201
|
Wei J, Xie Z, Kuang X. Extracellular Vesicles in Renal Inflammatory Diseases: Revealing Mechanisms of Extracellular Vesicle-Mediated Macrophage Regulation. Int J Mol Sci 2025; 26:3646. [PMID: 40332144 PMCID: PMC12027779 DOI: 10.3390/ijms26083646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Renal inflammatory diseases are a group of severe conditions marked by significant morbidity and mortality. Extracellular vesicles (EVs), as facilitators of intercellular communication, have been recognized as pivotal regulators of renal inflammatory diseases, significantly contributing to these conditions by modulating immune responses among other mechanisms. This review highlights the intricate mechanisms through which EVs modulate macrophage-kidney cell interactions by regulating macrophages, the principal immune cells within the renal milieu. This regulation subsequently influences the pathophysiology of renal inflammatory diseases such as acute kidney injury and chronic kidney disease. Furthermore, understanding these mechanisms offers novel opportunities to alleviate the severe consequences associated with renal inflammatory diseases. In addition, we summarize the therapeutic landscape based on EV-mediated macrophage regulatory mechanisms, highlighting the potential of EVs as biomarkers and therapeutic targets as well as the challenges and limitations of translating therapies into clinical practice.
Collapse
Affiliation(s)
- Jiatai Wei
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Zijie Xie
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Xiaodong Kuang
- Pathology Teaching and Research Office, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
202
|
Jacob V, de Berny Q, Brazier F, Presne C, Lion J, Ouled-Haddou H, Metzinger-Le Meuth V, Choukroun G, Metzinger L, Guillaume N. Quantification of Urine and Plasma Levels of Extracellular Vesicles in a Cohort of Kidney Transplant Recipients and Chronic Kidney Disease Patients. Int J Mol Sci 2025; 26:3635. [PMID: 40332150 PMCID: PMC12027010 DOI: 10.3390/ijms26083635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) have a key role in intercellular communication. We hypothesized that EVs are biomarkers of nephropathy or kidney allograft rejection. We screened patients with chronic kidney disease (CKD) and kidney transplant (KT) recipients. We measured the urine and plasma levels of total EVs overall and EV subpopulations (positive for podocalyxin, aquaporin-1, CD133, CD144, CD19, CD3, CD16, CD56, or CD41). We included 92 patients with CKD, 70 KT recipients, and 33 healthy volunteers. In CKD, the total urine EV concentration was correlated positively with the estimated glomerular filtration rate (eGFR), but none of the subpopulations was identified as a potential biomarker of nephropathy. Among the KT recipients, 30 had good allograft function and 40 had allograft disease (13 with antibody-mediated rejections (ABMR), 12 with T-cell-mediated rejection (TCMR), and 15 with allograft dysfunction). Patients with ABMR had low plasma levels of EVs derived from B-cells, T-cells, and endothelium (p = 0.003, 0.009, and 0.005, respectively). Patients with TCMR had a low urine level of EVs derived from endothelium (p = 0.05). EVs derived from B-cells, T-cells, and endothelium might be biomarkers of kidney allograft rejection. However, we did not identify biomarkers of nephropathy in CKD.
Collapse
Affiliation(s)
- Valentine Jacob
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, F-80000 Amiens, France; (V.J.); (J.L.); (H.O.-H.); (V.M.-L.M.); (L.M.)
- Laboratory of Histocompatibility, Amiens University Hospital, F-80000 Amiens, France
| | - Quentin de Berny
- Department of Nephrology Dialysis Transplantation, Amiens University Hospital, F-80000 Amiens, France; (Q.d.B.); (F.B.); (C.P.); (G.C.)
| | - François Brazier
- Department of Nephrology Dialysis Transplantation, Amiens University Hospital, F-80000 Amiens, France; (Q.d.B.); (F.B.); (C.P.); (G.C.)
| | - Claire Presne
- Department of Nephrology Dialysis Transplantation, Amiens University Hospital, F-80000 Amiens, France; (Q.d.B.); (F.B.); (C.P.); (G.C.)
| | - Julien Lion
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, F-80000 Amiens, France; (V.J.); (J.L.); (H.O.-H.); (V.M.-L.M.); (L.M.)
- Laboratory of Histocompatibility, Amiens University Hospital, F-80000 Amiens, France
| | - Hakim Ouled-Haddou
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, F-80000 Amiens, France; (V.J.); (J.L.); (H.O.-H.); (V.M.-L.M.); (L.M.)
| | - Valérie Metzinger-Le Meuth
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, F-80000 Amiens, France; (V.J.); (J.L.); (H.O.-H.); (V.M.-L.M.); (L.M.)
- INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, University of Sorbonne Paris Nord, F-93000 Bobigny, France
| | - Gabriel Choukroun
- Department of Nephrology Dialysis Transplantation, Amiens University Hospital, F-80000 Amiens, France; (Q.d.B.); (F.B.); (C.P.); (G.C.)
| | - Laurent Metzinger
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, F-80000 Amiens, France; (V.J.); (J.L.); (H.O.-H.); (V.M.-L.M.); (L.M.)
| | - Nicolas Guillaume
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, F-80000 Amiens, France; (V.J.); (J.L.); (H.O.-H.); (V.M.-L.M.); (L.M.)
- Laboratory of Histocompatibility, Amiens University Hospital, F-80000 Amiens, France
| |
Collapse
|
203
|
Chen IP, Henning S, Bender M, Degenhardt S, Mhamdi Ghodbani M, Bergmann AK, Volkmer B, Brockhoff G, Wege AK, Greinert R. Detection of Human Circulating and Extracellular Vesicle-Derived miRNAs in Serum of Humanized Mice Transplanted with Human Breast Cancer (HER2 + and TNBC) Cells-A Proof of Principle Investigation. Int J Mol Sci 2025; 26:3629. [PMID: 40332177 PMCID: PMC12026515 DOI: 10.3390/ijms26083629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Humanized tumor mice (HTM) allow for preclinical cancer treatment studies of breast cancer (BC) under human-like conditions. This study utilized HTM for the first time to investigate potential miRNA biomarker candidates for treatment response in sera and extracellular vesicles (EVs), following X-irradiation and atezolizumab (anti-PD-L1) treatment. We identified the changes of human-specific miRNAs (miR-23b-3p and miR-155-5p) after irradiation and anti-PD-L1 treatment in HTMs with human epidermal growth factor receptor 2 positive (HER2+ BC) and triple-negative breast cancer (TNBC). The high degree of conserved, circulating free miRNA in mice and men represents a challenge of our assay; however, miRNAs with ≥2 nucleotide mismatches can be employed for human-specific analysis, and even conserved miRNAs may be utilized under clearly defined conditions of human tumor growth in HTM. A comparative analysis of extracellular vesicle miRNA cargo and free-circulating serum miRNAs revealed several exosome-specific miRNAs (miR-29b-3p, miR-34c-5p, miR-203a-3p, miR-378g, and miR-382-5p) in HTMs, which are known to play roles in BC. Our findings demonstrate that HTMs are a suitable model to identify treatment-induced changes in free-circulating and exosomal miRNAs that influence tumor progression and immunological tumor defense, both locally and at distant sites. This study presents a proof-of-principle approach to analyzing cell-free nucleotides and exosomes in a human-like, preclinical in vivo setting. Further refinements are necessary to enhance the sensitivity and the specificity of the HTM-based approach.
Collapse
Affiliation(s)
- I-Peng Chen
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Stefan Henning
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Marc Bender
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Sarah Degenhardt
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Mouna Mhamdi Ghodbani
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Ann Kathrin Bergmann
- Core Facility of Electron Microscopy, University Clinics Duesseldorf, 40225 Duesseldorf, Germany;
| | - Beate Volkmer
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, Medical Center Regensburg, 93053 Regensburg, Germany; (G.B.); (A.K.W.)
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, Medical Center Regensburg, 93053 Regensburg, Germany; (G.B.); (A.K.W.)
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Rüdiger Greinert
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| |
Collapse
|
204
|
Rey-Cadilhac F, Rachenne F, Marquant A, Kee Him JL, Ancelin A, Foisor V, Morille M, Lyonnais S, Cazevieille C, Missé D, Pompon J. Characterization of size distribution and markers for mosquito extracellular vesicles. Front Cell Dev Biol 2025; 13:1497795. [PMID: 40292329 PMCID: PMC12021844 DOI: 10.3389/fcell.2025.1497795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Extracellular vesicles (EVs) are non-replicative, cell-derived membranous structures secreted by potentially all eukaryotic cells, playing a crucial role in intercellular communication. The study of EVs requires approaches and tools, which have predominantly been developed for mammalian models. Here, we undertook a multimodal characterization of mosquito EVs to provide a technical and knowledge foundation for their study. First, using a cell line model from Aedes aegypti and applying multiple analytical technologies (i.e., NTA, TEM, cryo-EM, and AFM), we observed that mosquito EVs range from 20 to 500 nm in diameter and that a majority are smaller than 100 nm. Second, we showed that smaller EVs are secreted in mosquito saliva. Third, we evaluated the capacity of differential centrifugation and size exclusion chromatography to separate mosquito EVs, revealing the strengths and weaknesses of each technology. Finally, we identified a mosquito homolog of CD63 as an extravesicular marker and the mosquito syntenin as a putative luminal marker. Overall, our results promote the development of tools and approaches for the study of mosquito EVs.
Collapse
Affiliation(s)
| | | | | | - Josephine Lai Kee Him
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Aurélie Ancelin
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | | | - Marie Morille
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Chantal Cazevieille
- INM (Institut de Neuroscience de Montpellier), Electronic Microscopy Plateform, Saint Eloi Hospital, Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
205
|
Sun Y, Zhao M, Cheng L, He X, Shen S, Lv J, Zhang J, Shao Q, Yin W, Zhao F, Sun R, Lu P, Ji Y, Wang XW, Ji J. Reduction of alternative polarization of macrophages by short-term activated hepatic stellate cell-derived small extracellular vesicles. J Exp Clin Cancer Res 2025; 44:117. [PMID: 40211350 PMCID: PMC11983935 DOI: 10.1186/s13046-025-03380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Activated hepatic stellate cells (HSCs) induce alternative (M2) polarization of macrophages and contribute to the progression of fibrosis and hepatocellular carcinoma (HCC). However, the effects of small extracellular vesicles released by HSCs (HSC-sEVs) during activation remain largely unknown. METHODS The aim of this study was to investigate the role of extracellular vesicles released by HSCs (HSC-sEVs) at different stages of activation in macrophage polarization. The effects of sEVs from short-term activated and long-term activated HSCs on liver macrophages was studied. Small RNA sequencing analyses were performed to obtain differential miRNAs transported by the short-term and long-term activated HSC- sEVs. The in vivo effects of short-term activated HSC-sEV-specific miRNA on liver macrophage and liver fibrosis were confirmed in a CCl4-induced liver injury mouse model. To study the tumor suppressive effects of the macrophages educated by short-term activated HSC-sEV-specific miRNA, human hepatoma cells were mixed and subcutaneously cotransplanted with miR-99a-5p mimic-pretreated macrophages. RESULTS We found that consistent with activated HSCs, long-term activated HSC-sEVs (14dHSC-sEVs) induce bone marrow-derived monocytes (MOs) toward an M2 phenotype, but short-term activated HSC-sEVs (3dHSC-sEVs) induce the resident macrophages (Kupffer cells, KCs) toward a classically activated (M1) phenotype. We identified five 3dHSC-sEV-specific miRNAs, including miR-99a-5p. In vitro and in vivo experiments support that miR-99a-5p negatively regulates alternative polarization of macrophages, decreases collagen deposition in chronic liver injury model, and suppresses the progression of hepatoma in a xenograft model partially by targeting CD93. CONCLUSION Collectively, our work reveals an unexpected proinflammatory role of 3dHSC-sEVs, preliminarily explores the underlying mechanism, and evaluates the therapeutic potential of 3dHSC-sEV-specific miR-99a-5p for liver fibrosis and tumorigenesis.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China
| | - Min Zhao
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Li Cheng
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaoqian He
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Shiqi Shen
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Jiaying Lv
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Junyu Zhang
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Qian Shao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226001, China
| | - Wenxuan Yin
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Fengbo Zhao
- Basic Medical Research Center, Medical School of Nantong University, Nantong, 226001, China
| | - Rui Sun
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China
| | - Peng Lu
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226001, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China.
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China.
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
206
|
Salih DJ, Reiners KS, Alfieri R, Salih AM, Percario ZA, Di Stefano M, Francesco S, Affabris E, Hartmann G, Santantonio T. Isolation and characterization of extracellular vesicles from EGFR mutated lung cancer cells. Clin Exp Med 2025; 25:114. [PMID: 40210802 PMCID: PMC11985682 DOI: 10.1007/s10238-025-01643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is essential for cellular processes such as proliferation, survival, and migration. Dysregulation of EGFR signaling is frequently observed in non-small cell lung cancer (NSCLC) and is associated with poor prognosis. This study aims to isolate and characterize extracellular vesicles (EVs) released by mutant EGFR lung cancer cell line PC9 and compare them with wild-type EGFR lung cancer cell line A549, while also evaluating the effect of gefitinib treatment on EV secretion and cargo composition. The two lung cancer cell lines were cultured with 2% EV-free serum, and EVs were subsequently isolated by differential ultra centrifugation. EVs were characterized by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) for quantification size and shape determination. Western blot analysis confirmed the enrichment and purity of isolated EVs. Results showed that EGFR mutation significantly increased EV release and altered their size, compared to EVs released by wild-type EGFR cells. In addition to classical EV markers such as CD81, Flotillin- 1, and TSG101, Western blot analysis also detected phosphorylated EGFR (p-EGFR) selectively packaged into EVs from PC9 cells. Gefitinib treatment significantly reduced EV secretion in PC9 cells and led to a marked decrease in p-EGFR incorporation into EVs, indicating that EV biogenesis and compostion are modulated by active EGFR signaling. In conclusion, this study highlights the significant influence of EGFR activation on EV secretion and cargo composition while demonstrating that EGFR inhibition via gefitinib alters EV-mediated signaling in lung cancer cells. These findings provide insights into tumor behavior, EV-mediated oncogenic communication, and the potential use of EVs as biomarkers and therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- Dian Jamel Salih
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy.
- Department of Anatomy, Biology and Histology, College of Medicine, University of Duhok, Duhok, Iraq.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| | - Katrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Mariantonietta Di Stefano
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy
| | - Sollitto Francesco
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy
| | | | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Teresa Santantonio
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 121, 71122, Foggia, Italy
| |
Collapse
|
207
|
Ren T, Zhang Y, Tong Y, Zhang Q, Wang T, Wang Y, Yang C, Xu Z. FRET imaging of glycoRNA on small extracellular vesicles enabling sensitive cancer diagnostics. Nat Commun 2025; 16:3391. [PMID: 40210865 PMCID: PMC11985951 DOI: 10.1038/s41467-025-58490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
Glycosylated RNAs (glycoRNAs), a recently discovered class of membrane-associated glyco-molecules, remain poorly understood in function and clinical value due to limited detection methods. Here, we show a dual recognition Förster resonance energy transfer (drFRET) strategy using nucleic acid probes to detect N-acetylneuraminic acid-modified RNAs, enabling sensitive, selective profiling of glycoRNAs on small extracellular vesicles (sEVs) from minimal biofluids (10 μl initial biofluid). Using drFRET, we identify 5 prevalent sEV glycoRNAs derived from 7 cancer cell lines. In a 100-patient cohort (6 cancer types and non-cancer controls), sEV glycoRNA profiles achieve 100% accuracy (95% confidence interval) in distinguishing cancers from non-cancer cases and 89% accuracy in classifying specific cancer types. Furthermore, drFRET reveal that sEV glycoRNAs specifically interact with Siglec proteins and P-selectin, which is critical for sEV cellular internalization. The drFRET strategy provides a versatile and sensitive platform for the imaging and functional analysis of sEV glycoRNAs, with promising implications for clinical applications.
Collapse
Affiliation(s)
- Tingju Ren
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Yingzhi Zhang
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuxiao Tong
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Qi Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Tianhao Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Yue Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China.
| |
Collapse
|
208
|
Kadam V, Wacker M, Oeckl P, Korneck M, Dannenmann B, Skokowa J, Hauser S, Otto M, Synofzik M, Mengel D. Most L1CAM Is not Associated with Extracellular Vesicles in Human Biofluids and iPSC-Derived Neurons. Mol Neurobiol 2025:10.1007/s12035-025-04909-2. [PMID: 40210837 DOI: 10.1007/s12035-025-04909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Transmembrane L1 cell adhesion molecule (L1CAM) is widely used as a marker to enrich for neuron-derived extracellular vesicles (EVs), especially in plasma. However, this approach lacks sufficient robust validation. This study aimed to assess whether human biofluids are indeed enriched for EVs, particularly neuron-derived EVs, by L1CAM immunoaffinity, utilizing multiple sources (plasma, CSF, conditioned media from iPSC-derived neurons [iNCM]) and different methods (mass spectrometry [MS], nanoparticle tracking analysis [NTA]). Following a systematic multi-step validation approach, we confirmed isolation of generic EV populations using size-exclusion chromatography (SEC) and polymer-aided precipitation (PPT)-two most commonly applied EV isolation methods-from all sources. Neurofilament light (NfL) was detected in both CSF and blood-derived EVs, indicating their neuronal origin. However, L1CAM immunoprecipitation did not yield enrichment of L1CAM in EV fractions. Instead, it was predominantly found in its free-floating form. Additionally, MS-based proteomic analysis of CSF-derived EVs also did not show L1CAM enrichment. Our study validates EV isolation from diverse biofluid sources by several isolation approaches and confirms that some EV subpopulations in human biofluids are of neuronal origin. Thorough testing across multiple sources by different orthogonal methods, however, does not support L1CAM as a marker to reliably enrich for a specific subpopulation of EVs, particularly of neuronal origin.
Collapse
Affiliation(s)
- Vaibhavi Kadam
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Madeleine Wacker
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Milena Korneck
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany.
| | - David Mengel
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany.
| |
Collapse
|
209
|
Wasserman AH, Abolibdeh B, Hamdan R, Hong CC. Stem-Cell Derived Exosomal microRNAs as Biomarkers and Therapeutics for Pediatric Cardiovascular Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2025; 27:32. [PMID: 40224357 PMCID: PMC11982073 DOI: 10.1007/s11936-025-01088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 04/15/2025]
Abstract
Purpose of Review In recent years, several pre-clinical studies have demonstrated the therapeutic potential of stem cell-derived exosomes in the treatment of cardiovascular disease (CVD). Here, we evaluate their potential as biomarkers for the detection and monitoring of CVD, with a particular focus on pediatric heart disease. Recent Findings Exosomes isolated from stem cell sources, including mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), benefit cardiovascular function, inflammatory responses, and angiogenesis in injured and diseased hearts. These exosomes carry a variety of cargo, such as proteins, lipids, and nucleic acids. However, the majority contain non-coding RNA molecules. Summary Review of the existing literature for several non-coding RNAs and their relationship to CVD suggests that exosomes containing microRNAs (miRNAs) can serve as promising biomarkers for CVD due to their presence in circulation, ease of isolation, and therapeutic potential. These biomarkers are especially promising as screening and diagnostic tools for the early detection of pediatric and congenital heart disease.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| | - Bana Abolibdeh
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| | - Reema Hamdan
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| | - Charles C. Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| |
Collapse
|
210
|
Jiang Q, Ning F, Jia Q, Wang H, Xue W, Wang J, Wang Y, Zhu Z, Tian L. MiR-148a-3p Loaded Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviates Silica-Induced Pulmonary Fibrosis by Inhibiting β-Catenin Signaling. Int J Nanomedicine 2025; 20:4319-4336. [PMID: 40230541 PMCID: PMC11994480 DOI: 10.2147/ijn.s506542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Background In clinical practice, due to the lack of typical symptoms and specific diagnostic biomarkers, silicotic patients often having already developed pulmonary fibrosis by the time of clinical diagnosis. Studies have demonstrated that human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs) could moderate silicosis fibrosis, which may be related to the microRNAs (miRNAs) in hucMSC-EVs. While the full extent of their antifibrotic effects and the underlying mechanisms remain to be elucidated. Methods HucMSC-EVs were administered from day 28 to day 56 after silica exposure in mice, which in a therapeutic manner. In addition, the antifibrotic abilities of engineered hucMSC-EVs with varying levels of miR-148a-3p, a miRNA with antifibrotic properties, were evaluated. Heat shock protein 90 beta family member 1 (Hsp90b1) is reported to be a target of miR-148a-3p, the protein-protein interaction analysis was used to explore its regulated downstream factors in lung fibrosis. The underlying mechanisms were also investigated by using miR-148a-3p mimics and small interfering RNA (siRNA) targeting Hsp90b1 in vitro. Results HucMSC-EVs could reduce the histopathological changes and the levels of fibrotic proteins in the mouse lung tissues when administered in a therapeutic manner. Meanwhile, miR-148a-3p-overexpressed hucMSC-EVs intervention exhibited the enhanced anti-fibrotic effect compared with the negative control intervention group. In vitro, the elevated level of miR-148a-3p in hucMSC-EVs was shown to enhance hucMSC-EVs' inhibition of fibroblast collagen hypersecretion, whereas a depressed level of miR-148a-3p in hucMSC-EVs partially counteracted the inhibitory effect. Moreover, the mechanistic investigations revealed that miR-148a-3p could blunt β-catenin signaling via targeting Hsp90b1 in fibroblasts. Conclusion This study demonstrated that hucMSC-EVs retain their antifibrotic properties in silicotic mice when administered in a therapeutic manner. Further, miR-148a-3p was confirmed to be an essential component within hucMSC-EVs, mediating their inhibition of silica-induced pulmonary fibrosis by reducing β-catenin signaling via targeting of Hsp90b1 in fibroblasts.
Collapse
Affiliation(s)
- Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Fuao Ning
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
211
|
Lundy DJ, Liao CT. Extracellular Vesicles in Aging and Age-Related Diseases. How Important Are They? Adv Biol (Weinh) 2025:e2400656. [PMID: 40202045 DOI: 10.1002/adbi.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs), lipid bilayer-bound particles secreted by cells, have attracted significant research attention for their roles in aging-related disorders, including cardiovascular disease, metabolic dysfunction, cancer, and neurodegeneration. Research shows that EV cargo and function are influenced by factors including age, disease state, exercise, nutrition and sleep, and they may modulate various aging-associated processes such as stem cell renewal, nutrient sensing, cell senescence, mitochondrial function, and insulin resistance. This perspective highlights, for a general audience, a selection of studies of EVs in aging and age-related diseases, and their diverse roles in organ crosstalk. While current evidence indicates that EVs play multiple roles in aging, there are numerous challenges including methodological challenges and limitations, heterogeneous reports of EV cargo, limited reproducibility, and apparent context-dependent effects of EVs and their cargo. Together, this limits the interpretation of these studies. This is proposed that EVs may act as fine-tuners of cellular communication within the broader aging-associated secretome and the importance of standardizing methods are emphasized. Last, future directions for EV research are suggested.
Collapse
Affiliation(s)
- David J Lundy
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
- Cell Therapy Center, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 235603, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
212
|
Wang L, Liu R, Wang Y. The roles of extracellular vesicles in mental disorders: information carriers, biomarkers, therapeutic agents. Front Pharmacol 2025; 16:1591469. [PMID: 40271072 PMCID: PMC12014780 DOI: 10.3389/fphar.2025.1591469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Mental disorders are complex conditions that encompass various symptoms and types, affecting approximately 1 in 8 people globally. They place a significant burden on both families and society as a whole. So far, the etiology of mental disorders remains poorly understood, making diagnosis and treatment particularly challenging. Extracellular vesicles (EVs) are nanoscale particles produced by cells and released into the extracellular space. They contain bioactive molecules including nucleotides, proteins, lipids, and metabolites, which can mediate intercellular communication and are involved in various physiological and pathological processes. Recent studies have shown that EVs are closely linked to mental disorders like schizophrenia, major depressive disorder, and bipolar disorder, playing a key role in their development, diagnosis, prognosis, and treatment. Therefore, based on recent research findings, this paper aims to describe the roles of EVs in mental disorders and summarize their potential applications in diagnosis and treatment, providing new ideas for the future clinical transformation and application of EVs.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Pharmacy, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
213
|
Islam MK, Mahmud I, Leivo J. Designing nanoparticle-based bioaffinity assays for the detection of extracellular vesicles. Nanomedicine (Lond) 2025:1-4. [PMID: 40200739 DOI: 10.1080/17435889.2025.2488726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Affiliation(s)
- Md Khirul Islam
- Biotechnology Division, Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Imran Mahmud
- Biotechnology Division, Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Janne Leivo
- Biotechnology Division, Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
214
|
Kawiková I, Špička V, Lai JCK, Askenase PW, Wen L, Kejík Z, Jakubek M, Valeš K, Španiel F. Extracellular vesicles as precision therapeutics for psychiatric conditions: targeting interactions among neuronal, glial, and immune networks. Front Immunol 2025; 16:1454306. [PMID: 40264776 PMCID: PMC12011847 DOI: 10.3389/fimmu.2025.1454306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/14/2025] [Indexed: 04/24/2025] Open
Abstract
The critical role of the immune system in brain function and dysfunction is well recognized, yet development of immune therapies for psychiatric diseases has been slow due to concerns about iatrogenic immune deficiencies. These concerns are emphasized by the lack of objective diagnostic tools in psychiatry. A promise to resolve this conundrum lies in the exploitation of extracellular vesicles (EVs) that are physiologically produced or can be synthetized. EVs regulate recipient cell functions and offer potential for EVs-based therapies. Intranasal EVs administration enables the targeting of specific brain regions and functions, thereby facilitating the design of precise treatments for psychiatric diseases. The development of such therapies requires navigating four dynamically interacting networks: neuronal, glial, immune, and EVs. These networks are profoundly influenced by brain fluid distribution. They are crucial for homeostasis, cellular functions, and intercellular communication. Fluid abnormalities, like edema or altered cerebrospinal fluid (CSF) dynamics, disrupt these networks, thereby negatively impacting brain health. A deeper understanding of the above-mentioned four dynamically interacting networks is vital for creating diagnostic biomarker panels to identify distinct patient subsets with similar neuro-behavioral symptoms. Testing the functional pathways of these biomarkers could lead to new therapeutic tools. Regulatory approval will depend on robust preclinical data reflecting progress in these interdisciplinary areas, which could pave the way for the design of innovative and precise treatments. Highly collaborative interdisciplinary teams will be needed to achieve these ambitious goals.
Collapse
Affiliation(s)
- Ivana Kawiková
- National Institute of Mental Health, Klecany, Czechia
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Biology, Hartford University, West Hartford, CT, United States
| | - Václav Špička
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University College of Pharmacy, Pocatello, ID, United States
- Department of Diagnostic Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Philip W. Askenase
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Li Wen
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Zdeněk Kejík
- Biotechnology and Biomedical Center in Vestec (BIOCEV) , First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Milan Jakubek
- Biotechnology and Biomedical Center in Vestec (BIOCEV) , First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Karel Valeš
- National Institute of Mental Health, Klecany, Czechia
- 3rd Medical Faculty, Charles University, Prague, Czechia
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czechia
- 3rd Medical Faculty, Charles University, Prague, Czechia
| |
Collapse
|
215
|
Jang J, Shin J, Ahn Y, Kim K, Cho J, Lee WJ, Nam C, Baek MC, Seo D, Yea K. Modular and Nondisturbing Chimeric Adaptor Protein for Surface Chemistry of Small Extracellular Vesicles. ACS NANO 2025; 19:12839-12852. [PMID: 40119814 DOI: 10.1021/acsnano.4c15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Current chemical strategies for modifying the surface of extracellular vesicles (sEVs) often struggle to balance efficient functionalization with preserving structural integrity. Here, we present a modular approach for the surface modification of sEVs using a chimeric adaptor protein (CAP). The CAP was designed with three key features: a SNAP-tag for stable and modular binding, long and rigid linker to enhance spatial accessibility and conjugation efficiency, and the N-terminal sorting domain derived from syntenin to improve CAP expression on the sEV. We established a postsynthetic method to introduce diverse functional molecules onto sEVs, creating a versatile system termed "sEV-X" (where X represents an organic molecule, protein, or nanoparticle). Quantitative analyses at the single-molecule level revealed a linear relationship between CAP expression and the number of conjugated functional molecules, underscoring the importance of steric hindrance mitigation in sEV surface engineering. Moreover, antibody-conjugated sEVs as drug carriers, demonstrated significant tumor-specific delivery and therapeutic efficacy in a tumor-bearing mouse model, underscoring the potential of CAP-expressing sEVs as a customizable therapeutic vesicle. Overall, the CAP technology may serve as a universal platform for advancing the development of sEV-based therapeutics.
Collapse
Affiliation(s)
- Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jiwon Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kiwook Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Juhyeong Cho
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Wonhee John Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Chaerin Nam
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
216
|
Krause-Hauch M, Patel RS, Wang B, Osborne B, Jones B, Albear P, Patel NA. lncRNAs GAS5 and MALAT1 Contained in Human Adipose Stem Cell (hASC)-Derived Exosomes Drive the Cell-Free Repair and Regeneration of Wounds In Vivo. Int J Mol Sci 2025; 26:3479. [PMID: 40331955 PMCID: PMC12027045 DOI: 10.3390/ijms26083479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Wound healing progresses through four phases: hemostasis, inflammation, proliferation, and remodeling. Wounds may become chronic if this process is disrupted. The use of small extracellular vesicle (sEV; EVs < 200 nm) exosomes (exo; ~40-120 nm) derived from human adipose stem cells (hASCs) as a treatment for wounds is well studied. The cargo of these exosomes is of great interest as this accelerates wound healing. Our previous studies identified lncRNAs GAS5 and MALAT1 as packaged and enriched in hASC exosomes. In this study, we use a rat model to examine the effects on wound healing when hASC exosomes are depleted of GAS5 and MALAT1. Rats were wounded and wounds were treated with 100 μg hASCexo or hASCexo-G-M every 2 days for 1 week. qPCR was completed to evaluate the molecular effects of depletion of GAS5 and MALAT1 from hASCexo. RNAseq was performed on wound tissue to evaluate the molecular mechanisms changed by hASCexo-G-M in wound healing. While hASCexo-G-M significantly improved wound healing rate compared to control wounds, healing occurred slower than in wounds treated with hASCexo that were not depleted of GAS5 and MALAT1. Overall, this study reveals that molecular functions associated with healing are reduced in the absence of GAS5 and MALAT1, highlighting the importance of these lncRNAs.
Collapse
Affiliation(s)
- Meredith Krause-Hauch
- Research Service, James A. Haley Veterans’ Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (M.K.-H.); (R.S.P.); (B.W.); (P.A.)
| | - Rekha S. Patel
- Research Service, James A. Haley Veterans’ Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (M.K.-H.); (R.S.P.); (B.W.); (P.A.)
| | - Bangmei Wang
- Research Service, James A. Haley Veterans’ Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (M.K.-H.); (R.S.P.); (B.W.); (P.A.)
| | - Brenna Osborne
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Brianna Jones
- Department of Chemistry, University of South Florida, Tampa, FL 33612, USA;
| | - Paul Albear
- Research Service, James A. Haley Veterans’ Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (M.K.-H.); (R.S.P.); (B.W.); (P.A.)
| | - Niketa A. Patel
- Research Service, James A. Haley Veterans’ Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (M.K.-H.); (R.S.P.); (B.W.); (P.A.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
217
|
Castedo N, Alfonso A, Alvariño R, Vieytes MR, Botana LM. Cyclophilin A and C are the Main Components of Extracellular Vesicles in Response to Hyperglycemia in BV2 Microglial Cells. Mol Neurobiol 2025:10.1007/s12035-025-04921-6. [PMID: 40199808 DOI: 10.1007/s12035-025-04921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Cyclophilins (Cyps) and CD147 receptor play a crucial role in the inflammatory responses. Chronic inflammation causes tissue damage and is a common condition of several inflammation-based pathologies as diabetes or Alzheimer´s disease. Under high glucose (HG) conditions, microglia is activated and releases inflammatory mediators. In this process the role of Cyps is unknown, so this study was aimed to investigate the profile of Cyps in microglia and their release through extracellular vesicles (EVs) under hyperglycemia. An increase in reactive oxygen species (ROS) and nitric oxide (NO) levels was observed when BV2 glia cells were incubated with HG concentration. These effects were mitigated by the Cyps inhibitor cyclosporine A (CsA), suggesting the implication of Cyps in BV2 activation. In these conditions the intracellular expression of CypA, B, C and D, as well as the membrane expression of CD147 receptor was increased. In addition, only CypA and CypC were detected in the extracellular medium. Then, the presence of Cyps inside EVs was explored as an alternative secretion route. Interestingly, under HG treatment, an increase in the levels of the four Cyps in EVs was observed. When neurons were treated with EVs derived from HG-treated glia cells, their viability was reduced and EVs were detected in cytosol neurons pointing to an EVs-Cyps neurotoxic effect. These findings provide novel insights into the relationship between Cyps and EVs in neuroinflammation in hyperglycemia conditions. The current results strengthen the role of Cyps in cell communication and its potential role in brain function under pathological conditions.
Collapse
Affiliation(s)
- Noelia Castedo
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España.
| |
Collapse
|
218
|
Sun J, Li Z, Chen Y, Chang Y, Yang M, Zhong W. Enhancing Analysis of Extracellular Vesicles by Microfluidics. Anal Chem 2025; 97:6922-6937. [PMID: 40133233 DOI: 10.1021/acs.analchem.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) play crucial roles in intercellular communication and hold great promise as biomarkers for noninvasive disease diagnosis. Intensive research efforts have been devoted to discovering the EV subpopulations responsible for specific functions or with enhanced effectiveness as disease markers, through extensive EV purification and content analysis. However, their high heterogeneity in size and cargo composition poses significant challenges for reaching such goals. Isolation methods like ultracentrifugation and size-exclusion chromatography, as well as content analysis approaches like polymerase chain reaction and enzyme-linked immunosorbent assay, have made significant contributions to improving our understanding of EV biology. Nonetheless, these methods face limitations in isolation efficiency, EV purity, and detection sensitivity and specificity due to issues like large sample consumption, unsatisfactory purity, and insufficient resolution in EV subtyping. Microfluidic technology presents promising solutions to these challenges, leveraging their intrinsic capabilities in precise flow and external energy field manipulation, sample compartmentalization, and signal enhancement at the micro- and nanoscale. Hence, this review summarizes the recent developments in microfluidics-enabled EV analysis, paying special attention to the unique microfluidic features exploited. Strategies such as viscoelastic and inertial flow, fluid mixing, and external-field-assisted approaches in improving EV purification, as well as compartmentalization and micro/nanostructures for enhancing EV detection, are examined. Furthermore, the current limitations and potential future directions are discussed to inspire advancements in this rapidly developing field.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518057, P. R. China
| | | | | | | | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518057, P. R. China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | | |
Collapse
|
219
|
Brennan K, Vaiciuleviciute R, Uzieliene I, Pachaleva J, Kasilovskiene Z, Piesiniene L, Bernotiene E, Mc Gee MM. Menstrual blood serum extracellular vesicles reveal novel molecular biomarkers and potential endotypes of unexplained infertility. Sci Rep 2025; 15:11974. [PMID: 40199990 PMCID: PMC11978918 DOI: 10.1038/s41598-025-95818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Several biomolecules have been previously associated with unexplained infertility (uIF) in blood and uterine samples, immune cells and their secreted factors, endometrial tissue, menstrual blood, serum, and stromal cells, however they do not comprehensively represent different uIF endotypes and their isolation/detection involves invasive diagnostic methods and lacks precision. This ex-vivo study was performed on extracellular vesicles (EVs) from menstrual blood collected on cycle day 2 from 9 fertile volunteers and 8 women with uIF. Menstrual blood serum (MBS) EVs were isolated from fertile and uIF MBS using Iodixanol Density Gradient Centrifugation and quantified by flow cytometry. EVs were characterized according to MISEV2023 guidelines. Comprehensive proteomic analysis of MBS EVs and EV-depleted MBS showed significant changes in uIF proteome, mostly affecting cell adhesion, immune response, apoptosis, response to oxidative stress and lipid metabolism. These processes were previously linked to pathologies of the female reproductive system but never investigated in uIF and were used to stratify patients into distinct molecular endotypes. Area under the curve (AUC) analysis was used to determine the optimum set of biomarkers for each of the uIF molecular endotypes. These findings provide new insights into uIF that could facilitate personalised treatment approaches.
Collapse
Affiliation(s)
- Kieran Brennan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, Innovative Medicine Centre, Santariskiu str 5, LT-08406, Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, Innovative Medicine Centre, Santariskiu str 5, LT-08406, Vilnius, Lithuania
| | - Jolita Pachaleva
- Department of Regenerative Medicine, Innovative Medicine Centre, Santariskiu str 5, LT-08406, Vilnius, Lithuania
| | | | | | - Eiva Bernotiene
- Department of Regenerative Medicine, Innovative Medicine Centre, Santariskiu str 5, LT-08406, Vilnius, Lithuania
- Faculty of Fundamental Sciences, VilniusTech, Sauletekio al. 11, LT-10223, Vilnius, Lithuania
| | - Margaret M Mc Gee
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
220
|
Cascabulho CM, Horita SIM, Beghini DG, Menna-Barreto RFS, Monsores ACHMG, Bertho AL, Henriques-Pons A. Plasma Microvesicles May Contribute to Muscle Damage in the mdx Mouse Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2025; 26:3499. [PMID: 40331939 PMCID: PMC12026684 DOI: 10.3390/ijms26083499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) are cell-derived lipid-bound vesicles divided into apoptotic bodies, microvesicles (MVs), and exosomes based on their biogenesis, release pathway, size, content, and functions. EVs are intercellular mediators that significantly affect muscle diseases such as Duchenne muscular dystrophy (DMD). DMD is a fatal X-linked disorder caused by mutations in the dystrophin gene, leading to muscle degeneration. Mdx mice are the most commonly used model to study the disease, and in this study, we phenotypically characterized plasma MVs from mdx mice by flow cytometry. Furthermore, we assessed the ability of plasma MVs to modulate muscle inflammation, damage, and/or regeneration by intramuscular injection of MVs from mdx mice into mdx or DBA/2 mice as a control. In both mouse lineages, platelets and erythrocytes were the primary sources of MVs, and CD3+ CD4+ MVs were observed only in mdx mice. We also observed that plasma MVs from mdx mice induced muscle damage in mdx mice but not in DBA/2 mice, while plasma MVs from DBA/2 mice did not induce muscle damage in either mouse lineage. These results indicate that plasma MVs from mdx are potentially pathogenic. However, this condition also depends on the muscular tissue status, which must be responsive due to active inflammatory or regenerative responses.
Collapse
Affiliation(s)
- Cynthia Machado Cascabulho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | - Samuel Iwao Maia Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
- Laboratório de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| | - Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | | | - Ana Carolina Heber Max Guimarães Monsores
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | - Alvaro Luiz Bertho
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| |
Collapse
|
221
|
Nueraihemaiti N, Dilimulati D, Baishan A, Hailati S, Maihemuti N, Aikebaier A, Paerhati Y, Zhou W. Advances in Plant-Derived Extracellular Vesicle Extraction Methods and Pharmacological Effects. BIOLOGY 2025; 14:377. [PMID: 40282242 PMCID: PMC12024818 DOI: 10.3390/biology14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Extracellular vesicles (EVs) are those with a double-membrane structure that contains proteins, lipids, nucleic acids, and other biologically active substances that play an important role in cell-cell and cell-environment communication. They have also become an important mechanism for exchanging biologically active substances for cellular molecules. As many studies on EVs have been conducted, plant-derived extracellular vesicles (PDEVs) have also started attracting attention. The biological activity and stability of PDEVs are closely related to the extraction and separation methods, and choosing a separation method that meets the requirements of PDEVs is important. The extraction methods of PDEVs include ultracentrifugation, ultrafiltration, size-exclusion chromatography, etc. In recent years, it has been found through research that PDEVs possess biological properties, such as anti-inflammatory, anti-cancer, and anti-infective properties, and that they show unique advantages as therapeutic agents and drug carriers. Therefore, we have collected the scientific literature related to EVs derived from more than a dozen fruits and vegetables, and summarized and analyzed their extraction, separation, and roles in disease treatment, aiming to provide reference and inspiration for the in-depth study of the efficacy of new drugs.
Collapse
Affiliation(s)
- Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Nulibiya Maihemuti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alifeiye Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Yipaerguli Paerhati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
222
|
Chakraborty A, Mitra J, Malojirao VH, Kodavati M, Mandal SM, Gill SK, Sreenivasmurthy SG, Vasquez V, Mankevich M, Krishnan B, Ghosh G, Hegde M, Hazra T. Fructose-2,6-bisphosphate restores TDP-43 pathology-driven genome repair deficiency in motor neuron diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623464. [PMID: 39990425 PMCID: PMC11844424 DOI: 10.1101/2024.11.13.623464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
TAR DNA-binding protein 43 (TDP-43) proteinopathy plays a critical role in neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). In our recent discovery, we identified that TDP-43 plays an essential role in DNA double-strand break (DSB) repair via the non-homologous end joining (NHEJ) pathway. Here, we found persistent DNA damage in the brains of ALS/FTD patients, primarily in the transcribed regions of the genome. We further investigated the underlying mechanism and found that polynucleotide kinase 3'-phosphatase (PNKP) activity was severely impaired in the nuclear extracts of both patient brains and TDP-43-depleted cells. PNKP is a key player in DSB repair within the transcribed genome, where its 3'-P termini processing activity is crucial for preventing persistent DNA damage and neuronal death. The inactivation of PNKP in ALS/FTD was due to reduced levels of its interacting partner, phosphofructo-2-kinase fructose 2,6 bisphosphatase (PFKFB3), and its biosynthetic product, fructose-2,6-bisphosphate (F2,6BP), an allosteric modulator of glycolysis. Recent work from our group has shown that F2,6BP acts as a positive modulator of PNKP activity in vivo. Notably, exogenous supplementation with F2,6BP restored PNKP activity in nuclear extracts from ALS/FTD brain samples and patient-derived induced pluripotent stem (iPS) cells harboring pathological mutations. Furthermore, we demonstrate that supplementation of F2,6BP restores genome integrity and partially rescues motor phenotype in a Drosophila model of ALS. Our findings underscore the possibility of exploring the therapeutic potential of F2,6BP or its analogs in TDP-43 pathology-associated motor neuron diseases.
Collapse
|
223
|
Klymiuk MC, Speer J, Marco ID, Elashry MI, Heimann M, Wenisch S, Arnhold S. Determination of the miRNA profile of extracellular vesicles from equine mesenchymal stem cells after different treatments. Stem Cell Res Ther 2025; 16:162. [PMID: 40188160 PMCID: PMC11972531 DOI: 10.1186/s13287-025-04287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common and incurable disease in humans and animals. To gain a better understanding of the pathogenesis and identify potential treatments, miRNAs will be extracted and analysed from extracellular vesicles (EVs) of equine adipose derived mesenchymal stem cells (AdMSCs). METHODS For this purpose we cultivated and pretreated AdMSCs under different conditions: interleukin 1β, shock wave, chondrogenic differentiation, chondrogenic differentiation under hypoxia, or after senescence. After treatment, EVs were harvested from the cell culture supernatants. Next-generation sequencing (NGS) was used to sequence the miRNAs from the EVs. RESULTS A total of 89 miRNAs whose expression was significantly altered compared with that of an untreated negative control were identified. On average, 53 miRNAs were upregulated and 6 miRNAs were downregulated. Among others, the miRNAs eca-miR-101, eca-miR-143, eca-miR-145, eca-miR-146a, eca-miR-27a, eca-miR-29b, eca-miR-93, eca-miR-98, and eca-miR-221 were significantly increased after the stimulations, which, as known anti-inflammatory miRNAs, could be candidates for therapeutic use in the treatment of OA. CONCLUSION These results lay the foundation for further research into the significance and efficacy of these miRNAs so that this knowledge can be improved in further experiments and, ideally, translated into therapeutic use.
Collapse
Affiliation(s)
- Michele C Klymiuk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany.
| | - Julia Speer
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Manuela Heimann
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| |
Collapse
|
224
|
Fernández-Pérez AG, Herrera-González A, López-Naranjo EJ, Martínez-Álvarez IA, Uribe-Rodríguez D, Ramírez-Arreola DE, Sánchez-Peña MJ, Navarro-Partida J. Extracellular Vesicles from Different Mesenchymal Stem Cell Types Exhibit Distinctive Surface Protein Profiling and Molecular Characteristics: A Comparative Analysis. Int J Mol Sci 2025; 26:3393. [PMID: 40244251 PMCID: PMC11989379 DOI: 10.3390/ijms26073393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The current medical need to respond to different diseases has sparked great interest in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) due to their great regenerative potential and as drug carriers by playing a critical role in cell-cell communication. However, due to their heterogeneity, there is no standardized universal method for their identification and characterization, which limits their clinical application. This study, following the recommendations and methodologies proposed by MISEV2023 for the characterization of EVs, shows for the first time a detailed morphological, protein, and biochemical comparison between EVs derived from three different MSCs sources (placenta, endometrium, and dental pulp). The information obtained from the different applied assays suggests that there are substantial differences between one EVs source and another. It also offers valuable insights that provide the guidelines to ease their profiling and therefore improve their selection, in order to speed up their use and clinical application; additionally, the knowledge obtained from each characterization test could facilitate new researchers in the field to choose a specific cell source to obtain EVs and select the appropriate methods that provide the necessary information according to their requirements.
Collapse
Affiliation(s)
- Atziri G. Fernández-Pérez
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | - Azucena Herrera-González
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | - Edgar J. López-Naranjo
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | | | - David Uribe-Rodríguez
- Centro de Biotecnología Santer S.C., Guadalajara 45040, Jalisco, Mexico; (I.A.M.-Á.); (D.U.-R.)
| | - Daniel E. Ramírez-Arreola
- Centro Universitario de la Costa Sur (CUCSUR), University of Guadalajara, Autlan 48900, Jalisco, Mexico;
| | - María Judith Sánchez-Peña
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (A.G.F.-P.); (A.H.-G.); (E.J.L.-N.); (M.J.S.-P.)
| | - Jose Navarro-Partida
- School of Medicine and Health Sciences, Monterrey Institute of Technology, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
225
|
Giusti I, Caruso Bavisotto C. New Challenges and Opportunities: Extracellular Vesicles in Biological and Biochemical Processes. Int J Mol Sci 2025; 26:3395. [PMID: 40244283 PMCID: PMC11989255 DOI: 10.3390/ijms26073395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cell-to-cell communication plays a crucial role in many processes, both in physiological and pathological assets [...].
Collapse
Affiliation(s)
- Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
226
|
Cheema NA, Castagna A, Ambrosani F, Argentino G, Friso S, Zurlo M, Beri R, Maule M, Vaia R, Senna G, Caminati M. Extracellular Vesicles in Asthma: Intercellular Cross-Talk in TH2 Inflammation. Cells 2025; 14:542. [PMID: 40214495 PMCID: PMC11989134 DOI: 10.3390/cells14070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Asthma is a complex, multifactorial inflammatory disorder of the airways, characterized by recurrent symptoms and variable airflow obstruction. So far, two main asthma endotypes have been identified, type 2 (T2)-high or T2-low, based on the underlying immunological mechanisms. Recently, extracellular vesicles (EVs), particularly exosomes, have gained increasing attention due to their pivotal role in intercellular communication and distal signaling modulation. In the context of asthma pathobiology, an increasing amount of experimental evidence suggests that EVs secreted by eosinophils, mast cells, dendritic cells, T cells, neutrophils, macrophages, and epithelial cells contribute to disease modulation. This review explores the role of EVs in profiling the molecular signatures of T2-high and T2-low asthma, offering novel perspectives on disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Naila Arif Cheema
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Annalisa Castagna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Francesca Ambrosani
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Giuseppe Argentino
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Marco Zurlo
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Ruggero Beri
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Matteo Maule
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Rachele Vaia
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Gianenrico Senna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Marco Caminati
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| |
Collapse
|
227
|
Eerdekens H, Pirlet E, Willems S, Bronckaers A, Pincela Lins PM. Extracellular vesicles: innovative cell-free solutions for wound repair. Front Bioeng Biotechnol 2025; 13:1571461. [PMID: 40248643 PMCID: PMC12003306 DOI: 10.3389/fbioe.2025.1571461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Chronic non-healing wounds are often associated with conditions such as diabetes and peripheral vascular disease, pose significant medical and socioeconomic challenges. Cell-based therapies have shown promise in promoting wound healing but have major drawbacks such as immunogenicity and tumor formation. As a result, recent research has shifted to the potential of extracellular vesicles (EVs) derived from these cells. EVs are nanosized lipid bilayer vesicles, naturally produced by all cell types, which facilitate intercellular communication and carry bioactive molecules, offering advantages such as low immunogenicity, negligible toxicity and the potential to be re-engineered. Recent evidence recognizes that during wound healing EVs are released from a wide range of cells including immune cells, skin cells, epithelial cells and platelets and they actively participate in wound repair. This review comprehensively summarizes the latest research on the function of EVs from endogenous cell types during the different phases of wound healing, thereby presenting interesting therapeutic targets. Additionally, it gives a critical overview of the current status of mesenchymal stem cell-derived EVs in wound treatment highlighting their tremendous therapeutic potential as a non-cellular of-the-shelf alternative in wound care.
Collapse
Affiliation(s)
- Hanne Eerdekens
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Sarah Willems
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Paula M. Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, Belgium
| |
Collapse
|
228
|
Huang CY, Nguyen H, Lundy DJ, Lai JJ. Rapid isolation of extracellular vesicles from stem cell conditioned medium using osmosis-driven filtration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2025; 26:2485668. [PMID: 40241847 PMCID: PMC12001845 DOI: 10.1080/14686996.2025.2485668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Extracellular vesicles (EVs) hold significant promise as biomarkers and therapeutics, yet their isolation remains challenging due to their low abundance and complex sample matrices. Here, we introduce EV-Osmoprocessor (EVOs), a novel device that leverages osmosis-driven filtration for rapid and efficient EV isolation. EVOs employs a high osmolarity polymer solution to concentrate EVs while simultaneously removing smaller contaminants. Compared to traditional methods such as ultracentrifugation and precipitation, EVOs offers speed and convenience, achieving a 50-fold volume reduction in under 2 h. Our results show that EVOs retained EVs and removed >99% albumin from the cell conditioned culture medium (CCM). The isolated EVs exhibited a particle size distribution centered around 140 nm, which was very similar to EVs isolated via precipitation or ultracentrifugation. The standalone EVOs process achieved a particle:protein ratio (EV purity) of ~107 particles/µg protein. Comprehensive characterization, including cryo-electron microscopy, validation of protein markers and known miRNA cargo confirmed the successful isolation of EVs. Functional assays, based on protection of cardiomyocytes from hypoxia/reoxygenation injury, demonstrated the bioactivity of EVOs-isolated EVs. Furthermore, we show that EVOs can be used to concentrate 30 ml of CCM into a 0.5 ml solution, which was then further processed with size-exclusion chromatography (SEC), improving EV purity to ~109 particles/µg protein. This work establishes EVOs as a promising tool for EV research and clinical applications, offering a streamlined approach to EV isolation with enhanced analytical performance.
Collapse
Affiliation(s)
- Casey Y. Huang
- Department of Material Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Helen Nguyen
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - David J. Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD, Program in Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei, Taiwan
| | - James. J Lai
- Department of Material Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
229
|
Nikonorova IA, desRanleau E, Jacobs KC, Saul J, Walsh JD, Wang J, Barr MM. Polycystins recruit cargo to distinct ciliary extracellular vesicle subtypes in C. elegans. Nat Commun 2025; 16:2899. [PMID: 40180912 PMCID: PMC11968823 DOI: 10.1038/s41467-025-57512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we use a modular proximity labeling approach to identify the cargo of ciliary EVs associated with the transient receptor potential channel polycystin-2 PKD-2 of C. elegans. Polycystins are conserved ciliary proteins and cargo of EVs; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. We discover that polycystins localize with specific cargo on ciliary EVs: polycystin-associated channel-like protein PACL-1, dorsal and ventral polycystin-associated membrane C-type lectins PAMLs, and conserved tumor necrosis factor receptor-associated factor (TRAF) TRF-1 and TRF-2. Loading of these components to EVs relies on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Elizabeth desRanleau
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Katherine C Jacobs
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
230
|
Yang J, Ai X, Zhang C, Guo T, Feng N. Application of plant-derived extracellular vesicles as novel carriers in drug delivery systems: a review. Expert Opin Drug Deliv 2025:1-17. [PMID: 40159727 DOI: 10.1080/17425247.2025.2487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Plant-derived extracellular vesicles (P-EVs) are nanoscale, lipid bilayer vesicles capable of transporting diverse bioactive substances, enabling intercellular and interspecies communication and material transfer. With inherent pharmacological effects, targeting abilities, high safety, biocompatibility, and low production costs, P-EVs are promising candidates for drug delivery systems, offering significant application potential. AREAS COVERED A comprehensive review of studies on P-EVs was conducted through extensive database searches, including PubMed and Web of Science, spanning the years 1959 to 2025. Drawing on animal and cellular model research, this review systematically analyzes the pharmacological activities of P-EVs and their advantages as drug delivery carriers. It also explores P-EVs' drug loading methods, extraction techniques, and application prospects, including their benefits, clinical potential, and feasibility for commercial expansion. EXPERT OPINION Establishing unified preparation standards and conducting a more comprehensive analysis of molecular composition, structural characteristics, and mechanisms of P-EVs are essential for their widespread application. Greater attention should be given to the potential synergistic or antagonistic effects between P-EVs as carriers and the drugs they deliver, as this understanding will enhance their practical applications. In conclusion, P-EVs-based drug delivery systems represent a promising strategy to improve treatment efficacy, reduce side effects, and ensure drug stability.
Collapse
Affiliation(s)
- Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
231
|
Choi MS, Hong JS, Lee DH, Jang YJ, Kim JH, Lee YS. Anti-liver fibrotic effects of small extracellular vesicle microRNAs from human umbilical cord-derived mesenchymal stem cells and their differentiated hepatocyte-like cells. Biotechnol Lett 2025; 47:38. [PMID: 40175803 DOI: 10.1007/s10529-025-03579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE The aim of this study is to identify therapeutic cargos within mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) for the treatment of liver fibrosis, a condition that poses significant health risks. RESULTS sEVs from human umbilical cord-derived MSCs (UCMSCs) and their differentiated hepatocyte-like cells (hpUCMSCs) were found to alleviate liver fibrosis in mouse models, reduce fibrogenic gene expression in the liver, and inhibit hepatic stellate cell (HSC) activation, a central driver of liver fibrosis, in vitro. Deep sequencing identified differentially abundant microRNAs (miRNAs) (high-abundance: 57, low-abundance: 22) in both UCMSC- and hpUCMSC-derived sEVs, compared to HeLa cell-derived sEVs, which lack anti-liver fibrotic activity. Functional enrichment analysis of the high-abundance sEV miRNA targets revealed their involvement in transcriptional regulation, apoptosis, and cancer-related pathways, all of which are linked to liver fibrosis and hepatocellular carcinoma. Notably, many of the top 10 most abundant miRNAs reduced pro-fibrotic marker levels in activated HSCs in vitro. CONCLUSION The therapeutic potential of the high-abundance miRNAs shared by UCMSC- and hpUCMSC-derived sEVs in treating liver fibrosis is highlighted.
Collapse
Affiliation(s)
- Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Do-Hoon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Seegene Inc., Songpa-Gu, Seoul, 05548, Republic of Korea
| | - Yu Jin Jang
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Peace Lab California, Cell and Gene Therapy Manufacturing, I Peace, Inc., Palo Alto, CA, 94303, USA
| | - Jong-Hoon Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
232
|
Manoharan J, Albers M, Khizanishvili N, Krasser-Gercke N, Schmitt M, Mintziras I, Wächter S, Rinke A, Gao Y, Bartsch JW, Jesinghaus M, Di Fazio P, Bartsch DK. Prognostic value of clinical parameters and exosomal lncRNA NEAT1_1 in MEN1-related non-functioning pancreatic neuroendocrine tumors. J Neuroendocrinol 2025:e70024. [PMID: 40170567 DOI: 10.1111/jne.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Non-functioning pancreatic neuroendocrine tumors (NF-pNETs) significantly contribute to the premature death of multiple endocrine neoplasia type 1 (MEN1) patients. Reliable prognostic markers are not yet available. MicroRNAs (miRNA) and long-non-coding (lnc) RNAs, transported by extracellular vesicles, are emerging as new prognostic tools. This study aimed to analyze the clinical characteristics, the exosomal-miRNA 451 (exo-miR451) and the lnc-RNA nuclear paraspeckle assembly transcript 1 (NEAT1_1, 3.7 kB) in the mild and aggressive courses of MEN1-NFpNET disease. Patient characteristics were assessed regarding an aggressive course of disease. In addition, exo-miR451 and exo-lnc-NEAT1_1 expression levels were quantified in serum by RT-qPCR and correlated with clinical data. Immunohistochemistry results of STAT3 (signal transducer and activator of transcription 3), regulated by NEAT1, were performed in NF-pNET tissue and correlated with exo-lnc-NEAT1_1 expression. Among 66 MEN1 patients with NF-pNETs, 13 (20%) had an aggressive disease course. No significant differences in patient characteristics were observed between those with aggressive (n = 13) and mild (n = 53) disease (all p > .5). Exosomal miRNA-451 was dysregulated in 55% (n = 23) of cases, showing a trend toward higher upregulation in the aggressive group (36% vs. 19%), although this difference was not statistically significant (p = .215). Exo-NEAT1_1 was overexpressed in 42% (16/38) of patients, without significant differences between groups (p = .0523). However, exo-NEAT1_1 expression strongly correlated with STAT3 immunohistochemical staining (p = .001). Although no prognostic marker could be identified, we show for the first time that the STAT3-NEAT1 pathway plays a role in MEN1-associated NF-pNET tumorigenesis.
Collapse
Affiliation(s)
- Jerena Manoharan
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Max Albers
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Natalia Khizanishvili
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Norman Krasser-Gercke
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Maxime Schmitt
- Department of Pathology, Philipps University Marburg, Marburg, Germany
| | - Ioannis Mintziras
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Sabine Wächter
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Anja Rinke
- Department of Internal Medicine, Division of Gastroenterology and Endocrinology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Yutong Gao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Moritz Jesinghaus
- Department of Pathology, Philipps University Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
- Center for Tumor and Immune Biology, Molecular Imaging, Philipps University Marburg, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
233
|
Bare Y, Defourny K, Bretou M, Van Niel G, Nolte-'t Hoen E, Gaudin R. The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion. Trends Cell Biol 2025; 35:282-293. [PMID: 39730274 DOI: 10.1016/j.tcb.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024]
Abstract
Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections. We propose that ERAPs play an active role in the release of EVs and viral particles, and we present views on whether viruses hijack or enhance pre-existing ERAP-dependent secretory machineries or whether they repurpose ERAPs to create new secretory pathways.
Collapse
Affiliation(s)
- Yonis Bare
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| | - Kyra Defourny
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marine Bretou
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM U1266, Paris, France
| | - Guillaume Van Niel
- CRCI2NA, Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Esther Nolte-'t Hoen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| |
Collapse
|
234
|
Brito KDNLD, Trentin AG. Role of mesenchymal stromal cell secretome on recovery from cellular senescence: an overview. Cytotherapy 2025; 27:422-437. [PMID: 39674933 DOI: 10.1016/j.jcyt.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Cellular senescence is intricately linked with numerous changes observed in the aging process, including the depletion of the stem cell pool and the decline in tissue and organ functions. Over the past three decades, efforts to halt and reverse aging have intensified, bringing rejuvenation closer to reality. Current strategies involve treatments using stem cells or their derivatives, such as the secretome. This article aims to highlight key points and evaluate the utilization of secretome derived from mesenchymal stromal cells (MSCs) as an antisenescent approach. Employing a quasi-systematic research approach, the authors conducted a comprehensive analysis based on a search algorithm targeting the in vitro effects of MSC-derived secretome on rescuing cells from a senescent state. Reviewing 39 articles out of 687 hits retrieved from PubMed and Scopus without a time limit, the authors synthesized information and identified common types of MSC-tissue sources utilized (including bone marrow-MSCs, umbilical cord-MSCs, iPSC-derived MSCs, adipose tissue-MSCs, dental pulp-MSCs, amniotic membrane-MSCs, placenta-MSCs, gingival-MSCs, urine-MSCs, and commercially available MSC lineages) from both human and other species (such as mice and rats). The authors also examined the forms of secretome tested (including conditioned media and extracellular vesicles), the cell types treated (MSCs or other cell types), methods/biomarkers of monitoring senescence/rejuvenation, and the mechanisms involved. Ultimately, this review underscores the proof-of-principle of the beneficial effects of MSC-derived secretome in reversing cellular senescence across various cell types. Such insights might aid the scientific community in designing improved in vitro and in vivo assays for future research and clinical validation of this promising cell-free therapy.
Collapse
Affiliation(s)
- Karynne de Nazaré Lins de Brito
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; Faculty of Medicine, Altamira Campus, Federal University of Pará, Altamira, Brazil.
| | - Andréa Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
235
|
Premathilaka C, Kodithuwakku S, Midekessa G, Godakumara K, Ul Ain Reshi Q, Andronowska A, Orro T, Fazeli A. Bovine fecal extracellular vesicles: A novel noninvasive tool for understanding gut physiology and pathophysiology in calves. J Dairy Sci 2025; 108:4116-4130. [PMID: 39892598 DOI: 10.3168/jds.2024-25920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
Dairy calf gut health is linked with development and future production. Fecal extracellular vesicles (fEV) have emerged as a noninvasive tool in elucidating gut physiology and pathophysiology. Because feces is a complex matrix, the enrichment of extracellular vesicles (EV) from ruminant or preruminant feces is difficult. Nevertheless, if enriched, they have great potential as a gut health diagnostic and monitoring tool in dairy calves. Therefore, this study aimed to devise a protocol to enrich and characterize fEV from preweaning calves. We developed an fEV enrichment method by combination of differential centrifugation and double size exclusion chromatography and then characterized the fEV from the healthy calves. The study also assessed sample storage conditions, and the results indicated that storing preprocessed fecal samples at -80°C effectively preserves EV without introducing additional nanoparticles. Finally, fEV from 10-d-old healthy and Cryptosporidium spp.-positive calves were enriched, and a comparative analysis of fEV characteristics between the 2 groups was performed. Characterization results on EV specific protein biomarkers, size profile, total protein content, zeta potential, and morphology clearly established the enrichment of fEV with the developed protocol. The fEV analysis for calves positive and negative for Cryptosporidium spp. revealed a significant decrease in average nanoparticle size and zeta potential values in Cryptosporidium spp.-infected calves. Furthermore, the enriched fEV carried protein and nucleic acid cargo which could be further analyzed for other biomarkers to predict the gut physiology and pathophysiology of calves. In conclusion, our study has successfully optimized a protocol to enrich high purity grade EV from calf feces and displayed potential diagnostic application as a noninvasive tool.
Collapse
Affiliation(s)
- Chanaka Premathilaka
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Animal Science, Faculty of Agriculture, University of Peradeniya, 20400 Peradeniya, Sri Lanka
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, 50411 Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, 50411 Tartu, Estonia
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Toomas Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, 50411 Tartu, Estonia; Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, S10 2SF Sheffield, UK.
| |
Collapse
|
236
|
Yu Z, Swift KA, Hedges MA, Theiss AL, Andres SF. Microscopic messengers: Extracellular vesicles shaping gastrointestinal health and disease. Physiol Rep 2025; 13:e70292. [PMID: 40165585 PMCID: PMC11959161 DOI: 10.14814/phy2.70292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The field of extracellular vesicles (EVs) is advancing rapidly, and this review aims to synthesize the latest research connected to EVs and the gastrointestinal tract. We will address new and emerging roles for EVs derived from internal sources such as the pancreas and immune system and how these miniature messengers alter organismal health or the inflammatory response within the GI tract. We will examine what is known about external EVs from dietary and bacterial sources and the immense anti-inflammatory, immune-modulatory, and proliferative potential within these nano-sized information carriers. EV interactions with the intestinal and colonic epithelium and associated immune cells at homeostatic and disease states, such as necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) will also be covered. We will discuss how EVs are being leveraged as therapeutics or for drug delivery and conclude with a series of unanswered questions in the field.
Collapse
Affiliation(s)
- Zhantao Yu
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kevin A. Swift
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Madeline A. Hedges
- Department of Neonatology, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Arianne L. Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
- Rocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
| | - Sarah F. Andres
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| |
Collapse
|
237
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2025; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
238
|
Catanese S, Burlaud-Gaillard J, Blasco H, Blanchard E, Pisella PJ, Khanna RK, Eymieux S. Rapid identification of extracellular vesicles in basal tears using transmission electron microscopy. J Fr Ophtalmol 2025; 48:104446. [PMID: 40020431 DOI: 10.1016/j.jfo.2025.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 03/03/2025]
Abstract
PURPOSE To describe basal human tear components in negative staining with real-time transmission electron microscopy and identify extracellular vesicles using immunogold labeling. METHODS Basal tears of 13 healthy human subjects were collected using microcapillary glass tubes, negatively stained, and observed by transmission electron microscopy. Anti-CD63 immunogold labeling was also performed to confirm the nature of elements morphologically suggestive of extracellular vesicles. RESULTS Human tears were rich in cup-shaped vesicular structures, identified as extracellular vesicles by immunogold labeling. These vesicles were highly heterogeneous in morphology and size. Filamentous structures 200 to 700nm in length, presumed to be structures composed of phospholipids or mucopolysaccharides, were also observed. CONCLUSIONS Two main structures were observed in human basal tears of healthy subjects, mostly extracellular vesicles. To improve applicability and translation from the laboratory bench to the hospital bedside, we provide a quick and feasible workflow for real-time analysis of human tears using transmission electron microscopy. Analysis of vesicle richness and morphology in tears could help for detecting biomarkers of ocular and systemic disease.
Collapse
Affiliation(s)
- S Catanese
- Department of Ophthalmology, Bretonneau University Hospital of Tours, Tours, France; UMR 1253, iBrain, University of Tours and CHRU of Tours, Tours, France.
| | - J Burlaud-Gaillard
- Plate-Forme IBiSA des Microscopies, PPF ASB-University of Tours and CHRU of Tours, Tours, France
| | - H Blasco
- UMR 1253, iBrain, University of Tours and CHRU of Tours, Tours, France; Biochemistry and Molecular Biology Department, CHRU Tours, Tours, France
| | - E Blanchard
- Plate-Forme IBiSA des Microscopies, PPF ASB-University of Tours and CHRU of Tours, Tours, France; Inserm U1259, University of Tours and CHRU of Tours, Tours, France
| | - P-J Pisella
- Department of Ophthalmology, Bretonneau University Hospital of Tours, Tours, France
| | - R K Khanna
- Department of Ophthalmology, Bretonneau University Hospital of Tours, Tours, France; UMR 1253, iBrain, University of Tours and CHRU of Tours, Tours, France
| | - S Eymieux
- Plate-Forme IBiSA des Microscopies, PPF ASB-University of Tours and CHRU of Tours, Tours, France; Inserm U1259, University of Tours and CHRU of Tours, Tours, France
| |
Collapse
|
239
|
Pachane BC, Carlson B, Queen SE, Selistre‐de‐Araujo HS, Witwer KW. Exploring the Adhesion Properties of Extracellular Vesicles for Functional Assays. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70042. [PMID: 40292384 PMCID: PMC12025881 DOI: 10.1002/jex2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/31/2025] [Accepted: 03/02/2025] [Indexed: 04/30/2025]
Abstract
The ‛stickiness' of extracellular vesicles (EVs) can pose challenges for EV processing and storage, but adhesive properties may also be exploited to immobilise EVs directly on surfaces for various measurement techniques, including super-resolution microscopy (SRM). Direct adhesion to surfaces may allow the examination of broader populations of EVs than molecular affinity approaches, which can also involve specialised, expensive affinity reagents. Here, we report on the interaction of EVs with borosilicate glass and quartz coverslips and on the effects of pre-coating coverslips with poly-L-lysine (PLL), a reagent commonly used to facilitate interactions between negatively charged surfaces of cells and amorphous surfaces. Additionally, we compared two mounting media conditions for SRM imaging and used immobilised EVs for a B-cell interaction test. Our findings suggest that borosilicate glass coverslips immobilise EVs better than quartz glass coverslips. We also found that PLL is not strictly required for EV retention but contributes to the uniform distribution of EVs on borosilicate glass coverslips. Overall, these findings suggest that standard lab materials like borosilicate glass coverslips, with or without PLL, can be effectively used for the immobilisation of EVs in specific imaging techniques.
Collapse
Affiliation(s)
- Bianca C. Pachane
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Biochemistry and Molecular Biology Laboratory, Department of Physiological SciencesUniversidade Federal de São Carlos – UFSCarSão CarlosSão PauloBrazil
| | - Bess Carlson
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Suzanne E. Queen
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Heloisa S. Selistre‐de‐Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological SciencesUniversidade Federal de São Carlos – UFSCarSão CarlosSão PauloBrazil
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
240
|
Bonelli F, Moosavizadeh S, Fasolo E, Di Nella A, Barbaro V, Zorzi I, Krampera M, Tóthová JD, Ponzin D, Ritter T, Ferrari S, Rodella U. Development and optimization of an ex vivo model of corneal epithelium damage with 1-heptanol: Investigating the influence of donor clinical parameters and MSC-sEV treatment on healing capacity. Ocul Surf 2025; 36:224-236. [PMID: 39914484 DOI: 10.1016/j.jtos.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
PURPOSE To develop and characterize a reproducible human corneal epithelial wound-healing model using 1-heptanol, and to investigate the healing potential of Bone Marrow-derived Mesenchymal Stromal Cell small Extracellular Vesicles (MSC-sEV) and the influence of donor characteristics on epithelial healing. METHODS Eighty-eight (n = 88) human corneoscleral tissues unsuitable for transplantation were employed. Corneal epithelial damage was induced with 1-heptanol and monitored every 24 h up to 96 h using fluorescein and trypan blue staining. Histological assessment was performed on untreated and damaged tissues. Damaged areas were measured with FIJI software, and healing rates were calculated. MSC-sEV were isolated with size exclusion chromatography and characterized for their size, morphology and biomarkers. Their impact on healing was assessed in both in vitro scratch assays on cultured human corneal epithelial cells and on ex vivo 1-heptanol-damaged corneas. RESULTS Histological analysis revealed detached corneal epithelium in the central area, while other layers remained unaffected. Healing rate peaked at 48 h post-damage. Trypan blue and Fluorescein staining correlated and the former highlighted a higher initial healing rate than the latter. Diabetic and heart-beating brain-deceased donors showed impaired healing rates. MSC-sEV (79.8 nm, spherical bilayer, positive for TSG101, CD9, CD63, and CD81) significantly improved epithelial wound healing in both in vitro and ex vivo models. CONCLUSION 1-heptanol effectively induces reproducible corneal epithelial damage, and the ex vivo organ-cultured human cornea heals the epithelium within 96 h. Diabetes and donation from heart-beating brain-deceased donors reduce healing capacity. MSC-sEV boost epithelial repair in damaged corneas.
Collapse
Affiliation(s)
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, University of Galway, Galway, Ireland; SFI Research Centre for Medical Devices (Curam), University of Galway, Galway, Ireland
| | - Elisa Fasolo
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Alessia Di Nella
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI), University of Verona, Italy
| | | | - Ilaria Zorzi
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Mauro Krampera
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI), University of Verona, Italy
| | | | - Diego Ponzin
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, University of Galway, Galway, Ireland; SFI Research Centre for Medical Devices (Curam), University of Galway, Galway, Ireland
| | | | - Umberto Rodella
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy; Research and Development, AL.CHI.MI.A. S.R.L, Ponte San Nicolò, Italy
| |
Collapse
|
241
|
Guo Y, Luo S, Liu S, Yang C, Lv W, Liang Y, Ji T, Li W, Liu C, Li X, Zheng L, Zhang Y. Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409202. [PMID: 39823497 PMCID: PMC12005762 DOI: 10.1002/advs.202409202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis. In this study, a hybridization chain reaction system based on rectangular DNA framework guidance and constructing a bimodal EV-circRNA in situ analyzer (BEISA) is developed. The analyzer can provide dual signal outputs in the fluorescence and electrochemical modes, enabling a self-correcting detection mechanism that significantly improves the accuracy of the assay. It has a broad detection range and an extremely low limit of detection. In a clinical cohort study, the BEISA used four circRNAs as biomarkers, combining them with machine learning for multiparametric analysis, which effectively differentiated between healthy donors and patients with early-stage GC. It is believed that the BEISA, in conjunction with machine learning technology, provides an efficient, sensitive, and reliable tool for EV-circRNA analysis, aiding in the early diagnosis of GC.
Collapse
Affiliation(s)
- Yuhang Guo
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and ResearchKey Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education InstitutionsAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxi533000P. R. China
| | - Sinian Liu
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Chao Yang
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Weifeng Lv
- Department of Laboratory MedicineFoshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdong528000P. R. China
| | - Yuxin Liang
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Tingting Ji
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Wenbin Li
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Chunchen Liu
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Xin Li
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Ye Zhang
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| |
Collapse
|
242
|
Tang Y, Cheng C, Ding R, Qian J, Liu M, Guo Y, Li Q. MSC exosomes and MSC exosomes loaded with LncRNA H19 as nanotherapeutics regulate the neurogenetic potential of Müller Glial Cells in dry age-related macular degeneration. Free Radic Biol Med 2025; 231:178-192. [PMID: 40015462 DOI: 10.1016/j.freeradbiomed.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
In retinal degeneration diseases such as dry age-related macular degeneration (AMD), Müller Glial Cells (MGCs) in mammals undergo a process of reactive gliosis leading to the progression of dry AMD. Here, It is demonstrated that exosomes derived from mesenchymal stem cells (MSC exosomes) and MSC exosomes loaded with LncRNA H19, acting as nanotherapeutics, can be regulated by MGCs in dry AMD. In the in vivo study, MSC exosomes were administered via intravitreal injection. MSC exosomes effectively redirected MGCs from gliosis to dedifferentiation and alleviated MGCs-to-epithelial transition by inhibiting oxidative stress in mice with dry AMD induced by NaIO3. In the in vitro study, MSC exosomes promoted MGCs dedifferentiation by activating Wnt/β-catenin signaling pathway and prevented oxidative stress-induced MGCs gliosis and MGCs-to-epithelial transition by inhibiting TGFβ1 signaling pathway. MSC exosomes loaded with LncRNA H19 enhanced the activation of Wnt/β-catenin signaling pathway and the inhibition of the TGFβ1 signaling pathway compared with MSC exosomes. These results suggest that MSC exosomes regulate the neurogenetic potential of MGCs by redirecting MGCs from gliosis to dedifferentiation and alleviating the transformation of MGCs to epithelial cells through regulating oxidative stress. Regulating LncRNA H19 in MGCs to promote mammalian retinal regeneration in dry AMD was suggested for the first time.
Collapse
Affiliation(s)
- Yue Tang
- China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Caiyi Cheng
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Rui Ding
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jingyuan Qian
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Min Liu
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuzun Guo
- China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qian Li
- China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
243
|
Pinheiro AS, Rocco PRM, Caruso-Neves C, Pinheiro AAS. New therapeutic strategies for malaria. Biophys Rev 2025; 17:701-707. [PMID: 40376415 PMCID: PMC12075036 DOI: 10.1007/s12551-025-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/18/2025] Open
Abstract
Malaria is a life-threatening parasitic disease and remains a significant global health problem, associated with high morbidity and mortality. Malaria cases are widely spread, but the highest incidence occurs in tropical and subtropical areas, especially in developing countries. Despite all efforts to control the disease, the number of cases increased by 5 million from 2021 to 2022. The mechanisms of malaria pathogenesis are still not fully understood. This, combined with the parasite's recurrent ability to develop resistance to standard treatments, hinders effective disease management and control. Therefore, a deep understanding of parasite biology, along with the various aspects of host-parasite interactions, is essential for malaria elimination. Extracellular vesicles (EVs) are membrane-enclosed vesicles which are secreted by a variety of cells. These tiny structures have emerged as a key component in the mechanisms of pathogenesis of different parasitic diseases, promoting cell-to-cell communication, even in distance. In this review, we explore the latest advancements in EV research in the malaria field, focusing on their role in pathophysiology, as well as their potential as diagnostic tools, alternative therapeutic strategies, and vaccine development. We conclude by highlighting key elements in EV research that could provide insights into the translational application of EVs.
Collapse
Affiliation(s)
- Alessandro Sá Pinheiro
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Patricia Rieken Macedo Rocco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Ana Acacia Sá Pinheiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
244
|
Sheneman KR, Cummins TD, Merchant ML, Hood JL, Uriarte SM, Lawrenz MB. Yersinia pestis Actively Inhibits the Production of Extracellular Vesicles by Human Neutrophils. J Extracell Vesicles 2025; 14:e70074. [PMID: 40240908 PMCID: PMC12003101 DOI: 10.1002/jev2.70074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Yersinia pestis is the etiologic agent of the plague. A hallmark of plague is subversion of the host immune response by disrupting host signalling pathways required for inflammation. This non-inflammatory environment permits bacterial colonization and has been shown to be essential for disease manifestation. Previous work has shown that Y. pestis inhibits phagocytosis and degranulation by neutrophils. Manipulation of these key vesicular trafficking pathways suggests that Y. pestis influences extracellular vesicle (EV) secretion, cargo selection, trafficking and/or maturation. Our goals were to define the EV population produced by neutrophils in response to Y. pestis and determine how these vesicles might influence inflammation. Towards these goals, EVs were isolated from human neutrophils infected with Y. pestis or a mutant lacking bacterial effector proteins known to manipulate host cell signalling. Mass spectrometry data revealed that cargoes packaged in EVs isolated from mutant infected cells were enriched with antimicrobial and cytotoxic proteins, contents which differed from uninfected and Y. pestis infected cells. Further, EVs produced in response to Y. pestis lacked inflammatory properties observed in those isolated from neutrophils responding to the mutant. Together, these data demonstrate that Y. pestis actively inhibits the production of antimicrobial EVs produced by neutrophils, likely contributing to immune evasion.
Collapse
Affiliation(s)
- Katelyn R. Sheneman
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Timothy D. Cummins
- Department of Medicine and Proteomics Technology CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Michael L. Merchant
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joshua L. Hood
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKentuckyUSA
- Hepatobiology and Toxicology COBREUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Silvia M. Uriarte
- Department of Oral Immunology & Infectious DiseaseUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Matthew B. Lawrenz
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
- Center for Predictive Medicine for Biodefense and Emerging Infectious DiseasesUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
245
|
Liu XJ, Ma ZS, Li Y, Fan TB, Ge ZW, Ou ZJ, Ou JS. A Simple Modification Results in a Significant Improvement in Measuring the Size of Extracellular Vesicles. Curr Med Sci 2025; 45:244-252. [PMID: 40205301 DOI: 10.1007/s11596-025-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Size distribution is an important biophysical property of extracellular vesicles (EVs). EVs include small EVs (s-EVs) and large EVs (l-EVs) by size. Differential ultracentrifugation (dUC) is widely used to separate EVs from biofluids, but it can precipitate large impurity particles. Dynamic light scattering (DLS) is a simple and fast method for analyzing the size distribution of EVs. However, this approach is nonideal for heterogeneous and polydisperse samples since a small quantity of large impurity particles can markedly disturb the DLS results. Here, we developed a simple method to improve the reliability of DLS measurements. METHODS Plasma was obtained from 13 volunteers. The plasma was first processed by dUC to obtain crude l-EVs. The crude l-EVs were filtered with syringe filters (pore size of 1 μm and membrane material of hydrophilic polyvinylidene fluoride (PVDF)) to remove large impurity particles from l-EVs. The size distributions of the crude l-EVs and filtered l-EVs were measured via DLS. RESULTS After the samples were filtered, the coefficients of variation of the hydrodynamic radius and Peak 1 intensity of the filtered l-EVs decreased from 20.39% (12.76-28.96%) and 20.44% (14.58-28.32%) to 3.05% (1.79-4.72%) and 3.43% (1.76-5.88%), respectively, compared with those of the crude l-EVs. CONCLUSION These findings suggest that filtration can effectively separate circulating l-EVs in plasma to remove large impurity particles and make samples suitable for characterization by DLS. Our findings provide a simple method to improve precision via DLS to measure the size distribution of EVs.
Collapse
Affiliation(s)
- Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Tai-Bing Fan
- Department of Children Heart Center, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen-Wei Ge
- Department of Adult Heart Center, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Cardiovascular Department, Henan Provincial Chest Hospital, Zhengzhou, 450003, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
246
|
Zhao Y, Hu Y, Wang Y, Qian H, Zhu C, Dong H, Hao C, Zhang Y, Ji Z, Li X, Chen Y, Xu R, Jiang J, Cao H, Ma G, Chen L. Cardiac fibroblast-derived mitochondria-enriched sEVs regulate tissue inflammation and ventricular remodeling post-myocardial infarction through NLRP3 pathway. Pharmacol Res 2025; 214:107676. [PMID: 40015386 DOI: 10.1016/j.phrs.2025.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Resident cardiac fibroblasts (CFs) play crucial roles in sensing injury signals and regulating inflammatory responses post-myocardial infarction (MI). Damaged mitochondria can be transferred extracellularly via various mechanisms, including extracellular vesicles (EVs). In this study, we aimed to investigate whether CFs could transfer damaged mitochondrial components via small EVs (sEVs) and elucidate their role in regulating inflammatory responses post-MI. Left anterior descending coronary artery ligation was performed in mice. Mitochondrial components in sEVs were detected using nanoflow cytometry. Differential protein expression in sEVs from normoxia and normoglycemia CFs (CFs-Nor-sEVs) and CFs post oxygen-glucose deprivation (CFs-OGD-sEVs) was identified using label-free proteomics. CFs-sEVs were co-cultured with mouse bone marrow-derived macrophages (BMDMs) to assess macrophage inflammatory responses. Effects of intramyocardial injection of CFs-sEVs were assessed in MI mice in the absence or presence of NLRP3 inhibitor CY-09. Results demonstrated that mitochondrial components were detected in CFs-derived sEVs post-MI. Damaged mitochondrial components were enriched in CFs-OGD-sEVs (CFs-mt-sEVs), which promoted pro-inflammatory phenotype activation of BMDMs in vitro. Myocardial injection of CFs-mt-sEVs enhanced tissue inflammation, aggravated cardiac dysfunction, and exacerbated maladaptive ventricular remodeling post-MI in vivo. Mechanistically, above effects were achieved via activation of NLRP3 and above effects could be reversed by NLRP3 inhibitor CY-09. This study indicates that CFs could transfer damaged mitochondrial components via the sEVs post-MI, promote macrophage inflammatory activation and exacerbate maladaptive ventricular remodeling post MI by activating NLRP3. Our findings highlight the potential therapeutic effects of inhibiting CFs-mt-sEVs and NLRP3 to improve cardiac function and attenuate ventricular remodeling post-MI.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Ya Hu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yifei Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Hao Qian
- Department of Cardiology, Huai 'an No.1 People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Chenxu Zhu
- Institute for Computational Biomedicine - Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Hongjian Dong
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yue Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Rongfeng Xu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Jie Jiang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Hailong Cao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China.
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China; Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing 211200, PR China.
| |
Collapse
|
247
|
Chaves Filho GP, de Andrade Tavares P, de Jesus AF, Ciancaglini P, Segundo JES, Ramos AP. Building a digital library on research into mineralizing vesicles: a systematic review-based approach. Biophys Rev 2025; 17:627-651. [PMID: 40376417 PMCID: PMC12075729 DOI: 10.1007/s12551-025-01282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/02/2025] [Indexed: 05/18/2025] Open
Abstract
This systematic review consolidates current research on mineralizing extracellular vesicles, or matrix vesicles (MVs), including their isolation, characterization, and role in physiological and pathological calcification. We searched PubMed/Medline, Scopus, and Web of Knowledge by employing the keywords "matrix vesicles" or "collagenase-released matrix vesicles" or "mineralizing vesicles" and publishing years from 2000 to 2023. Seventy-one studies met the inclusion criteria. The studies described different experimental protocols, especially with respect to methods for isolating MVs, wherein digestion with collagenase combined with centrifugation was the most used. The studies employed characterization techniques, including the determination of alkaline phosphatase (ALP) and transmission electron microscopy (TEM), to assess the functionality, size, and morphology of MVs. MVs contain key proteins such as ALP, annexins, and osteocalcin, along with calcium and phosphate ions, which are all critical for precipitating apatite. In the studies, evaluation of ALP activity revealed that MVs are more effective for mineralization than their parent cells and, hence, a valuable tool to regenerate bone and to engineer tissues. On the other hand, MVs play an essential role in pathologies, and the studies showed how they contribute to vascular calcification. Despite the therapeutic potential of MVs, isolation methods and characterization protocols vary across the studies, so standardized methods are needed. We have consolidated the data resulting from this systematic review in an open digital library on MVs with free access to all researchers. The users of the digital library can apply filters and taxonomy to find and interconnect the data resulting from the review.
Collapse
Affiliation(s)
- Gildacio Pereira Chaves Filho
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - Pedro de Andrade Tavares
- Department of Education, Information, and Communication, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - Ananda Fernanda de Jesus
- Department of Information Science, Faculty of Philosophy and Sciences, São Paulo State University, Marília, SP 17525-900 Brazil
| | - Pietro Ciancaglini
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - José Eduardo Santarem Segundo
- Department of Education, Information, and Communication, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| |
Collapse
|
248
|
Chen S, Bao Q, Xu W, Zhai X. Extracellular particles: emerging insights into central nervous system diseases. J Nanobiotechnology 2025; 23:263. [PMID: 40170148 PMCID: PMC11960037 DOI: 10.1186/s12951-025-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Extracellular particles (EPs), including extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs), are multimolecular biomaterials released by cells that play a crucial role in intercellular communication. Recently, new subtypes of EPs associated with central nervous system (CNS), such as exophers and supermeres have been identified. These EPs provide new perspectives for understanding the pathological progression of CNS disorders and confer potential diagnostic value for liquid biopsies in neurodegenerative diseases (NDs). Moreover, EPs have emerged as promising drug delivery vehicles and targeted platforms for CNS-specific therapies. In this review, we delineate the landscape of EP subtypes and their roles in the pathophysiology of CNS diseases. We also review the recent advances of EP-based diagnosis in NDs and highlight the importance of analytical platforms with single-particle resolution in the exploitation of potential biomarkers. Furthermore, we summarize the application of engineered EVs in the treatment of CNS diseases and outline the underexplored potential of NVEPs as novel therapeutic agents.
Collapse
Affiliation(s)
- Shenyuan Chen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Qinghua Bao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
249
|
Belényesi SK, Patmore S, O'Driscoll L. Extracellular vesicles and the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189275. [PMID: 39900204 DOI: 10.1016/j.bbcan.2025.189275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Extracellular vesicles (EVs), tiny packages of information released by cells, are well established as being involved in unwanted cell-to-cell communication in cancer. EVs from cancer cells have been associated with the spread of drug resistance, immune suppression, and metastasis. Additional to cancer cells, the tumour microenvironment (TME) involves many cell types -including immune cells, fibroblasts, and endothelial cells, each of which has a potential role in how tumours grow, spread, and respond (or otherwise) to therapy. This review collates and distils research developments regarding the role of EVs in multi-way communication between cells in the TME. Further research including tailored clinical studies are now warranted to determine how best to prevent this extensive adverse communication occurring and/or how best to exploit it for biomarker discovery and as a therapeutic approach, in the interest of patients and also for economic benefit.
Collapse
Affiliation(s)
- Szilárd-Krisztián Belényesi
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Sean Patmore
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
250
|
Zhang X, Ma S, Naz SI, Soderblom EJ, Aliferis C, Kraus VB. Plasma extracellular vesicles carry immune system-related peptides that predict human longevity. GeroScience 2025; 47:1455-1469. [PMID: 39695065 PMCID: PMC11979029 DOI: 10.1007/s11357-024-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in aging. In this National Institutes on Aging-funded study, we sought to identify circulating extracellular vesicle (EV) biomarkers indicative of longevity. The plasma EV proteome of 48 older adults (mean age 77.2 ± 1.7 years [range 72-80]; 50% female, 50% Black, 50% < 2-year survival, 50% ≥ 10-year survival) was analyzed by high-resolution mass spectrometry and flow cytometry. The ability of EV peptides to predict longevity was evaluated in discovery (n = 32) and validation (n = 16) datasets with areas under receiver operating characteristic curves (AUCs). Longevity-associated large EV (LEV) plasma subpopulations were mainly related to immune cells (HLA-ABC+, CD9+, and CD31+) and muscle cells (MCAD+ and RyR2+). Of 7960 identified plasma EV peptides (519 proteins), 46.4% were related to the immune system and 10.1% to muscle. Compared with short-lived older adults, 756 EV peptides (131 proteins) had a higher abundance, and 130 EV peptides (78 proteins) had a lower abundance in long-lived adults. Among longevity-associated peptides, 437 (58 proteins) were immune system related, and 12 (2 proteins) were muscle related. Using just three to five plasma EV peptides (mainly complement components C2-C6), we achieved high predictive accuracy for longevity (AUC range 0.91-1 in a hold-out validation dataset). Our findings suggest that immune cells produce longevity-associated plasma EVs and elucidate fundamental mechanisms regulating aging and longevity. EV longevity predictors suggest there may be merit in targeting complement pathways to extend lifespan, for instance, with any one of the multiple complement inhibitors currently available or in clinical development.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA.
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|