201
|
Logacheva MD, Samigullin TH, Dhingra A, Penin AA. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale -a wild ancestor of cultivated buckwheat. BMC PLANT BIOLOGY 2008; 8:59. [PMID: 18492277 PMCID: PMC2430205 DOI: 10.1186/1471-2229-8-59] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/20/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. RESULTS We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. CONCLUSION Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset, including this new sequence from non-core Caryophyllales supports the sister relationship between Caryophyllales and asterids.
Collapse
Affiliation(s)
- Maria D Logacheva
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tahir H Samigullin
- Department of Evolutionary Biochemistry, A.N. Belozersky Institute, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Amit Dhingra
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, USA
| | - Aleksey A Penin
- Department of Genetics, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
202
|
Complete Sequence of the Duckweed (Lemna minor) Chloroplast Genome: Structural Organization and Phylogenetic Relationships to Other Angiosperms. J Mol Evol 2008; 66:555-64. [DOI: 10.1007/s00239-008-9091-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 12/27/2007] [Accepted: 02/21/2008] [Indexed: 11/26/2022]
|
203
|
Rüdinger M, Polsakiewicz M, Knoop V. Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat proteins in jungermanniid but not in marchantiid liverworts. Mol Biol Evol 2008; 25:1405-14. [PMID: 18400790 DOI: 10.1093/molbev/msn084] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pyrimidine exchange type of RNA editing in land plant (embryophyte) organelles has largely remained an enigma with respect to its biochemical mechanisms, the underlying specificities, and its raison d'être. Apparently arising with the earliest embryophytes, RNA editing is conspicuously absent in one clade of liverworts, the complex thalloid Marchantiidae. Several lines of evidence suggest that the large gene family of organelle-targeted RNA-binding pentatricopeptide repeat (PPR) proteins plays a fundamental role in the sequence-specific editing of organelle transcripts. We here describe the identification of PPR protein genes with plant-specific carboxyterminal (C-terminal) sequence signatures (E, E+, and DYW domains) in ferns, lycopodiophytes, mosses, hornworts, and jungermanniid liverworts, one subclass of the basal most clade of embryophytes, on DNA and cDNA level. In contrast, we were unable to identify these genes in a wide sampling of marchantiid liverworts (including the phylogenetic basal genus Blasia)--taxa for which no RNA editing is observed in the organelle transcripts. On the other hand, we found significant diversity of this type of PPR proteins also in Haplomitrium, a genus with an extremely high rate of RNA editing and a phylogenetic placement basal to all other liverworts. Although the presence of modularly extended PPR proteins correlates well with organelle RNA editing, the now apparent complete loss of an entire gene family from one clade of embryophytes, the marchantiid liverworts, remains puzzling.
Collapse
Affiliation(s)
- Mareike Rüdinger
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|
204
|
Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J, Haberer G, Herrmann RG. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution. Nucleic Acids Res 2008; 36:2366-78. [PMID: 18299283 PMCID: PMC2367718 DOI: 10.1093/nar/gkn081] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 12/02/2022] Open
Abstract
The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome-genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I-III in one clade, while plastome IV appears to be closest to the common ancestor.
Collapse
Affiliation(s)
- Stephan Greiner
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| | - Xi Wang
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| | - Uwe Rauwolf
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| | - Martina V. Silber
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| | - Klaus Mayer
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| | - Jörg Meurer
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| | - Georg Haberer
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| | - Reinhold G. Herrmann
- Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich and MIPS/IBI Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Ingolstädter Landstrasse 1, 85 764 Neuherberg, Germany
| |
Collapse
|
205
|
Haberle RC, Fourcade HM, Boore JL, Jansen RK. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 2008; 66:350-61. [PMID: 18330485 DOI: 10.1007/s00239-008-9086-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 01/27/2008] [Accepted: 02/08/2008] [Indexed: 11/28/2022]
Abstract
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.
Collapse
Affiliation(s)
- Rosemarie C Haberle
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
206
|
del Campo EM, Casano LM. Degradation of plastid unspliced transcripts and lariat group II introns. Biochimie 2008; 90:474-83. [DOI: 10.1016/j.biochi.2007.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/15/2007] [Indexed: 11/16/2022]
|
207
|
Bentolila S, Elliott LE, Hanson MR. Genetic architecture of mitochondrial editing in Arabidopsis thaliana. Genetics 2008; 178:1693-708. [PMID: 17565941 PMCID: PMC2278073 DOI: 10.1534/genetics.107.073585] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/23/2007] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the mitochondrial editing behavior of two Arabidopsis thaliana accessions, Landsberg erecta (Ler) and Columbia (Col). A survey of 362 C-to-U editing sites in 33 mitochondrial genes was conducted on RNA extracted from rosette leaves. We detected 67 new editing events in A. thaliana rosette leaves that had not been observed in a prior study of mitochondrial editing in suspension cultures. Furthermore, 37 of the 441 C-to-U editing events reported in A. thaliana suspension cultures were not observed in rosette leaves. Forty editing sites that are polymorphic in extent of editing were detected between Col and Ler. Silent editing sites, which do not change the encoded amino acid, were found in a large excess compared to nonsilent sites among the editing events that differed between accessions and between tissue types. Dominance relationships were assessed for 15 of the most polymorphic sites by evaluating the editing values of the reciprocal hybrids. Dominance is more common in nonsilent sites than in silent sites, while additivity was observed only in silent sites. A maternal effect was detected for 8 sites. QTL mapping with recombinant inbred lines detected 12 major QTL for 11 of the 13 editing traits analyzed, demonstrating that efficiency of editing of individual mitochondrial C targets is generally governed by a major factor.
Collapse
Affiliation(s)
- Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
208
|
Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 2008; 8:36. [PMID: 18237435 PMCID: PMC2275221 DOI: 10.1186/1471-2148-8-36] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 01/31/2008] [Indexed: 11/24/2022] Open
Abstract
Background Various expansions or contractions of inverted repeats (IRs) in chloroplast genomes led to fluxes in the IR-LSC (large single copy) junctions. Previous studies revealed that some monocot IRs contain a trnH-rps19 gene cluster, and it has been speculated that this may be an evidence of a duplication event prior to the divergence of monocot lineages. Therefore, we compared the organizations of genes flanking two IR-LSC junctions in 123 angiosperm representatives to uncover the evolutionary dynamics of IR-LSC junctions in basal angiosperms and monocots. Results The organizations of genes flanking IR-LSC junctions in angiosperms can be classified into three types. Generally each IR of monocots contains a trnH-rps19 gene cluster near the IR-LSC junctions, which differs from those in non-monocot angiosperms. Moreover, IRs expanded more progressively in monocots than in non-monocot angiosperms. IR-LSC junctions commonly occurred at polyA tract or A-rich regions in angiosperms. Our RT-PCR assays indicate that in monocot IRA the trnH-rps19 gene cluster is regulated by two opposing promoters, S10A and psbA. Conclusion Two hypotheses are proposed to account for the evolution of IR expansions in monocots. Based on our observations, the inclusion of a trnH-rps19 cluster in majority of monocot IRs could be reasonably explained by the hypothesis that a DSB event first occurred at IRB and led to the expansion of IRs to trnH, followed by a successive DSB event within IRA and lead to the expansion of IRs to rps19 or to rpl22 so far. This implies that the duplication of trnH-rps19 gene cluster was prior to the diversification of extant monocot lineages. The duplicated trnH genes in the IRB of most monocots and non-monocot angiosperms have distinct fates, which are likely regulated by different expression levels of S10A and S10B promoters. Further study is needed to unravel the evolutionary significance of IR expansion in more recently diverged monocots.
Collapse
Affiliation(s)
- Rui-Jiang Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | | | | | | | | | | |
Collapse
|
209
|
Krishnan NM, Seligmann H, Rao BJ. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications. BMC Genomics 2008; 9:48. [PMID: 18226235 PMCID: PMC2276208 DOI: 10.1186/1471-2164-9-48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. RESULTS We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. CONCLUSION Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of K-strategists, perhaps because domestication increases reproductive output.
Collapse
Affiliation(s)
- Neeraja M Krishnan
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha road, Colaba, Mumbai 400005, India.
| | | | | |
Collapse
|
210
|
Cahoon AB, Takacs EM, Sharpe RM, Stern DB. Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. PLANT MOLECULAR BIOLOGY 2008; 66:33-46. [PMID: 17932771 DOI: 10.1007/s11103-007-9250-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/01/2007] [Indexed: 05/09/2023]
Abstract
In maize, the chloroplast chromosome encodes 104 genes whose roles are primarily in photosynthesis and gene expression. The 2,000-3,000 nuclear gene products that localize to plastids are required both to encode and regulate plastid gene expression as well as to underpin each aspect of plastid physiology and development. We used a new "three-genome" maize biogenesis cDNA microarray to track abundance changes in nuclear, chloroplast and mitochondrial transcripts in stage 2 semi-emerged leaf blades of one month-old maize plants. We report the detection and quantification of 433 nuclear, 62 chloroplast, and 27 mitochondrial transcripts, with the majority of the nuclear transcripts predicted or known to encode plastid proteins. The data were analyzed as ratios of expression of individual transcripts in the green tip (mature chloroplasts) versus the yellow base of the leaf (etioplasts). According to the microarray data at least 51 plastid genes and 121 nuclear genes are expressed at least two-fold higher in the tip of the leaf. Almost all (25) mitochondrial and 177 nuclear transcripts were expressed at least 2-fold higher in the leaf base. Independent quantification of a subset of each transcript population by RNA gel blot analysis and/or quantitative real time RT-PCR concurred with the transcript ratios determined by the array. Ontological distribution of the transcripts suggests that photosynthesis-related RNAs were most highly abundant in the leaf tip and that energy use genes were most highly expressed in the base. Transcripts whose products are used in plastid translation constituted the largest single ontological group with relatively equal numbers of genes in the three expression categories, defined as higher in tip, higher in base, or equally expressed in tip and base.
Collapse
Affiliation(s)
- A Bruce Cahoon
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN 37132, USA.
| | | | | | | |
Collapse
|
211
|
|
212
|
Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 2007; 45:547-63. [PMID: 17644003 DOI: 10.1016/j.ympev.2007.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 06/05/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.
Collapse
Affiliation(s)
- Debra R Hansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Biological Laboratories 404, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:571-90. [PMID: 17534593 PMCID: PMC2674615 DOI: 10.1007/s00122-007-0567-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/23/2007] [Indexed: 05/07/2023]
Abstract
Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5' end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19-37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16-21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C-U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae.
Collapse
Affiliation(s)
- Christopher Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | - Seung-Bum Lee
- 4000 Central Florida Blvd, Department of Molecular Biology and Microbiology, Biomolecular Science, University of Central Florida, Building #20, Orlando, FL 32816-2364, USA
| | - Siri Fjellheim
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway
| | - Chittibabu Guda
- Gen*NY* Sis Center for Excellence in Cancer Genomics and Department of Epidemiology and Biostatistics, State University of New York at Albany, 1 Discovery Dr Rensselaer, New York, NY 12144, USA
| | - Robert K. Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Biological Laboratories 404, University of Texas, Austin, TX 78712, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 51 New Cherry Street, Clemson, SC 29634, USA
| | - Jeffrey Tomkins
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | - Odd Arne Rognli
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway
| | - Henry Daniell
- 4000 Central Florida Blvd, Department of Molecular Biology and Microbiology, Biomolecular Science, University of Central Florida, Building #20, Orlando, FL 32816-2364, USA, e-mail:
| | - Jihong Liu Clarke
- Department of Genetics and Biotechnology, Norwegian Institute for Agricultural and Environmental Sciences, 1432 Aas, Norway
| |
Collapse
|
214
|
Chung SM, Gordon VS, Staub JE. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Genome 2007; 50:215-25. [PMID: 17546086 DOI: 10.1139/g07-003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chilling injury in cucumber (Cucumis sativus L.) is conditioned by maternal factors, and the sequencing of its chloroplast genome could lead to the identification of economically important candidate genes. Complete sequencing of cucumber chloroplast (cp)DNA was facilitated by the development of 414 consensus chloroplast sequencing primers (CCSPs) from conserved cpDNA sequences of Arabidopsis (Arabidopsis thaliana L.), spinach (Spinacia oleracea L.), and tobacco (Nicotiana tabacum L.) cpDNAs, using degenerative primer technologies. Genomic sequence analysis led to the construction of 301 CCSPs and 72 cucumber chloroplast-specific sequencing primers (CSSPs), which were used for the complete sequencing of cpDNA of Gy14 (155 525 bp) and 'Chipper' (155 524 bp) cucumber lines, which are, respectively, susceptible and tolerant to chilling injury (4 degrees C for 5.5 h) in the first leaf stage. Comparative cpDNA sequence analyses revealed that 1 sequence span (located between genes trnK and rps16) and 2 nucleotides (located in genes atpB and ycf1) differed between chilling-susceptible and -tolerant lines. These sequence differences correspond to previously reported maternally inherited differences in chilling response between reciprocal F1 progeny derived from these lines. Sequence differences at these 3 cpDNA sites were also detected in a genetically diverse array of cucumber germplasm with different chilling responses. These and previously reported results suggest that 1 or several of these sequences could be responsible for the observed response to chilling injury in cucumber. The comprehensive sequencing of cpDNA of cucumber by CCSPs and CSSPs indicates that these primers have immediate applications in the analysis of cpDNAs from other dicotyledonous species and the investigation of evolutionary relationships.
Collapse
Affiliation(s)
- Sang-Min Chung
- USDA/ARS, Vegetable Crops Research Unit, Department of Horticulture, 1575 Linden Dr., University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
215
|
Plader W, Yukawa Y, Sugiura M, Malepszy S. The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis. Cell Mol Biol Lett 2007; 12:584-94. [PMID: 17607527 PMCID: PMC6275786 DOI: 10.2478/s11658-007-0029-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.
Collapse
Affiliation(s)
- Wojciech Plader
- Faculty of Horticulture and Landscape Architecture, Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | | | | | | |
Collapse
|
216
|
Wang D, Wu YW, Shih ACC, Wu CS, Wang YN, Chaw SM. Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol Biol Evol 2007; 24:2040-8. [PMID: 17609537 DOI: 10.1093/molbev/msm133] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With the completion of the first gymnosperm mitochondrial genome (mtDNA) from Cycas taitungensis and the availability of more mtDNA taxa in the past 5 years, we have conducted a systematic analysis of DNA transfer from chloroplast genomes (cpDNAs) to mtDNAs (mtpts) in 11 plants, including 2 algae, 1 liverwort, 1 moss, 1 gymnosperm, 3 monocots, and 3 eudicots. By using shared gene order and boundaries between different mtpts as the criterion, the timing of cpDNA transfer during plant evolution was estimated from the phylogenetic tree reconstructed independently from concatenated protein-coding genes of 11 available mtDNAs. Several interesting findings emerged. First, frequent DNA transfer from cpDNA to mtDNA occurred at least as far back as the common ancestor of extant gymnosperms and angiosperms, about 300 MYA. The oldest mtpt is trnV(uac)-trnM(cau)-atpE-atpB-rbcL. Three other mtpts--psaA-psaB, rps19-trnH(gug)-rpl2-rpl23, and psbE-psbF--were dated to the common ancestor of extant angiosperms, at least 150 MYA. However, all protein-coding genes of mtpts have degenerated since their first transfer. Therefore, mtpts contribute nothing to the functioning of mtDNA but junk sequences. We discovered that the cpDNA transfers have occurred randomly at any positions of the cpDNAs. We provide strong evidence that the cp-derived tRNA-trnM(cau) is the only mtpt (1 out of 3 cp-derived tRNA shared by seed plants) truly transferred from cpDNA to mtDNA since the time of the common ancestor of extant gymnosperms and angiosperms. Our observations support the proposition of Richly and Leister (2004) that "primary insertions of organellar DNAs are large and then diverge and fragment over evolutionary time."
Collapse
Affiliation(s)
- Daryi Wang
- Research Center for Biodiversity, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
217
|
Mulligan RM, Chang KLC, Chou CC. Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites. Mol Biol Evol 2007; 24:1971-81. [PMID: 17591603 DOI: 10.1093/molbev/msm125] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A computational analysis of RNA editing sites was performed on protein-coding sequences of plant mitochondrial genomes from Arabidopsis thaliana, Beta vulgaris, Brassica napus, and Oryza sativa. The distribution of nucleotides around edited and unedited cytidines was compared in 41 nucleotide segments and included 1481 edited cytidines and 21,390 unedited cytidines in the 4 genomes. The distribution of nucleotides was examined in 1, 2, and 3 nucleotide windows by comparison of nucleotide frequency ratios and relative entropy. The relative entropy analyses indicate that information is encoded in the nucleotide sequences in the 5 prime flank (-18 to -14, -13 to -10, -6 to -4, -2/-1) and the immediate 3 prime flanking nucleotide (+1), and these regions may be important in editing site recognition. The relative entropy was large when 2 or 3 nucleotide windows were analyzed, suggesting that several contiguous nucleotides may be involved in editing site recognition. RNA editing sites were frequently preceded by 2 pyrimidines or AU and followed by a guanidine (HYCG) in the monocot and dicot mitochondrial genomes, and rarely preceded by 2 purines. Analysis of chloroplast editing sites from a dicot, Nicotiana tabacum, and a monocot, Zea mays, revealed a similar distribution of nucleotides around editing sites (HYCA). The similarity of this motif around editing sites in monocots and dicots in both mitochondria and chloroplasts suggests that a mechanistic basis for this motif exists that is common in these different organelle and phylogenetic systems. The preferred sequence distribution around RNA editing sites may have an important impact on the acquisition of editing sites in evolution because the immediate sequence context of a cytidine residue may render a cytidine editable or uneditable, and consequently determine whether a T to C mutation at a specific position may be corrected by RNA editing. The distribution of editing sites in many protein-coding sequences is shown to be non-random with editing sites clustered in groups separated by regions with no editing sites. The sporadic distribution of editing sites could result from a mechanism of editing site loss by gene conversion utilizing edited sequence information, possibly through an edited cDNA intermediate.
Collapse
Affiliation(s)
- R Michael Mulligan
- Department of Developmental and Cell Biology, University of California, Irvine, USA.
| | | | | |
Collapse
|
218
|
Wu CS, Wang YN, Liu SM, Chaw SM. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol 2007; 24:1366-79. [PMID: 17383970 DOI: 10.1093/molbev/msm059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic relationships among the 5 groups of extant seed plants are presently unsettled. To reexamine this long-standing debate, we determine the complete chloroplast genome (cpDNA) of Cycas taitungensis and 56 protein-coding genes encoded in the cpDNA of Gnetum parvifolium. The cpDNA of Cycas is a circular molecule of 163,403 bp with 2 typical large inverted repeats (IRs) of 25,074 bp each. We inferred phylogenetic relationships among major seed plant lineages using concatenated 56 protein-coding genes in 37 land plants. Phylogenies, generated by the use of 3 independent methods, provide concordant and robust support for the monophylies of extant seed plants, gymnosperms, and angiosperms. Within the modern gymnosperms are 2 highly supported sister clades: Cycas-Ginkgo and Gnetum-Pinus. This result agrees with both the "gnetifer" and "gnepines" hypotheses. The sister relationships in Cycas-Ginkgo and Gnetum-Pinus clades are further reinforced by cpDNA structural evidence. Branch lengths of Cycas-Ginkgo and Gnetum were consistently the shortest and the longest, respectively, in all separate analyses. However, the Gnetum relative rate test revealed this tendency only for the 3rd codon positions and the transversional sites of the first 2 codon positions. A PsitufA located between psbE and petL genes is here first detected in Anthoceros (a hornwort), cycads, and Ginkgo. We demonstrate that the PsitufA is a footprint descended from the chloroplast tufA of green algae. The duplication of ycf2 genes and their shift into IRs should have taken place at least in the common ancestor of seed plants more than 300 MYA, and the tRNAPro-GGG gene was lost from the angiosperm lineage at least 150 MYA. Additionally, from cpDNA structural comparison, we propose an alternative model for the loss of large IR regions in black pine. More cpDNA data from non-Pinaceae conifers are necessary to justify whether the gnetifer or gnepines hypothesis is valid and to generate solid structural evidence for the monophyly of extant gymnosperms.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Research Center for Biodiversity, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
219
|
Jakob SS, Ihlow A, Blattner FR. Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history ofHordeum marinum(Poaceae) - niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol Ecol 2007; 16:1713-27. [PMID: 17402985 DOI: 10.1111/j.1365-294x.2007.03228.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Hordeum marinum species group consists of two annual grasses of western Eurasian saline meadows or marshes. The two grasses split in the Quaternary about two million years ago. Hordeum marinum and the diploid of Hordeum gussoneanum (2x) co-occur throughout the Mediterranean basin, while the autotetraploid cytotype of H. gussoneanum (4x) overlaps with its diploid progenitor geographically only in the utmost Eastern Mediterranean, extending from there eastwards into Asia. Using chloroplast sequences of the trnL-F region, six newly developed chloroplast microsatellite loci, ecological predictive models based on climate data, and the present geographical distribution of the two species we analysed differentiation processes in the H. marinum group. The chloroplast data indicated clear differences in the history of both species. For H. marinum we found a subdivision between genetically variable populations from the Iberian Peninsula and the more uniform populations from the remaining Mediterranean. As an explanation, we assume Pleistocene fragmentation of an earlier widespread population and survival in an Iberian and a Central Mediterranean glacial refuge. Chloroplast variation was completely absent within the cytotypes of H. gussoneanum, indicating a severe and recent genetic bottleneck. Due to this lack of chloroplast variation only the combination of ecological habitat modelling with molecular data analyses allowed conclusions about the history of this taxon. The distribution areas of the two cytotypes of H. gussoneanum overlap today in parts of Turkey, indicating an area with similar climate conditions during polyploid formation. However, after its origin the polyploid cytotype underwent a pronounced ecological shift, compared to its diploid progenitor, allowing it to colonize mountainous inland habitats between the Mediterranean basin and Afghanistan. The extant sympatric occurrence of H. marinum and H. gussoneanum 2x in the Mediterranean region is interpreted as a result of secondary contact after fast Holocene range expansion out of different ice age refugia.
Collapse
Affiliation(s)
- Sabine S Jakob
- Leibniz Institute of Plant Genetics and Crop Sciences (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany.
| | | | | |
Collapse
|
220
|
Timme RE, Kuehl JV, Boore JL, Jansen RK. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. AMERICAN JOURNAL OF BOTANY 2007; 94:302-12. [PMID: 21636403 DOI: 10.3732/ajb.94.3.302] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have sequenced two complete chloroplast genomes in the Asteraceae, Helianthus annuus (sunflower), and Lactuca sativa (lettuce), which belong to the distantly related subfamilies, Asteroideae and Cichorioideae, respectively. The Helianthus chloroplast genome is 151 104 bp and the Lactuca genome is 152 772 bp long, which is within the usual size range for chloroplast genomes in flowering plants. When compared to tobacco, both genomes have two inversions: a large 22.8-kb inversion and a smaller 3.3-kb inversion nested within it. Pairwise sequence divergence across all genes, introns, and spacers in Helianthus and Lactuca has resulted in the discovery of new, fast-evolving DNA sequences for use in species-level phylogenetics, such as the trnY-rpoB, trnL-rpl32, and ndhC-trnV spacers. Analysis and categorization of shared repeats resulted in seven classes useful for future repeat studies: double tandem repeats, three or more tandem repeats, direct repeats dispersed in the genome, repeats found in reverse complement orientation, hairpin loops, runs of A's or T's in excess of 12 bp, and gene or tRNA similarity. Results from BLAST searches of our genomic sequence against expressed sequence tag (EST) databases for both genomes produced eight likely RNA edited sites (C → U changes). These detailed analyses in Asteraceae contribute to a broader understanding of plastid evolution across flowering plants.
Collapse
Affiliation(s)
- Ruth E Timme
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station C0930, Austin, Texas 78712 USA
| | | | | | | |
Collapse
|
221
|
Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K. The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. JOURNAL OF PLANT RESEARCH 2007; 120:281-90. [PMID: 17297557 DOI: 10.1007/s10265-006-0055-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/25/2006] [Indexed: 05/13/2023]
Abstract
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago.
Collapse
Affiliation(s)
- Sumika Tsuji
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H. The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:339-53. [PMID: 17309688 PMCID: PMC3473179 DOI: 10.1111/j.1467-7652.2007.00245.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25,943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA. Furthermore, whole-genome comparisons identified large indels (> 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)-trnT (GGU) spacer, ycf4-cemA spacer, trnI (GAU) intron and rrn5-trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop.
Collapse
Affiliation(s)
- Nalapalli Samson
- University of Central Florida, Department of Molecular Biology and Microbiology, Biomolecular Science, Building #20, Orlando, FL 32816-2364, USA
| | - Michael G. Bausher
- USDA-ARS, Horticultural Research Laboratory, Fort Pierce, FL 34945-3030, USA
| | - Seung-Bum Lee
- University of Central Florida, Department of Molecular Biology and Microbiology, Biomolecular Science, Building #20, Orlando, FL 32816-2364, USA
| | - Robert K. Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Henry Daniell
- University of Central Florida, Department of Molecular Biology and Microbiology, Biomolecular Science, Building #20, Orlando, FL 32816-2364, USA
| |
Collapse
|
223
|
Zeng WH, Liao SC, Chang CC. Identification of RNA Editing Sites in Chloroplast Transcripts of Phalaenopsis aphrodite and Comparative Analysis with Those of Other Seed Plants. ACTA ACUST UNITED AC 2007; 48:362-8. [PMID: 17169923 DOI: 10.1093/pcp/pcl058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
RNA editing sites were systematically examined for the transcripts of 74 known protein-coding genes in the chloroplasts of Phalaenopsis aphrodite. A total of 44 editing sites were identified in 24 transcripts, the highest reported in seed plants. In addition, 21 editing sites are unique to the Phalaenopsis orchid as compared with other seed plants. All editing is C-to-U conversion, and 42 editing sites bring about the changes in amino acids. One of the remaining two editing sites occurs in the transcripts of the ndhB pseudogene, and another in the 5'-untranslated region of psbH transcripts.
Collapse
Affiliation(s)
- Wun-Hong Zeng
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
224
|
Hayes ML, Hanson MR. Identification of a sequence motif critical for editing of a tobacco chloroplast transcript. RNA (NEW YORK, N.Y.) 2007; 13:281-8. [PMID: 17158709 PMCID: PMC1781371 DOI: 10.1261/rna.295607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/23/2006] [Indexed: 05/07/2023]
Abstract
Nucleotides are specifically and efficiently targeted for modification from C to U within transcripts of chloroplasts in higher plants. Although the enzymatic apparatus responsible for altering C to U has not been identified, the sequences surrounding editing sites are known to contain information essential for efficient editing. We set out to determine the nucleotides that are critical for editing of a particular C, NTpsbE C214, in chloroplast transcripts in tobacco. Assay of editing of substrates with different lengths of 5' and 3' sequence around the target C was carried out to delimit the region of sequence critical for editing in vitro. Mutated substrates were then constructed with an altered nucleotide at each position within the previously defined region around NTpsbE C214. In individual nucleotides, both 5' and 3' of the edited nucleotide were found to be important for editing. The sequence GCCGUU, which occurs 5' of the editing site, was discovered to be critical for editing. Editing substrates mutated to alter the distance between the GCCGUU sequence and NTpsbE C214 resulted in the generation of a new editing target, the 3' adjacent nucleotide. These data are consistent with a model in which the selection of the C target for editing is determined by its distance from a crucial 5' sequence.
Collapse
Affiliation(s)
- Michael L Hayes
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
225
|
Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewski JP, Ferullo JM, Pelissier B, Sailland A, Tissot G. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:118-33. [PMID: 17207262 DOI: 10.1111/j.1467-7652.2006.00226.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is part of the biosynthetic pathway leading to plastoquinone and vitamin E. This enzyme is also the molecular target of various new bleaching herbicides for which genetically engineered tolerant crops are being developed. We have expressed a sensitive bacterial hppd gene from Pseudomonas fluorescens in plastid transformants of tobacco and soybean and characterized in detail the recombinant lines. HPPD accumulates to approximately 5% of total soluble protein in transgenic chloroplasts of both species. As a result, the soybean and tobacco plastid transformants acquire a strong herbicide tolerance, performing better than nuclear transformants. In contrast, the over-expression of HPPD has no significant impact on the vitamin E content of leaves or seeds, quantitatively or qualitatively. A new strategy is presented and exemplified in tobacco which allows the rapid generation of antibiotic marker-free plastid transformants containing the herbicide tolerance gene only. This work reports, for the first time, the plastome engineering for herbicide tolerance in a major agronomic crop, and a technology leading to marker-free lines for this trait.
Collapse
|
226
|
Abstract
In this chapter we provide an overview of cytosine-to-uridine (C-to-U) RNA editing in the plastids of higher plants. Particular emphasis will be placed on the role plastid transformation played in understanding the editing process. We discuss how plastid transformation enabled identification of mRNA cis elements for editing and gave the first insight into the role of editing trans factors. The introduction will be followed by a protocol for plastid transformation, including vector design employed to identify editing cis elements. We also discuss how to test RNA editing in vivo by cDNA sequencing. At the end, we summarize the status of the field and outline future directions.
Collapse
Affiliation(s)
- Kerry A Lutz
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | |
Collapse
|
227
|
Bock R. Structure, function, and inheritance of plastid genomes. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0223] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
228
|
|
229
|
Asakura Y, Barkan A. Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. PLANT PHYSIOLOGY 2006; 142:1656-63. [PMID: 17071648 PMCID: PMC1676066 DOI: 10.1104/pp.106.088096] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chloroplast genomes in plants and green algae contain numerous group II introns, large ribozymes that splice via the same chemical steps as spliceosome-mediated splicing in the nucleus. Most chloroplast group II introns are degenerate, requiring interaction with nucleus-encoded proteins to splice in vivo. Genetic approaches in maize (Zea mays) and Chlamydomonas reinhardtii have elucidated distinct sets of proteins that assemble with chloroplast group II introns and facilitate splicing. Little information is available, however, concerning these processes in Arabidopsis (Arabidopsis thaliana). To determine whether the paucity of data concerning chloroplast splicing factors in Arabidopsis reflects a fundamental difference between protein-facilitated group II splicing in monocot and dicot plants, we examined the mutant phenotypes associated with T-DNA insertions in Arabidopsis genes encoding orthologs of the maize chloroplast splicing factors CRS1, CAF1, and CAF2 (AtCRS1, AtCAF1, and AtCAF2). We show that the splicing functions and intron specificities of these proteins are largely conserved between maize and Arabidopsis, indicating that these proteins were recruited to promote the splicing of plastid group II introns prior to the divergence of monocot and dicot plants. We show further that AtCAF1 promotes the splicing of two group II introns, rpoC1 and clpP-intron 1, that are found in Arabidopsis but not in maize; AtCAF1 is the first splicing factor described for these introns. Finally, we show that a strong AtCAF2 allele conditions an embryo-lethal phenotype, adding to the body of data suggesting that cell viability is more sensitive to the loss of plastid translation in Arabidopsis than in maize.
Collapse
Affiliation(s)
- Yukari Asakura
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
230
|
Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. PLANT CELL REPORTS 2006; 25:1369-79. [PMID: 16835751 DOI: 10.1007/s00299-006-0196-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/29/2006] [Accepted: 06/09/2006] [Indexed: 05/07/2023]
Abstract
The complete nucleotide sequence of the chloroplast genome of potato Solanum tuberosum L. cv. Desiree was determined. The circular double-stranded DNA, which consists of 155,312 bp, contains a pair of inverted repeat regions (IRa, IRb) of 25,595 bp each. The inverted repeat regions are separated by small and large single copy regions of 18,373 and 85,749 bp, respectively. The genome contains 79 proteins, 30 tRNAs, 4 rRNAs, and unidentified genes. A comparison of chloroplast genomes of seven Solanaceae species revealed that the gene content and their relative positions of S. tuberosum are similar to the other six Solanaceae species. However, undefined open reading frames (ORFs) in LSC region were highly diverged in Solanaceae species except N. sylvestris. Detailed comparison was identified by numerous indels in the intergenic regions that were mostly located in the LSC region. Among them, a single large 241-bp deletion, was not associated with direct repeats and found in only S. tuberosum, clearly discriminates a cultivated potato from wild potato species Solanum bulbocastanum. The extent of sequence divergence may provide the basis for evaluating genetic diversity within the Solanaceae species, and will be useful to examine the evolutionary processes in potato landraces.
Collapse
Affiliation(s)
- Hwa-Jee Chung
- Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Yamane K, Yano K, Kawahara T. Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Res 2006; 13:197-204. [PMID: 17110395 DOI: 10.1093/dnares/dsl012] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microstructural changes such as insertions and deletions (=indels) are a major driving force in the evolution of non-coding DNA sequences. To better understand the mechanisms by which indel mutations arise, as well as the molecular evolution of non-coding regions, the number and pattern of indels and nucleotide substitutions were compared in the whole chloroplast genomes. Comparisons were made for a total of over 38 kb non-coding DNA sequences from 126 intergenic regions in two data sets representing species with different divergence times: sugarcane and maize and Oryza sativa var. indica and japonica. The main findings of this study are: (i) Approximately half of all indels are single nucleotide indels. This observation agrees with previous studies in various organisms. (ii) The distribution and number of indels was different between two data sets, and different patterns were observed for tandem repeat and non-repeat indels. (iii) Distribution pattern of tandem repeat indels showed statistically significant bias towards A/T-rich. (iv) The rate of indel mutation was estimated to be approximately 0.8 +/- 0.04 x 10(-9) per site per year, which was similar to previous estimates in other organisms. (v) The frequencies of nucleotide substitutions and indels were significantly lower in inverted repeat (IR).
Collapse
Affiliation(s)
- Kyoko Yamane
- Laboratory of Crop evolution, Graduate School of Agriculture, Kyoto University Nakajoh, Mozume, Mukoh 617-0001, Japan
| | | | | |
Collapse
|
232
|
Choury D, Araya A. RNA editing site recognition in heterologous plant mitochondria. Curr Genet 2006; 50:405-16. [PMID: 17033819 DOI: 10.1007/s00294-006-0100-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
RNA editing is a process that modifies the information content of mitochondrial messenger RNAs in flowering plants changing specific cytosine residues into uridine. To gain insight into editing site recognition, we used electroporation to introduce engineered wheat (Triticum aestivum) or potato (Solanum tuberosum) mitochondrial cox2 genes, and an atp9-containing chimeric gene, into non-cognate mitochondria, and observed the efficiency of editing in these contexts. Both wheat and potato mitochondria were able to express "foreign" constructs, and their products were properly spliced. Seventeen and twelve editing sites are present in the coding regions of wheat and potato cox2 transcripts, respectively. Eight are common to both plants, whereas nine are specific to wheat, and four to potato. An analogous situation is found for the atp9 mRNA coding regions from these species. We found that both mitochondria were able to recognize sites that are already present as T at the genomic level, making RNA editing unnecessary for that specific residue in the cognate organelle. Our results demonstrate that non-cognate mitochondria are able to edit residues that are not edited in their own transcripts, and support the hypothesis that the same trans-acting factor may recognize several editing sites.
Collapse
Affiliation(s)
- David Choury
- Laboratoire de Réplication et Expression des Génomes Eucaryotes et Rétroviraux, UMR 5097, Centre National de la Recherche Scientifique and Université Victor, Segalen Bordeaux II, 146, Bordeaux Cedex, France
| | | |
Collapse
|
233
|
Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 2006; 6:77. [PMID: 17020608 PMCID: PMC1626487 DOI: 10.1186/1471-2148-6-77] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 10/04/2006] [Indexed: 11/20/2022] Open
Abstract
Background The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content. Results The Drimys, Liriodendron, and Piper plastid genomes are very similar in size at 160,604, 159,886 bp, and 160,624 bp, respectively. Gene content and order are nearly identical to many other unrearranged angiosperm plastid genomes, including Calycanthus, the other published magnoliid genome. Overall GC content ranges from 34–39%, and coding regions have a substantially higher GC content than non-coding regions. Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Phylogenetic analyses using parsimony and likelihood methods and sequences of 61 protein-coding genes provided strong support for the monophyly of magnoliids and two strongly supported groups were identified, the Canellales/Piperales and the Laurales/Magnoliales. Strong support is reported for monocots and eudicots as sister clades with magnoliids diverging before the monocot-eudicot split. The trees also provided moderate or strong support for the position of Amborella as sister to a clade including all other angiosperms. Conclusion Evolutionary comparisons of three new magnoliid plastid genome sequences, combined with other published angiosperm genomes, confirm that GC content is unevenly distributed across the genome by location, codon position, and functional group. Furthermore, phylogenetic analyses provide the strongest support so far for the hypothesis that the magnoliids are sister to a large clade that includes both monocots and eudicots.
Collapse
Affiliation(s)
- Zhengqiu Cai
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Cynthia Penaflor
- Biology Department, 373 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - Jennifer V Kuehl
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598, USA
| | | | - John E Carlson
- School of Forest Resources and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Claude W dePamphilis
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeffrey L Boore
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598, USA
| | - Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
234
|
Roberson LM, Rosenthal JJC. An accurate fluorescent assay for quantifying the extent of RNA editing. RNA (NEW YORK, N.Y.) 2006; 12:1907-12. [PMID: 16957279 PMCID: PMC1581973 DOI: 10.1261/rna.166906] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/21/2006] [Indexed: 05/07/2023]
Abstract
Recent data suggest that small differences in editing efficiency can have significant functional consequences. Here we present a fluorescent poisoned primer extension assay that is capable of distinguishing editing efficiency differences as low as 5%. For a poison-primer extension assay to be accurate, the extension product must stop at the intended base. Sometimes, however, it runs beyond. We tested the effect of specific enzyme-terminator combinations on the amount of run through. In the worst cases it accounted for 70% of the total signal, and in the best cases <5%. In addition, the specific base can affect run through, with G producing the least. The accuracy of the assay was demonstrated on templates derived from mixed plasmids and then verified on two biological substrates. Using either a K(+) channel mRNA that contains a site for adenosine deamination or an ndhB mRNA that contains a site for cytidine deamination, the editing efficiency predicted by the assay closely matched that predicted by bulk sequencing of individual cDNA clones. This assay should prove useful for analyzing small changes in editing efficiency or for quantifying single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Loretta M Roberson
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico 00901
| | | |
Collapse
|
235
|
Abstract
RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template. Different RNA-editing systems are found in the major eukaryotic lineages, and these systems are thought to have evolved independently. In this study, we provide a detailed analysis of data on C-to-U editing sites in land plant chloroplasts and propose a model for the evolution of RNA editing in land plants. First, our data suggest that the limited RNA-editing system of seed plants and the much more extensive systems found in hornworts and ferns are of monophyletic origin. Further, although some eukaryotic editing systems appear to have evolved to regulate gene expression, or at least are now involved in gene regulation, there is no evidence that RNA editing plays a role in gene regulation in land plant chloroplasts. Instead, our results suggest that land plant chloroplast C-to-U RNA editing originated as a mechanism to generate variation at the RNA level, which could complement variation at the DNA level. Under this model, many of the original sites, particularly in seed plants, have been subsequently lost due to mutation at the DNA level, and the function of extant sites is merely to conserve certain codons. This is the first comprehensive model for the evolution of the chloroplast RNA-editing system of land plants and may also be applicable to the evolution of RNA editing in plant mitochondria.
Collapse
Affiliation(s)
- Michael Tillich
- Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
236
|
Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A. A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. THE PLANT CELL 2006; 18:2650-63. [PMID: 17041147 PMCID: PMC1626628 DOI: 10.1105/tpc.106.046110] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/23/2006] [Accepted: 09/18/2006] [Indexed: 05/12/2023]
Abstract
The pentatricopeptide repeat (PPR) is a degenerate 35-amino acid repeat motif that is widely distributed among eukaryotes. Genetic, biochemical, and bioinformatic data suggest that many PPR proteins influence specific posttranscriptional steps in mitochondrial or chloroplast gene expression and that they may typically bind RNA. However, biological functions have been determined for only a few PPR proteins, and with few exceptions, substrate RNAs are unknown. To gain insight into the functions and substrates of the PPR protein family, we characterized the maize (Zea mays) nuclear gene ppr4, which encodes a chloroplast-targeted protein harboring both a PPR tract and an RNA recognition motif. Microarray analysis of RNA that coimmunoprecipitates with PPR4 showed that PPR4 is associated in vivo with the first intron of the plastid rps12 pre-mRNA, a group II intron that is transcribed in segments and spliced in trans. ppr4 mutants were recovered through a reverse-genetic screen and shown to be defective for rps12 trans-splicing. The observations that PPR4 is associated in vivo with rps12-intron 1 and that it is also required for its splicing demonstrate that PPR4 is an rps12 trans-splicing factor. These findings add trans-splicing to the list of RNA-related functions associated with PPR proteins and suggest that plastid group II trans-splicing is performed by different machineries in vascular plants and algae.
Collapse
|
237
|
Presting GG. Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-117] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All oligonucleotides of the sugarcane chloroplast genome that are conserved in one or more of 36 other completed plastid genomes have been identified by computer-assisted sequence comparison. These regions are of interest because they (i) are indicative of strong selection pressures to maintain specific nucleotide sequences that may yield insights into plastid biology and (ii) can be used as priming sites for amplifying intervening sequences that represent potential DNA barcodes for species identification. The majority of conserved sites are located in the inverted repeat (IR) region, but several sites in the single copy region (predominantly in tRNA and psa/psb genes) are conserved among chloroplasts of all higher plants examined here. Of particular interest are protein coding regions that have been conserved at the nucleotide level, as these may be involved in transcript regulation. This analysis also provides the basis for rational design of a DNA barcode for plastids, and several potential barcode regions have been identified. In particular, two oligonucleotides of length 33 and 25, and separated by approximately 362 nucleotides, are found in all cyanobacteria, red, brown and green algae, as well as diatoms, euglenids, apicomplexans and land plants that have been examined to date. Their widespread occurrence makes the intervening sequence a universal marker for all photosynthetic lineages. Analysis of 160 GenBank accessions illustrates that this region discriminates many algae at the species level, but lacks sufficient variation among the more recently diverged land plants to serve as a single DNA barcode for this taxon. However, this marker should be particularly useful for the DNA barcoding of algal lineages and lichens, as well as for environmental sampling. More rapidly evolving regions of the plastid genome also identified here serve as a starting point to design and test barcodes for more narrowly defined lineages, including the more recently diverged angiosperms.
Collapse
Affiliation(s)
- Gernot G. Presting
- Department of Molecular Biosciences and Bioengineering, 1955 East-West Road, Agricultural Science Building Room 218, University of Hawaii, Honolulu, HI 96822, USA (e-mail: )
| |
Collapse
|
238
|
Sasaki T, Yukawa Y, Wakasugi T, Yamada K, Sugiura M. A simple in vitro RNA editing assay for chloroplast transcripts using fluorescent dideoxynucleotides: distinct types of sequence elements required for editing of ndh transcripts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:802-10. [PMID: 16856984 DOI: 10.1111/j.1365-313x.2006.02825.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA editing is found in various transcripts from land plant chloroplasts. In tobacco chloroplasts, C-to-U conversion occurs at 36 specific sites including two sites identified in this work. Our RNA editing assay system using chloroplast extracts facilitated biochemical analyses of editing reactions but required mRNAs labeled with (32)P at specific sites. Here, we have improved the in vitro system using fluorescence-labeled chain terminators, ddGTP and ddATP, and have measured the editing activity at 19 sites in ndh transcripts. Editing activities varied from site to site. It has been reported that one editing site in ndhA mRNAs is present in spinach but absent in tobacco, but a corresponding editing capacity had been found in vivo in tobacco using biolistic transformation. We confirmed biochemically the existence of this activity in tobacco extracts. Using the non-radioactive assay, we examined sequences essential for editing within a 50-nt mRNA region encompassing an editing site. Editing of the ndhB-2 site requires a short sequence in front of the editing site, while that of the ndhF mRNA requires two separate regions, a sequence surrounding the editing site and a 5' distal sequence. These results suggest that distinct editing mechanisms are present in chloroplasts.
Collapse
Affiliation(s)
- Tadamasa Sasaki
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501, Japan
| | | | | | | | | |
Collapse
|
239
|
Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 2006; 7:222. [PMID: 16945140 PMCID: PMC1579219 DOI: 10.1186/1471-2164-7-222] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/31/2006] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. RESULTS The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. CONCLUSION The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.
Collapse
Affiliation(s)
- Tracey Ruhlman
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Room 336, Orlando, FL 32816-2364, USA
| | - Seung-Bum Lee
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Room 336, Orlando, FL 32816-2364, USA
| | - Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Jessica B Hostetler
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Luke J Tallon
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Christopher D Town
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Henry Daniell
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Room 336, Orlando, FL 32816-2364, USA
| |
Collapse
|
240
|
Rogalski M, Ruf S, Bock R. Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 2006; 34:4537-45. [PMID: 16945948 PMCID: PMC1636375 DOI: 10.1093/nar/gkl634] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/06/2006] [Accepted: 08/11/2006] [Indexed: 11/16/2022] Open
Abstract
Plastid genomes contain a conserved set of genes most of which are involved in either photosynthesis or gene expression. Among the ribosomal protein genes present in higher plant plastid genomes, rps18 is special in that it is absent from the plastid genomes of several non-green unicellular organisms, including Euglena longa and Toxoplasma gondii. Here we have tested whether the ribosomal protein S18 is required for translation by deleting the rps18 gene from the tobacco plastid genome. We report that, while deletion of the rps18 gene was readily obtained, no homoplasmic Deltarps18 plants or leaf sectors could be isolated. Instead, segregation into homoplasmy led to severe defects in leaf development suggesting that the knockout of rps18 is lethal and the S18 protein is required for cell survival. Our data demonstrate that S18 is indispensable for plastid ribosome function in tobacco and support an essential role for plastid translation in plant development. Moreover, we demonstrate the occurrence of flip-flop recombination on short inverted repeat sequences which generates different isoforms of the transformed plastid genome that differ in the orientation a 70 kb segment in the large single-copy region. However, infrequent occurrence of flip-flop recombination and random segregation of plastid genomes result in the predominant presence of only one of the isoforms in many tissue samples. Implications for the interpretation of chloroplast transformation experiments and vector design are discussed.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1D-14476 Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1D-14476 Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1D-14476 Golm, Germany
| |
Collapse
|
241
|
Goremykin VV, Hellwig FH. A new test of phylogenetic model fitness addresses the issue of the basal angiosperm phylogeny. Gene 2006; 381:81-91. [PMID: 16959440 DOI: 10.1016/j.gene.2006.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/28/2006] [Accepted: 07/02/2006] [Indexed: 10/24/2022]
Abstract
We readdress the issue of phylogeny of the basal extant angiosperms employing a source previously not systematically investigated, specifically, the non-coding sequences of cpDNA. Comparison of trees with and without grasses or the outgroup (Pinus) in our analyses revealed no rearrangements in tree topology that might be expected if LBA were distorting the position of the magnoliids. For each model applied, irrespective of whether monocots or ANITA members appeared basally divergent, the orchid Phalaenopsis assumed the same position on the trees with the reduced taxon set as did the branch bearing the orchid plus the grasses in the full alignment. However, our new test of model fitness revealed a different flaw influencing the placement of monocots, which is related to model mis-specification. This flaw similarly affects the full alignment and the alignment with grasses removed. In both cases the models favouring a relatively derived position for the monocots and basal placement of the branch of Amborella plus Nymphaea provide better overall prediction of the observed data structure. In the view of apparent unsuitability of the bootstrap method for large data sets, our novel test provides a new means of exploring conflicts caused by systematic errors in phylogenetic analyses.
Collapse
Affiliation(s)
- Vadim V Goremykin
- Institut für Spezielle Botanik, Universität Jena, Philosophenweg 16, D-07743 Jena, Germany.
| | | |
Collapse
|
242
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 2006. [PMID: 16830097 DOI: 10.1007/s00239‐005‐0254‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
243
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the Tomato Chloroplast DNA and Evolutionary Comparison of Solanaceous Plastid Genomes. J Mol Evol 2006; 63:194-207. [PMID: 16830097 DOI: 10.1007/s00239-005-0254-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant/genetics
- Genome, Plant/genetics
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Phylogeny
- Plastids/genetics
- RNA Editing/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanaceae/genetics
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
244
|
Darie CC, De Pascalis L, Mutschler B, Haehnel W. Studies of the Ndh complex and photosystem II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:800-8. [PMID: 16436305 DOI: 10.1016/j.jplph.2005.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 11/05/2005] [Indexed: 05/06/2023]
Abstract
In C(4) plants, granal mesophyll (MS) chloroplasts contain higher photosystem (PS) II and lower PS I activity than agranal bundle sheath (BS) chloroplasts. The maize NAD(P)H dehydrogenase or NAD(P)H-plastoquinone oxidoreductase (also named Ndh complex) from MS and BS chloroplasts, contains at least 11 subunits (NdhA-K) and is homologous to NADH dehydrogenase or Complex I from mitochondria and bacteria. The amount of Ndh complex is higher in BS compared with MS chloroplasts. However, there is little information about the interdependence of the PS II and Ndh complex in chlororespiration and linear and cyclic electron transport in C(4) plants. To characterize the expression of the PS II and Ndh complex in maize plastids, we used cytochrome b559 (cyt b559) antibodies and Ndh immunoglobulins (IgG) to analyze the Ndh complex and PS II in both MS and BS chloroplasts from maize leaves by Western blotting and immunolabeling. In Western blot experiments, it was found that the amount of cyt b559 (a marker for PS II) is 7-8 times higher in MS than BS chloroplasts. Conversely, the NdhH, -J, -K and -E content is 2.5-3 times higher in BS than MS chloroplasts. Similar results were obtained in immunolabeling experiments using Ndh IgGs and cyt b559 antibodies in MS and BS chloroplasts. These data suggest that in BS chloroplasts, ATP could be produced mainly by cyclic electron transport around PS I and Ndh complexes. Conversely, the linear electron transport in BS chloroplasts via PS II could have a lower production of ATP. These results also suggest that the contribution of the Ndh complex in the production of ATP in MS chloroplasts is minimal and that instead, this complex could have a chlororespiratory role.
Collapse
Affiliation(s)
- Costel C Darie
- Brookdale Department of Molecular, Cell & Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY 10029-6574, USA.
| | | | | | | |
Collapse
|
245
|
Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1503-18. [PMID: 16575560 DOI: 10.1007/s00122-006-0254-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/24/2006] [Indexed: 05/07/2023]
Abstract
Despite the agricultural importance of both potato and tomato, very little is known about their chloroplast genomes. Analysis of the complete sequences of tomato, potato, tobacco, and Atropa chloroplast genomes reveals significant insertions and deletions within certain coding regions or regulatory sequences (e.g., deletion of repeated sequences within 16S rRNA, ycf2 or ribosomal binding sites in ycf2). RNA, photosynthesis, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. Repeat analyses identified 33-45 direct and inverted repeats >or=30 bp with a sequence identity of at least 90%; all but five of the repeats shared by all four Solanaceae genomes are located in the same genes or intergenic regions, suggesting a functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in chloroplast genomes. Only four spacer regions are fully conserved (100% sequence identity) among all genomes; deletions or insertions within some intergenic spacer regions result in less than 25% sequence identity, underscoring the importance of choosing appropriate intergenic spacers for plastid transformation and providing valuable new information for phylogenetic utility of the chloroplast intergenic spacer regions. Comparison of coding sequences with expressed sequence tags showed considerable amount of variation, resulting in amino acid changes; none of the C-to-U conversions observed in potato and tomato were conserved in tobacco and Atropa. It is possible that there has been a loss of conserved editing sites in potato and tomato.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Molecular Biology & Microbiology, Biomolecular Science, University of Central Florida, 4000 Central Florida Blvd, Bldg # 20, Room 336, Orlando, FL 32816-2364, USA.
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 2006; 6:32. [PMID: 16603088 PMCID: PMC1479384 DOI: 10.1186/1471-2148-6-32] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 04/09/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. RESULTS The Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum likelihood analyses place Cucumis as sister to the Myrtales and therefore do not support the monophyly of the eurosid I clade. CONCLUSION Phylogenies based on DNA sequences from complete chloroplast genome sequences provide strong support for the position of the Vitaceae as the earliest diverging lineage of rosids. Our phylogenetic analyses support recent assertions that inadequate taxon sampling and incorrect model specification for concatenated multi-gene data sets can mislead phylogenetic inferences when using whole chloroplast genomes for phylogeny reconstruction.
Collapse
Affiliation(s)
- Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Charalambos Kaittanis
- University of Central Florida, Dept. of Molecular Biology & Microbiology, Biomolecular Science, Building #20, Orlando, FL 32816-2364, USA
| | - Christopher Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51, New Cherry Street, SC 29634, USA
| | - Seung-Bum Lee
- University of Central Florida, Dept. of Molecular Biology & Microbiology, Biomolecular Science, Building #20, Orlando, FL 32816-2364, USA
| | - Jeffrey Tomkins
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51, New Cherry Street, SC 29634, USA
| | - Andrew J Alverson
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Henry Daniell
- University of Central Florida, Dept. of Molecular Biology & Microbiology, Biomolecular Science, Building #20, Orlando, FL 32816-2364, USA
| |
Collapse
|
247
|
Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:85-94. [PMID: 16553897 DOI: 10.1111/j.1365-313x.2006.02673.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Asexual reproduction is believed to be detrimental, mainly because of the accumulation of deleterious mutations over time, a hypothesis known as Muller's ratchet. In seed plants, most asexually reproducing genetic systems are polyploid, with apomictic species (plants forming seeds without fertilization) as well as plastids and mitochondria providing prominent examples. Whether or not polyploidy helps asexual genetic systems to escape Muller's ratchet is unknown. Gene conversion, particularly when slightly biased, represents a potential mechanism that could allow asexual genetic systems to reduce their mutation load in a genome copy number-dependent manner. However, direct experimental evidence for the operation of gene conversion between genome molecules to correct mutations is largely lacking. Here we describe an experimental system based on transgenic tobacco chloroplasts that allows us to analyze gene conversion events in higher plant plastid genomes. We provide evidence for gene conversion acting as a highly efficient mechanism by which the polyploid plastid genetic system can correct deleterious mutations and make one good genome out of two bad ones. Our finding that gene conversion can be biased may provide a molecular link between asexual reproduction, high genome copy numbers and low mutation rates.
Collapse
Affiliation(s)
- Olga Khakhlova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
248
|
Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H. The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 2006; 7:61. [PMID: 16553962 PMCID: PMC1513215 DOI: 10.1186/1471-2164-7-61] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/23/2006] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cotton (Gossypium hirsutum) is the most important fiber crop grown in 90 countries. In 2004-2005, US farmers planted 79% of the 5.7-million hectares of nuclear transgenic cotton. Unfortunately, genetically modified cotton has the potential to hybridize with other cultivated and wild relatives, resulting in geographical restrictions to cultivation. However, chloroplast genetic engineering offers the possibility of containment because of maternal inheritance of transgenes. The complete chloroplast genome of cotton provides essential information required for genetic engineering. In addition, the sequence data were used to assess phylogenetic relationships among the major clades of rosids using cotton and 25 other completely sequenced angiosperm chloroplast genomes. RESULTS The complete cotton chloroplast genome is 160,301 bp in length, with 112 unique genes and 19 duplicated genes within the IR, containing a total of 131 genes. There are four ribosomal RNAs, 30 distinct tRNA genes and 17 intron-containing genes. The gene order in cotton is identical to that of tobacco but lacks rpl22 and infA. There are 30 direct and 24 inverted repeats 30 bp or longer with a sequence identity > or = 90%. Most of the direct repeats are within intergenic spacer regions, introns and a 72 bp-long direct repeat is within the psaA and psaB genes. Comparison of protein coding sequences with expressed sequence tags (ESTs) revealed nucleotide substitutions resulting in amino acid changes in ndhC, rpl23, rpl20, rps3 and clpP. Phylogenetic analysis of a data set including 61 protein-coding genes using both maximum likelihood and maximum parsimony were performed for 28 taxa, including cotton and five other angiosperm chloroplast genomes that were not included in any previous phylogenies. CONCLUSION Cotton chloroplast genome lacks rpl22 and infA and contains a number of dispersed direct and inverted repeats. RNA editing resulted in amino acid changes with significant impact on their hydropathy. Phylogenetic analysis provides strong support for the position of cotton in the Malvales in the eurosids II clade sister to Arabidopsis in the Brassicales. Furthermore, there is strong support for the placement of the Myrtales sister to the eurosid I clade, although expanded taxon sampling is needed to further test this relationship.
Collapse
Affiliation(s)
- Seung-Bum Lee
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Orlando, FL 32816–2364, USA
| | - Charalambos Kaittanis
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Orlando, FL 32816–2364, USA
| | - Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Jessica B Hostetler
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Luke J Tallon
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Christopher D Town
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Henry Daniell
- Dept. of Molecular Biology & Microbiology, University of Central Florida, Biomolecular Science, Building #20, Orlando, FL 32816–2364, USA
| |
Collapse
|
249
|
Tillich M, Poltnigg P, Kushnir S, Schmitz-Linneweber C. Maintenance of plastid RNA editing activities independently of their target sites. EMBO Rep 2006; 7:308-13. [PMID: 16415790 PMCID: PMC1456890 DOI: 10.1038/sj.embor.7400619] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 11/22/2005] [Accepted: 11/30/2005] [Indexed: 11/08/2022] Open
Abstract
RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell.
Collapse
Affiliation(s)
- Michael Tillich
- Cell Biology, Philipps-University Marburg, Karl-von-Frisch-Strasse, 35032 Marburg, Germany
| | - Peter Poltnigg
- Cell Biology, Philipps-University Marburg, Karl-von-Frisch-Strasse, 35032 Marburg, Germany
| | - Sergei Kushnir
- Department of Plant Systems Biology, Ghent University/Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Technology Park 927, 9052 Ghent, Belgium
| | | |
Collapse
|
250
|
Ibrahim RIH, Azuma JI, Sakamoto M. Complete Nucleotide Sequence of the Cotton (Gossypium barbadense L.) Chloroplast Genome with a Comparative Analysis of Sequences among 9 Dicot Plants. Genes Genet Syst 2006; 81:311-21. [PMID: 17159292 DOI: 10.1266/ggs.81.311] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recently, the complete chloroplast genome sequences of many important crop plants were determined, and this can be considered a major step forward toward exploiting the usefulness of chloroplast genetic engineering technology. Economically, cotton is one of the most important crop plants for many countries. To further our understanding of this important crop, we determined the complete nucleotide sequence of the chloroplast genome from cotton (Gossypium barbadense L.). The chloroplast genome of cotton is 160,317 base pairs (bp) in length, and is composed of a large single copy (LSC) of 88,841 bp, a small single copy (SSC) of 20,294 bp, and two identical inverted repeat (IR) regions of 25,591 bp each. The genome contains 114 unique genes, of which 17 genes are duplicated in the IRs. In addition, many open reading frames (ORFs) and hypothetical chloroplast reading frames (ycfs) with unknown functions were deduced. Compared to the chloroplast genomes from 8 other dicot plants, the cotton chloroplast genome showed a high degree of similarity of the overall structure, gene organization, and gene content. Furthermore, the sequences of the genes showed high degrees of identity at the DNA and amino acid levels. The cotton chloroplast genome was somewhat longer than the chloroplast genomes of most of the other dicot plants compared here. However, this elongation of the cotton chloroplast genome was found to be due mainly to expansions of the intergenic regions and introns (non-coding DNA). Moreover, these expansions occurred predominantly in the LSC and SSC regions.
Collapse
|