RL, Hart CM. Peroxisome proliferator-activated receptor gamma depletion stimulates Nox4 expression and human pulmonary artery smooth muscle cell proliferation. Free Radic Biol Med 2015; 80:111-20. [PMID: 25557278 PMCID: PMC4355175 DOI: 10.1016/j.freeradbiomed.2014.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Hypoxia stimulates pulmonary hypertension (PH) in part by increasing the proliferation of pulmonary vascular wall cells. Recent evidence suggests that signaling events involved in hypoxia-induced cell proliferation include sustained nuclear factor-kappaB (NF-κB) activation, increased NADPH oxidase 4 (Nox4) expression, and downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) levels. To further understand the role of reduced PPARγ levels associated with PH pathobiology, siRNA was employed to reduce PPARγ levels in human pulmonary artery smooth muscle cells (HPASMC) in vitro under normoxic conditions. PPARγ protein levels were reduced to levels comparable to those observed under hypoxic conditions. Depletion of PPARγ for 24-72 h activated mitogen-activated protein kinase, ERK 1/2, and NF-κB. Inhibition of ERK 1/2 prevented NF-κB activation caused by PPARγ depletion, indicating that ERK 1/2 lies upstream of NF-κB activation. Depletion of PPARγ for 72 h increased NF-κB-dependent Nox4 expression and H2O2 production. Inhibition of NF-κB or Nox4 attenuated PPARγ depletion-induced HPASMC proliferation. Degradation of PPARγ depletion-induced H2O2 by PEG-catalase prevented HPASMC proliferation and also ERK 1/2 and NF-κB activation and Nox4 expression, indicating that H2O2 participates in feed-forward activation of the above signaling events. Contrary to the effects of PPARγ depletion, HPASMC PPARγ overexpression reduced ERK 1/2 and NF-κB activation, Nox4 expression, and cell proliferation. Taken together these findings provide novel evidence that PPARγ plays a central role in the regulation of the ERK1/2-NF-κB-Nox4-H2O2 signaling axis in HPASMC. These results indicate that reductions in PPARγ caused by pathophysiological stimuli such as prolonged hypoxia exposure are sufficient to promote the proliferation of pulmonary vascular smooth muscle cells observed in PH pathobiology.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Jennifer M Kleinhenz
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Tamara C Murphy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Bum-Yong Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Sherry E Adesina
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA.
| |
Collapse
|
212
|
Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S, Fanti P, Szyndralewiez C, Barnes JL, Block K, Abboud HE. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 2015; 308:F1276-87. [PMID: 25656366 DOI: 10.1152/ajprenal.00396.2014] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/03/2015] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) generated by Nox NADPH oxidases may play a critical role in the pathogenesis of diabetic nephropathy (DN). The efficacy of the Nox1/Nox4 inhibitor GKT137831 on the manifestations of DN was studied in OVE26 mice, a model of type 1 diabetes. Starting at 4-5 mo of age, OVE26 mice were treated with GKT137831 at 10 or 40 mg/kg, once-a-day for 4 wk. At both doses, GKT137831 inhibited NADPH oxidase activity, superoxide generation, and hydrogen peroxide production in the renal cortex from diabetic mice without affecting Nox1 or Nox4 protein expression. The increased expression of fibronectin and type IV collagen was reduced in the renal cortex, including glomeruli, of diabetic mice treated with GKT137831. GKT137831 significantly reduced glomerular hypertrophy, mesangial matrix expansion, urinary albumin excretion, and podocyte loss in OVE26 mice. GKT137831 also attenuated macrophage infiltration in glomeruli and tubulointerstitium. Collectively, our data indicate that pharmacological inhibition of Nox1/4 affords broad renoprotection in mice with preexisting diabetes and established kidney disease. This study validates the relevance of targeting Nox4 and identifies GKT137831 as a promising compound for the treatment of DN in type 1 diabetes.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas;
| | - Rita C Cavaglieri
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas
| | - Khaled Khazim
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas
| | - Doug-Yoon Lee
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas
| | - Francesca Bruno
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas
| | - Sachin Thakur
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas
| | - Paolo Fanti
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas; Audie Leon Murphy Memorial Hospital Division, South Texas Veterans Health Care System, San Antonio, Texas; and
| | | | - Jeffrey L Barnes
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas; Audie Leon Murphy Memorial Hospital Division, South Texas Veterans Health Care System, San Antonio, Texas; and
| | - Karen Block
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas; Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas
| | - Hanna E Abboud
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas; Audie Leon Murphy Memorial Hospital Division, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
213
|
Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 2015; 131:643-55. [PMID: 25589557 DOI: 10.1161/circulationaha.114.011079] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND NADPH oxidase 4 (Nox4) has been implicated in cardiac remodeling, but its precise role in cardiac injury remains controversial. Furthermore, little is known about the downstream effector signaling pathways activated by Nox4-derived reactive oxygen species in the myocardium. We investigated the role of Nox4 and Nox4-associated signaling pathways in the development of cardiac remodeling. METHODS AND RESULTS Cardiac-specific human Nox4 transgenic mice (c-hNox4Tg) were generated. Four groups of mice were studied: (1) control mice, littermates that are negative for hNox4 transgene but Cre positive; (2) c-hNox4 Tg mice; (3) angiotensin II (AngII)-infused control mice; and (4) c-hNox4Tg mice infused with AngII. The c-hNox4Tg mice exhibited an ≈10-fold increase in Nox4 protein expression and an 8-fold increase in the production of reactive oxygen species, and manifested cardiac interstitial fibrosis. AngII infusion to control mice increased cardiac Nox4 expression and induced fibrosis and hypertrophy. The Tg mice receiving AngII exhibited more advanced cardiac remodeling and robust elevation in Nox4 expression, indicating that AngII worsens cardiac injury, at least in part by enhancing Nox4 expression. Moreover, hNox4 transgene and AngII infusion induced the expression of cardiac fetal genes and activated the Akt-mTOR and NFκB signaling pathways. Treatment of AngII-infused c-hNox4Tg mice with GKT137831, a Nox4/Nox1 inhibitor, abolished the increase in oxidative stress, suppressed the Akt-mTOR and NFκB signaling pathways, and attenuated cardiac remodeling. CONCLUSIONS Upregulation of Nox4 in the myocardium causes cardiac remodeling through activating Akt-mTOR and NFκB signaling pathways. Inhibition of Nox4 has therapeutic potential to treat cardiac remodeling.
Collapse
Affiliation(s)
- Qingwei David Zhao
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX.
| | - Suryavathi Viswanadhapalli
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Paul Williams
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Qian Shi
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Chunyan Tan
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Xiaolan Yi
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Basant Bhandari
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Hanna E Abboud
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
214
|
Choi DH, Kim JH, Seo JH, Lee J, Choi WS, Kim YS. Matrix metalloproteinase-3 causes dopaminergic neuronal death through Nox1-regenerated oxidative stress. PLoS One 2014; 9:e115954. [PMID: 25536219 PMCID: PMC4275264 DOI: 10.1371/journal.pone.0115954] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/28/2014] [Indexed: 01/08/2023] Open
Abstract
In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and technology, Konkuk University, Seoul, 143-701, Korea
- Department of Medical Science, Konkuk University School of Medicine, Seoul, 143-701, Korea
- * E-mail: (DHC); (YSK)
| | - Ji-Hye Kim
- Center for Neuroscience Research, Institute of Biomedical Science and technology, Konkuk University, Seoul, 143-701, Korea
| | - Joo-Ha Seo
- Center for Neuroscience Research, Institute of Biomedical Science and technology, Konkuk University, Seoul, 143-701, Korea
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and technology, Konkuk University, Seoul, 143-701, Korea
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul, 143-701, Korea
| | - Wahn Soo Choi
- Department of Immunology and Physiology, Functional Genomics Institute, College of Medicine, Konkuk University, Chungju, 380-701, Korea
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, 32827, United States of America
- * E-mail: (DHC); (YSK)
| |
Collapse
|
215
|
Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice. J Invest Dermatol 2014; 135:1108-1118. [PMID: 25437426 DOI: 10.1038/jid.2014.511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 12/29/2022]
Abstract
Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology.
Collapse
|
216
|
Abstract
Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases.
Collapse
|
217
|
Abstract
Obesity in combination with diabetes and hypertension likely is contributing to the increasing incidence of chronic kidney disease (CKD) in the 21st century worldwide and requires novel insights and strategies for treatment. There is an increasing recognition that the kidney has an important role in the complex inter-organ communication that occurs with the development of inflammation and fibrosis with obesity. Inhibition of the adiponectin-AMPK pathway has now become established as a critical pathway regulating both inflammation and pro-fibrotic pathways for both obesity-related kidney disease and diabetic kidney disease. AMPK regulates NFκB activation and is a potent regulator of NADPH oxidases. Nox4 in particular has emerged as a key contribtor to the early inflammation of diabetic kidney disease. AMPK also regulates several transcription factors that contribute to stimulation of the transforming growth factor-beta (TGF-β) system. Another key aspect of AMPK regulation is its control of mammalian target of rapamycin (mTOR) and mitochondrial biogenesis. Inhibition of PGC-1α, the transcriptional co-activator of mitochondrial biogenesis is being recognized as a key pathway that is inhibited in diabetic kidney disease and may be linked to inhibition of mitochondrial function. Translation of this concept is emerging via the field of urine metabolomics, as several metabolites linked to mitochondria are consistently downregulated in human diabetic kidney disease. Further studies to explore the role of AMPK and related energy-sensing pathways will likely lead to a more comprehensive understanding of why the kidney is affected early on and in a progressive manner with obesity and diabetes.
Collapse
|
218
|
Yu SS, Zhu X. Role of NADPH oxidase family members in promoting liver fibrosis. Shijie Huaren Xiaohua Zazhi 2014; 22:2710-2715. [DOI: 10.11569/wcjd.v22.i19.2710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is one of hepatic wound-repair responses to a variety of chronic liver injuries, which is characterized by excessive deposition of extracellular matrix. Increasing evidence indicates that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and oxidative stress caused by reactive oxygen species play a key role in liver fibrosis. NADPH oxidase is a multi-subunit complex. In the liver, both phagocytic and non-phagocytic NADPH oxidases are functionally expressed. They have a significant fibrogenic effect on the hepatic stellate cells, the main cell type causing liver fibrosis. In this paper, we review the recent advances in understanding the role of the NADPH oxidase family in the occurrence and development of liver fibrosis.
Collapse
|
219
|
Gurzov EN, Tran M, Fernandez-Rojo MA, Merry TL, Zhang X, Xu Y, Fukushima A, Waters MJ, Watt MJ, Andrikopoulos S, Neel BG, Tiganis T. Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab 2014; 20:85-102. [PMID: 24954415 PMCID: PMC4335267 DOI: 10.1016/j.cmet.2014.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/23/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022]
Abstract
Hepatic insulin resistance is a key contributor to the pathogenesis of obesity and type 2 diabetes (T2D). Paradoxically, the development of insulin resistance in the liver is not universal, but pathway selective, such that insulin fails to suppress gluconeogenesis but promotes lipogenesis, contributing to the hyperglycemia, steatosis, and hypertriglyceridemia that underpin the deteriorating glucose control and microvascular complications in T2D. The molecular basis for the pathway-specific insulin resistance remains unknown. Here we report that oxidative stress accompanying obesity inactivates protein-tyrosine phosphatases (PTPs) in the liver to activate select signaling pathways that exacerbate disease progression. In obese mice, hepatic PTPN2 (TCPTP) inactivation promoted lipogenesis and steatosis and insulin-STAT-5 signaling. The enhanced STAT-5 signaling increased hepatic IGF-1 production, which suppressed central growth hormone release and exacerbated the development of obesity and T2D. Our studies define a mechanism for the development of selective insulin resistance with wide-ranging implications for diseases characterized by oxidative stress.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Melanie Tran
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Manuel A Fernandez-Rojo
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Troy L Merry
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Xinmei Zhang
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yang Xu
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Atsushi Fukushima
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, Services Road, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine Heidelberg Repatriation Hospital, 300 Waterdale Road, Heidelberg West, The University of Melbourne, VIC 3081, Australia
| | - Benjamin G Neel
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto Medical Discovery Tower, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
220
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
221
|
Abstract
The NADPH oxidase (NOX) enzymes were identified as a family of seven isoforms contributing to the production of reactive oxygen species. During the past 15 years, this class of enzymes has increasingly gained interest from the academic and pharmaceutical laboratories. Extensive research efforts focused on the decryption of their mechanism of action has shown that Nox enzymes are the most important source of reactive oxygen species and key contributors in the pathogenesis of several diseases. Recent publications and patents suggest that NOX modulators may provide major opportunities in many diseases as novel therapeutics. This review covers application patents and current state-of-the-art on Nox modulators from 2005 to December 2013 and examines the different approaches patented to modulate the activity of Nox enzymes.
Collapse
|
222
|
Paik YH, Kim J, Aoyama T, De Minicis S, Bataller R, Brenner DA. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal 2014; 20:2854-72. [PMID: 24040957 PMCID: PMC4026397 DOI: 10.1089/ars.2013.5619] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins. RECENT ADVANCES In the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease. CRITICAL ISSUES Although there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown. FUTURE DIRECTIONS A better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antio
Collapse
Affiliation(s)
- Yong-Han Paik
- 1 Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
223
|
Wilkinson-Berka JL, Deliyanti D, Rana I, Miller AG, Agrotis A, Armani R, Szyndralewiez C, Wingler K, Touyz RM, Cooper ME, Jandeleit-Dahm KA, Schmidt HHHW. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxid Redox Signal 2014; 20:2726-40. [PMID: 24053718 PMCID: PMC4026404 DOI: 10.1089/ars.2013.5357] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Ischemic retinal diseases such as retinopathy of prematurity are major causes of blindness due to damage to the retinal microvasculature. Despite this clinical situation, retinopathy of prematurity is mechanistically poorly understood. Therefore, effective preventative therapies are not available. However, hypoxic-induced increases in reactive oxygen species (ROS) have been suggested to be involved with NADPH oxidases (NOX), the only known dedicated enzymatic source of ROS. Our major aim was to determine the contribution of NOX isoforms (1, 2, and 4) to a rodent model of retinopathy of prematurity. RESULTS Using a genetic approach, we determined that only mice with a deletion of NOX1, but not NOX2 or NOX4, were protected from retinal neovascularization and vaso-obliteration, adhesion of leukocytes, microglial accumulation, and the increased generation of proangiogenic and proinflammatory factors and ROS. We complemented these studies by showing that the specific NOX inhibitor, GKT137831, reduced vasculopathy and ROS levels in retina. The source of NOX isoforms was evaluated in retinal vascular cells and neuro-glial elements. Microglia, the immune cells of the retina, expressed NOX1, 2, and 4 and responded to hypoxia with increased ROS formation, which was reduced by GKT137831. INNOVATION Our studies are the first to identify the NOX1 isoform as having an important role in the pathogenesis of retinopathy of prematurity. CONCLUSIONS Our findings suggest that strategies targeting NOX1 have the potential to be effective treatments for a range of ischemic retinopathies.
Collapse
|
224
|
Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ. NADPH oxidases in lung health and disease. Antioxid Redox Signal 2014; 20:2838-53. [PMID: 24093231 PMCID: PMC4026303 DOI: 10.1089/ars.2013.5608] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. RECENT ADVANCES The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. CRITICAL ISSUES However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. FUTURE DIRECTIONS Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | | | | | | | | |
Collapse
|
225
|
Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 2014; 20:2741-54. [PMID: 24070014 PMCID: PMC4026400 DOI: 10.1089/ars.2013.5620] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Numerous studies in animal models and human subjects corroborate that elevated levels of reactive oxygen species (ROS) play a pivotal role in the progression of multiple diseases. As a major source of ROS in many organ systems, the NADPH oxidase (Nox) has become a prime target for therapeutic development. RECENT ADVANCES In recent years, intense efforts have been dedicated to the development of pan- and isoform-specific Nox inhibitors as opposed to antioxidants that proved ineffective in clinical trials. Over the past decade, an array of compounds has been proposed in an attempt to fill this void. CRITICAL ISSUES Although many of these compounds have proven effective as Nox enzyme family inhibitors, isoform specificity has posed a formidable challenge to the scientific community. This review surveys the most prominent Nox inhibitors, and discusses potential isoform specificity, known mechanisms of action, and shortcomings. Some of these inhibitors hold substantial promise as targeted therapeutics. FUTURE DIRECTIONS Increased insight into the mechanisms of action and regulation of this family of enzymes as well as atomic structures of key Nox subunits are expected to give way to a broader spectrum of more potent, efficacious, and specific molecules. These lead molecules will assuredly serve as a basis for drug development aimed at treating a wide array of diseases associated with increased Nox activity.
Collapse
Affiliation(s)
- Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
226
|
Abstract
Chronic kidney disease (CKD) is becoming a worldwide epidemic, driven largely by the dramatic rise in the prevalence of diabetes and obesity. Novel targets and treatments for CKD are, therefore, desperately needed-to both mitigate the burden of this disease in the general population and reduce the necessity for renal replacement therapy in individual patients. This Review highlights new insights into the mechanisms that contribute to CKD, and approaches that might facilitate the development of disease-arresting therapies for CKD. Particular focus is given to therapeutic approaches using antifibrotic agents that target the transforming growth factor β superfamily. In addition, we discuss new insights regarding the roles of vascular calcification, the NADPH oxidase family, and inflammation in the pathogenesis of CKD. We also highlight a new understanding regarding kidney energy sensing pathways (AMPK, sirtuins, and mTOR) in a variety of kidney diseases and how they are linked to inflammation and fibrosis. Finally, exciting new insights have been made into the role of mitochondrial function and mitochondrial biogenesis in relation to progressive kidney disease. Prospective therapeutics based on these findings will hopefully renew hope for clinicians and patients in the near future.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), CP603, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Kumar Sharma
- Center for Renal Translational Medicine, University of California, San Diego and Veterans Affairs San Diego Healthcare System, Stein Clinical Research Building, 4th Floor, 9500 Gilman Drive, La Jolla, CA 92093-0711, USA
| |
Collapse
|
227
|
Bai G, Hock TD, Logsdon N, Zhou Y, Thannickal VJ. A far-upstream AP-1/Smad binding box regulates human NOX4 promoter activation by transforming growth factor-β. Gene 2014; 540:62-7. [PMID: 24560583 PMCID: PMC4009368 DOI: 10.1016/j.gene.2014.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 01/09/2014] [Accepted: 02/18/2014] [Indexed: 01/25/2023]
Abstract
NADPH oxidase 4 (NOX4) is a member of the NADPH oxidase gene family that regulates cellular differentiation, innate immunity and tissue fibrosis. Transforming growth factor-β (TGF-β1) is known to induce expression of NOX4 mRNA in mesenchymal cells. However, the mechanisms of transcriptional regulation of NOX4 are not well understood. In this study, we examined the transcriptional regulation of NOX4 in human lung fibroblasts by TGF-β1. Five promoter-reporter constructs containing DNA fragments of 0.74kb, 1.35kb, 1.84kb, 3.97kb and 4.76kb upstream from the transcriptional start site (TSS) of the human NOX4 gene were generated and their relative responsiveness to TGF-β1 analyzed. TGF-β1-induced NOX4 gene promoter activation requires a region between -3.97kb and -4.76kb. Bioinformatics analysis revealed a 15bp AP-1/Smad binding element in this region. Mutation or deletion of either the AP-1 or the Smad element attenuated TGF-β1 responsiveness of the -4.76kb NOX4 promoter. Furthermore, insertion of this AP-1/Smad box conferred TGF-β1 inducibility to the non-responsive -3.97kb NOX4 promoter construct. Chromatin immunoprecipitation analysis indicated that phospho-Smad3 and cJun associate with this element in a TGF-β1-inducible manner. These results demonstrate that the AP-1/Smad box located between 3.97kb and 4.76kb upstream of the TSS site of the NOX4 promoter is essential for NOX4 gene transcription induced by TGF-β1 in human lung fibroblasts. Our study provides insights into the molecular mechanisms of NOX4 gene expression, informing novel therapeutic approaches to interfere with upregulation of NOX4 in diseases characterized by activation of the TGF-β1/NOX4 pathway.
Collapse
Affiliation(s)
- Guangxing Bai
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas D Hock
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naomi Logsdon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
228
|
Crosas-Molist E, Bertran E, Sancho P, López-Luque J, Fernando J, Sánchez A, Fernández M, Navarro E, Fabregat I. The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radic Biol Med 2014; 69:338-47. [PMID: 24509161 DOI: 10.1016/j.freeradbiomed.2014.01.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
The NADPH oxidase NOX4 has emerged as an important source of reactive oxygen species in signal transduction, playing roles in physiological and pathological processes. NOX4 mediates transforming growth factor-β-induced intracellular signals that provoke liver fibrosis, and preclinical assays have suggested NOX4 inhibitors as useful tools to ameliorate this process. However, the potential consequences of sustained treatment of liver cells with NOX4 inhibitors are yet unknown. The aim of this work was to analyze whether NOX4 plays a role in regulating liver cell growth either under physiological conditions or during tumorigenesis. In vitro assays proved that stable knockdown of NOX4 expression in human liver tumor cells increased cell proliferation, which correlated with a higher percentage of cells in S/G2/M phases of the cell cycle, downregulation of p21(CIP1/WAF1), increase in cyclin D1 protein levels, and nuclear localization of β-catenin. Silencing of NOX4 in untransformed human and mouse hepatocytes also increased their in vitro proliferative capacity. In vivo analysis in mice revealed that NOX4 expression was downregulated under physiological proliferative situations of the liver, such as regeneration after partial hepatectomy, as well as during pathological proliferative conditions, such as diethylnitrosamine-induced hepatocarcinogenesis. Xenograft experiments in athymic mice indicated that NOX4 silencing conferred an advantage to human hepatocarcinoma cells, resulting in earlier onset of tumor formation and increase in tumor size. Interestingly, immunochemical analyses of NOX4 expression in human liver tumor cell lines and tissues revealed decreased NOX4 protein levels in liver tumorigenesis. Overall, results described here strongly suggest that NOX4 would play a growth-inhibitory role in liver cells.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Esther Bertran
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Patricia Sancho
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Judit López-Luque
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Joan Fernando
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28080 Madrid, Spain
| | - Margarita Fernández
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28080 Madrid, Spain
| | - Estanis Navarro
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Departament de Ciències Fisiològiques II, Universitat de Barcelona, Campus de Bellvitge, Barcelona, Spain.
| |
Collapse
|
229
|
Hoff P, Buttgereit F. NADPH oxidase 4 represents a potential target for the treatment of osteoporosis. Cell Mol Immunol 2014; 11:317-9. [PMID: 24583714 DOI: 10.1038/cmi.2014.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paula Hoff
- 1] Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany [2] Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Frank Buttgereit
- 1] Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany [2] Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
230
|
Di Marco E, Gray SP, Chew P, Koulis C, Ziegler A, Szyndralewiez C, Touyz RM, Schmidt HHHW, Cooper ME, Slattery R, Jandeleit-Dahm KA. Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe(-/-) mice. Diabetologia 2014; 57:633-42. [PMID: 24292634 DOI: 10.1007/s00125-013-3118-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/06/2013] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Enhanced vascular inflammation, immune cell infiltration and elevated production of reactive oxygen species (ROS) contribute significantly to pro-atherogenic responses in diabetes. We assessed the immunomodulatory role of NADPH oxidase (NOX)-derived ROS in diabetes-accelerated atherosclerosis. METHODS Diabetes was induced in male Apoe(-/-) mice with five daily doses of streptozotocin (55 mg kg(-1) day(-1)). Atherosclerotic plaque size, markers of ROS and immune cell accumulation were assessed in addition to flow cytometric analyses of cells isolated from the adjacent mediastinal lymph nodes (meLNs). The role of NOX-derived ROS was investigated using the NOX inhibitor, GKT137831 (60 mg/kg per day; gavage) administered to diabetic and non-diabetic Apoe(-/-) mice for 10 weeks. RESULTS Diabetes increased atherosclerotic plaque development in the aortic sinus and this correlated with increased lesional accumulation of T cells and CD11c(+) cells and altered T cell activation in the adjacent meLNs. Diabetic Apoe(-/-) mice demonstrated an elevation in vascular ROS production and expression of the proinflammatory markers monocyte chemoattractant protein 1, vascular adhesion molecule 1 and IFNγ. Blockade of NOX-derived ROS using GKT137831 prevented the diabetes-mediated increase in atherosclerotic plaque area and associated vascular T cell infiltration and also significantly reduced vascular ROS as well as markers of inflammation and plaque necrotic core area. CONCLUSIONS/INTERPRETATION Diabetes promotes pro-inflammatory immune responses in the aortic sinus and its associated lymphoid tissue. These changes are associated with increased ROS production by NOX. Blockade of NOX-derived ROS using the NOX inhibitor GKT137831 is associated with attenuation of these changes in the immune response and reduces the diabetes-accelerated development of atherosclerotic plaques in Apoe(-/-) mice.
Collapse
Affiliation(s)
- E Di Marco
- Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, PO Box 6429, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Gray SP, Jha JC, Di Marco E, Jandeleit-Dahm KA. NAD(P)H oxidase isoforms as therapeutic targets for diabetic complications. Expert Rev Endocrinol Metab 2014; 9:111-122. [PMID: 30743754 DOI: 10.1586/17446651.2014.887984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of macro- and microvascular complications is accelerated in diabetic patients. While some therapeutic regimes have helped in delaying progression of complications, none have yet been able to halt the progression and prevent vascular disease, highlighting the need to identify new therapeutic targets. Increased oxidative stress derived from the NADPH oxidase (Nox) family has recently been identified to play an important role in the pathophysiology of vascular disease. In recent years, specific Nox isoforms have been implicated in contributing to the development of atherosclerosis of major vessels, as well as damage of the small vessels within the kidney and the eye. With the use of novel Nox inhibitors, it has been demonstrated that these complications can be attenuated, indicating that targeting Nox derived oxidative stress holds potential as a new therapeutic strategy.
Collapse
Affiliation(s)
| | - Jay C Jha
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Elyse Di Marco
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karin Am Jandeleit-Dahm
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
232
|
Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, Weissmann N, Weinberger V, Benkhoff S, Kampschulte M, Obermayer-Pietsch B, Hofbauer LC, Brandes RP, Schröder K. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest 2014; 123:4731-8. [PMID: 24216508 DOI: 10.1172/jci67603] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 08/15/2013] [Indexed: 01/06/2023] Open
Abstract
ROS are implicated in bone diseases. NADPH oxidase 4 (NOX4), a constitutively active enzymatic source of ROS, may contribute to the development of such disorders. Therefore, we studied the role of NOX4 in bone homeostasis. Nox4(-/-) mice displayed higher bone density and reduced numbers and markers of osteoclasts. Ex vivo, differentiation of monocytes into osteoclasts with RANKL and M-CSF induced Nox4 expression. Loss of NOX4 activity attenuated osteoclastogenesis, which was accompanied by impaired activation of RANKL-induced NFATc1 and c-JUN. In an in vivo model of murine ovariectomy–induced osteoporosis, pharmacological inhibition or acute genetic knockdown of Nox4 mitigated loss of trabecular bone. Human bone obtained from patients with increased osteoclast activity exhibited increased NOX4 expression. Moreover, a SNP of NOX4 was associated with elevated circulating markers of bone turnover and reduced bone density in women. Thus, NOX4 is involved in bone loss and represents a potential therapeutic target for the treatment of osteoporosis.
Collapse
|
233
|
Sampson N, Berger P, Zenzmaier C. Redox signaling as a therapeutic target to inhibit myofibroblast activation in degenerative fibrotic disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:131737. [PMID: 24701562 PMCID: PMC3950649 DOI: 10.1155/2014/131737] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 01/06/2014] [Indexed: 12/23/2022]
Abstract
Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ) is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGF β-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) supported by concomitant decreases in nitric oxide (NO) signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.
Collapse
Affiliation(s)
- Natalie Sampson
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Peter Berger
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Zenzmaier
- Department of Internal Medicine III, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
234
|
Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 2014; 10:226-37. [DOI: 10.1038/nrneph.2014.14] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
235
|
Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F, Touyz RM, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 2014; 25:1237-54. [PMID: 24511132 DOI: 10.1681/asn.2013070810] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)-forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE(-/-) mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE(-/-) mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure.
Collapse
Affiliation(s)
- Jay C Jha
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Stephen P Gray
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - David Barit
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Jun Okabe
- Human Epigenetics Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Assam El-Osta
- Human Epigenetics Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Tamehachi Namikoshi
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Vicki Thallas-Bonke
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, The Netherlands
| | | | | | - Rhian M Touyz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark E Cooper
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Karin A Jandeleit-Dahm
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia;
| |
Collapse
|
236
|
Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal 2014; 20:164-82. [PMID: 23600794 PMCID: PMC3880913 DOI: 10.1089/ars.2013.5302] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/21/2013] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are signaling molecules that are important in physiological processes, including host defense, aging, and cellular homeostasis. Increased ROS bioavailability and altered redox signaling (oxidative stress) have been implicated in the onset and/or progression of chronic diseases, including hypertension. RECENT ADVANCES Although oxidative stress may not be the only cause of hypertension, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors, such as salt loading, activation of the renin-angiotensin-aldosterone system, and sympathetic hyperactivity, at least in experimental models. A major source for ROS in the cardiovascular-renal system is a family of nicotinamide adenine dinucleotide phosphate oxidases (Noxs), including the prototypic Nox2-based Nox, and Nox family members: Nox1, Nox4, and Nox5. CRITICAL ISSUES Although extensive experimental data support a role for increased ROS levels and altered redox signaling in the pathogenesis of hypertension, the role in clinical hypertension is unclear, as a direct causative role of ROS in blood pressure elevation has yet to be demonstrated in humans. Nevertheless, what is becoming increasingly evident is that abnormal ROS regulation and aberrant signaling through redox-sensitive pathways are important in the pathophysiological processes which is associated with vascular injury and target-organ damage in hypertension. FUTURE DIRECTIONS There is a paucity of clinical information related to the mechanisms of oxidative stress and blood pressure elevation, and a few assays accurately measure ROS directly in patients. Such further ROS research is needed in humans and in the development of adequately validated analytical methods to accurately assess oxidative stress in the clinic.
Collapse
Affiliation(s)
- Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow, United Kingdom
| | | |
Collapse
|
237
|
Hagiwara S, Jha JC, Cooper ME. Identifying and interpreting novel targets that address more than one diabetic complication: a strategy for optimal end organ protection in diabetes. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0148-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
238
|
Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents. Arch Dermatol Res 2013; 306:313-330. [PMID: 24155025 DOI: 10.1007/s00403-013-1416-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists.
Collapse
Affiliation(s)
- Olubukola Babalola
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA
| | - Andrew Mamalis
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA
| | - Hadar Lev-Tov
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA
| | - Jared Jagdeo
- Department of Dermatology, University of California at Davis, 3301 C Street, Sacramento, CA 95816, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA 95655, USA.,Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
239
|
Gorin Y, Block K. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med 2013; 61:130-42. [PMID: 23528476 PMCID: PMC3716866 DOI: 10.1016/j.freeradbiomed.2013.03.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, a complication of diabetes in the kidney. NADPH oxidases of the Nox family are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current understanding of the roles of Nox catalytic and regulatory subunits in the processes that control mesangial cell, podocyte, and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The role of the Nox isoform Nox4 in the redox processes that alter renal biology in diabetes is highlighted.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| |
Collapse
|
240
|
Burgoyne JR, Oviosu O, Eaton P. The PEG-switch assay: a fast semi-quantitative method to determine protein reversible cysteine oxidation. J Pharmacol Toxicol Methods 2013; 68:297-301. [PMID: 23856010 DOI: 10.1016/j.vascn.2013.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/21/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Reversible protein cysteine oxidation is recognised as a pivotal post-transitional modification that transduces physiological as well as pathological signalling. Pharmacological interventions that target specific sources of oxidant formation are currently being trialled to ascertain their potential ability to prevent disease progression. To determine the selectivity of such pharmacological treatments and to indentify new drug targets, a suitable method is required to detect target cysteine oxidation. METHOD Using a polyethylene glycol (PEG)-based alkylating agent the reversible oxidation of target proteins can be determined using a novel switch method. After reduction and specific labelling of reversibly oxidised thiols with a 'heavy' PEG-tag, samples are resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels, Western blotted and immunostained for protein(s) of interest. A mobility shift in a target protein following PEG-alkylation correlates with the reversible oxidative modification. RESULTS The oxidation of cAMP- and cGMP-dependent protein kinases was detected using the PEG-switch assay in Langendorff-perfused hearts after hydrogen peroxide was administered. DISCUSSION The PEG-switch assay is a fast effective semi-quantitative method for measuring target reversible cysteine oxidation in complex protein mixtures derived from tissue or cultured cells.
Collapse
Affiliation(s)
- Joseph Robert Burgoyne
- King's College London, Cardiovascular Division, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
241
|
Jiang JX, Török NJ. Liver Injury and the Activation of the Hepatic Myofibroblasts. CURRENT PATHOBIOLOGY REPORTS 2013; 1:215-223. [PMID: 23977452 DOI: 10.1007/s40139-013-0019-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a wound healing process, the end result of chronic liver injury elicited by different noxious stimuli. Activated hepatic stellate cells or myofibroblasts and portal myofibroblasts are considered as the main producers of the extracellular matrix in the liver. Upon liver injury the quiescent stellate cells transdifferentiate into myofibroblasts a process highlighted by the loss of vitamin A stores, upregulation of interstitial type collagens, smooth muscle α actin, matrix metalloproteinases, proteoglycans, and the induction of cell survival pathways. Activation of hepatic stellate cells is a result of a complex interplay between the parenchymal cells, immune cells, extracellular matrix mechanics and extrahepatic milieu such as the gut microbiome. In this review we will focus on the pathomechanism of stellate cell activation following chronic liver injury; with the aim of identifying possible treatment targets for anti-fibrogenic agents.
Collapse
Affiliation(s)
- Joy X Jiang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, CA
| | | |
Collapse
|
242
|
Li JF, Zheng SJ, Duan ZP. Liver fibrosis: Role of oxidative stress and therapeutic countermeasures. Shijie Huaren Xiaohua Zazhi 2013; 21:1573-1578. [DOI: 10.11569/wcjd.v21.i17.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A variety of factors can lead to chronic inflammation of the liver and thus the occurrence of liver fibrosis. The activation of hepatic stellate cell (HSC) plays a key role in the pathogenesis of liver fibrosis. Activated HSC exhibit characteristic changes in the morphology and function and promote the development of liver fibrosis. Intrahepatic oxidative stress injury is an important mechanism involved in HSC activation and hepatic collagen deposition. There is a close relationship between liver fibrosis and oxidative stress levels. Reducing the levels of oxidative stress has gradually become an aim of anti-fibrotic therapy. In this paper we review recent progress in research of oxidative stress, liver fibrosis and its therapeutic strategies.
Collapse
|
243
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
244
|
Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH. Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 2013; 18:1765-76. [PMID: 23244636 PMCID: PMC3619152 DOI: 10.1089/ars.2012.4766] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM To determine if the NADPH oxidase isoform Nox4 contributes to increased H(2)O(2) generation in persistent pulmonary hypertension of the newborn (PPHN) pulmonary arteries (PA), and to identify downstream signaling targets of Nox4 that contribute to vascular remodeling and vasoconstriction. RESULTS PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs, PA, and PA smooth muscle cells (PASMC) were isolated from control and PPHN lambs. Increased expression of p22(phox) and Nox4 in PPHN lungs, PA, and PASMC was associated with increased reactive oxygen species in PPHN PA, increased protein thiol oxidation in PPHN PASMC, and a decreased activity of extracellular superoxide dismutase (ecSOD) in the lungs and PASMC. Nox4 small interfering RNA (siRNA) decreased Nox4 expression and thiol oxidation and increased the ecSOD activity in PPHN PASMC. An increased activity of nuclear factor-kappa B (NFκB) and expression of its target gene cyclin D1 were detected in PPHN lungs, PA, and PASMC. Nox4 siRNA and catalase attenuated these increases in PASMC, and catalase decreased cyclin D1 expression in PPHN lungs. INNOVATION This study demonstrates for the first time that Nox4 expression is elevated in a lamb model of neonatal pulmonary hypertension. It identifies increased NFκB and cyclin D1 expression and a decreased ecSOD activity as targets of increased Nox4 signaling. CONCLUSION PPHN increases p22(phox) and Nox4 expression and activity resulting in elevated H(2)O(2) levels in PPHN PA. Increased H(2)O(2) induces vasoconstriction via mechanisms involving ecSOD inactivation, and stimulates vascular remodeling via NFκB activation and increased cyclin D1 expression. Approaches that inhibit the pulmonary arterial Nox4 activity may attenuate vasoconstriction and vascular remodeling in PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
245
|
Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, de Haan JB, Koulis C, El-Osta A, Andrews KL, Chin-Dusting JPF, Touyz RM, Wingler K, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. NADPH Oxidase 1 Plays a Key Role in Diabetes Mellitus–Accelerated Atherosclerosis. Circulation 2013; 127:1888-902. [PMID: 23564668 DOI: 10.1161/circulationaha.112.132159] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stephen P. Gray
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Elyse Di Marco
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Jun Okabe
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Cedric Szyndralewiez
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Freddy Heitz
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Augusto C. Montezano
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Judy B. de Haan
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Christine Koulis
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Assam El-Osta
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Karen L. Andrews
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Jaye P. F. Chin-Dusting
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Rhian M. Touyz
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Kirstin Wingler
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Mark E. Cooper
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Harald H. H. W. Schmidt
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| | - Karin A Jandeleit-Dahm
- From the Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (S.P.G., E.D.M., J.B.d.H., C.K., M.E.C., K.A.J.-D.); the Department of Medicine, Monash University, Monash, Australia (E.D.M., M.E.C., K.A.J.-D.); Epigenetics in Human Health and Disease, Baker IDI Heart & Diabetes Institute, Melbourne, Australia (J.O., A.E.-O.); GenKyoTex SA, Geneva, Switzerland (C.S., F.H.); Ottawa Hospital Research Institute, Ottawa, Canada (A.C.M., R.M.T.); Institute of
| |
Collapse
|
246
|
Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 2013; 33:2078-90. [PMID: 23508104 DOI: 10.1128/mcb.00049-13] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liver fibrosis occurs as a wound-healing response to chronic hepatic injuries irrespective of the underlying etiology and may progress to life-threatening cirrhosis. Here we show that CCN1, a matricellular protein of the CCN (CYR61/CTGF/NOV) family, is accumulated in hepatocytes of human cirrhotic livers. CCN1 is not required for liver development or regeneration, since these processes are normal in mice with hepatocyte-specific Ccn1 deletion. However, Ccn1 expression is upregulated upon liver injuries and functions to inhibit liver fibrogenesis induced by either carbon tetrachloride intoxication or bile duct ligation and promote fibrosis regression. CCN1 acts by triggering cellular senescence in activated hepatic stellate cells and portal fibroblasts by engaging integrin α6β1 to induce reactive oxygen species accumulation through the RAC1-NADPH oxidase 1 enzyme complex, whereupon the senescent cells express an antifibrosis genetic program. Mice with hepatocyte-specific Ccn1 deletion suffer exacerbated fibrosis with a concomitant deficit in cellular senescence, whereas overexpression of hepatic Ccn1 reduces liver fibrosis with enhanced senescence. Furthermore, tail vein delivery of purified CCN1 protein accelerates fibrosis regression in mice with established fibrosis. These findings reveal a novel integrin-dependent mechanism of fibrosis resolution in chronic liver injury and identify the CCN1 signaling pathway as a potential target for therapeutic intervention.
Collapse
|
247
|
Abstract
Redox signaling refers to the specific and usually reversible oxidation/reduction modification of molecules involved in cellular signaling pathways. In the heart, redox signaling regulates several physiological processes (eg, excitation-contraction coupling) and is involved in a wide variety of pathophysiological and homoeostatic or stress response pathways. Reactive oxygen species involved in cardiac redox signaling may derive from many sources, but NADPH oxidases, as dedicated sources of signaling reactive oxygen species, seem to be especially important. An increasing number of specific posttranslational oxidative modifications involved in cardiac redox signaling are being defined, along with the reactive oxygen species sources that are involved. Here, we review current knowledge on the molecular targets of signaling reactive oxygen species in cardiac cells and their involvement in cardiac physiopathology. Advances in this field may allow the development of targeted therapeutic strategies for conditions such as heart failure as opposed to the general antioxidant approaches that have failed to date.
Collapse
|
248
|
Cheresh P, Kim SJ, Tulasiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1028-40. [PMID: 23219955 DOI: 10.1016/j.bbadis.2012.11.021] [Citation(s) in RCA: 343] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Paul Cheresh
- Department of Medicine, Northwestern University Feinberg School of Medicine and Jesse Brown VA Medical Center, USA
| | | | | | | |
Collapse
|
249
|
Maghzal GJ, Krause KH, Stocker R, Jaquet V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 2012; 53:1903-18. [PMID: 22982596 DOI: 10.1016/j.freeradbiomed.2012.09.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
NADPH oxidases (NOX) are superoxide anion radical (O(2)(-•))-generating enzymes. They form a family of seven members, each with a specific tissue distribution. They function as electron transport chains across membranes, using NADPH as electron donor to reduce molecular oxygen to O(2)(-•). NOX have multiple biological functions, ranging from host defense to inflammation and cellular signaling. Measuring NOX activity is crucial in understanding the roles of these enzymes in physiology and pathology. Many of the methods used to measure NOX activity are based on the detection of small molecules that react with NOX-generated O(2)(-•) or its direct dismutation product hydrogen peroxide (H(2)O(2)) to form fluorescent, luminescent, or colored products. Initial techniques were developed to measure the activity of the phagocyte isoform NOX2 during the oxidative burst of stimulated polymorphonuclear leukocytes, which generate large quantities of O(2)(-•). However, other members of the NOX family generate much less O(2)(-•) and hence H(2)O(2), and their activity is difficult to distinguish from other sources of these reactive species. In addition, O(2)(-•) and H(2)O(2) are reactive molecules and most probes are prone to artifacts and therefore should be used with appropriate controls and the data carefully interpreted. This review gives an overview of current methods used to measure NOX activity and NOX-derived O(2)(-•) and H(2)O(2) in cells, tissues, isolated systems, and living organisms, describing the advantages and caveats of many established methods with emphasis on more recent technologies and future perspectives.
Collapse
Affiliation(s)
- Ghassan J Maghzal
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
250
|
Green DE, Murphy TC, Kang BY, Kleinhenz JM, Szyndralewiez C, Page P, Sutliff RL, Hart CM. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am J Respir Cell Mol Biol 2012; 47:718-26. [PMID: 22904198 DOI: 10.1165/rcmb.2011-0418oc] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increased NADP reduced (NADPH) oxidase 4 (Nox4) and reduced expression of the nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) contribute to hypoxia-induced pulmonary hypertension (PH). To examine the role of Nox4 activity in pulmonary vascular cell proliferation and PH, the current study used a novel Nox4 inhibitor, GKT137831, in hypoxia-exposed human pulmonary artery endothelial or smooth muscle cells (HPAECs or HPASMCs) in vitro and in hypoxia-treated mice in vivo. HPAECs or HPASMCs were exposed to normoxia or hypoxia (1% O(2)) for 72 hours with or without GKT137831. Cell proliferation and Nox4, PPARγ, and transforming growth factor (TGF)β1 expression were measured. C57Bl/6 mice were exposed to normoxia or hypoxia (10% O(2)) for 3 weeks with or without GKT137831 treatment during the final 10 days of exposure. Lung PPARγ and TGF-β1 expression, right ventricular hypertrophy (RVH), right ventricular systolic pressure (RVSP), and pulmonary vascular remodeling were measured. GKT137831 attenuated hypoxia-induced H(2)O(2) release, proliferation, and TGF-β1 expression and blunted reductions in PPARγ in HPAECs and HPASMCs in vitro. In vivo GKT137831 inhibited hypoxia-induced increases in TGF-β1 and reductions in PPARγ expression and attenuated RVH and pulmonary artery wall thickness but not increases in RVSP or muscularization of small arterioles. This study shows that Nox4 plays a critical role in modulating proliferative responses of pulmonary vascular wall cells. Targeting Nox4 with GKT137831 provides a novel strategy to attenuate hypoxia-induced alterations in pulmonary vascular wall cells that contribute to vascular remodeling and RVH, key features involved in PH pathogenesis.
Collapse
Affiliation(s)
- David E Green
- Department of Medicine, Emory University, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | | | | | | | | | | | | | | |
Collapse
|