201
|
Burston JJ, Wiley JL, Craig AA, Selley DE, Sim-Selley LJ. Regional enhancement of cannabinoid CB₁ receptor desensitization in female adolescent rats following repeated Delta-tetrahydrocannabinol exposure. Br J Pharmacol 2010; 161:103-12. [PMID: 20718743 DOI: 10.1111/j.1476-5381.2010.00870.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Disruption of the substantial re-organization of the brain during adolescence may be induced by persistent abuse of marijuana. The aim of this study was to determine whether adolescent and adult rats exhibit differential adaptation of brain cannabinoid (CB(1)) receptors after repeated exposure to Delta(9)-tetrahydrocannabinol (THC). EXPERIMENTAL APPROACH Rats of both ages and sexes were dosed with 10 mg kg(-1) THC or vehicle twice daily for 9.5 days. Subsequently, CB(1) receptor function and density were assessed. KEY RESULTS In all brain regions, THC treatment produced desensitization and down-regulation of CB(1) receptors. While the magnitude of down-regulation did not differ across groups, greater desensitization was evident in the brains of THC-treated female adolescent rats for most regions. Adolescent females showed greater desensitization than adult females in the prefrontal cortex, hippocampus, periaqueductal gray (PAG) and ventral midbrain. In contrast, adolescent males exhibited less desensitization in the prefrontal cortex, hippocampus and PAG, an effect opposite to that seen in females. With the exception of the PAG, sex differences were seen only in adolescents, with greater desensitization in the prefrontal cortex, striatum, hippocampus, PAG, and ventral midbrain of females. CONCLUSIONS AND IMPLICATIONS These results suggest that the brains of adolescent females may be particularly vulnerable to disruption of CB(1) receptor signalling by marijuana abuse. Alternatively, increased desensitization may reflect protective adaptation. Given the extensive re-organization of the brain during adolescence, this disruption has potential long-term consequences for maturation of the endocannabinoid system.
Collapse
Affiliation(s)
- James J Burston
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
202
|
Higuera-Matas A, Botreau F, Del Olmo N, Miguéns M, Olías O, Montoya GL, García-Lecumberri C, Ambrosio E. Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol 2010; 20:895-906. [PMID: 20655181 DOI: 10.1016/j.euroneuro.2010.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/14/2010] [Accepted: 06/24/2010] [Indexed: 12/31/2022]
Abstract
In a previous work, we have shown that chronic administration of the cannabinoid agonist CP 55,940 (CP) during periadolescence increases cocaine self-administration in adult female rats, while it produces no such effect in males (Higuera-Matas et al., 2008). To extend these findings, we have analysed here the brains of the rats used as subjects in this previous work to evaluate the impact of the interaction between CP exposure and cocaine self-administration on dopaminergic parameters. We evaluated the levels of the dopamine transporter (DAT), and the D1- (D1R) and D2-type (D2R) dopaminergic receptors, as well as tyrosine hydroxylase (TH) mRNA in dopaminergic areas of the adult, cocaine self-administered, rat brain that had been chronically exposed to CP or vehicle (VH) during periadolescence. Control groups with CP/VH exposure and no self-administration experience were also included. In adult females, CP administration induced an up-regulation of DAT in the caudate-putamen that was maintained after cocaine self-administration. In males, CP induced an increase in the D1Rs content in the nucleus accumbens shell, which was not evident after cocaine self-administration. CP also reduced the expression of D2Rs in CA1 irrespective of sex. Finally, an increase in D1Rs was observed in the substantia nigra following cocaine self-administration. These findings suggest that a dopaminergic component modulated by cannabinoids may underlie the enhanced cocaine self-administration previously observed in adult female rats.
Collapse
Affiliation(s)
- Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal no.10, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Hanson KL, Winward JL, Schweinsburg AD, Medina KL, Brown SA, Tapert SF. Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence. Addict Behav 2010; 35:970-6. [PMID: 20621421 DOI: 10.1016/j.addbeh.2010.06.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/29/2010] [Accepted: 06/07/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cognitive deficits that persist up to a month have been detected among adult marijuana users, but decrements and their pattern of recovery are less known in adolescent users. Previously, we reported cognitive deficits among adolescent marijuana users after one month of abstinence (Medina, Hanson, Schweinsburg, Cohen-Zion, Nagel, & Tapert, 2007). In this longitudinal study, we characterized neurocognitive changes among marijuana-using adolescents across the first three weeks of abstinence. METHOD Participants were adolescent marijuana users with limited alcohol and other drug use (n=19) and demographically similar non-using controls (n=21) ages 15-19. Participants completed a brief neuropsychological battery on three occasions, after 3days, 2weeks, and 3weeks of stopping substance use. Abstinence was ascertained by decreasing tetrahydrocannabinol metabolite values on serial urine drug screens. Verbal learning, verbal working memory, attention and vigilance, and time estimation were evaluated. RESULTS Marijuana users demonstrated poorer verbal learning (p<.01), verbal working memory (p<.05), and attention accuracy (p<.01) compared to controls. Improvements in users were seen on word list learning after 2weeks of abstinence and on verbal working memory after 3weeks. While attention processing speed was similar between groups, attention accuracy remained deficient in users throughout the 3-week abstinence period. CONCLUSIONS This preliminary study detected poorer verbal learning and verbal working memory among adolescent marijuana users that improved during three weeks of abstinence, while attention deficits persisted. These results implicate possible hippocampal, subcortical, and prefrontal cortex abnormalities.
Collapse
Affiliation(s)
- Karen L Hanson
- VA San Diego Healthcare System, Psychology Service, 3350 La Jolla Village Drive (116B), San Diego, CA 92161, USA.
| | | | | | | | | | | |
Collapse
|
204
|
Malone DT, Hill MN, Rubino T. Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models. Br J Pharmacol 2010; 160:511-22. [PMID: 20590561 DOI: 10.1111/j.1476-5381.2010.00721.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cannabis is one of the most widely used illicit drugs among adolescents, and most users first experiment with it in adolescence. Adolescence is a critical phase for brain development, characterized by neuronal maturation and rearrangement processes, such as myelination, synaptic pruning and dendritic plasticity. The endocannabinoid system plays an important role in fundamental brain developmental processes such as neuronal cell proliferation, migration and differentiation. Therefore changes in endocannabinoid activity during this specific developmental phase, induced by the psychoactive component of marijuana, Delta(9)-tetrahydrocannabinol, might lead to subtle but lasting neurobiological changes that can affect brain functions and behaviour. In this review, we outline recent research into the endocannabinoid system focusing on the relationships between adolescent exposure to cannabinoids and increased risk for certain neuropsychiatric diseases such as schizophrenia, as highlighted by both human and animal studies. Particular emphasis will be given to the possible mechanisms by which adolescent cannabis consumption could render a person more susceptible to developing psychoses such as schizophrenia.
Collapse
Affiliation(s)
- Daniel T Malone
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia
| | | | | |
Collapse
|
205
|
Chronic adolescent exposure to Δ-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology 2010; 35:2262-73. [PMID: 20631688 PMCID: PMC3055315 DOI: 10.1038/npp.2010.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cannabis use confers a two-fold increase in the risk for psychosis, with adolescent use conferring even greater risk. A high-low activity catechol-O-methyltransferase (COMT) polymorphism may modulate the effects of adolescent Δ-9-tetrahydrocannabinol (THC) exposure on the risk for adult psychosis. Mice with knockout of the COMT gene were treated chronically with THC (4.0 and 8.0 mg/kg over 20 days) during either adolescence (postnatal days (PDs) 32-52) or adulthood (PDs 70-90). The effects of THC exposure were then assessed in adulthood across behavioral phenotypes relevant for psychosis: exploratory activity, spatial working memory (spontaneous and delayed alternation), object recognition memory, social interaction (sociability and social novelty preference), and anxiety (elevated plus maze). Adolescent THC administration induced a larger increase in exploratory activity, greater impairment in spatial working memory, and a stronger anti-anxiety effect in COMT knockouts than in wild types, primarily among males. No such effects of selective adolescent THC administration were evident for other behaviors. Both object recognition memory and social novelty preference were disrupted by either adolescent or adult THC administration, independent of genotype. The COMT genotype exerts specific modulation of responsivity to chronic THC administration during adolescence in terms of exploratory activity, spatial working memory, and anxiety. These findings illuminate the interaction between genes and adverse environmental exposures over a particular stage of development in the expression of the psychosis phenotype.
Collapse
|
206
|
Viveros MP, Marco EM, López-Gallardo M, Garcia-Segura LM, Wagner EJ. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev 2010; 35:1740-51. [PMID: 20869396 DOI: 10.1016/j.neubiorev.2010.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 12/23/2022]
Abstract
This review highlights the salient findings that have furthered our understanding of how sex differences are initiated during development and maintained throughout life. First we discuss how gonadal steroid hormones organize the framework for sex differences within critical periods of development-namely, during those exposures which occur in utero and post-partum, as well as those which occur during puberty. Given the extensive precedence of sex differences in cannabinoid-regulated biology, we then focus on the disparities within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB(1) receptors is regulated throughout development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse, followed by the organizational and activational roles of gonadal steroids in establishing and maintaining the sex dependence in the biological actions of cannabinoids. Finally, we discuss ways to utilize this knowledge to strategically target critical developmental windows of vulnerability/susceptibility and thereby implement more effective therapeutic interventions for afflictions that may be more prevalent in one sex vs. the other.
Collapse
Affiliation(s)
- Maria-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, C/Jose Antonio Novais no. 2, Madrid, Spain.
| | | | | | | | | |
Collapse
|
207
|
Evidence that spatial memory deficits following bilateral vestibular deafferentation in rats are probably permanent. Neurobiol Learn Mem 2010; 94:402-13. [PMID: 20736074 DOI: 10.1016/j.nlm.2010.08.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/02/2010] [Accepted: 08/17/2010] [Indexed: 02/02/2023]
Abstract
Previous studies of rats with bilateral vestibular deafferentation (BVD) have demonstrated spatial memory deficits, suggesting adverse effects on the hippocampus. However, the longest post-operative time interval that has been studied was approx. 5-7 months post-surgery. In this study, we investigated whether rats exhibited spatial memory deficits at 14 months following BVD and whether these deficits could be exacerbated by administration of cannabinoid (CB) drugs. Twenty-eight adult rats were divided into four groups: (1) sham surgery+vehicle; (2) sham surgery+the CB1/CB(2) receptor agonist WIN55,212-2 ('WIN'); (3) BVD+vehicle; and (4) BVD+WIN. WIN (1.0 or 2.0 mg/kg/day) or vehicle, was administered (s.c.) on days 1-10 and 11-20 (respectively), 30 min before the rats performed in a foraging task. On day 21, the CB receptor inverse agonist, AM251 (3.0 mg/kg, s.c.), was administered before WIN or vehicle. To our surprise, BVD animals were impaired in using the visual cues during the probe test in light. In the dark trials, when visual cues were unavailable, BVD animals were unable to use self-movement cues in homing. However, WIN at 2 mg/kg, significantly improved BVD animals' homing time and number of errors in the dark through strategies other than the improvement in using self-movement cues. Furthermore, AM251 significantly improved heading angle in vehicle-treated animals and the first home choice in WIN-treated animals. These results suggest that at 14 months post-BVD, the animals are not only impaired in path integration, but also piloting and that the spatial memory deficits may be permanent. The involvement of the cannabinoid system is more complicated than expected.
Collapse
|
208
|
Verdurand M, Dalton VS, Zavitsanou K. GABA(A) receptor density is altered by cannabinoid treatment in the hippocampus of adult but not adolescent rats. Brain Res 2010; 1351:238-245. [PMID: 20599838 DOI: 10.1016/j.brainres.2010.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 02/05/2023]
Abstract
Cannabinoids are known to induce transient psychotic symptoms and cognitive dysfunction in healthy individuals and contribute to trigger schizophrenia in vulnerable individuals, particularly during adolescence. Converging preclinical evidence suggests important interactions between cannabinoid and GABAergic systems. In the present study, we compared the effects of cannabinoid treatment on GABA(A) receptor binding in the brain of adolescent and adult rats. Adolescent (5 weeks old) and adult (10 weeks old) rats were treated with the synthetic cannabinoid HU210 (25, 50 or 100 microg/kg/day) or vehicle for 1, 4 or 14 days. Rats were sacrificed 24 h after the last injection and GABA(A) receptor density was measured in several brain regions using [(35)S]TBPS and in vitro autoradiography. Adolescent rats had higher numbers of GABA(A) receptors compared to adults. A 24% increase of binding in adult rats treated with 100 microg/kg HU210 for 14 days compared to controls was observed in the CA1 region of the hippocampus (16.1 versus 12.9 fmol/mg tissue equivalent, t=2.720, p<0.05). HU210 did not affect GABA(A) receptors in adolescent rats in any treatment regimen and in adult rats treated with HU210 for 1 or 4 days. These data suggest that long-term, high-dose treatment with HU210 increases GABA(A) receptors in the hippocampus of adult rats, changes that may interfere with associated hippocampal cognitive functions such as learning and memory. In addition, our results suggest that the adolescent brain does not display the same compensatory mechanisms that are activated in the adult brain following cannabinoid treatment.
Collapse
Affiliation(s)
- Mathieu Verdurand
- Schizophrenia Research Institute, Sydney, Australia; ANSTO Life Sciences, Sydney, Australia
| | | | - Katerina Zavitsanou
- Schizophrenia Research Institute, Sydney, Australia; ANSTO Life Sciences, Sydney, Australia.
| |
Collapse
|
209
|
Abstract
OBJETIVO: Evidências de que o uso de cannabis prejudica funções cognitivas em humanos têm-se acumulado nas décadas recentes. O propósito desta revisão é o de atualizar o conhecimento nesta área com novos achados a partir da literatura mais recente. MÉTODO: As buscas na literatura foram realizadas utilizando-se o banco de dados Web of Science até fevereiro de 2010. Foram buscados os termos "cannabi*" ou "marijuana" e "cogniti*" ou "memory" ou "attention" ou "executive function", e os estudos em humanos foram revisados preferencialmente em relação aos estudos em animais. DISCUSSÃO: O uso de cannabis prejudica a memória, a atenção, o controle inibitório, as funções executivas e a tomada de decisões, tanto durante como após o período de intoxicação aguda, persistindo por horas, dias, semanas ou mais após o último uso. Os estudos de desafio farmacológico em humanos estão elucidando a natureza e os substratos neurais das alterações cognitivas associadas a vários canabinoides. O uso pesado ou de longo prazo de cannabis parece resultar em anormalidades cognitivas mais duradouras e possivelmente em alterações cerebrais estruturais. Efeitos cognitivos adversos maiores estão associados ao uso de cannabis quando este começa no início da adolescência. CONCLUSÃO: O sistema canabinoide endógeno está envolvido nos mecanismos de regulação neural que modulam os processos subjacentes a uma gama de funções cognitivas que estão prejudicadas pela cannabis. Os déficits em usuários humanos muito provavelmente refletem, portanto, neuroadaptações e o funcionamento alterado do sistema canabinoide endógeno.
Collapse
Affiliation(s)
- Nadia Solowij
- University of Wollongong, Austrália; Schizophrenia Research Institute, Austrália
| | | |
Collapse
|
210
|
VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem 2010; 113:1577-88. [PMID: 20374424 DOI: 10.1111/j.1471-4159.2010.06719.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decreased cognitive performance reduces independence and quality of life for aging individuals. Healthy brain aging does not involve significant neuronal loss, but little is known about the effects of aging at synaptic terminals. Age-related cognitive decline likely reflects the manifestation of dysregulated synaptic function and ineffective neurotransmission. In this study, hippocampal synaptosomes were enriched from young-adult (3 months), adult (12 months), and aged (26 months) Fischer 344 x Brown Norway rats, and quantitative alterations in the synaptoproteome were examined by 2-DIGE and MS/MS. Bioinformatic analysis of differentially expressed proteins identified a significant effect of aging on a network of neurotransmission-regulating proteins. Specifically, altered expression of DNM1, HPCA, PSD95, SNAP25, STX1, SYN1, SYN2, SYP, and VAMP2 was confirmed by immunoblotting. 14-3-3 isoforms identified in the proteomic analysis were also confirmed as a result of their implication in the regulation of the synaptic vesicle cycle and neurotransmission modulation. The findings of this study demonstrate a coordinated down-regulation of neurotransmission-regulating proteins that suggests an age-based deterioration of hippocampal neurotransmission occurring between adulthood and advanced age. Altered synaptic protein expression may decrease stimulus-induced neurotransmission and vesicle replenishment during prolonged or intense stimulation, which are necessary for learning and the formation and perseverance of memory.
Collapse
Affiliation(s)
- Heather D VanGuilder
- Department of Pharmacology, Hershey Center for Applied Research, Penn State College of Medicine, University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
211
|
Amal H, Fridman-Rozevich L, Senn R, Strelnikov A, Gafni M, Keren O, Sarne Y. Long-term consequences of a single treatment of mice with an ultra-low dose of Delta9-tetrahydrocannabinol (THC). Behav Brain Res 2009; 206:245-53. [PMID: 19766676 DOI: 10.1016/j.bbr.2009.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/07/2009] [Accepted: 09/11/2009] [Indexed: 01/01/2023]
Abstract
A single administration of an extremely low dose (0.002 mg/kg) of Delta9-tetrahydrocannabinol (THC; the psychoactive ingredient of marijuana) to ICR mice induced long-term cognitive deficits that lasted for at least 5 months. The behavioral deficits were detected by several tests that evaluated different aspects of memory and learning, including spatial navigation and spatial and non-spatial recognition. Our findings point to possible deficits in attention or motivation that represent a common upstream cognitive process that may affect the performance of the mice in the different behavioral assays. Similar ultra-low doses of THC (3-4 orders of magnitude lower than doses that are known to evoke the acute effects of THC) also induced sustained activation of extracellular-regulated kinase (ERK1/2) in the cerebellum, indicating that a single injection of such low doses of the cannabinoid drug can stimulate neuronal regulatory mechanisms. The relevance of these findings to the behavioral consequences of chronic exposure to marijuana is discussed.
Collapse
Affiliation(s)
- Haitham Amal
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
212
|
The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res 2009; 15:291-302. [PMID: 19384563 DOI: 10.1007/s12640-009-9031-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/13/2008] [Accepted: 12/08/2008] [Indexed: 12/12/2022]
Abstract
We recently demonstrated that Delta(9)-tetrahydrocannabinol (THC) chronic administration in female adolescent rats induces alterations in the emotional circuit ending in depressive-like behavior in adulthood. Since cognitive dysfunction is a major component of depression, we assessed in these animals at adulthood different forms of memory. Adolescent female rats were treated with THC or its vehicle from 35 to 45 post-natal days (PND) and left undisturbed until their adulthood (75 PND) when aversive and spatial memory was assessed using the passive avoidance and radial maze tasks. No alteration was found in aversive memory, but in the radial maze THC pre-treated animals exhibited a worse performance than vehicles, suggesting a deficit in spatial working memory. To correlate memory impairment to altered neuroplasticity, level of marker proteins was investigated in the hippocampus and prefrontal cortex, the most relevant areas for learning and memory. A significant decrease in synaptophysin and PSD95 proteins was found in the prefrontal cortex of THC pre-treated rats, with no alterations in the hippocampus. Finally, proteomic analysis of the synapses in the prefrontal cortex revealed the presence of less active synapses characterized by reduced ability in maintaining normal synaptic efficiency. This picture demonstrates the presence of cognitive impairment in THC-induced depressive phenotype.
Collapse
|