201
|
Lehmann FM, von Burg N, Ivanek R, Teufel C, Horvath E, Peter A, Turchinovich G, Staehli D, Eichlisberger T, Gomez de Agüero M, Coto-Llerena M, Prchal-Murphy M, Sexl V, Bentires-Alj M, Mueller C, Finke D. Microbiota-induced tissue signals regulate ILC3-mediated antigen presentation. Nat Commun 2020; 11:1794. [PMID: 32286285 PMCID: PMC7156681 DOI: 10.1038/s41467-020-15612-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Although group 3 innate lymphoid cells (ILC3s) are efficient inducers of T cell responses in the spleen, they fail to induce CD4+ T cell proliferation in the gut. The signals regulating ILC3-T cell responses remain unknown. Here, we show that transcripts associated with MHC II antigen presentation are down-modulated in intestinal natural cytotoxicity receptor (NCR)- ILC3s. Further data implicate microbiota-induced IL-23 as a crucial signal for reversible silencing of MHC II in ILC3s, thereby reducing the capacity of ILC3s to present antigen to T cells in the intestinal mucosa. Moreover, IL-23-mediated MHC II suppression is dependent on mTORC1 and STAT3 phosphorylation in NCR- ILC3s. By contrast, splenic interferon-γ induces MHC II expression and CD4+ T cell stimulation by NCR- ILC3s. Our results thus identify biological circuits for tissue-specific regulation of ILC3-dependent T cell responses. These pathways may have implications for inducing or silencing T cell responses in human diseases.
Collapse
Affiliation(s)
- Frank Michael Lehmann
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland
| | - Nicole von Burg
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
- Swiss Institute of Bioinformatics, 4053, Basel, Switzerland
| | - Claudia Teufel
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland
| | - Edit Horvath
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland
| | - Annick Peter
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland
| | - Gleb Turchinovich
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland
| | - Daniel Staehli
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland
| | | | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories, Department for BioMedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, 3010, Bern, Switzerland
| | | | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | - Daniela Finke
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, 4058, Basel, Switzerland.
| |
Collapse
|
202
|
Laurent D, Semple F, Starkey Lewis PJ, Rose E, Black HA, Coe J, Forbes SJ, Arends MJ, Dear JW, Aitman TJ. Absolute measurement of the tissue origins of cell-free DNA in the healthy state and following paracetamol overdose. BMC Med Genomics 2020; 13:60. [PMID: 32252771 PMCID: PMC7133021 DOI: 10.1186/s12920-020-0705-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/17/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Despite the emergence of cell-free DNA (cfDNA) as a clinical biomarker in cancer, the tissue origins of cfDNA in healthy individuals have to date been inferred only by indirect and relative measurement methods, such as tissue-specific methylation and nucleosomal profiling. METHODS We performed the first direct, absolute measurement of the tissue origins of cfDNA, using tissue-specific knockout mouse strains, in both healthy mice and following paracetamol (APAP) overdose. We then investigated the utility of total cfDNA and the percentage of liver-specific cfDNA as clinical biomarkers in patients presenting with APAP overdose. RESULTS Analysis of cfDNA from healthy tissue-specific knockout mice showed that cfDNA originates predominantly from white and red blood cell lineages, with minor contribution from hepatocytes, and no detectable contribution from skeletal and cardiac muscle. Following APAP overdose in mice, total plasma cfDNA and the percentage fraction originating from hepatocytes increased by ~ 100 and ~ 19-fold respectively. Total cfDNA increased by an average of more than 236-fold in clinical samples from APAP overdose patients with biochemical evidence of liver injury, and 18-fold in patients without biochemically apparent liver injury. Measurement of liver-specific cfDNA, using droplet digital PCR and methylation analysis, revealed that the contribution of liver to cfDNA was increased by an average of 175-fold in APAP overdose patients with biochemically apparent liver injury compared to healthy subjects, but was not increased in overdose patients with normal liver function tests. CONCLUSIONS We present a novel method for measurement of the tissue origins of cfDNA in healthy and disease states and demonstrate the potential of cfDNA as a clinical biomarker in APAP overdose.
Collapse
Affiliation(s)
- Danny Laurent
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Fiona Semple
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Philip J. Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Elaine Rose
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Holly A. Black
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jennifer Coe
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Stuart J. Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J. Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - James W. Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Timothy J. Aitman
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
203
|
RXRs control serous macrophage neonatal expansion and identity and contribute to ovarian cancer progression. Nat Commun 2020; 11:1655. [PMID: 32246014 PMCID: PMC7125161 DOI: 10.1038/s41467-020-15371-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/04/2022] Open
Abstract
Tissue-resident macrophages (TRMs) populate all tissues and play key roles in homeostasis, immunity and repair. TRMs express a molecular program that is mostly shaped by tissue cues. However, TRM identity and the mechanisms that maintain TRMs in tissues remain poorly understood. We recently found that serous-cavity TRMs (LPMs) are highly enriched in RXR transcripts and RXR-response elements. Here, we show that RXRs control mouse serous-macrophage identity by regulating chromatin accessibility and the transcriptional regulation of canonical macrophage genes. RXR deficiency impairs neonatal expansion of the LPM pool and reduces the survival of adult LPMs through excess lipid accumulation. We also find that peritoneal LPMs infiltrate early ovarian tumours and that RXR deletion diminishes LPM accumulation in tumours and strongly reduces ovarian tumour progression in mice. Our study reveals that RXR signalling controls the maintenance of the serous macrophage pool and that targeting peritoneal LPMs may improve ovarian cancer outcomes. Macrophages can differentiate to perform homeostatic tissue-specific functions. Here the authors show that RXR signalling is critical for large peritoneal macrophage (LPM) expansion during neonatal life and LPM lipid metabolism and survival during adult homeostasis, and that ovarian cancer growth relies on RXR-dependent LPMs.
Collapse
|
204
|
Utz SG, See P, Mildenberger W, Thion MS, Silvin A, Lutz M, Ingelfinger F, Rayan NA, Lelios I, Buttgereit A, Asano K, Prabhakar S, Garel S, Becher B, Ginhoux F, Greter M. Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell 2020; 181:557-573.e18. [PMID: 32259484 DOI: 10.1016/j.cell.2020.03.021] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
|
205
|
Chopra S, Giovanelli P, Alvarado-Vazquez PA, Alonso S, Song M, Sandoval TA, Chae CS, Tan C, Fonseca MM, Gutierrez S, Jimenez L, Subbaramaiah K, Iwawaki T, Kingsley PJ, Marnett LJ, Kossenkov AV, Crespo MS, Dannenberg AJ, Glimcher LH, Romero-Sandoval EA, Cubillos-Ruiz JR. IRE1α-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science 2020; 365:365/6450/eaau6499. [PMID: 31320508 DOI: 10.1126/science.aau6499] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/27/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022]
Abstract
Inositol-requiring enzyme 1[α] (IRE1[α])-X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α-XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2) and prostaglandin E synthase (Ptges/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors. Inducible biosynthesis of prostaglandins, including the pro-algesic mediator prostaglandin E2 (PGE2), was decreased in myeloid cells that lack IRE1α or XBP1 but not other ER stress sensors. Functional XBP1 transactivated the human PTGS2 and PTGES genes to enable optimal PGE2 production. Mice that lack IRE1α-XBP1 in leukocytes, or that were treated with IRE1α inhibitors, demonstrated reduced pain behaviors in PGE2-dependent models of pain. Thus, IRE1α-XBP1 is a mediator of prostaglandin biosynthesis and a potential target to control pain.
Collapse
Affiliation(s)
- Sahil Chopra
- Weill Cornell Graduate School of Medical Sciences, Cornell University. New York, NY 10065, USA.,Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paolo Giovanelli
- Weill Cornell Graduate School of Medical Sciences, Cornell University. New York, NY 10065, USA.,Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Perla Abigail Alvarado-Vazquez
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sara Alonso
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Minkyung Song
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tito A Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miriam M Fonseca
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Silvia Gutierrez
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Leandro Jimenez
- Instituto Ludwig de Pesquisa Sobre o Câncer, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kazanawa Medical University, Ishikawa, Japan
| | - Philip J Kingsley
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Lawrence J Marnett
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.,A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Mariano Sanchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | | | - Laurie H Glimcher
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA. .,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - E Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Cornell University. New York, NY 10065, USA. .,Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
206
|
Harly C, Kenney D, Wang Y, Ding Y, Zhao Y, Awasthi P, Bhandoola A. A Shared Regulatory Element Controls the Initiation of Tcf7 Expression During Early T Cell and Innate Lymphoid Cell Developments. Front Immunol 2020; 11:470. [PMID: 32265924 PMCID: PMC7099406 DOI: 10.3389/fimmu.2020.00470] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor TCF-1 (encoded by Tcf7) plays critical roles in several lineages of hematopoietic cells. In this study, we examined the molecular basis for Tcf7 regulation in T cells, innate lymphoid cells, and migratory conventional dendritic cells that we find express Tcf7. We identified a 1 kb regulatory element crucial for the initiation of Tcf7 expression in T cells and innate lymphoid cells, but dispensable for Tcf7 expression in Tcf7-expressing dendritic cells. Within this region, we identified a Notch binding site important for the initiation of Tcf7 expression in T cells but not in innate lymphoid cells. Our work establishes that the same regulatory element is used by distinct transcriptional controllers to initiate Tcf7 expression in T cells and ILCs.
Collapse
Affiliation(s)
- Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Devin Kenney
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Yueqiang Wang
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.,Typhoon Biotech, BGI-Shenzhen, Shenzhen, China
| | - Yi Ding
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Yongge Zhao
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Institute of Health, Frederick, MD, United States
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
207
|
Pua HH, Happ HC, Gray CJ, Mar DJ, Chiou NT, Hesse LE, Ansel KM. Increased Hematopoietic Extracellular RNAs and Vesicles in the Lung during Allergic Airway Responses. Cell Rep 2020; 26:933-944.e4. [PMID: 30673615 PMCID: PMC6365014 DOI: 10.1016/j.celrep.2019.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/28/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular RNAs (exRNAs) can be released by numerous cell types in vitro, are often protected within vesicles, and can modify recipient cell function. To determine how the composition and cellular sources of exRNAs and the extracellular vesicles (EVs) that carry them change in vivo during tissue inflammation, we analyzed bronchoalveolar lavage fluid (BALF) from mice before and after lung allergen challenge. In the lung, extracellular microRNAs (ex-miRNAs) had a composition that was highly correlated with airway-lining epithelium. Using cell type-specific membrane tagging and single vesicle flow, we also found that 80% of detected vesicles were of epithelial origin. After the induction of allergic airway inflammation, miRNAs selectively expressed by immune cells, including miR-223 and miR-142a, increased and hematopoietic-cell-derived EVs also increased >2-fold. These data demonstrate that infiltrating immune cells release ex-miRNAs and EVs in inflamed tissues to alter the local extracellular environment.
Collapse
Affiliation(s)
- Heather H Pua
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Hannah C Happ
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carleigh J Gray
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Darryl J Mar
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ni-Ting Chiou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura E Hesse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
208
|
Brown MA, Edwards MA, Alshiraihi I, Geng H, Dekker JD, Tucker HO. The lysine methyltransferase SMYD2 is required for normal lymphocyte development and survival of hematopoietic leukemias. Genes Immun 2020; 21:119-130. [PMID: 32115575 PMCID: PMC7183909 DOI: 10.1038/s41435-020-0094-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
The 5 membered SET and MYND Domain-containing lysine methyltransferase (SMYD) family plays pivotal roles in development and proliferation. Initially characterized within the cardiovascular system, one such member, SMYD2, has been implicated as an oncogene in leukemias deriving from flawed hematopoietic stem cell (HSC) differentiation. We show here that conditional SMYD2 loss disrupts hematopoiesis at and downstream of the HSC via both apoptotic loss and transcriptional deregulation of HSC proliferation and disruption of Wnt-β-Catenin signaling. Yet previously documented SMYD2 cell cycle targets were unscathed. Turning our analysis to human leukemias, we observed that SMYD2 is highly expressed in CML, MLLr-B-ALL, AML, T-ALL and B-ALL leukemias and its levels in B-ALL correlate with poor survival. SMYD2 knockdown results in apoptotic death and loss of anchorage-independent transformation of each of these hematopoietic leukemias. These data provide an underlying mechanism by which SMYD2 acts during normal hematopoiesis and as a proto-oncogene in leukemia.
Collapse
Affiliation(s)
- Mark A Brown
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Melissa A Edwards
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ilham Alshiraihi
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Joseph D Dekker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
209
|
Kur IM, Prouvot PH, Fu T, Fan W, Müller-Braun F, Das A, Das S, Deller T, Roeper J, Stroh A, Momma S. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. PLoS Biol 2020; 18:e3000643. [PMID: 32176686 PMCID: PMC7075544 DOI: 10.1371/journal.pbio.3000643] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 02/14/2020] [Indexed: 01/01/2023] Open
Abstract
Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown. Using varied animal models that stimulate neuronal activity by peripheral inflammation, optogenetics, and selective proteasome inhibition of dopaminergic (DA) neurons, we show that the transfer of EVs from blood is triggered by neuronal activity in vivo. Importantly, this transfer occurs not only in pathological stimulation but also by neuronal activation caused by the physiological stimulus of novel object placement. This discovery suggests a continuous role of EVs under pathological conditions as well as during routine cognitive tasks in the healthy brain.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Pierre-Hugues Prouvot
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Ting Fu
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Wei Fan
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Felicia Müller-Braun
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Avash Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Jochen Roeper
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
210
|
Muri J, Thut H, Feng Q, Kopf M. Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip. eLife 2020; 9:53627. [PMID: 32096759 PMCID: PMC7062472 DOI: 10.7554/elife.53627] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Antioxidant systems, such as the thioredoxin-1 (Trx1) pathway, ensure cellular redox homeostasis. However, how such systems regulate development and function of myeloid cells is barely understood. Here we show that in contrast to its critical role in T cells, the murine Trx1 system is dispensable for steady-state myeloid-cell hematopoiesis due to their capacity to tap the glutathione/glutaredoxin pathway for DNA biosynthesis. However, the Trx1 pathway instrumentally enables nuclear NF-κB DNA-binding and thereby pro-inflammatory responses in monocytes and dendritic cells. Moreover, independent of this activity, Trx1 is critical for NLRP3 inflammasome activation and IL-1β production in macrophages by detoxifying excessive ROS levels. Notably, we exclude the involvement of the Trx1 inhibitor Txnip as a redox-sensitive ligand of NLRP3 as previously proposed. Together, this study suggests that targeting Trx1 may be exploited to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Helen Thut
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Qian Feng
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
211
|
Type I Interferon Response Dysregulates Host Iron Homeostasis and Enhances Candida glabrata Infection. Cell Host Microbe 2020; 27:454-466.e8. [PMID: 32075740 DOI: 10.1016/j.chom.2020.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Type I interferons (IFNs-I) fulfil multiple protective functions during pathogenic infections, but they can also cause detrimental effects and enhance immunopathology. Here, we report that IFNs-I promote the dysregulation of iron homeostasis in macrophages during systemic infections with the intracellular pathogen Candida glabrata, leading to fungal survival and persistence. By engaging JAK1, IFNs-I disturb the balance of the transcriptional activator NRF2 and repressor BACH1 to induce downregulation of the key iron exporter Fpn1 in macrophages. This leads to enhanced iron accumulation in the phagolysosome and failure to restrict fungal access to iron pools. As a result, C. glabrata acquires iron via the Sit1/Ftr1 iron transporter system, facilitating fungal intracellular replication and immune evasion. Thus, IFNs-I are central regulators of iron homeostasis, which can impact infection, and restricting iron bioavailability may offer therapeutic strategies to combat invasive fungal infections.
Collapse
|
212
|
Jiang H, Zhang L, Liu X, Sun W, Kato K, Chen C, Li X, Li T, Sun Z, Han W, Zhang F, Xiao Q, Yang Z, Hu J, Qin Z, Adams RH, Gao X, He Y. Angiocrine FSTL1 (Follistatin-Like Protein 1) Insufficiency Leads to Atrial and Venous Wall Fibrosis via SMAD3 Activation. Arterioscler Thromb Vasc Biol 2020; 40:958-972. [PMID: 32078339 DOI: 10.1161/atvbaha.119.313901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiocrine factors, mediating the endothelial-mural cell interaction in vascular wall construction as well as maintenance, are incompletely characterized. This study aims to investigate the role of endothelial cell-derived FSTL1 (follistatin-like protein 1) in vascular homeostasis. Approach and Results: Using conditional knockout mouse models, we show that loss of FSTL1 in endothelial cells (Fstl1ECKO) led to an increase of pulmonary vascular resistance, resulting in the heart regurgitation especially with tricuspid valves. However, this abnormality was not detected in mutant mice with Fstl1 knockout in smooth muscle cells or hematopoietic cells. We further showed that there was excessive αSMA (α-smooth muscle actin) associated with atrial endocardia, heart valves, veins, and microvessels after the endothelial FSTL1 deletion. There was also an increase in collagen deposition, as demonstrated in livers of Fstl1ECKO mutants. The SMAD3 (mothers against decapentaplegic homolog 3) phosphorylation (pSMAD3) was significantly enhanced, and pSMAD3 staining was colocalized with αSMA in vein walls, suggesting the activation of TGFβ (transforming growth factor β) signaling in vascular mural cells of Fstl1ECKO mice. Consistently, treatment with a TGFβ pathway inhibitor reduced the abnormal association of αSMA with the atria and blood vessels in Fstl1ECKO mutant mice. CONCLUSIONS The findings imply that endothelial FSTL1 is critical for the homeostasis of vascular walls, and its insufficiency may favor cardiovascular fibrosis leading to heart failure.
Collapse
Affiliation(s)
- Haijuan Jiang
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.)
| | - Luqing Zhang
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.).,MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, China (L.Z., W.S., W.H., F.Z., Q.X., Z.Y., X.G.)
| | - Xuelian Liu
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.)
| | - Wei Sun
- MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, China (L.Z., W.S., W.H., F.Z., Q.X., Z.Y., X.G.).,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, China (W.S.)
| | - Katsuhiro Kato
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Germany (K.K., R.H.A.).,Department of Cardiology, Nagoya University Hospital, Japan (K.K.)
| | - Chuankai Chen
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.)
| | - Xiao Li
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.)
| | - Taotao Li
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.)
| | - Zhiliang Sun
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.)
| | - Wencan Han
- MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, China (L.Z., W.S., W.H., F.Z., Q.X., Z.Y., X.G.)
| | - Fujing Zhang
- MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, China (L.Z., W.S., W.H., F.Z., Q.X., Z.Y., X.G.)
| | - Qi Xiao
- MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, China (L.Z., W.S., W.H., F.Z., Q.X., Z.Y., X.G.)
| | - Zhongzhou Yang
- MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, China (L.Z., W.S., W.H., F.Z., Q.X., Z.Y., X.G.)
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China (J.H.)
| | - Zhihai Qin
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, China (Z.Q.)
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Germany (K.K., R.H.A.)
| | - Xiang Gao
- MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, China (L.Z., W.S., W.H., F.Z., Q.X., Z.Y., X.G.)
| | - Yulong He
- From the Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China (H.J., L.Z., X. Liu, C.C., X. Li, T.L., Z.S., Y.H.)
| |
Collapse
|
213
|
Nitta E, Itokawa N, Yabata S, Koide S, Hou LB, Oshima M, Aoyama K, Saraya A, Iwama A. Bmi1 counteracts hematopoietic stem cell aging by repressing target genes and enforcing the stem cell gene signature. Biochem Biophys Res Commun 2020; 521:612-619. [DOI: 10.1016/j.bbrc.2019.10.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
|
214
|
Distinct Roles of Interferon Alpha and Beta in Controlling Chikungunya Virus Replication and Modulating Neutrophil-Mediated Inflammation. J Virol 2019; 94:JVI.00841-19. [PMID: 31619554 DOI: 10.1128/jvi.00841-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Type I interferons (IFNs) are key mediators of the innate immune response. Although members of this family of cytokines signal through a single shared receptor, biochemical and functional variation exists in response to different IFN subtypes. While previous work has demonstrated that type I IFNs are essential to control infection by chikungunya virus (CHIKV), a globally emerging alphavirus, the contributions of individual IFN subtypes remain undefined. To address this question, we evaluated CHIKV pathogenesis in mice lacking IFN-β (IFN-β knockout [IFN-β-KO] mice or mice treated with an IFN-β-blocking antibody) or IFN-α (IFN regulatory factor 7 knockout [IRF7-KO] mice or mice treated with a pan-IFN-α-blocking antibody). Mice lacking either IFN-α or IFN-β developed severe clinical disease following infection with CHIKV, with a marked increase in foot swelling compared to wild-type mice. Virological analysis revealed that mice lacking IFN-α sustained elevated infection in the infected ankle and in distant tissues. In contrast, IFN-β-KO mice displayed minimal differences in viral burdens within the ankle or at distal sites and instead had an altered cellular immune response. Mice lacking IFN-β had increased neutrophil infiltration into musculoskeletal tissues, and depletion of neutrophils in IFN-β-KO but not IRF7-KO mice mitigated musculoskeletal disease caused by CHIKV. Our findings suggest disparate roles for the IFN subtypes during CHIKV infection, with IFN-α limiting early viral replication and dissemination and IFN-β modulating neutrophil-mediated inflammation.IMPORTANCE Type I interferons (IFNs) possess a range of biological activity and protect against a number of viruses, including alphaviruses. Despite signaling through a shared receptor, there are established biochemical and functional differences among the IFN subtypes. The significance of our research is in demonstrating that IFN-α and IFN-β both have protective roles during acute chikungunya virus (CHIKV) infection but do so by distinct mechanisms. IFN-α limits CHIKV replication and dissemination, whereas IFN-β protects from CHIKV pathogenesis by limiting inflammation mediated by neutrophils. Our findings support the premise that the IFN subtypes have distinct biological activities in the antiviral response.
Collapse
|
215
|
Nakagawa MM, Rathinam CV. Constitutive Activation of the Canonical NF-κB Pathway Leads to Bone Marrow Failure and Induction of Erythroid Signature in Hematopoietic Stem Cells. Cell Rep 2019; 25:2094-2109.e4. [PMID: 30463008 PMCID: PMC6945759 DOI: 10.1016/j.celrep.2018.10.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Constitutive activation of the canonical NF-κB pathway has been associated with a variety of human pathologies. However, molecular mechanisms through which canonical NF-κB affects hematopoiesis remain elusive. Here, we demonstrate that deregulated canonical NF-κB signals in hematopoietic stem cells (HSCs) cause a complete depletion of HSC pool, pancytopenia, bone marrow failure, and premature death. Constitutive activation of IKK2 in HSCs leads to impaired quiescence and loss of function. Gene set enrichment analysis (GSEA) identified an induction of “erythroid signature” in HSCs with augmented NF-κB activity. Mechanistic studies indicated a reduction of thrombopoietin (TPO)-mediated signals and its downstream target p57 in HSCs, due to reduced c-MpI expression in a cell-intrinsic manner. Molecular studies established Klf1 as a key suppressor of c-MpI in HSPCs with increased NF-κB. In essence, these studies identified a previously unknown mechanism through which exaggerated canonical NF-κB signals affect HSCs and cause pathophysiology. Nakagawa and Rathinam demonstrate that constitutive activation of IKK2 in HSCs causes a complete depletion of the HSC pool and impairs HSC functions due to a loss of “sternness” signature and an induction of erythroid signature.
Collapse
Affiliation(s)
- Masahiro Marshall Nakagawa
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168(th) Street, New York, NY 10032, USA; Institute of Human Virology, University of Maryland, Baltimore, MD, USA; Center for Stem Cell & Regenerative Medicine, University of Maryland, Baltimore, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
216
|
Labi V, Peng S, Klironomos F, Munschauer M, Kastelic N, Chakraborty T, Schoeler K, Derudder E, Martella M, Mastrobuoni G, Hernandez-Miranda LR, Lahmann I, Kocks C, Birchmeier C, Kempa S, Quintanilla-Martinez de Fend L, Landthaler M, Rajewsky N, Rajewsky K. Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat. Genes Dev 2019; 33:1673-1687. [PMID: 31699777 PMCID: PMC6942046 DOI: 10.1101/gad.330134.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022]
Abstract
Knockout of the ubiquitously expressed miRNA-17∼92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17∼92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17∼92:Bim interactions to the complex miR-17∼92 knockout phenotype, we used a system of conditional mutagenesis of the nine Bim 3' UTR miR-17∼92 seed matches. Blocking miR-17∼92:Bim interactions early in development phenocopied the lethal lung phenotype of miR-17∼92 ablation and generated a skeletal kinky tail. In the hematopoietic system, instead of causing the predicted B cell developmental block, it produced a selective inability of B cells to resist cellular stress; and prevented B and T cell hyperplasia caused by Bim haploinsufficiency. Thus, the interaction of miR-17∼92 with a single target is essential for life, and BIM regulation by miRNAs serves as a rheostat controlling cell survival in specific physiological contexts.
Collapse
Affiliation(s)
- Verena Labi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Siying Peng
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Filippos Klironomos
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Mathias Munschauer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Nicolai Kastelic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Tirtha Chakraborty
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Emmanuel Derudder
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Institute for Biomedical Ageing Research, University of Innsbruck, Innsbruck 6020, Austria
| | - Manuela Martella
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, Eberhard-Karls-University, Tübingen 72076, Germany
| | - Guido Mastrobuoni
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Luis R Hernandez-Miranda
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Ines Lahmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Christine Kocks
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Carmen Birchmeier
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | | | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch 13125, Germany
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
217
|
Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium. Cell Rep 2019; 29:4144-4158.e7. [DOI: 10.1016/j.celrep.2019.11.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/09/2019] [Accepted: 11/14/2019] [Indexed: 12/27/2022] Open
|
218
|
Tao H, Li L, Gao Y, Wang Z, Zhong XP. Differential Control of iNKT Cell Effector Lineage Differentiation by the Forkhead Box Protein O1 (Foxo1) Transcription Factor. Front Immunol 2019; 10:2710. [PMID: 31824499 PMCID: PMC6881238 DOI: 10.3389/fimmu.2019.02710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
The invariant NKT (iNKT) cells recognize glycolipid antigens presented by the non-classical MHC like molecule CD1d. They represent an innate T-cell lineage with the ability to rapidly produce a variety of cytokines in response to agonist stimulation to bridge innate and adaptive immunity. In thymus, most iNKT cells complete their maturation and differentiate to multiple effector lineages such as iNKT-1, iNKT-2, and iNKT-17 cells that possess the capability to produce IFNγ, IL-4, and IL-17A, respectively, and play distinct roles in immune responses and diseases. Mechanisms that control iNKT lineage fate decisions are still not well understood. Evidence has revealed critical roles of Foxo1 of the forkhead box O1 subfamily of transcription factors in the immune system. However, its role in iNKT cells has been unknown. In this report, we demonstrate that deletion of Foxo1 causes severe decreases of iNKT cell total numbers due to impairment of late but not early iNKT cell development. Deficiency of Foxo1 results in decreases of iNKT-1 but increases of iNKT-17 cells. Our data reveal that Foxo1 controls iNKT effector lineage fate decision by promoting iNKT-1 but suppressing iNKT-17 lineages.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Gao
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,The Hematologic Malignancies and Cellular Therapy Research Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
219
|
Chen Q, Liu Y, Jeong HW, Stehling M, Dinh VV, Zhou B, Adams RH. Apelin + Endothelial Niche Cells Control Hematopoiesis and Mediate Vascular Regeneration after Myeloablative Injury. Cell Stem Cell 2019; 25:768-783.e6. [PMID: 31761723 PMCID: PMC6900750 DOI: 10.1016/j.stem.2019.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Radiotherapy and chemotherapy disrupt bone vasculature, but the underlying causes and mechanisms enabling vessel regeneration after bone marrow (BM) transplantation remain poorly understood. Here, we show that loss of hematopoietic cells per se, in response to irradiation and other treatments, triggers vessel dilation, permeability, and endothelial cell (EC) proliferation. We further identify a small subpopulation of Apelin-expressing (Apln+) ECs, representing 0.003% of BM cells, that is critical for physiological homeostasis and transplant-induced BM regeneration. Genetic ablation of Apln+ ECs or Apln-CreER-mediated deletion of Kitl and Vegfr2 disrupt hematopoietic stem cell (HSC) maintenance and contributions to regeneration. Consistently, the fraction of Apln+ ECs increases substantially after irradiation and promotes normalization of the bone vasculature in response to VEGF-A, which is provided by transplanted hematopoietic stem and progenitor cells (HSPCs). Together, these findings reveal critical functional roles for HSPCs in maintaining vascular integrity and for Apln+ ECs in hematopoiesis, suggesting potential targets for improving BM transplantation. Loss of hematopoietic cells phenocopies irradiation-induced vascular defects Identification and characterization of Apln+ ECs in adult BM Apln+ ECs regulate HSC maintenance and steady-state hematopoiesis Apln+ ECs expand, respond to HSPCs, and drive post-transplantation recovery
Collapse
Affiliation(s)
- Qi Chen
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Yang Liu
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Martin Stehling
- Electron Microscopy and Flow Cytometry Units, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Van Vuong Dinh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, A-2112, Shanghai 200031, China
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
220
|
Goldstein JM, Sengul H, Messemer KA, Fernández-Alfara M, Garbern JC, Kristl AC, Lee RT, Wagers AJ. Steady-state and regenerative hematopoiesis occurs normally in mice in the absence of GDF11. Blood 2019; 134:1712-1716. [PMID: 31530563 PMCID: PMC6856987 DOI: 10.1182/blood.2019002066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Tightly regulated production of mature blood cells is essential for health and survival in vertebrates and dependent on discrete populations of blood-forming (hematopoietic) stem and progenitor cells. Prior studies suggested that inhibition of growth differentiation factor 11 (GDF11) through soluble activin receptor type II (ActRII) ligand traps or neutralizing antibodies promotes erythroid precursor cell maturation and red blood cell formation in contexts of homeostasis and anemia. As Gdf11 is expressed by mature hematopoietic cells, and erythroid precursor cell expression of Gdf11 has been implicated in regulating erythropoiesis, we hypothesized that genetic disruption of Gdf11 in blood cells might perturb normal hematopoiesis or recovery from hematopoietic insult. Contrary to these predictions, we found that deletion of Gdf11 in the hematopoietic lineage in mice does not alter erythropoiesis or erythroid precursor cell frequency under normal conditions or during hematopoietic recovery after irradiation and transplantation. In addition, although hematopoietic cell-derived Gdf11 may contribute to the pool of circulating GDF11 protein during adult homeostasis, loss of Gdf11 specifically in the blood system does not impair hematopoietic stem cell function or induce overt pathological consequences. Taken together, these results reveal that hematopoietic cell-derived Gdf11 is largely dispensable for native and transplant-induced blood formation.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA
| | - Hilal Sengul
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA
| | - Marcos Fernández-Alfara
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
| | - Jessica C Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
- Department of Cardiology, Boston Children's Hospital, Boston, MA; and
| | - Amy C Kristl
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA
- Joslin Diabetes Center, Boston, MA
| |
Collapse
|
221
|
Godinho-Silva C, Domingues RG, Rendas M, Raposo B, Ribeiro H, da Silva JA, Vieira A, Costa RM, Barbosa-Morais NL, Carvalho T, Veiga-Fernandes H. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 2019; 574:254-258. [PMID: 31534216 PMCID: PMC6788927 DOI: 10.1038/s41586-019-1579-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.
Collapse
Affiliation(s)
| | - Rita G Domingues
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Rendas
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Bruno Raposo
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Hélder Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joaquim Alves da Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Vieira
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
222
|
Blocked O-GlcNAc cycling disrupts mouse hematopoeitic stem cell maintenance and early T cell development. Sci Rep 2019; 9:12569. [PMID: 31467334 PMCID: PMC6715813 DOI: 10.1038/s41598-019-48991-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Small numbers of hematopoietic stem cells (HSCs) balance self-renewal and differentiation to produce the diversity and abundance of cell types that make up the blood system. How nutrients are recruited to support this massive differentiation and proliferation process remains largely unknown. The unique metabolism of adult HSCs, which rely on glycolysis and glutaminolysis, suggests a potential role for the post-translational modification O-GlcNAc as a critical nutrient signal in these cells. Glutamine, glucose, and other metabolites drive the hexosamine biosynthetic pathway (HBP) ultimately leading to the O-GlcNAc modification of critical intracellular targets. Here, we used a conditional targeted genetic deletion of the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), to determine the consequences of blocked O-GlcNAc cycling on HSCs. Oga deletion in mouse HSCs resulted in greatly diminished progenitor pools, impaired stem cell self-renewal and nearly complete loss of competitive repopulation capacity. Further, early T cell specification was particularly sensitive to Oga deletion. Loss of Oga resulted in a doubling of apoptotic cells within the bone marrow and transcriptional deregulation of key genes involved in adult stem cell maintenance and lineage specification. These findings suggest that O-GlcNAc cycling plays a critical role in supporting HSC homeostasis and early thymocyte development.
Collapse
|
223
|
Wu SRJ, Khoriaty R, Kim SH, O'Shea KS, Zhu G, Hoenerhoff M, Zajac C, Oravecz-Wilson K, Toubai T, Sun Y, Ginsburg D, Reddy P. SNARE protein SEC22B regulates early embryonic development. Sci Rep 2019; 9:11434. [PMID: 31391476 PMCID: PMC6685974 DOI: 10.1038/s41598-019-46536-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022] Open
Abstract
The highly conserved SNARE protein SEC22B mediates diverse and critical functions, including phagocytosis, cell growth, autophagy, and protein secretion. However, these characterizations have thus far been limited to in vitro work. Here, we expand our understanding of the role Sec22b plays in vivo. We utilized Cre-Lox mice to delete Sec22b in three tissue compartments. With a germline deletion of Sec22b, we observed embryonic death at E8.5. Hematopoietic/endothelial cell deletion of Sec22b also resulted in in utero death. Notably, mice with Sec22b deletion in CD11c-expressing cells of the hematopoietic system survive to adulthood. These data demonstrate Sec22b contributes to early embryogenesis through activity both in hematopoietic/endothelial tissues as well as in other tissues yet to be defined.
Collapse
Affiliation(s)
- Shin-Rong J Wu
- Program in Immunology, University of Michigan Medical School, Ann Arbor, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, USA
| | - Rami Khoriaty
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, USA
| | - Stephanie H Kim
- Program in Immunology, University of Michigan Medical School, Ann Arbor, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, USA
| | - K Sue O'Shea
- Department of Cellular and Developmental Biology, University of Michigan Medical School, Ann Arbor, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, USA
| | - Cynthia Zajac
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, USA
| | | | - Tomomi Toubai
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, USA
| | - Yaping Sun
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, USA
| | - David Ginsburg
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, USA
| | - Pavan Reddy
- Program in Immunology, University of Michigan Medical School, Ann Arbor, USA. .,Department of Internal Medicine, Michigan Medicine, Ann Arbor, USA.
| |
Collapse
|
224
|
Schuler F, Afreen S, Manzl C, Häcker G, Erlacher M, Villunger A. Checkpoint kinase 1 is essential for fetal and adult hematopoiesis. EMBO Rep 2019; 20:e47026. [PMID: 31379128 PMCID: PMC6680171 DOI: 10.15252/embr.201847026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for S-phase fidelity and preventing premature mitotic entry in the presence of DNA damage. Tumor cells have developed a strong dependence on CHK1 for survival, and hence, this kinase has developed into a promising drug target. Chk1 deficiency in mice results in blastocyst death due to G2/M checkpoint failure showing that it is an essential gene and may be difficult to target therapeutically. Here, we show that chemical inhibition of CHK1 kills murine and human hematopoietic stem and progenitor cells (HSPCs) by the induction of BCL2-regulated apoptosis. Cell death in HSPCs is independent of p53 but requires the BH3-only proteins BIM, PUMA, and NOXA. Moreover, Chk1 is essential for definitive hematopoiesis in the embryo. Noteworthy, cell death inhibition in HSPCs cannot restore blood cell formation as HSPCs lacking CHK1 accumulate DNA damage and stop dividing. Moreover, conditional deletion of Chk1 in hematopoietic cells of adult mice selects for blood cells retaining CHK1, suggesting an essential role in maintaining functional hematopoiesis. Our findings establish a previously unrecognized role for CHK1 in establishing and maintaining hematopoiesis.
Collapse
Affiliation(s)
- Fabian Schuler
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sehar Afreen
- Division of Pediatric Hematology and OncologyDepartment of Pediatrics and Adolescent MedicineFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Claudia Manzl
- Institute of Pathology, Neuropathology and Molecular pathologyMedical University of InnsbruckInnsbruckAustria
| | - Georg Häcker
- Institute of Medical Microbiology and HygieneUniversity Medical Center FreiburgFreiburgGermany
| | - Miriam Erlacher
- Division of Pediatric Hematology and OncologyDepartment of Pediatrics and Adolescent MedicineFaculty of MedicineUniversity of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK)FreiburgGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| |
Collapse
|
225
|
Pieters T, T'Sas S, Demoen L, Almeida A, Haenebalcke L, Matthijssens F, Lemeire K, D'Hont J, Van Rockeghem F, Hochepied T, Lintermans B, Reunes L, Lammens T, Berx G, Haigh JJ, Goossens S, Van Vlierberghe P. Novel strategy for rapid functional in vivo validation of oncogenic drivers in haematological malignancies. Sci Rep 2019; 9:10577. [PMID: 31332244 PMCID: PMC6646380 DOI: 10.1038/s41598-019-46853-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
In cancer research, it remains challenging to functionally validate putative novel oncogenic drivers and to establish relevant preclinical models for evaluation of novel therapeutic strategies. Here, we describe an optimized and efficient pipeline for the generation of novel conditional overexpression mouse models in which putative oncogenes, along with an eGFP/Luciferase dual reporter, are expressed from the endogenous ROSA26 (R26) promoter. The efficiency of this approach was demonstrated by the generation and validation of novel R26 knock-in (KI) mice that allow conditional overexpression of Jarid2, Runx2, MN1 and a dominant negative allele of ETV6. As proof of concept, we confirm that MN1 overexpression in the hematopoietic lineage is sufficient to drive myeloid leukemia. In addition, we show that T-cell specific activation of MN1 in combination with loss of Pten increases tumour penetrance and stimulates the formation of Lyl1+ murine T-cell lymphoblastic leukemias or lymphomas (T-ALL/T-LBL). Finally, we demonstrate that these luciferase-positive murine AML and T-ALL/T-LBL cells are transplantable into immunocompromised mice allowing preclinical evaluation of novel anti-leukemic drugs in vivo.
Collapse
Affiliation(s)
- Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T'Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lieven Haenebalcke
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Kelly Lemeire
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jinke D'Hont
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frederique Van Rockeghem
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Beatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Geert Berx
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jody J Haigh
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,VIB Inflammation Research Center, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
226
|
Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, Vukovic M, Allen L, Sarapuu A, Tavosanis A, Guitart AV, Villacreces A, Much C, Choe J, Azar A, van de Lagemaat LN, Vernimmen D, Nehme A, Mazurier F, Somervaille TCP, Gregory RI, O'Carroll D, Kranc KR. Targeting the RNA m 6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell 2019; 25:137-148.e6. [PMID: 31031138 PMCID: PMC6617387 DOI: 10.1016/j.stem.2019.03.021] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation, generating self-renewing leukemic stem cells (LSCs). Here, we show that the mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse m6A transcripts that contribute to the overall integrity of LSC function, including the tumor necrosis factor receptor Tnfrsf2, whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis. Intriguingly, YTHDF2 is not essential for normal HSC function, with YTHDF2 deficiency actually enhancing HSC activity. Thus, we identify YTHDF2 as a unique therapeutic target whose inhibition selectively targets LSCs while promoting HSC expansion.
Collapse
Affiliation(s)
- Jasmin Paris
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Marcos Morgan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joana Campos
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Alena Shmakova
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Ivayla Ivanova
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Christopher Mapperley
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hannah Lawson
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - David A Wotherspoon
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Catarina Sepulveda
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Milica Vukovic
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lewis Allen
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Annika Sarapuu
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Amelie V Guitart
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Arnaud Villacreces
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Christian Much
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Junho Choe
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ali Azar
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Louie N van de Lagemaat
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Ali Nehme
- Université de Tours, CNRS, LNOx ERL 7001, Tours, France
| | | | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Richard I Gregory
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Kamil R Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
227
|
Hay J, Gilroy K, Huser C, Kilbey A, Mcdonald A, MacCallum A, Holroyd A, Cameron E, Neil JC. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. J Cell Biochem 2019; 120:18332-18345. [PMID: 31257681 PMCID: PMC6772115 DOI: 10.1002/jcb.29143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/14/2019] [Indexed: 11/12/2022]
Abstract
MYC and RUNX oncogenes each trigger p53‐mediated failsafe responses when overexpressed in vitro and collaborate with p53 deficiency in vivo. However, together they drive rapid onset lymphoma without mutational loss of p53. This phenomenon was investigated further by transcriptomic analysis of premalignant thymus from RUNX2/MYC transgenic mice. The distinctive contributions of MYC and RUNX to transcriptional control were illustrated by differential enrichment of canonical binding sites and gene ontology analyses. Pathway analysis revealed signatures of MYC, CD3, and CD28 regulation indicative of activation and proliferation, but also strong inhibition of cell death pathways. In silico analysis of discordantly expressed genes revealed Tnfsrf8/CD30, Cish, and Il13 among relevant targets for sustained proliferation and survival. Although TP53 mRNA and protein levels were upregulated, its downstream targets in growth suppression and apoptosis were largely unperturbed. Analysis of genes encoding p53 posttranslational modifiers showed significant upregulation of three genes, Smyd2, Set, and Prmt5. Overexpression of SMYD2 was validated in vivo but the functional analysis was constrained by in vitro loss of p53 in RUNX2/MYC lymphoma cell lines. However, an early role is suggested by the ability of SMYD2 to block senescence‐like growth arrest induced by RUNX overexpression in primary fibroblasts.
Collapse
Affiliation(s)
- Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Camille Huser
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alma Mcdonald
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Amanda MacCallum
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ailsa Holroyd
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
228
|
Colijn S, Gao S, Ingram KG, Menendez M, Muthukumar V, Silasi-Mansat R, Chmielewska JJ, Hinsdale M, Lupu F, Griffin CT. The NuRD chromatin-remodeling complex enzyme CHD4 prevents hypoxia-induced endothelial Ripk3 transcription and murine embryonic vascular rupture. Cell Death Differ 2019; 27:618-631. [PMID: 31235857 DOI: 10.1038/s41418-019-0376-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023] Open
Abstract
Physiological hypoxia can trigger transcriptional events that influence many developmental processes during mammalian embryogenesis. One way that hypoxia affects transcription is by engaging chromatin-remodeling complexes. We now report that chromodomain helicase DNA binding protein 4 (CHD4), an enzyme belonging to the nucleosome remodeling and deacetylase (NuRD) chromatin-remodeling complex, is required for transcriptional repression of the receptor-interacting protein kinase 3 (Ripk3)-a critical executor of the necroptosis cell death program-in hypoxic murine embryonic endothelial cells. Genetic deletion of Chd4 in murine embryonic endothelial cells in vivo results in upregulation of Ripk3 transcripts and protein prior to vascular rupture and lethality at midgestation, and concomitant deletion of Ripk3 partially rescues these phenotypes. In addition, CHD4 binds to and prevents acetylation of the Ripk3 promoter in cultured endothelial cells grown under hypoxic conditions to prevent excessive Ripk3 transcription. These data demonstrate that excessive RIPK3 is detrimental to embryonic vascular integrity and indicate that CHD4 suppresses Ripk3 transcription when the embryonic environment is particularly hypoxic prior to the establishment of fetal-placental circulation at midgestation. Altogether, this research provides new insights into regulators of Ripk3 transcription and encourages future studies into the mechanism by which excessive RIPK3 damages embryonic blood vessels.
Collapse
Affiliation(s)
- Sarah Colijn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Kyle G Ingram
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew Menendez
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joanna J Chmielewska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Myron Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.
| |
Collapse
|
229
|
Fiala GJ, Schaffer AM, Merches K, Morath A, Swann J, Herr LA, Hils M, Esser C, Minguet S, Schamel WWA. Proximal Lck Promoter–Driven Cre Function Is Limited in Neonatal and Ineffective in Adult γδ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:569-579. [DOI: 10.4049/jimmunol.1701521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/08/2019] [Indexed: 01/13/2023]
|
230
|
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med 2019; 11:11/494/eaau6246. [DOI: 10.1126/scitranslmed.aau6246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Given the high frequency of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe “on-target” gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of Psen1 in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.
Collapse
|
231
|
Yoshida T, Hu Y, Zhang Z, Emmanuel AO, Galani K, Muhire B, Snippert HJ, Williams CJ, Tolstorukov MY, Gounari F, Georgopoulos K. Chromatin restriction by the nucleosome remodeler Mi-2β and functional interplay with lineage-specific transcription regulators control B-cell differentiation. Genes Dev 2019; 33:763-781. [PMID: 31123064 PMCID: PMC6601517 DOI: 10.1101/gad.321901.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Here, Yoshida et al. investigate the role of Mi-2β, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. They found that the nucleosome remodeler Mi-2β promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks. Coordinated induction, but also repression, of genes are key to normal differentiation. Although the role of lineage-specific transcription regulators has been studied extensively, their functional integration with chromatin remodelers, one of the key enzymatic machineries that control chromatin accessibility, remains ill-defined. Here we investigate the role of Mi-2β, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. Inactivation of Mi-2β arrested differentiation at the large pre-B-cell stage and caused derepression of cell adhesion and cell migration signaling factors by increasing chromatin access at poised enhancers and chromosome architectural elements. Mi-2β also supported IL-7R signaling, survival, and proliferation by repressing negative effectors of this pathway. Importantly, overexpression of Bcl2, a mitochondrial prosurvival gene and target of IL-7R signaling, partly rescued the differentiation block caused by Mi-2β loss. Mi-2β stably associated with chromatin sites that harbor binding motifs for IKAROS and EBF1 and physically associated with these transcription factors both on and off chromatin. Notably, Mi-2β shared loss-of-function cellular and molecular phenotypes with IKAROS and EBF1, albeit in a distinct fashion. Thus, the nucleosome remodeler Mi-2β promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks.
Collapse
Affiliation(s)
- Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Akinola O Emmanuel
- Knapp Center for Lupus Research, Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kiriaki Galani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Brejnev Muhire
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Hugo J Snippert
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Christine J Williams
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Fotini Gounari
- Knapp Center for Lupus Research, Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
232
|
Fernández-Chacón M, Casquero-García V, Luo W, Francesca Lunella F, Ferreira Rocha S, Del Olmo-Cabrera S, Benedito R. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications. Nat Commun 2019; 10:2262. [PMID: 31118412 PMCID: PMC6531465 DOI: 10.1038/s41467-019-10239-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
Most biomedical research aimed at understanding gene function uses the Cre-Lox system, which consists of the Cre recombinase-dependent deletion of genes containing LoxP sites. This system enables conditional genetic modifications because the expression and activity of the recombinase Cre/CreERT2 can be regulated in space by tissue-specific promoters and in time by the ligand tamoxifen. Since the precise Cre-Lox recombination event is invisible, methods were developed to report Cre activity and are widely used. However, numerous studies have shown that expression of a given Cre activity reporter cannot be assumed to indicate deletion of other LoxP-flanked genes of interest. Here, we report the generation of an inducible dual reporter-Cre mouse allele, iSuRe-Cre. By significantly increasing Cre activity in reporter-expressing cells, iSuRe-Cre provides certainty that these cells have completely recombined floxed alleles. This genetic tool increases the ease, efficiency, and reliability of conditional mutagenesis and gene function analysis.
Collapse
Affiliation(s)
- Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Verónica Casquero-García
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Wen Luo
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Federica Francesca Lunella
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Susana Ferreira Rocha
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Sergio Del Olmo-Cabrera
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain.
| |
Collapse
|
233
|
Huang P, Wang F, Yang Y, Lai W, Meng M, Wu S, Peng H, Wang L, Zhan R, Imani S, Yu J, Chen B, Li X, Deng Y. Hematopoietic-Specific Deletion of Foxo1 Promotes NK Cell Specification and Proliferation. Front Immunol 2019; 10:1016. [PMID: 31139183 PMCID: PMC6519137 DOI: 10.3389/fimmu.2019.01016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
We previously reported that deletion of Foxo1, via Ncr1-iCre mice from the expression of NKp46 onward, led to enhanced natural killer (NK) cell maturation and effector function. In this model, however, the role of Foxo1 in regulating NK cell specification and early development remains exclusive. Herein, we utilized a murine model of hematopoietic-specific deletion of Foxo1 before lymphoid specification, by crossing mice carrying floxed Foxo1 alleles (Foxo1fl/fl) with Vav1-iCre mice, to revisit the role of Foxo1 on NK cell specification and early development. The data showed that hematopoietic-specific deletion of Foxo1 resulted in increased proportion and numbers of common lymphoid progenitors (CLP) (Lin−CD127+c-Kit+Sca-1+), pre-pro NK b cells (Lin−Sca-1+c-Kit−CD135−CD127+), as well as committed Lin−CD122+ cells and CD3−CD19−NKp46+ NK cells in bone marrow. Hematopoietic-specific deletion of Foxo1 also promoted NK cells proliferation in a cell-intrinsic manner, indicated by increased Ki-67 expression and more expansion of NK cell after ex vivo stimulation with IL-15. The reason for Foxo1 suppressing NK cell proliferation might be its direct transcription of the cell-cycle inhibitory genes, such as p21cip1, p27kip1, p130, Gadd45a, and Ccng2 (cyclin G2) in NK cells, supported by the evidence of decreased mRNA expression of p21cip1, p27kip1, p130, Gadd45a, and Ccng2 in Foxo1-deficient NK cells and direct binding of Foxo1 on their promoter region. Furthermore, hematopoietic-specific deletion of Foxo1 resulted in increased ratio of mature NK subsets, such as CD11b+CD27− and CD43+KLRG1+ NK cells, but decreased ratio of immature NK subsets, such as CD27+CD11b− and CD27+CD11b+ NK cells, consistent with the findings in the murine model of Ncr1-iCre mediated Foxo1 deletion. Conclusively, Foxo1 not only acts as a negative checkpoint on NK cell maturation, but also represses NK cell specification and proliferation. The relative higher expression of Foxo1 in CLP and early NK precursors may also contribute to the later NK cell proliferation and responsiveness, which warranties another separate study in the future.
Collapse
Affiliation(s)
- Pei Huang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjing Lai
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Meng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuting Wu
- Hunan Children's Hospital, Hunan Children's Research Institute (HCRI), University of South China, Changsha, China
| | - Hongyan Peng
- Hunan Children's Hospital, Hunan Children's Research Institute (HCRI), University of South China, Changsha, China
| | - Lili Wang
- Hunan Children's Hospital, Hunan Children's Research Institute (HCRI), University of South China, Changsha, China
| | - Rixing Zhan
- Southwest Hospital, Institute of Burn Research, Army Medical University (Third Military Medical University), Chongqing, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Bingbo Chen
- Laboratory Animal Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
234
|
Zikmund T, Kokavec J, Turkova T, Savvulidi F, Paszekova H, Vodenkova S, Sedlacek R, Skoultchi AI, Stopka T. ISWI ATPase Smarca5 Regulates Differentiation of Thymocytes Undergoing β-Selection. THE JOURNAL OF IMMUNOLOGY 2019; 202:3434-3446. [PMID: 31068388 DOI: 10.4049/jimmunol.1801684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Abstract
Development of lymphoid progenitors requires a coordinated regulation of gene expression, DNA replication, and gene rearrangement. Chromatin-remodeling activities directed by SWI/SNF2 superfamily complexes play important roles in these processes. In this study, we used a conditional knockout mouse model to investigate the role of Smarca5, a member of the ISWI subfamily of such complexes, in early lymphocyte development. Smarca5 deficiency results in a developmental block at the DN3 stage of αβ thymocytes and pro-B stage of early B cells at which the rearrangement of Ag receptor loci occurs. It also disturbs the development of committed (CD73+) γδ thymocytes. The αβ thymocyte block is accompanied by massive apoptotic depletion of β-selected double-negative DN3 cells and premitotic arrest of CD4/CD8 double-positive cells. Although Smarca5-deficient αβ T cell precursors that survived apoptosis were able to undergo a successful TCRβ rearrangement, they exhibited a highly abnormal mRNA profile, including the persistent expression of CD44 and CD25 markers characteristic of immature cells. We also observed that the p53 pathway became activated in these cells and that a deficiency of p53 partially rescued the defect in thymus cellularity (in contrast to early B cells) of Smarca5-deficient mice. However, the activation of p53 was not primarily responsible for the thymocyte developmental defects observed in the Smarca5 mutants. Our results indicate that Smarca5 plays a key role in the development of thymocytes undergoing β-selection, γδ thymocytes, and also B cell progenitors by regulating the transcription of early differentiation programs.
Collapse
Affiliation(s)
- Tomas Zikmund
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Juraj Kokavec
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Tereza Turkova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Filipp Savvulidi
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague 12853, Czech Republic
| | - Helena Paszekova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague 14220, Czech Republic.,Third Faculty of Medicine, Charles University, Prague 10000, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 25250, Czech Republic; and
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx 10461, NY
| | - Tomas Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic;
| |
Collapse
|
235
|
Csete D, Simon E, Alatshan A, Aradi P, Dobó-Nagy C, Jakus Z, Benkő S, Győri DS, Mócsai A. Hematopoietic or Osteoclast-Specific Deletion of Syk Leads to Increased Bone Mass in Experimental Mice. Front Immunol 2019; 10:937. [PMID: 31134061 PMCID: PMC6524727 DOI: 10.3389/fimmu.2019.00937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Syk is a non-receptor tyrosine kinase critically involved in signaling by various immunoreceptors including B-cell-receptors and activating Fc-receptors. We have previously shown that Syk also mediates immunoreceptor-like signals required for the in vitro development and function of osteoclasts. However, the perinatal lethality of Syk -/- mice precluded the analysis of the role of Syk in in vivo bone metabolism. To overcome that problem, we generated mice with osteoclast-specific (Syk ΔOC ) or hematopoietic (Syk ΔHaemo ) Syk deficiency by conditional deletion of Syk using Cre recombinase expressed under the control of the Ctsk or Vav1 promoter, respectively. Micro-CT analysis revealed increased bone trabecular density in both Syk ΔOC and Syk ΔHaemo mice, although hematopoietic Syk deficiency caused a more severe phenotype than osteoclast-specific Syk deficiency. Osteoclast-specific Syk deficiency reduced, whereas hematopoietic Syk deficiency completely blocked in vitro development of osteoclasts. Both interventions inhibited the resorptive activity of osteoclasts and osteoclast-specific gene expression. Kinetic analysis of Syk protein levels, Cre expression and the genomic deletion of the Syk flox allele revealed complete and early deletion of Syk from Syk ΔHaemo osteoclasts whereas Syk was incompletely deleted at a later stage of osteoclast development from Syk ΔOC cultures. Those results provide an explanation for the in vivo and in vitro difference between the Syk ΔOC and Syk ΔHaemo mutant strains and suggest late activation of, and incomplete target gene deletion upon, osteoclast-specific Cre expression driven by the Ctsk promoter. Taken together, our results indicate that Syk plays an indispensable role in osteoclast-mediated in vivo bone resorption and suggest that Syk-specific inhibitors may provide therapeutic benefit in inflammatory and other diseases characterized by excessive osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Dániel Csete
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Ahmad Alatshan
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Semmelweis University School of Dentistry, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid S Győri
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
236
|
The PAF1c Subunit CDC73 Is Required for Mouse Hematopoietic Stem Cell Maintenance but Displays Leukemia-Specific Gene Regulation. Stem Cell Reports 2019; 12:1069-1083. [PMID: 31031188 PMCID: PMC6524170 DOI: 10.1016/j.stemcr.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
The Polymerase Associated Factor 1 complex (PAF1c) functions at the interface of epigenetics and gene transcription. The PAF1c is required for MLL fusion-driven acute myeloid leukemia (AML) through direct regulation of pro-leukemic target genes such as Hoxa9 and Meis1. However, the role of the PAF1c in normal hematopoiesis is unknown. Here, we discovered that the PAF1c subunit, CDC73, is required for both fetal and adult hematopoiesis. Loss of Cdc73 in hematopoietic cells is lethal because of extensive bone marrow failure. Cdc73 has an essential cell-autonomous role for adult hematopoietic stem cell function in vivo, and deletion of Cdc73 results in cell-cycle defects in hematopoietic progenitors. Gene expression profiling indicated a differential regulation of Hoxa9/Meis1 gene programs by CDC73 in progenitors compared with AML cells, suggesting disease-specific functions. Thus, the PAF1c subunit, CDC73 is essential for hematopoietic stem cell function but exhibits leukemia-specific regulation of self-renewal gene programs in AML cells. CDC73 is necessary for embryonic and adult hematopoietic stem cell function Proliferation and survival of cKIT+ hematopoietic progenitors require CDC73 CDC73 regulates unique gene programs in leukemia and hematopoietic progenitor cells
Collapse
|
237
|
Yoshikawa S, Oh-Hora M, Hashimoto R, Nagao T, Peters L, Egawa M, Ohta T, Miyake K, Adachi T, Kawano Y, Yamanishi Y, Karasuyama H. Pivotal role of STIM2, but not STIM1, in IL-4 production by IL-3-stimulated murine basophils. Sci Signal 2019; 12:12/576/eaav2060. [PMID: 30967512 DOI: 10.1126/scisignal.aav2060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Basophils have nonredundant roles in various immune responses that require Ca2+ influx. Here, we examined the role of two Ca2+ sensors, stromal interaction molecule 1 and 2 (STIM1 and STIM2), in basophil activation. We found that loss of STIM1, but not STIM2, impaired basophil IL-4 production after stimulation with immunoglobulin E (IgE)-containing immune complexes. In contrast, when basophils were stimulated with IL-3, loss of STIM2, but not STIM1, reduced basophil IL-4 production. This difference in STIM proteins was associated with distinct time courses of Ca2+ influx and transcription of the Il4 gene that were elicited by each stimulus. Similarly, basophil-specific STIM1 expression was required for IgE-driven chronic allergic inflammation in vivo, whereas STIM2 was required for IL-4 production after combined IL-3 and IL-33 treatment in mice. These data indicate that STIM1 and STIM2 have differential roles in the production of IL-4, which are stimulus dependent. Furthermore, these results illustrate the vital role of STIM2 in basophils, which is often considered to be less important than STIM1.
Collapse
Affiliation(s)
- Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Masatsugu Oh-Hora
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryota Hashimoto
- Department of Physiology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Toshihisa Nagao
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Louis Peters
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Mayumi Egawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takuya Ohta
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kensuke Miyake
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yohei Kawano
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshinori Yamanishi
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
238
|
Heung LJ, Hohl TM. Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans. PLoS Pathog 2019; 15:e1007627. [PMID: 30897162 PMCID: PMC6428256 DOI: 10.1371/journal.ppat.1007627] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans is a leading cause of invasive fungal infections among immunocompromised patients. However, the cellular constituents of the innate immune response that promote clearance versus progression of infection upon respiratory acquisition of C. neoformans remain poorly defined. In this study, we found that during acute C. neoformans infection, CCR2+ Ly6Chi inflammatory monocytes (IM) rapidly infiltrate the lungs and mediate fungal trafficking to lung-draining lymph nodes. Interestingly, this influx of IM is detrimental to the host, since ablating IM or impairing their recruitment to the lungs improves murine survival and reduces fungal proliferation and dissemination. Using a novel conditional gene deletion strategy, we determined that MHC class II expression by IM did not mediate their deleterious impact on the host. Furthermore, although ablation of IM reduced the number of lymphocytes, innate lymphoid cells, and eosinophils in the lungs, the effects of IM were not dependent on these cells. We ascertained that IM in the lungs upregulated transcripts associated with alternatively activated (M2) macrophages in response to C. neoformans, consistent with the model that IM assume a cellular phenotype that is permissive for fungal growth. We also determined that conditional knockout of the prototypical M2 marker arginase 1 in IM and deletion of the M2-associated transcription factor STAT6 were not sufficient to reverse the harmful effects of IM. Overall, our findings indicate that C. neoformans can subvert the fungicidal potential of IM to enable the progression of infection through a mechanism that is not dependent on lymphocyte priming, eosinophil recruitment, or downstream M2 macrophage polarization pathways. These results give us new insight into the plasticity of IM function during fungal infections and the level of control that C. neoformans can exert on host immune responses. Cryptococcus neoformans is a fungus that is prevalent throughout the environment and can cause a fatal infection of the central nervous system when inhaled into the lungs by patients with impaired immune systems. Our understanding of the immune responses that either help clear C. neoformans from the lungs or permit development of disease remains limited. In this study, we used a mouse model of lethal C. neoformans infection to determine that inflammatory monocytes, immune cells that are often among the first responders to infections, actually facilitate the progression of infection rather than clearance. These findings establish a foundation for future work to target the immune response of inflammatory monocytes as a strategy to improve the outcomes of patients that develop C. neoformans infections.
Collapse
Affiliation(s)
- Lena J. Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (LJH); (TMH)
| | - Tobias M. Hohl
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (LJH); (TMH)
| |
Collapse
|
239
|
Bouderlique T, Peña-Pérez L, Kharazi S, Hils M, Li X, Krstic A, De Paepe A, Schachtrup C, Gustafsson C, Holmberg D, Schachtrup K, Månsson R. The Concerted Action of E2-2 and HEB Is Critical for Early Lymphoid Specification. Front Immunol 2019; 10:455. [PMID: 30936870 PMCID: PMC6433000 DOI: 10.3389/fimmu.2019.00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
The apparition of adaptive immunity in Gnathostomata correlates with the expansion of the E-protein family to encompass E2-2, HEB, and E2A. Within the family, E2-2 and HEB are more closely evolutionarily related but their concerted action in hematopoiesis remains to be explored. Here we show that the combined disruption of E2-2 and HEB results in failure to express the early lymphoid program in Common lymphoid precursors (CLPs) and a near complete block in B-cell development. In the thymus, Early T-cell progenitors (ETPs) were reduced and T-cell development perturbed, resulting in reduced CD4 T- and increased γδ T-cell numbers. In contrast, hematopoietic stem cells (HSCs), erythro-myeloid progenitors, and innate immune cells were unaffected showing that E2-2 and HEB are dispensable for the ancestral hematopoietic lineages. Taken together, this E-protein dependence suggests that the appearance of the full Gnathostomata E-protein repertoire was critical to reinforce the gene regulatory circuits that drove the emergence and expansion of the lineages constituting humoral immunity.
Collapse
Affiliation(s)
- Thibault Bouderlique
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Peña-Pérez
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shabnam Kharazi
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Hils
- Faculty of Medicine & Faculty of Biology, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Xiaoze Li
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ayla De Paepe
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Schachtrup
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Charlotte Gustafsson
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dan Holmberg
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Kristina Schachtrup
- Faculty of Medicine & Faculty of Biology, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Robert Månsson
- Department of Laboratory Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
240
|
Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Nordin HBM, Cao Z, Sundaresan J, Lei I, Wang Z, Koeffler HP. Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia 2019; 33:2291-2305. [PMID: 30858552 PMCID: PMC6756219 DOI: 10.1038/s41375-019-0438-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Precise regulation of chromatin architecture is vital to physiological processes including hematopoiesis. ARID1A is a core component of the mammalian SWI/SNF complex, which is one of the ATP-dependent chromatin remodeling complexes. To uncover the role of ARID1A in hematopoietic development, we utilized hematopoietic cell-specific deletion of Arid1a in mice. We demonstrate that ARID1A is essential for maintaining the frequency and function of hematopoietic stem cells and its loss impairs the differentiation of both myeloid and lymphoid lineages. ARID1A deficiency led to a global reduction in open chromatin and ensuing transcriptional changes affected key genes involved in hematopoietic development. We also observed that silencing of ARID1A affected ATRA-induced differentiation of NB4 cells, suggesting its role in granulocytic differentiation of human leukemic cells. Overall, our study provides a comprehensive elucidation of the function of ARID1A in hematopoiesis and highlights the central role of ARID1A-containing SWI/SNF complex in maintaining chromatin dynamics in hematopoietic cells.
Collapse
Affiliation(s)
- Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Zeya Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janani Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore, Singapore
| |
Collapse
|
241
|
Yang K, Blanco DB, Chen X, Dash P, Neale G, Rosencrance C, Easton J, Chen W, Cheng C, Dhungana Y, Kc A, Awad W, Guo XZJ, Thomas PG, Chi H. Metabolic signaling directs the reciprocal lineage decisions of αβ and γδ T cells. Sci Immunol 2019; 3:3/25/eaas9818. [PMID: 29980617 DOI: 10.1126/sciimmunol.aas9818] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023]
Abstract
The interaction between extrinsic factors and intrinsic signal strength governs thymocyte development, but the mechanisms linking them remain elusive. We report that mechanistic target of rapamycin complex 1 (mTORC1) couples microenvironmental cues with metabolic programs to orchestrate the reciprocal development of two fundamentally distinct T cell lineages, the αβ and γδ T cells. Developing thymocytes dynamically engage metabolic programs including glycolysis and oxidative phosphorylation, as well as mTORC1 signaling. Loss of RAPTOR-mediated mTORC1 activity impairs the development of αβ T cells but promotes γδ T cell generation, associated with disrupted metabolic remodeling of oxidative and glycolytic metabolism. Mechanistically, we identify mTORC1-dependent control of reactive oxygen species production as a key metabolic signal in mediating αβ and γδ T cell development, and perturbation of redox homeostasis impinges upon thymocyte fate decisions and mTORC1-associated phenotypes. Furthermore, single-cell RNA sequencing and genetic dissection reveal that mTORC1 links developmental signals from T cell receptors and NOTCH to coordinate metabolic activity and signal strength. Our results establish mTORC1-driven metabolic signaling as a decisive factor for reciprocal αβ and γδ T cell development and provide insight into metabolic control of cell signaling and fate decisions.
Collapse
Affiliation(s)
- Kai Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Daniel Bastardo Blanco
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Celeste Rosencrance
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenan Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
242
|
Wendorff AA, Quinn SA, Rashkovan M, Madubata CJ, Ambesi-Impiombato A, Litzow MR, Tallman MS, Paietta E, Paganin M, Basso G, Gastier-Foster JM, Loh ML, Rabadan R, Van Vlierberghe P, Ferrando AA. Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem Cell Activity in T-ALL. Cancer Discov 2019; 9:436-451. [PMID: 30567843 PMCID: PMC6425751 DOI: 10.1158/2159-8290.cd-18-1005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022]
Abstract
The plant homeodomain 6 gene (PHF6) is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL); however, its specific functional role in leukemia development remains to be established. Here, we show that loss of PHF6 is an early mutational event in leukemia transformation. Mechanistically, genetic inactivation of Phf6 in the hematopoietic system enhances hematopoietic stem cell (HSC) long-term self-renewal and hematopoietic recovery after chemotherapy by rendering Phf6 knockout HSCs more quiescent and less prone to stress-induced activation. Consistent with a leukemia-initiating tumor suppressor role, inactivation of Phf6 in hematopoietic progenitors lowers the threshold for the development of NOTCH1-induced T-ALL. Moreover, loss of Phf6 in leukemia lymphoblasts activates a leukemia stem cell transcriptional program and drives enhanced T-ALL leukemia-initiating cell activity. These results implicate Phf6 in the control of HSC homeostasis and long-term self-renewal and support a role for PHF6 loss as a driver of leukemia-initiating cell activity in T-ALL. SIGNIFICANCE: Phf6 controls HSC homeostasis, leukemia initiation, and T-ALL leukemia-initiating cell self-renewal. These results substantiate a role for PHF6 mutations as early events and drivers of leukemia stem cell activity in the pathogenesis of T-ALL.This article is highlighted in the In This Issue feature, p. 305.
Collapse
Affiliation(s)
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, New York
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Marissa Rashkovan
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Chioma J Madubata
- Department of Systems Biology, Columbia University, New York, New York
| | | | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Martin S Tallman
- Department of Hematologic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisabeth Paietta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Maddalena Paganin
- Onco-Hematology Division, Department, Salute della Donna e del Bambino (SDB), University of Padua, Padua, Italy
| | - Giuseppe Basso
- Onco-Hematology Division, Department, Salute della Donna e del Bambino (SDB), University of Padua, Padua, Italy
- Italian Institute for Genomic Medicine (HMG), Turin, Italy
| | - Julie M Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pathology, Ohio State University School of Medicine, Columbus, Ohio
- Department of Pediatrics, Ohio State University School of Medicine, Columbus, Ohio
- Children's Oncology Group, Arcadia, California
| | - Mignon L Loh
- Department of Pediatrics, University of California, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, New York
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Pieter Van Vlierberghe
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York.
- Department of Pediatrics, Columbia University Medical Center, New York, New York
- Department of Systems Biology, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
243
|
Luksch H, Stinson WA, Platt DJ, Qian W, Kalugotla G, Miner CA, Bennion BG, Gerbaulet A, Rösen-Wolff A, Miner JJ. STING-associated lung disease in mice relies on T cells but not type I interferon. J Allergy Clin Immunol 2019; 144:254-266.e8. [PMID: 30772497 DOI: 10.1016/j.jaci.2019.01.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Monogenic interferonopathies are thought to be mediated by type I interferon. For example, a gain-of-function mutation in stimulator of interferon genes (STING; N153S) upregulates type I interferon-stimulated genes and causes perivascular inflammatory lung disease in mice. The equivalent mutation in human subjects also causes lung disease, which is thought to require signaling through the cyclic GMP-AMP synthase (cGAS)-STING pathway and subsequent activation of interferon regulatory factors (IRFs) 3 and 7, type I interferon, and interferon-stimulated genes. OBJECTIVE We set out to define the roles of cGAS, IRF3, IRF7, the type I interferon receptor (IFN-α and IFN-β receptor subunit 1 [IFNAR1]), T cells, and B cells in spontaneous lung disease in STING N153S mice. METHODS STING N153S mice were crossed to animals lacking cGAS, IRF3/IRF7, IFNAR1, adaptive immunity, αβ T cells, and mature B cells. Mice were evaluated for spontaneous lung disease. Additionally, bone marrow chimeric mice were assessed for lung disease severity and survival. RESULTS Lung disease in STING N153S mice developed independently of cGAS, IRF3/IRF7, and IFNAR1. Bone marrow transplantation revealed that certain features of STING N153S-associated disease are intrinsic to the hematopoietic compartment. Recombination-activating gene 1 (Rag1)-/- STING N153S mice that lack adaptive immunity had no lung disease, and T-cell receptor β chain (Tcrb)-/- STING N153S animals only had mild disease. STING N153S led to a reduction in percentages and numbers of naive and regulatory T cells, as well as an increased frequency of cytokine-producing effector T cells. CONCLUSION Spontaneous lung disease in STING N153S mice develops independently of type I interferon signaling and cGAS. STING N153S relies primarily on T cells to promote lung disease in mice.
Collapse
Affiliation(s)
- Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - W Alexander Stinson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Mo
| | - Derek J Platt
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Mo
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Gowri Kalugotla
- Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Cathrine A Miner
- Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Brock G Bennion
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Mo
| | | | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, St Louis, Mo; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Mo; Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
244
|
Minutti CM, Modak RV, Macdonald F, Li F, Smyth DJ, Dorward DA, Blair N, Husovsky C, Muir A, Giampazolias E, Dobie R, Maizels RM, Kendall TJ, Griggs DW, Kopf M, Henderson NC, Zaiss DM. A Macrophage-Pericyte Axis Directs Tissue Restoration via Amphiregulin-Induced Transforming Growth Factor Beta Activation. Immunity 2019; 50:645-654.e6. [PMID: 30770250 PMCID: PMC6436929 DOI: 10.1016/j.immuni.2019.01.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/27/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
The epidermal growth factor receptor ligand Amphiregulin has a well-documented role in the restoration of tissue homeostasis after injury; however, the mechanism by which Amphiregulin contributes to wound repair remains unknown. Here we show that Amphiregulin functioned by releasing bioactive transforming growth factor beta (TGF-β) from latent complexes via integrin-αV activation. Using acute injury models in two different tissues, we found that by inducing TGF-β activation on mesenchymal stromal cells (pericytes), Amphiregulin induced their differentiation into myofibroblasts, thereby selectively contributing to the restoration of vascular barrier function within injured tissue. Furthermore, we identified macrophages as a critical source of Amphiregulin, revealing a direct effector mechanism by which these cells contribute to tissue restoration after acute injury. Combined, these observations expose a so far under-appreciated mechanism of how cells of the immune system selectively control the differentiation of tissue progenitor cells during tissue repair and inflammation. Macrophages express Amphiregulin upon tissue damage Amphiregulin activates integrin-αV complexes on pericytes Integrin-αV-activated TGF-β induces pericyte into myofibroblast differentiation Myofibroblast-derived collagen contributes to wound healing
Collapse
Affiliation(s)
- Carlos M Minutti
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK; Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Rucha V Modak
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Felicity Macdonald
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Fengqi Li
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Zürich 8093, Switzerland
| | - Danielle J Smyth
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - David A Dorward
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK; Division of Pathology, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Natalie Blair
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Connor Husovsky
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew Muir
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK; Division of Pathology, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David W Griggs
- Department of Molecular Microbiology and Immunology, Saint Louis University, Edward A. Doisy Research Center, St. Louis, MO 63104, USA
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Zürich 8093, Switzerland
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Dietmar M Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
245
|
Garcia-So J, Zhang X, Yang X, Rubinstein MR, Mao DY, Kitajewski J, Liu K, Han YW. Omega-3 fatty acids suppress Fusobacterium nucleatum-induced placental inflammation originating from maternal endothelial cells. JCI Insight 2019; 4:e125436. [PMID: 30728337 PMCID: PMC6413831 DOI: 10.1172/jci.insight.125436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum is an oral anaerobe prevalent in intrauterine infection associated with a wide spectrum of adverse pregnancy outcomes. We demonstrate here that F. nucleatum triggers placental inflammation through maternal, rather than paternal, TLR4-mediated signaling. Elimination of TLR4 from maternal endothelial cells alleviated placental inflammation and reduced fetal and neonatal death, while elimination of TLR4 in the hematopoietic cells had no effect. The placental inflammatory response followed a spatiotemporal pattern, with NF-κB activation observed first in the maternal endothelial cells and then in the decidual cells surrounding the endothelium, followed by induction of inflammatory cytokines and chemokines. Supplementation of pregnant mice with fish oil as a source of omega-3 fatty acids suppressed placental inflammation, reduced F. nucleatum proliferation in the placenta, and increased fetal and neonatal survival. In vitro analysis illustrates that omega-3 fatty acids inhibit bacterial-induced inflammatory responses from human umbilical cord endothelial cells. Our study therefore reveals a mechanism by which microbial infections affect pregnancy and identifies a prophylactic therapy to protect against intrauterine infections.
Collapse
Affiliation(s)
- Jeewon Garcia-So
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Xinwen Zhang
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaohua Yang
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - De Yu Mao
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacology
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kang Liu
- Department of Microbiology and Immunology, and
| | - Yiping W. Han
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Microbiology and Immunology, and
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
246
|
Webb LV, Barbarulo A, Huysentruyt J, Vanden Berghe T, Takahashi N, Ley S, Vandenabeele P, Seddon B. Survival of Single Positive Thymocytes Depends upon Developmental Control of RIPK1 Kinase Signaling by the IKK Complex Independent of NF-κB. Immunity 2019; 50:348-361.e4. [PMID: 30737145 PMCID: PMC6382466 DOI: 10.1016/j.immuni.2019.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/07/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
NF-κB (nuclear factor κB) signaling is considered critical for single positive (SP) thymocyte development because loss of upstream activators of NF-κB, such as the IKK complex, arrests their development. We found that the compound ablation of RelA, cRel, and p50, required for canonical NF-κB transcription, had no impact upon thymocyte development. While IKK-deficient thymocytes were acutely sensitive to tumor necrosis factor (TNF)-induced cell death, Rel-deficient cells remained resistant, calling into question the importance of NF-κB as the IKK target required for thymocyte survival. Instead, we found that IKK controlled thymocyte survival by repressing cell-death-inducing activity of the serine/threonine kinase RIPK1. We observed that RIPK1 expression was induced during development of SP thymocytes and that IKK was required to prevent RIPK1-kinase-dependent death of SPs in vivo. Finally, we showed that IKK was required to protect Rel-deficient thymocytes from RIPK1-dependent cell death, underscoring the NF-κB-independent function of IKK during thymic development.
Collapse
Affiliation(s)
- Louise V Webb
- Present address: Francis Crick Institute, Mill Hill Laboratories, London NW7 1AA, UK
| | - Alessandro Barbarulo
- Division of Infection and Immunity, UCL Institute of Immunity and Transplantation, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Jelle Huysentruyt
- VIB-UGent Center for Inflammation Research, VIB-UGent Research Building FSVM, Technologiepark 927, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, VIB-UGent Research Building FSVM, Technologiepark 927, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- VIB-UGent Center for Inflammation Research, VIB-UGent Research Building FSVM, Technologiepark 927, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Ley
- Division of Molecular Immunology, Imperial College, London, UK
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, VIB-UGent Research Building FSVM, Technologiepark 927, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Benedict Seddon
- Division of Infection and Immunity, UCL Institute of Immunity and Transplantation, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
247
|
Yang R, Wang H, Kang B, Chen B, Shi Y, Yang S, Sun L, Liu Y, Xiao W, Zhang T, Yang J, Zhang Y, Zhu M, Xu P, Chang Y, Jia Y, Huang Y. CDK5RAP3, a UFL1 substrate adaptor, is crucial for liver development. Development 2019; 146:dev.169235. [PMID: 30635284 DOI: 10.1242/dev.169235] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Protein modification by ubiquitin and ubiquitin-like proteins (UBLs) regulates numerous biological functions. The UFM1 system, a novel UBL conjugation system, is implicated in mouse development and hematopoiesis. However, its broad biological functions and working mechanisms remain largely elusive. CDK5RAP3, a possible ufmylation substrate, is essential for epiboly and gastrulation in zebrafish. Herein, we report a crucial role of CDK5RAP3 in liver development and hepatic functions. Cdk5rap3 knockout mice displayed prenatal lethality with severe liver hypoplasia, as characterized by delayed proliferation and compromised differentiation. Hepatocyte-specific Cdk5rap3 knockout mice suffered post-weaning lethality, owing to serious hypoglycemia and impaired lipid metabolism. Depletion of CDK5RAP3 triggered endoplasmic reticulum stress and activated unfolded protein responses in hepatocytes. We detected the in vivo interaction of CDK5RAP3 with UFL1, the defined E3 ligase in ufmylation. Notably, loss of CDK5RAP3 altered the ufmylation profile in liver cells, suggesting that CDK5RAP3 serves as a novel substrate adaptor for this UBL modification. Collectively, our study identifies CDK5RAP3 as an important regulator of ufmylation and suggests the involvement of ufmylation in mammalian development.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Huanmin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Boxi Kang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yaoyao Shi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100005, China
| | - Shuchun Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yufang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weidi Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mingzhao Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100005, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yongsheng Chang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
248
|
Jee D, Yang JS, Park SM, Farmer DT, Wen J, Chou T, Chow A, McManus MT, Kharas MG, Lai EC. Dual Strategies for Argonaute2-Mediated Biogenesis of Erythroid miRNAs Underlie Conserved Requirements for Slicing in Mammals. Mol Cell 2019; 69:265-278.e6. [PMID: 29351846 DOI: 10.1016/j.molcel.2017.12.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
While Slicer activity of Argonaute is central to RNAi, conserved roles of slicing in endogenous regulatory biology are less clear, especially in mammals. Biogenesis of erythroid Dicer-independent mir-451 involves Ago2 catalysis, but mir-451-KO mice do not phenocopy Ago2 catalytic-dead (Ago2-CD) mice, suggesting other needs for slicing. Here, we reveal mir-486 as another dominant erythroid miRNA with atypical biogenesis. While it is Dicer dependent, it requires slicing to eliminate its star strand. Thus, in Ago2-CD conditions, miR-486-5p is functionally inactive due to duplex arrest. Genome-wide analyses reveal miR-486 and miR-451 as the major slicing-dependent miRNAs in the hematopoietic system. Moreover, mir-486-KO mice exhibit erythroid defects, and double knockout of mir-486/451 phenocopies the cell-autonomous effects of Ago2-CD in the hematopoietic system. Finally, we observe that Ago2 is the dominant-expressed Argonaute in maturing erythroblasts, reflecting a specialized environment for processing slicing-dependent miRNAs. Overall, the mammalian hematopoietic system has evolved multiple conserved requirements for Slicer-dependent miRNA biogenesis.
Collapse
Affiliation(s)
- David Jee
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave., Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Jr-Shiuan Yang
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave., Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Sun-Mi Park
- Department of Molecular Pharmacology, Sloan Kettering Institute, 1275 York Ave., New York, NY 10065, USA
| | - D'Juan T Farmer
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jiayu Wen
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave., Box 252, New York, NY 10065, USA
| | - Timothy Chou
- Department of Molecular Pharmacology, Sloan Kettering Institute, 1275 York Ave., New York, NY 10065, USA
| | - Arthur Chow
- Department of Molecular Pharmacology, Sloan Kettering Institute, 1275 York Ave., New York, NY 10065, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael G Kharas
- Department of Molecular Pharmacology, Sloan Kettering Institute, 1275 York Ave., New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave., Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
249
|
Dolch A, Kunz S, Dorn B, Alessandrini F, Müller W, Jack RS, Martin SF, Roers A, Jakob T. IL-10 signaling in dendritic cells is required for tolerance induction in a murine model of allergic airway inflammation. Eur J Immunol 2019; 49:302-312. [PMID: 30566244 DOI: 10.1002/eji.201847883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Allergen specific tolerance induction efficiently ameliorates subsequent allergen induced inflammatory responses. The underlying regulatory mechanisms have been attributed mainly to interleukin (IL)-10 produced by diverse hematopoietic cells, while targets of IL-10 in allergen specific tolerance induction have not yet been well defined. Here, we investigate potential cellular targets of IL-10 in allergen specific tolerance induction using mice with a cell type specific inactivation of the IL-10 receptor gene. Allergic airway inflammation was effectively prevented by tolerance induction in mice with IL-10 receptor (IL-10R) deficiency in T or B cells. Similarly, IL-10R on monocytes/macrophages and/or neutrophils was not required for tolerance induction. In contrast, tolerance induction was impaired in mice that lack IL-10R on dendritic cells: those mice developed an allergic response characterized by a pronounced neutrophilic lung infiltration, which was not ameliorated by tolerogenic treatment. In conclusion, our results show that allergen specific tolerance can be effectively induced without a direct impact of IL-10 on cells of the adaptive immune system, and highlight dendritic cells, but not macrophages nor neutrophils, as the main target of IL-10 during tolerance induction.
Collapse
Affiliation(s)
- Anja Dolch
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefanie Kunz
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Britta Dorn
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.,Department of Dermatology and Allergology, Experimental Dermatology and Allergy Research Group, University Medical Center Gießen-Marburg, Justus Liebig University Gießen, Gießen, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technische Universität München and Helmholtz Zentrum München, Munich, Germany
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Robert S Jack
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Hospital of Greifswald, Greifswald, Germany
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Axel Roers
- Institute of Immunology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | - Thilo Jakob
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.,Department of Dermatology and Allergology, Experimental Dermatology and Allergy Research Group, University Medical Center Gießen-Marburg, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
250
|
Abstract
The architectural protein CTCF regulates the conformation and recombination of antigen receptor loci. To study the importance of CTCF in Tcrb locus repertoire formation, we created a conditional knockout mouse line that deletes Ctcf early during thymocyte development. We observed an incomplete block in thymocyte development at the double-negative to double-positive transition, resulting in greatly lowered thymic cellularity. The Tcrb repertoire was altered with a decrease in recombination of Vβ gene segments in close proximity to a CTCF binding element (CBE), resulting in an overall repertoire that was skewed in favor of Vβ gene segments with no nearby CBE. Therefore we show that CTCF functions to diversify the Tcrb repertoire.
Collapse
Affiliation(s)
- Shiwei Chen
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|