201
|
|
202
|
Fatourechi M, Birch GE, Ward RK. A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms. J Comput Neurosci 2007; 23:21-37. [PMID: 17216365 DOI: 10.1007/s10827-006-0017-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/27/2006] [Accepted: 12/12/2006] [Indexed: 11/24/2022]
Abstract
Movement execution results in the simultaneous generation of movement-related potentials (MRP) as well as changes in the power of Mu and Beta rhythms. This paper proposes a new self-paced multi-channel BI that combines features extracted from MRPs and from changes in the power of Mu and Beta rhythms. We developed a new algorithm to classify the high-dimensional feature space. It uses a two-stage multiple-classifier system (MCS). First, an MCS classifies each neurological phenomenon separately using the information extracted from specific EEG channels (EEG channels are selected by a genetic algorithm). In the second stage, another MCS combines the outputs of MCSs developed in the first stage. Analysis of the data of four able-bodied subjects shows the superior performance of the proposed algorithm compared with a scheme where the features were all combined in a single feature vector and then classified.
Collapse
Affiliation(s)
- Mehrdad Fatourechi
- Department of Electrical and Computer Engineering, University of British Columbia, 2356 Main Mall, Vancouver, BC, Canada, V6T 1Z4.
| | | | | |
Collapse
|
203
|
Colebatch JG. Bereitschaftspotential and movement-related potentials: Origin, significance, and application in disorders of human movement. Mov Disord 2007; 22:601-10. [PMID: 17260337 DOI: 10.1002/mds.21323] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The existence of a slow negative wave, the Bereitschaftspotential ("BP"), preceding voluntary movement by 1 second or more was first reported more than 40 years ago. There appears to be considerable interindividual differences, but there is general agreement that the initial negativity actually consists of two distinct phases. Uncertainty remains about many other properties and features of the response, including nomenclature, which makes the existing literature difficult to synthesize. The duration of the premovement negativity raises questions about how and when voluntary movement is initiated. Premovement negativities can also be seen before (predictably) externally paced movement, and these have similarities to the BP. Although lateralized generators exist, it is likely that the majority of the early component of the BP (BP1 or early BP), arises from the anterior supplementary motor area (SMA) and more rostral pre-SMA. The late phase of the BP (BP2 or late BP) is probably generated by activity in both the SMA proper and the contralateral motor cortex. Changes in the BP occur in several movement disorders, notably Parkinson's disease, in which the pattern is consistent with a failure of pre-SMA activation. The presence (or absence) of a clear preceding negativity can also have diagnostic importance for certain movement disorders.
Collapse
Affiliation(s)
- James G Colebatch
- Department of Neurology, Prince of Wales Hospital and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
204
|
Fatourechi M, Bashashati A, Birch GE, Ward RK. Automatic user customization for improving the performance of a self-paced brain interface system. Med Biol Eng Comput 2006; 44:1093-104. [PMID: 17111117 DOI: 10.1007/s11517-006-0125-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Customizing the parameter values of brain interface (BI) systems by a human expert has the advantage of being fast and computationally efficient. However, as the number of users and EEG channels grows, this process becomes increasingly time consuming and exhausting. Manual customization also introduces inaccuracies in the estimation of the parameter values. In this paper, the performance of a self-paced BI system whose design parameter values were automatically user customized using a genetic algorithm (GA) is studied. The GA automatically estimates the shapes of movement-related potentials (MRPs), whose features are then extracted to drive the BI. Offline analysis of the data of eight subjects revealed that automatic user customization improved the true positive (TP) rate of the system by an average of 6.68% over that whose customization was carried out by a human expert, i.e., by visually inspecting the MRP templates. On average, the best improvement in the TP rate (an average of 9.82%) was achieved for four individuals with spinal cord injury. In this case, the visual estimation of the parameter values of the MRP templates was very difficult because of the highly noisy nature of the EEG signals. For four able-bodied subjects, for which the MRP templates were less noisy, the automatic user customization led to an average improvement of 3.58% in the TP rate. The results also show that the inter-subject variability of the TP rate is also reduced compared to the case when user customization is carried out by a human expert. These findings provide some primary evidence that automatic user customization leads to beneficial results in the design of a self-paced BI for individuals with spinal cord injury.
Collapse
Affiliation(s)
- Mehrdad Fatourechi
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | |
Collapse
|
205
|
Bender S, Oelkers-Ax R, Resch F, Weisbrod M. Frontal lobe involvement in the processing of meaningful auditory stimuli develops during childhood and adolescence. Neuroimage 2006; 33:759-73. [PMID: 16934494 DOI: 10.1016/j.neuroimage.2006.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/18/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022] Open
Abstract
Auditory event-related N1b reflects attention-related processing in bilateral temporal auditory cortex. Frontal contributions indicating an orienting reaction have been suggested. We analyzed the maturation of frontal contributions to the auditory event-related potential following the warning stimulus in a contingent negative variation (CNV) task by high-resolution current source density mapping and spatio-temporal source analysis in 80 healthy subjects and 121 primary headache patients (migraine with/without aura, tension type headache) from 6 to 18 years; as increased orienting responses and disturbed maturation have been described in migraineurs. A selective local increase of N1b with age occurred at mid-frontocentral leads. This increase could not be explained sufficiently by overlapping bilateral temporal sources but pointed towards additional frontal activation over the supplementary motor area (SMA) in adolescents which was absent in children. A second frontal N1 component peaked about 50 ms later, showed an earlier maturation and has been suggested to reflect early response selection processes in the anterior cingulate. Primary headache patients showed the same component structure and developmental trajectory as healthy subjects without significant influences of differential diagnosis. We conclude that: (1) Brain maturation crucially influences N1b. (2) Two frontal lobe N1 components can be dissociated in their maturational trajectory. (3) Early SMA activation could be elicited by rare auditory stimuli from about 12 years on, allowing fast sensory-motor coupling without previous categorical stimulus classification. (4) Primary headache patients did not differ in their maturation of frontal or temporal contributions to N1b when elicited by moderately loud short tone bursts.
Collapse
Affiliation(s)
- Stephan Bender
- Department for Child and Adolescent Psychiatry, Psychiatric Hospital, University of Heidelberg, Blumenstrasse 8, D-69115 Heidelberg, Germany.
| | | | | | | |
Collapse
|
206
|
Szurhaj W, Labyt E, Bourriez JL, Kahane P, Chauvel P, Mauguière F, Derambure P. Relationship between intracerebral gamma oscillations and slow potentials in the human sensorimotor cortex. Eur J Neurosci 2006; 24:947-54. [PMID: 16930422 DOI: 10.1111/j.1460-9568.2006.04876.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in sensorimotor rhythms (mu, beta and gamma) and movement-related cortical potentials (MRCPs) are both generated principally by the contralateral sensorimotor areas during the execution of self-paced movement. They appear to reflect movement control mechanisms, which remain partially unclear. With the aim of better understanding their sources and significance, we recorded MRCPs and sensorimotor rhythms during and after self-paced movement using intracerebral electrodes in eight epileptic subjects investigated by stereoelectroencephalography. The results showed that: (i) there is a strong spatial relationship between the late components of movement--the so-called motor potential (MP) and post-movement complex (PMc)--and gamma event-related synchronization (ERS) within the 40-60 Hz band, as the MP/PMc always occurred in contacts displaying gamma ERS (the primary sensorimotor areas), whereas mu and beta reactivities were more diffuse; and (ii) MPs and PMc are both generated by the primary motor and somatosensory areas, but with distinct sources. Hence, this could mean that kinesthesic sensory afferences project to neurons other than those firing during the pyramidal tract volley. The PMc and low gamma ERS represent two electrophysiological facets of kinesthesic feedback from the joints and muscles involved in the movement to the sensorimotor cortex. It could be suggested that gamma oscillations within the 40-60 Hz band could serve to synchronize the activities of the various neuronal populations involved in control of the ongoing movement.
Collapse
Affiliation(s)
- William Szurhaj
- EA 2683, Service de Neurophysiologie Clinique, CHRU Lille, France.
| | | | | | | | | | | | | |
Collapse
|
207
|
Shibasaki H, Hallett M. What is the Bereitschaftspotential? Clin Neurophysiol 2006; 117:2341-56. [PMID: 16876476 DOI: 10.1016/j.clinph.2006.04.025] [Citation(s) in RCA: 731] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/28/2006] [Accepted: 04/28/2006] [Indexed: 12/11/2022]
Abstract
Since discovery of the slow negative electroencephalographic (EEG) activity preceding self-initiated movement by Kornhuber and Deecke [Kornhuber HH, Deecke L. Hirnpotentialänderungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Archiv 1965;284:1-17], various source localization techniques in normal subjects and epicortical recording in epilepsy patients have disclosed the generator mechanisms of each identifiable component of movement-related cortical potentials (MRCPs) to some extent. The initial slow segment of BP, called 'early BP' in this article, begins about 2 s before the movement onset in the pre-supplementary motor area (pre-SMA) with no site-specificity and in the SMA proper according to the somatotopic organization, and shortly thereafter in the lateral premotor cortex bilaterally with relatively clear somatotopy. About 400 ms before the movement onset, the steeper negative slope, called 'late BP' in this article (also referred to as NS'), occurs in the contralateral primary motor cortex (M1) and lateral premotor cortex with precise somatotopy. These two phases of BP are differentially influenced by various factors, especially by complexity of the movement which enhances only the late BP. Event-related desynchronization (ERD) of beta frequency EEG band before self-initiated movements shows a different temporospatial pattern from that of the BP, suggesting different neuronal mechanisms for the two. BP has been applied for investigating pathophysiology of various movement disorders. Volitional motor inhibition or muscle relaxation is preceded by BP quite similar to that preceding voluntary muscle contraction. Since BP of typical waveforms and temporospatial pattern does not occur before organic involuntary movements, BP is used for detecting the participation of the 'voluntary motor system' in the generation of apparently involuntary movements in patients with psychogenic movement disorders. In view of Libet et al.'s report [Libet B, Gleason CA, Wright EW, Pearl DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 1983;106:623-642] that the awareness of intention to move occurred much later than the onset of BP, the early BP might reflect, physiologically, slowly increasing cortical excitability and, behaviorally, subconscious readiness for the forthcoming movement. Whether the late BP reflects conscious preparation for intended movement or not remains to be clarified.
Collapse
Affiliation(s)
- Hiroshi Shibasaki
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA.
| | | |
Collapse
|
208
|
Blankertz B, Dornhege G, Krauledat M, Müller KR, Kunzmann V, Losch F, Curio G. The Berlin brain-computer interface: EEG-based communication without subject training. IEEE Trans Neural Syst Rehabil Eng 2006; 14:147-52. [PMID: 16792281 DOI: 10.1109/tnsre.2006.875557] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.
Collapse
|
209
|
Bender S, Becker D, Oelkers-Ax R, Weisbrod M. Cortical motor areas are activated early in a characteristic sequence during post-movement processing. Neuroimage 2006; 32:333-51. [PMID: 16698286 DOI: 10.1016/j.neuroimage.2006.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 02/22/2006] [Accepted: 03/07/2006] [Indexed: 11/18/2022] Open
Abstract
During motor learning in goal-directed reactions, a specific movement has to be associated with feedback about the movement's success. Such feedback often follows when the movement is already over. We investigated the time-course of post-movement cortical motor processing by high-resolution analysis of lateralized post-movement potentials in forewarned and simple reaction time tasks. In both paradigms we could separate a post-movement component (motor postimperative negative variation-mPINV) peaking about 500 ms after the button press (confirmed by electromyogram and accelerometer). mPINV could not be sufficiently explained by motor cortex activity related to EMG output and/or by sensory feedback. mPINV was enhanced by long intertrial intervals and its lateralization changed with response movement side. Its scalp potential distribution resembled (pre-)motor cortex activity during preceding movement stages and differed from the frontal motor potential peak (proprioceptive and somatosensory reafferent feedback); suggesting post-movement activation of pre-/primary motor cortex. Dipole source analysis yielded a single radial source near premotor cortex which explained lateralized mPINV almost completely. mPINV was present in simple reaction time tasks, indicating that mPINV is an independent component and does not represent delayed resolution of pre-movement negativity. An equivalent of "classical" PINV (cPINV) occurred later over prefrontal and anterior temporal sites in simple and forewarned reaction time tasks. Our results suggest that high-resolution analysis of lateralized movement-related potentials allows to image post-movement motor cortex activity and might provide insights into basic mechanisms of motor learning: A characteristic sequence might involve motor cortex activation (mPINV) before "higher order associative areas" come into play (cPINV).
Collapse
Affiliation(s)
- Stephan Bender
- Department for Child and Adolescent Psychiatry Psychiatric Hospital, University of Heidelberg, Blumenstrasse 8, 69115 Heidelberg, Germany.
| | | | | | | |
Collapse
|
210
|
Lepage JF, Théoret H. EEG evidence for the presence of an action observation-execution matching system in children. Eur J Neurosci 2006; 23:2505-10. [PMID: 16706857 DOI: 10.1111/j.1460-9568.2006.04769.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the adult human brain, passive observation of actions performed by others activates some of the same cortical areas that are involved in the execution of actions, thereby contributing to action recognition. This mechanism appears to occur through activation of a population of action-coding cells known as mirror neurons (MN). In the adult motor cortex, performing actions and observing human movement reduces the magnitude of the mu (8-13 Hz) rhythm, possibly reflecting MN system activity. Despite the wealth of information available regarding the adult MN system, little is known about its existence in children. Here, we used EEG to probe mu rhythm modulation in 15 children during observation and execution of hand actions. Our data show that mu rhythm attenuation occurs in children under 11 years old during observation of hand movements. Similarly to what has been reported in adults, observation of goal/object-orientated movement produces greater modulation of the mu rhythm than intransitive movement. These data confirm the existence of an observation-execution matching system in the immature human brain and may be of clinical value in the understanding of neurodevelopmental disorders associated with a faulty MN system, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Jean-François Lepage
- Département de Psychologie, Université de Montréal and Centre de Recherche de l'Hôpital Sainte-Justine, Montréal, Canada
| | | |
Collapse
|
211
|
Kida T, Wasaka T, Nakata H, Akatsuka K, Kakigi R. Centrifugal regulation of a task-relevant somatosensory signal triggering voluntary movement without a preceding warning signal. Exp Brain Res 2006; 173:733-41. [PMID: 16636794 DOI: 10.1007/s00221-006-0448-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
A warning signal followed by an imperative signal generates anticipatory and preparatory activities, which regulate sensory evoked neuronal activities through a top-down centrifugal mechanism. The present study investigated the centrifugal regulation of neuronal responses evoked by a task-relevant somatosensory signal, which triggers a voluntary movement without a warning signal. Eleven healthy adults participated in this study. Electrical stimulation was delivered to the right median nerve at a random interstimulus interval (1.75-2.25 s). The participants were instructed to extend the second digit of the right hand as fast as possible when the electrical stimulus was presented (ipsilateral reaction condition), or extend that of the left hand (contralateral reaction condition). They also executed repetitively extension of the right second digit at a rate of about 0.5 Hz, irrespective of electrical stimulation (movement condition), to count silently the number of stimuli (counting condition). In the control condition, they had no task to perform. The amplitude of short-latency somatosensory evoked potentials, the central P25, frontal N30, and parietal P30, was significantly reduced in both movement and ipsilateral reaction conditions compared to the control condition. The amplitude of long-latency P80 was significantly enhanced only in the ipsilateral reaction condition compared to the control, movement, contralateral reaction, and counting conditions. The long-latency N140 was significantly enhanced in both movement and ipsilateral reaction conditions compared to the control condition. In conclusion, short- and long-latency neuronal activities evoked by task-relevant somatosensory signals were regulated differently through a centrifugal mechanism even when the signal triggered a voluntary movement without a warning signal. The facilitation of activities at a latency of around 80 ms is associated with gain enhancement of the task-relevant signals from the body part involved in the action, whereas that at a latency of around 140 ms is associated with unspecific gain regulation generally induced by voluntary movement. These may be dissociated from the simple effect of directing attention to the stimulation.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
| | | | | | | | | |
Collapse
|
212
|
Patino L, Chakarov V, Schulte-Mönting J, Hepp-Reymond MC, Kristeva R. Oscillatory cortical activity during a motor task in a deafferented patient. Neurosci Lett 2006; 401:214-8. [PMID: 16600503 DOI: 10.1016/j.neulet.2006.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 02/21/2006] [Accepted: 03/08/2006] [Indexed: 11/24/2022]
Abstract
Little is known about the influence of the afferent peripheral feedback on the sensorimotor cortex activation. To answer this open question we investigated the alpha and beta band task-related spectral power decreases (TRPow) in the deafferented patient G.L. and compared the results to those of six healthy subjects. The patient has been deafferented up to the nose for 24 years but her motor fibers are unaffected and she can perform complex motor tasks under visual control. We recorded EEG (58 scalp positions) as well as the exerted force during a visuomotor task. The subjects had to maintain in precision grip an isometric force at 15% of the maximal voluntary contraction. In the patient we found a significantly higher alpha band spectral power during rest and larger alpha TRPow decreases during the motor task when compared to the healthy subjects' data. In contrast, we did not observe any significant differences between patient and controls for the beta band TRPow. The results indicate an altered functional alpha band network state in the patient, probably due to the chronic deafferentation leading to a deep 'idling' state of the contralateral sensorimotor area.
Collapse
Affiliation(s)
- Luis Patino
- Neurological Clinic, University Freiburg, Breisacherstrasse 64, Freiburg 79106, Germany
| | | | | | | | | |
Collapse
|
213
|
Sochůrková D, Rektor I, Jurák P, Stancák A. Intracerebral recording of cortical activity related to self-paced voluntary movements: a Bereitschaftspotential and event-related desynchronization/synchronization. SEEG study. Exp Brain Res 2006; 173:637-49. [PMID: 16544136 DOI: 10.1007/s00221-006-0407-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/08/2006] [Indexed: 11/26/2022]
Abstract
To analyze the distribution of the cortical electrical activity related to self-paced voluntary movements, i.e. the movement-related readiness potentials (Bereitschaftspotential, BP) and the event-related desynchronization (ERD) and synchronization (ERS) of cortical rhythms using intracerebral recordings. EEG was recorded in 14 epilepsy surgery candidates during preoperative video-stereo-EEG monitoring. Subjects performed self-paced hand movements, with their right and left fingers in succession. EEG signals were obtained from a total of 501 contacts using depth electrodes located in primary and nonprimary cortical regions. In accordance with previous studies, BP was found consistently in the primary motor (M1) and somatosensory (S1) cortex, the supplementary motor area (SMA), and in a few recordings also in the cingulate cortex and in the dorsolateral prefrontal and premotor cortex. ERD and ERS of alpha and beta rhythms were also observed in these cortical regions. The distribution of contacts showing ERD or ERS was larger than the distribution of those showing BP. In contrast to BP, ERD and ERS frequently occurred in the lateral and mesial temporal cortex and the inferior parietal lobule. The number of contacts and cortical regions showing ERD and ERS and not BP suggests that the two electrophysiological phenomena are differently involved in the preparation and execution of simple voluntary movements. Substantial differences between BP and ERD in spatial distribution and the widespread topography of ERD/ERS in temporal and higher-order motor regions suggest that oscillatory cortical changes are coupled with cognitive processes supporting movement tasks, such as memory, time interval estimation, and attention.
Collapse
Affiliation(s)
- Daniela Sochůrková
- 1st Department of Neurology, St. Anne's Hospital, Masaryk University, Pekarská 53, Brno, Czech Republic.
| | | | | | | |
Collapse
|
214
|
Miyanari A, Kaneoke Y, Ihara A, Watanabe S, Osaki Y, Kubo T, Kato A, Yoshimine T, Sagara Y, Kakigi R. Neuromagnetic Changes of Brain Rhythm Evoked by Intravenous Olfactory Stimulation in Humans. Brain Topogr 2006; 18:189-99. [PMID: 16544208 DOI: 10.1007/s10548-006-0268-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2006] [Indexed: 11/30/2022]
Abstract
To identify the changes in the respective frequency band and brain areas related to olfactory perception, we measured magnetoencephalographic (MEG) signals before and after instilling intravenously thiamine propyl disulfide (TPD) and thiamine tetrahydrofurfuryl disulfide monohydrochloride (TTFD), which evoked a strong and weak sensation of odor, respectively. For the frequency analysis of MEG, a beamformer program, synthetic aperture magnetometry (SAM), was employed and event-related desynchronization (ERD) or synchronization (ERS) was statistically determined. Both strong and weak odors induced ERD in (1) beta band (13-30 Hz) in the right precentral gyrus, and the superior and middle frontal gyri in both hemispheres, (2) low gamma band (30-60 Hz) in the left superior frontal gyrus and superior parietal lobule, and the middle frontal gyrus in both hemispheres, and (3) high gamma band 2 (100-200 Hz) in the right inferior frontal gyrus. TPD induced ERD in the left temporal, parietal and occipital lobes, while TTFD induced ERD in the right temporal, parietal and occipital lobes. The results indicate that physiological functions in several regions in the frontal lobe may change and the strength of the odor may play a different role in each hemisphere during olfactory perception in humans.
Collapse
Affiliation(s)
- Ai Miyanari
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Fatourechi M, Ward RK, Birch GE. Recent studies in the design of a self-paced brain interface with low false positive rate. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:2944-2949. [PMID: 17946537 DOI: 10.1109/iembs.2006.259510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The findings of two recent studies that aim at developing a self-paced brain interface (BI) system with low false positive rates are discussed. The first study examines the use of information extracted from different neurological phenomena and the second study examines the wavelet coefficients extracted from a single neurological phenomenon. The analysis of the data of two subjects shows that both are successful at yielding low false positive rates. These studies also show that for each subject, a unique set of features and EEG channels lead to superior performance.
Collapse
Affiliation(s)
- Mehrdad Fatourechi
- Image & Signal Process. Lab., British Columbia Univ., Vancouver, BC, Canada.
| | | | | |
Collapse
|
216
|
Rektor I, Sochůrková D, Bocková M. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. PROGRESS IN BRAIN RESEARCH 2006; 159:311-30. [PMID: 17071240 DOI: 10.1016/s0079-6123(06)59021-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to study cerebral activity related to preparation and execution of movement, evoked and induced brain electrical activities were compared to each other and to fMRI results in voluntary self-paced movements. Also, the event-related desynchronization and synchronization (ERD/ERS) were studied in complex movements with various degrees of cognitive load. The Bereitschaftspotential (BP) and alpha (8-12 Hz) and beta (16-24 Hz) ERD/ERS rhythms in self-paced simple movements were analyzed in 14 epilepsy surgery candidates. In previous studies, the cortical sources of BP were consistently displayed contralateral to the movement in the primary motor cortex and somatosensory cortex, and bilateral in the supplementary motor area (SMA) and in the cingulate cortex. There were also small and inconstant BP generators in the ipsilateral sensorimotor, premotor, and dorsolateral prefrontal cortex. Alpha and beta ERD/ERS were also observed in these cortical regions. The distribution of contacts showing ERD or ERS was larger than of those showing BP. In contrast to BP, ERD, and ERS frequently occurred in the orbitofrontal, lateral and mesial temporal cortices, and inferior parietal lobule. The spatial location of brain activation for self-paced repetitive movements, i.e., writing simple dots, was studied using event-related functional MRI (fMRI) in 10 healthy right-handed subjects. We observed significant activation in regions known to participate in motor control: contralateral to the movement in the primary sensorimotor and supramarginal cortices, the SMA and the underlying cingulate, and, to a lesser extent, the ipsilateral sensorimotor region. When the fMRI was compared with the map of the brain areas electrically active with self-paced movements (intracerebral recordings; Rektor et al., 1994, 1998, 2001b, c; Rektor, 2003), there was an evident overlap of most results. Nevertheless, the electrophysiological studies were more sensitive in uncovering small active areas, i.e., in the premotor and prefrontal cortices. The BP and the event-related hemodynamic changes were displayed in regions known to participate in motor control. The cortical occurrence of oscillatory activities in the alpha-beta range was clearly more widespread. Four epilepsy surgery candidates with implanted depth brain electrodes performed two visuomotor-cognitive tasks with cued complex movements: a simple task--copying randomly presented letters from the monitor; and a more complex task--writing a letter other than that which appears on the monitor. The second task demanded an increased cognitive load, i.e., of executive functions. Alpha and beta ERD/ERS rhythms were evaluated. Similar results for both tasks were found in the majority of the frontal contacts, i.e., in the SMA, anterior cingulate, premotor, and dorsolateral prefrontal cortices. The most frequent observed activity was ERD in the beta rhythm; alpha ERS and ERD were also present. Significant differences between the two tasks appeared in several frontal areas--in the dorsolateral and ventrolateral prefrontal and orbitofrontal cortices (BA 9, 45, 11), and in the temporal neocortex (BA 21). In several contacts localized in these areas, namely in the lateral temporal cortex, there were significant changes only with the complex task--mostly beta ERD. Although the fMRI results fit well with the map of the evoked activity (BP), several discrepant localizations were displayed when the BP was compared with the distribution of the oscillatory activity (ERD-ERS). The BP and hemodynamic changes are closely related to the motor control areas; ERD/ERS represent the broader physiological aspects of motor execution and control. The BP probably reflects regional activation, while the more widespread ERD/ERS may reflect the spread of task-relevant information across relevant areas. In the writing tasks, the spatial distribution of the alpha-beta ERD/ERS in the frontal and lateral temporal cortices was partially task dependent. The ERD/ERS occurred there predominantly in the more complex of the writing tasks. Some sites were only active in the task with the increased demand on executive functions. In the temporal neocortex only, the oscillatory, but not the evoked, activity was recorded in the self-paced movement. The temporal appearance of changes of oscillatory activities in the self-paced movement task as well as in the cued movement task with an increased load of executive functions raises the interesting question of the role of this region in cognitive-movement information processing.
Collapse
Affiliation(s)
- I Rektor
- First Department of Neurology, Medical Faculty of Masaryk University, St. Anne's Teaching Hospital, Pekarská 53, 656 91 Brno, Czech Republic.
| | | | | |
Collapse
|
217
|
Bender S, Weisbrod M, Bornfleth H, Resch F, Oelkers-Ax R. How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation. Neuroimage 2005; 27:737-52. [PMID: 16027009 DOI: 10.1016/j.neuroimage.2005.05.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 04/08/2005] [Accepted: 05/09/2005] [Indexed: 11/30/2022] Open
Abstract
Both the motor system and the frontal executive control system show a late maturation in humans which continues into school-age and even adolescence. We investigated the maturation of preparation processes towards a fast motor reaction in 74 healthy right-handed children aged 6 to 18 years and analyzed the topography of the late component of contingent negative variation (lCNV) in a 64-electrode high density sensor array. While adolescents from about 12 years on showed a bilaterally distributed centro-parietal maximum like adults do, younger children almost completely missed the negativity over the left central area contralaterally to the side of the anticipated movement. The reason, as revealed by current source density, was that only adolescents showed significant evoked activity of the left pre-/primary motor and supplementary/cingulate motor areas, while in contrast both age groups displayed significant current sinks over the right (ipsilateral) centro-temporal area and right posterior parietal cortex. Spatio-temporal source analysis confirmed that negativity over the right posterior parietal area could not be explained by a projection via volume conduction from frontal areas involved in motor preparation but represented an independent component with a different maturational course most likely related to sensory attention. Significant event-related desynchronization of alpha-power over the contralateral sensorimotor cortex was found in the younger age group, indicating that also 6- to 11-year-old children were engaged in motor preparation. Thus, the missing current sink over the contalateral sensorimotor cortex during late CNV in 6- to 11-year-old children might reflect the immaturity of a specific subcomponent of the motor preparation system which is related to evoked (late CNV) but not induced activity (alpha-ERD).
Collapse
Affiliation(s)
- Stephan Bender
- Department for Child and Adolescent Psychiatry, University of Heidelberg, Blumenstrasse 8, 69115 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
218
|
Boonstra TW, Daffertshofer A, Beek PJ. Effects of sleep deprivation on event-related fields and alpha activity during rhythmic force production. Neurosci Lett 2005; 388:27-32. [PMID: 16043282 DOI: 10.1016/j.neulet.2005.06.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/08/2005] [Accepted: 06/11/2005] [Indexed: 10/25/2022]
Abstract
The influence of sleep deprivation (SD) on event-related fields and the distribution of power over the scalp of MEG imaged brain activity was studied during acoustically paced rhythmic force production. At the behavioral level, SD resulted in a reduction of the lag (negative asynchrony) between produced forces and acoustic stimuli at higher movement tempos. Principal component analysis of the accompanying MEG activity showed that auditory- and motor-evoked fields were attenuated after SD and revealed an anterior shift of power towards more frontal channels. These results were interpreted in terms of a change of central processing of afferent sensory input due to SD.
Collapse
Affiliation(s)
- T W Boonstra
- Faculty of Human Movement Sciences, Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | |
Collapse
|
219
|
Kristeva R, Chakarov V, Losch F, Hummel S, Popa T, Schulte-Mönting J. Electroencephalographic spectral power in writer's cramp patients: evidence for motor cortex malfunctioning during the cramp. Neuroimage 2005; 27:706-14. [PMID: 16027007 DOI: 10.1016/j.neuroimage.2005.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 04/07/2005] [Accepted: 05/09/2005] [Indexed: 11/21/2022] Open
Abstract
We investigated cortical activation as reflected in task-related spectral power (TRPow) changes in 8 writer's cramp patients during writing on a digital board and during isometric contraction and compared them to those of 8 age-matched healthy subjects. Scalp EEG was recorded over the contralateral primary sensorimotor area (SM1(c)), and from the ipsilateral sensorimotor area (SM1(i)). The electromyogram (EMG) was recorded from the Extensor Digitorum Communis (Extensor), Flexor Digitorum Superficialis (Flexor), and First Dorsal Interosseous (FDI) muscles. We analyzed (1) handwriting performance, (2) changes in the TRPow confined to alpha and beta band, and (3) the EMG spectral power during both tasks, writing and isometric contraction. During writing, all patients developed writer's cramp. The handwriting in writer's cramp patients was associated with significantly less reduction of the beta-range TRPow and lower frequency of the TRPow reduction compared to controls. No significant differences between patients and controls for the alpha band TRPow reduction during handwriting were observed. During writing, the patients showed higher EMG spectral power than the controls but this difference was at the border of significance. The present results indicate disorder in the motor execution system, in writer's cramp patients, associated with impaired functional beta-network state of the contra- and ipsilateral sensorimotor cortices, most probably due to inadequate modulation of the intracortical inhibition associated with writing.
Collapse
Affiliation(s)
- Rumyana Kristeva
- Neurological Clinic, Albert-Ludwigs-University, Breisacher Strasse 64, 79106 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
220
|
Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. ACTA ACUST UNITED AC 2005; 24:190-8. [PMID: 15993757 DOI: 10.1016/j.cogbrainres.2005.01.014] [Citation(s) in RCA: 564] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 01/13/2005] [Accepted: 01/13/2005] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASD) are largely characterized by deficits in imitation, pragmatic language, theory of mind, and empathy. Previous research has suggested that a dysfunctional mirror neuron system may explain the pathology observed in ASD. Because EEG oscillations in the mu frequency (8-13 Hz) over sensorimotor cortex are thought to reflect mirror neuron activity, one method for testing the integrity of this system is to measure mu responsiveness to actual and observed movement. It has been established that mu power is reduced (mu suppression) in typically developing individuals both when they perform actions and when they observe others performing actions, reflecting an observation/execution system which may play a critical role in the ability to understand and imitate others' behaviors. This study investigated whether individuals with ASD show a dysfunction in this system, given their behavioral impairments in understanding and responding appropriately to others' behaviors. Mu wave suppression was measured in ten high-functioning individuals with ASD and ten age- and gender-matched control subjects while watching videos of (1) a moving hand, (2) a bouncing ball, and (3) visual noise, or (4) moving their own hand. Control subjects showed significant mu suppression to both self and observed hand movement. The ASD group showed significant mu suppression to self-performed hand movements but not to observed hand movements. These results support the hypothesis of a dysfunctional mirror neuron system in high-functioning individuals with ASD.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Center for Brain and Cognition, UC San Diego, La Jolla, CA 92093-0109, USA.
| | | | | | | | | | | |
Collapse
|
221
|
Işoğlu-Alkaç U, Strüber D. Necker cube reversals during long-term EEG recordings: sub-bands of alpha activity. Int J Psychophysiol 2005; 59:179-89. [PMID: 16023748 DOI: 10.1016/j.ijpsycho.2005.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 05/07/2005] [Indexed: 11/30/2022]
Abstract
Reversible figures, such as the Necker cube, make up a well-known class of visual phenomena in which an invariant stimulus pattern gives rise to at least two different perceptual interpretations. A better understanding of the neurophysiological processes underlying perceptual reversals might help to disentangle bottom-up from top-down influences on multistable perception. Recently, we reported alpha activity decrease during multistable visual perception. The aim of the present study was to define more specifically the functional roles of the EEG alpha band during the perception of Necker cube reversals by subdividing the extended alpha band into three sub-bands (lower-1 alpha, lower-2 alpha, upper alpha). We employed a long-term recording condition, during which 10 healthy participants observed the Necker cube for approximately 60 min and responded by pressing a button to any perceived reversal. The results showed a reversal induced alpha desynchronization for the lower alpha bands, with the lower-2 alpha desynchronization differing across the time course of the experiment. The upper alpha band demonstrated no reliable effects. It is concluded that the lower-1 alpha desynchronization reflects an automatic arousal reaction which triggers attentional processing in a bottom-up manner, whereas the lower-2 alpha desynchronization is related to attentional processes that are achieved by top-down control with limited resources. The lack of reliable effects in the upper alpha band is presumably due to the relatively low semantic task demands in figure reversal.
Collapse
Affiliation(s)
- Ummühan Işoğlu-Alkaç
- Istanbul University, Istanbul Medical Faculty, Department of Physiology, 34390 Capa-Istanbul, Turkey.
| | | |
Collapse
|
222
|
Puga F, Veiga H, Cagy M, McDowell K, Piedade R, Ribeiro P. Analysis of the influence of bromazepam on cognitive performance through the visual evoked potential (P300). ARQUIVOS DE NEURO-PSIQUIATRIA 2005; 63:228-34. [PMID: 16100968 DOI: 10.1590/s0004-282x2005000200008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Benzodiazepines have been used in the pharmacological treatment of anxiety for over four decades. However, very few studies have combined bromazepam and event-related potentials (ERP). The present study aimed at investigating the modulatory effects of this drug on brain dynamics. Specifically, the effects of bromazepam (3mg) on the P300 component of the ERP were tested in a double-blind experiment. The sample, consisting of 15 healthy subjects (7 male and 8 female), was submitted to a visual discrimination task, which employed the "oddball" paradigm. Electrophysiological (P300) and behavioral measures (stroop, digit span, and reaction time) were analyzed across three experimental conditions: placebo 1, placebo 2, and bromazepam. Results suggest that the effects of bromazepam (3mg) on cognitive processes are not apparent. In spite of what seems irrefutable in current literature, bromazepam did not produce evident effects on the behavioral and electrophysiological variables analyzed.
Collapse
Affiliation(s)
- Fernanda Puga
- Laboratório de Mapeamento Cerebral e Integração Sensório-Motora, Instituto de Psiquiatria (IPUB), Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
223
|
Pineda JA. The functional significance of mu rhythms: translating "seeing" and "hearing" into "doing". ACTA ACUST UNITED AC 2005; 50:57-68. [PMID: 15925412 DOI: 10.1016/j.brainresrev.2005.04.005] [Citation(s) in RCA: 675] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 04/15/2005] [Accepted: 04/21/2005] [Indexed: 11/25/2022]
Abstract
Existing evidence indicates that mu and other alpha-like rhythms are independent phenomena because of differences in source generation, sensitivity to sensory events, bilateral coherence, frequency, and power. Although mu suppression and enhancement echo sensorimotor processing in frontoparietal networks, they are also sensitive to cognitive and affective influences and likely reflect more than an idling brain state. Mu rhythms are present at early stages of human development and in other mammalian species. They exhibit adaptive and dynamically changing properties, including frequency acceleration and posterior-to-anterior shifts in focus. Furthermore, individuals can learn to control mu rhythms volitionally in a very short period of time. This raises questions about the mu rhythm's open neural architecture and ability to respond to cognitive, affective, and motor imagery, implying an even greater developmental and functional role than has previously been ascribed to it. Recent studies have suggested that mu rhythms reflect downstream modulation of motor cortex by prefrontal mirror neurons, i.e., cells that may play a critical role in imitation learning and the ability to understand the actions of others. It is proposed that mu rhythms represent an important information processing function that links perception and action-specifically, the transformation of "seeing" and "hearing" into "doing." In a broader context, this transformation function results from an entrainment/gating mechanism in which multiple alpha networks (visual-, auditory-, and somatosensory-centered domains), typically producing rhythmic oscillations in a locally independent manner, become coupled and entrained. A global or 'diffuse and distributed alpha system' comes into existence when these independent sources of alpha become coherently engaged in transforming perception to action.
Collapse
Affiliation(s)
- Jaime A Pineda
- Department of Cognitive Science and Neuroscience, University of California, San Diego, La Jolla, CA 92037-0515, USA.
| |
Collapse
|
224
|
Babiloni C, Cassetta E, Chiovenda P, Del Percio C, Ercolani M, Moretti DV, Moffa F, Pasqualetti P, Pizzella V, Romani GL, Tecchio F, Zappasodi F, Rossini PM. Alpha rhythms in mild dements during visual delayed choice reaction time tasks: A MEG study. Brain Res Bull 2005; 65:457-70. [PMID: 15862917 DOI: 10.1016/j.brainresbull.2005.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/26/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
Can simple delayed response tasks affect latency and amplitude of magnetoencephalographic midline alpha rhythms (6-12 Hz) in early dementia? We recruited 15 mild Alzheimer's disease (AD) and 10 vascular dementia (VaD) patients (paired mini mental state exam of 17-24). The control groups comprised 18 young and 22 elderly normal subjects. In the first task, a simple "cue" stimulus (one bit) was memorized along a brief delay period (3.5-5.5s) up to a "go" stimulus triggering (right or left) button press. In the second task, the "cue" stimulus remained available along the delay period. Event-related reduction in power of the alpha rhythms indexed the cortical activation (event-related desynchronization, ERD) for the trials associated with correct behavioral responses. Behavioral performances to both tasks were lower in the AD and VaD patients than in the normal subjects. In particular, just four AD and five VaD patients executed a sufficient amount of correct responses for the alpha ERD analysis, so they were included in a unique group. In both tasks, the alpha ERD peak was later in latency in the demented and normal elderly subjects than in the normal young subjects. Furthermore, the alpha ERD peak was stronger in amplitude in the demented patients than in the normal subjects. These results suggest that simple delayed response tasks during physiological recordings are quite difficult for patients even at an early dementia stage. Such difficulty may induce the abnormal amount of the related cortical activation in dementia as revealed by the alpha ERD.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Wasaka T, Nakata H, Kida T, Kakigi R. Gating of SEPs by contraction of the contralateral homologous muscle during the preparatory period of self-initiated plantar flexion. ACTA ACUST UNITED AC 2005; 23:354-60. [PMID: 15820642 DOI: 10.1016/j.cogbrainres.2004.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/05/2004] [Accepted: 11/05/2004] [Indexed: 11/28/2022]
Abstract
To investigate the centrifugal change in somatosensory information processing caused by contraction of the contralateral homologous muscle, we recorded the somatosensory-evoked potentials (SEPs) during the preparatory period of a self-initiated plantar flexion. The SEPs following stimulation of the right tibial nerve at the popliteal fossa were recorded in nine healthy subjects. Self-initiated plantar flexion of the left ankle was performed once every 5 to 7 s. The electrical stimulation was delivered continuously, and the subjects were instructed to concentrate on the movement and not to pay attention to the electrical stimulation. Based on the components of movement-related cortical potential, Bereitschaftspotential (BP) and Negative slope (NS), the preparatory period was divided into four sub-periods (NS, BP-1, BP-2, and Pre-BP). To obtain pre-movement SEPs, the signals following stimulation in each sub-period were averaged. SEPs were attenuated in the preparatory period, especially in the NS sub-period. The amplitude of N40 component was significantly attenuated compared with that in the stationary state and other sub-periods. The amplitude of P53 and N70 was smaller in the NS sub-period than other pre-movement sub-periods. Since there was no centripetal effect on SEPs in the preparatory period, these findings suggested that the activity of motor-related areas modulated the somatosensory information from the contralateral non-movement limb (centrifugal gating). It was assumed that an inhibition on the somatosensory inputs from contralateral limb was caused by the projection via either the corpus callosum or ipsilateral cortico-cortical projections.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrated Physiology, National Institute for Physiological Sciences, 38 Nishigonaka Myoudaiji, 444-8585 Okazaki, Japan.
| | | | | | | |
Collapse
|
226
|
Babiloni C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Della Penna S, Franciotti R, Pignotti S, Pizzella V, Rossini PM, Sabatini E, Torquati K, Romani GL. Human alpha rhythms during visual delayed choice reaction time tasks: a magnetoencephalography study. Hum Brain Mapp 2005; 24:184-92. [PMID: 15495216 PMCID: PMC6871688 DOI: 10.1002/hbm.20079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Magnetoencephalography (MEG) includes fast and comfortable recording procedures very suitable for the neurophysiological study of cognitive functions in aged people. In this exploratory MEG study in normal young adults, we tested whether very simple short-term memory (STM) demands induce visible changes in amplitude and latency of surface alpha rhythms. Two delayed response tasks were used. In the STM condition, a simple cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). In the control (no short-term memory; NSTM) condition, the cue stimulus remained available along the delay period. To make extremely simple the tasks, the explicit demand was visuospatial but the retention could be also based on phonological and somatomotor coding. Compared to the control condition, the amplitude of the alpha 1 (6-8 Hz) ERD decreased in the left hemisphere, whereas the amplitude of the alpha 2 (8-10 Hz) and alpha 3 (10-12 Hz) event-related desynchronization (ERD) increased in right and left parietal areas, respectively. Furthermore, the latency of the alpha ERD peak was slightly but significantly (P < 0.05) later in STM compared to control condition. In conclusion, whole-head MEG technology and very simple STM demands revealed significant changes of human neuromagnetic alpha rhythms in normal young adults.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Babiloni C, Brancucci A, Capotosto P, Romani GL, Arendt-Nielsen L, Chen ACN, Rossini PM. Slow cortical potential shifts preceding sensorimotor interactions. Brain Res Bull 2005; 65:309-16. [PMID: 15811596 DOI: 10.1016/j.brainresbull.2004.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/23/2004] [Accepted: 11/27/2004] [Indexed: 11/22/2022]
Abstract
It is well known that synchronization of cortical neurons is modulated ("gating") by the chronological interaction between somatosensory and sensorimotor events. This study tested the hypothesis that the anticipatory processes for this interaction increase the synchronization of cortical neurons as revealed by negative event-related potentials (contingent negative variation, CNV). High-resolution electroencephalographic data (128 electrodes) were recorded in 14 subjects. In the "sensorimotor interaction" condition, the subjects were waiting for a galvanic somatosensory stimulation at the left hand concomitant with a Go or NoGo stimulus (50% of Go trials triggering right hand movements). In the control condition, the Go/NoGo stimulus followed the somatosensory stimulation of 1.5s. The electroencephalographic data were spatially enhanced by surface Laplacian estimation. In the control condition, the CNV was observed only in the foreperiod between the somatosensory stimulation and Go/NoGo task (i.e. no CNV before the somatosensory stimuli). It was spatially localized in the primary sensorimotor area contralateral to the possible motor response. In the "sensorimotor interaction" condition, the CNV preceded the concomitant somatosensory stimulation and Go/NoGo task and was distributed to the frontocentral midline other than the contralateral sensorimotor area. These results suggest that the anticipatory processes for sensorimotor interactions increase the synchronization of cortical neurons in the frontocentral midline, possibly due to mechanisms sub-serving top-down attentional processes.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Sezione di EEG ad Alta Risoluzione, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
228
|
Babiloni C, Brancucci A, Arendt-Nielsen L, Babiloni F, Capotosto P, Carducci F, Cincotti F, Romano L, Chen ACN, Rossini PM. Alpha event-related desynchronization preceding a go/no-go task: a high-resolution EEG study. Neuropsychology 2005; 18:719-28. [PMID: 15506840 DOI: 10.1037/0894-4105.18.4.719] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The authors delineated the time evolution of alpha event-related desynchronization over human frontal, parietal, and primary sensorimotor areas during the expectancy of a go/no-go task. The main issue under investigation was whether anticipatory processes impinged upon cortical areas in sequential or parallel mode. Compared with the control condition, in the experimental condition there was an Alpha 1 desynchronization over the central midline, an Alpha 2 desynchronization increasing over primary sensorimotor areas, and an Alpha 3 desynchronization increasing in parallel over bilateral primary sensorimotor areas. These processes had different temporal features. Results disclose an anticipatory activity of central midline areas and primary sensorimotor areas in both parallel and sequential modes. This reflects an adaptive, energy-consuming strategy rather than an economic waiting for the go stimulus.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università degli Studi di Roma "La Sapienza', Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Babiloni C, Brancucci A, Capotosto P, Arendt-Nielsen L, Chen ACN, Rossini PM. Expectancy of Pain Is Influenced by Motor Preparation: A High-Resolution EEG Study of Cortical Alpha Rhythms. Behav Neurosci 2005; 119:503-11. [PMID: 15839796 DOI: 10.1037/0735-7044.119.2.503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This high-resolution electroencephalographic (EEG) study on alpha event-related desynchronization (ERD) evaluated whether anticipatory activity precedes a sensorimotor interaction induced by concomitant painful stimuli and sensorimotor demand. An omitted-stimulus paradigm induced the expectancy of the painful stimulation at the left hand. In the experimental condition, the painful stimulation was associated with a visual go/no-go task triggering right-hand movements. Two control conditions manipulated the painful sensorimotor interaction variable. Compared with the control conditions, the expectancy of the painful sensorimotor interaction increased the high-band alpha EEG oscillations over the right primary sensorimotor cortex contralateral to the nociceptive stimuli and, to a lesser extent, over the centroparietal midline. These findings suggest that concomitant painful stimuli and simple sensorimotor go/no-go demands affect anticipatory activity as revealed by alpha ERD.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università degli Studi di Roma La Sapienza, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
230
|
Bender S, Oelkers-Ax R, Resch F, Weisbrod M. Motor processing after movement execution as revealed by evoked and induced activity. ACTA ACUST UNITED AC 2004; 21:49-58. [PMID: 15325412 DOI: 10.1016/j.cogbrainres.2004.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
Event-related synchronization (ERS) in the beta frequency band following movement execution has shown that motor processing is not completed yet when a movement ends. It is known that induced and evoked activities reflect different aspects of cortical processing which may result in different time courses. In the current study, we analyzed topography of postimperative negative variation (PINV) in 39 healthy right-handed adolescents in an acoustic forewarned reaction time (contingent negative variation, CNV) task using a 64-electrode high-density sensor array. We dissociated different PINV components in their time course from postmovement beta ERS in order to provide fundamental knowledge about evoked and induced EEG components after movement execution as a basis for further analysis of postmovement processing. A postmovement negativity occurred from about 500 to 1200 ms after the imperative stimulus (peaking about 600 ms after a right-hand button press) at central electrodes, contralateral to the response movement side. Current source density (CSD) analysis confirmed the current sinks over motor areas [contralateral primary motor/premotor and supplementary/cingulate motor area]. The described DC component (motor PINV, mPINV) differed in time course and localization from later "classical" PINV (cPINV) which is thought to reflect contingency reappraisal. mPINV could also be distinguished topographically from a mere delayed CNV resolution. When mPINV and ERS at the same left central electrode were compared, both parameters showed different time courses. Left central mPINV rather paralleled ERS at midcentral electrodes. Therefore, we suggest that the topography of mPINV provides first hints towards an involvement of contralateral primary motor cortex in postmovement processing beyond a mere idling state as reflected by later beta ERS. mPINV could be a useful tool to investigate the role of primary motor cortex in motor-learning processes. The combined analysis of induced and evoked activities seems to be able to elucidate different aspects of cortical connectivity and motor processes following movement.
Collapse
Affiliation(s)
- Stephan Bender
- Department for Child and Adolescent Psychiatry, University of Heidelberg, Blumenstrasse 8, D-69115, Germany.
| | | | | | | |
Collapse
|
231
|
Bender S, Resch F, Weisbrod M, Oelkers-Ax R. Specific task anticipation versus unspecific orienting reaction during early contingent negative variation. Clin Neurophysiol 2004; 115:1836-45. [PMID: 15261862 DOI: 10.1016/j.clinph.2004.03.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2004] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate whether a warning stimulus in a forewarned reaction time task elicits only an unspecific orienting reaction or task specific motor cortex activity. METHODS We examined the time-course of alpha event-related desynchronization (ERD) as an indicator for primary motor cortex activation in an auditory contingent negative variation (CNV) paradigm with an interstimulus interval of 3 s in healthy subjects between 6 and 18 years using a 64 channel high-density sensor array. RESULTS We replicated a wide frontal distribution for the initial CNV component (iCNV), while only during late CNV (lCNV) a centro-parietal negativity resembling the 'Bereitschaftspotential' occurred. However, an early alpha-ERD over the central area contralateral to the side of the response movement followed the imperative stimulus already during the iCNV-interval. This early alpha-ERD was highly significantly lateralised and was even more prominent during iCNV than during lCNV indicating an activation of the contralateral sensorimotor cortex already during iCNV. CONCLUSIONS We conclude that early task specific preparatory motor processes (which might reflect the retrieval of a motor program from memory) were elicited by the warning stimulus. These preparatory processes clearly exceeded an unspecific orienting reaction as early alpha-ERD was influenced by the side of the anticipated movement.
Collapse
Affiliation(s)
- Stephan Bender
- Department for Child and Adolescent Psychiatry, Psychiatric Clinic, University of Heidelberg, Blumenstrasse 8, D-69115 Heidelberg, Germany.
| | | | | | | |
Collapse
|
232
|
Ben Dayan Rubin DD, Baselli G, Inbar GF, Cerutti S. An adaptive neuro-fuzzy method (ANFIS) for estimating single-trial movement-related potentials. BIOLOGICAL CYBERNETICS 2004; 91:63-75. [PMID: 15322852 DOI: 10.1007/s00422-004-0500-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 06/22/2004] [Indexed: 05/24/2023]
Abstract
This study aims to recover transient, trial-varying evoked potentials (EPs), in particular the movement-related potentials (MRPs), embedded within the background cerebral activity at very low signal-to-noise ratios (SNRs). A new adaptive neuro-fuzzy technique will attempt to estimate movement-related potentials within multi-channel EEG recordings, enabling this method to completely adapt to each input sweep without system training procedures. We assume that one of the sensors is corrupted by noise deriving from other sensors via an unknown function that will be estimated. We will approach this problem by: (1) spatially decorrelating the sensors in the preprocessing phase, (2) choosing the most informative of the filtered channels that will permit the best MRP estimation (input-selection phase) and (3) training the neuro-fuzzy model to fit the noise over the chosen sensor and therefore estimating the buried MRP. We tested this framework with simulations to validate the analytical results before applying them to the real biological data. Whenever it is applied to biological data, this method improves the SNR by more than 12 dB, even to very low SNRs. The processing method proposed here is likely to complement other estimation techniques and can be useful to process, enhance and analyse single-trial MRPs.
Collapse
Affiliation(s)
- D D Ben Dayan Rubin
- Department of Biomedical Engineering, Politecnico di Milano, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
233
|
Babiloni C, Babiloni F, Carducci F, Cappa SF, Cincotti F, Del Percio C, Miniussi C, Vito Moretti D, Rossi S, Sosta K, Rossini PM. Human cortical rhythms during visual delayed choice reaction time tasks. Behav Brain Res 2004; 153:261-71. [PMID: 15219728 DOI: 10.1016/j.bbr.2003.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 12/05/2003] [Accepted: 12/06/2003] [Indexed: 10/26/2022]
Abstract
Neuroimaging cognitive study of aging requires simple tasks ensuring a high rate of correct performances even in stressful neurophysiological settings. Here two simple delayed choice reaction time tasks were used to unveil event-related desynchronization (ERD) of theta (4-6 Hz) and alpha (6-12 Hz) electroencephalographic rhythms across normal aging. In the first condition, a cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). The explicit demand was visuo-spatial, but the retention could be also based on phonological and somatomotor coding. In the second condition, the cue stimulus remained available along the delay period. Correct performances were higher than 95% in both groups and tasks, although they were significantly better in young than elderly subjects (P < 0.03). During the delay period, theta and alpha ERD accompanying correct responses were recognized in the two groups, the alpha ERD being stronger and prolonged during the memory than non-memory task. On the other hand, the fronto-parietal theta and parietal alpha ERD were stronger in young than elderly subjects during both tasks. Notably, the frontal alpha ERD was negligible in elderly subjects. In conclusion, the present simple tasks unveiled in elderly compared to young subjects (i) a weaker involvement of (para)hippocampal-cortical circuits as revealed by theta ERD and (ii) a weaker involvement of "executive" thalamo-cortical circuits as revealed by frontal alpha ERD. These effects might worsen behavioral performances to the simple cognitive tasks with age. The present protocol is promising for the neuroimaging study of pathological aging.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
We recorded 128-channel EEG from 16 participants while they observed, imitated, and self-initiated the precision grip of a manipulandum. Mu rhythm amplitudes were significantly lower during observation of a precision grip than during observation of a simple hand extension without object interaction. Scalp topographies for subtractions of observation, imitation, and execution conditions from the control condition showed a high degree of congruence, supporting the notion of a human observation-execution matching system. Surface Laplacian transformations suggest that the decrease in mu amplitude during precision grip observation reflects desynchronization of mu rhythm generators in the sensorimotor cortex. These results support the hypothesis that sensorimotor cortex is a neural substrate involved in the representation of both self- and other-generated actions and show the mu rhythm is sensitive to subtle changes in observed motor behavior.
Collapse
Affiliation(s)
- S D Muthukumaraswamy
- Research Centre for Cognitive Neuroscience, Department of Psychology, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
235
|
Babiloni C, Miniussi C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Sirello G, Fracassi C, Nobre AC, Rossini PM. Sub-second "temporal attention" modulates alpha rhythms. A high-resolution EEG study. ACTA ACUST UNITED AC 2004; 19:259-68. [PMID: 15062863 DOI: 10.1016/j.cogbrainres.2003.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2003] [Indexed: 11/20/2022]
Abstract
In the present high-resolution electroencephalographic (EEG) study, event-related desynchronization/synchronization (ERD/ERS) of alpha rhythms was computed during an S1-S2 paradigm, in which a visual cue (S1) predicted a SHORT (600 ms) or LONG (1400 ms) foreperiod, preceding a visual go stimulus (S2) triggering right or left finger movement. Could orienting attention to a selective point in time influence the alpha rhythms as a function of the SHORT vs. LONG foreperiod? Stronger selective attentional modulations were predicted for the SHORT than LONG condition. EEG data from 54 channels were "depurated" from phase-locked visual evoked potentials and spatially enhanced by surface Laplacian estimation (i.e., final data analysis was conducted on 16 subjects having a sufficient number of artifact-free EEG single trials). Low-band alpha rhythms (about 6-10 Hz) were supposed to be related to anticipatory attentional processes, whereas high-band alpha rhythms (10-12 Hz) would indicate task-specific visuo-motor processes. Compared to the LONG condition (foreperiod), the SHORT condition induced a quicker and stronger ERS at low-band alpha rhythm (about 6-8 Hz) over midline and bilateral prefrontal, sensorimotor, and posterior parietal areas. In contrast, the concomitant high-band alpha (about 10-12 Hz) ERD/ERS showed no significant difference between the two conditions. In conclusion, temporal attention for a sub-second delay (800 ms) did modulate low-band alpha rhythm over large regions of both cortical hemispheres.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, Rome, Italy. claudio.babiloni@uniroma 1.it
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Dornhege G, Blankertz B, Curio G, Müller KR. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans Biomed Eng 2004; 51:993-1002. [PMID: 15188870 DOI: 10.1109/tbme.2004.827088] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Noninvasive electroencephalogram (EEG) recordings provide for easy and safe access to human neocortical processes which can be exploited for a brain-computer interface (BCI). At present, however, the use of BCIs is severely limited by low bit-transfer rates. We systematically analyze and develop two recent concepts, both capable of enhancing the information gain from multichannel scalp EEG recordings: 1) the combination of classifiers, each specifically tailored for different physiological phenomena, e.g., slow cortical potential shifts, such as the pre-movement Bereitschaftspotential or differences in spatio-spectral distributions of brain activity (i.e., focal event-related desynchronizations) and 2) behavioral paradigms inducing the subjects to generate one out of several brain states (multiclass approach) which all bare a distinctive spatio-temporal signature well discriminable in the standard scalp EEG. We derive information-theoretic predictions and demonstrate their relevance in experimental data. We will show that a suitably arranged interaction between these concepts can significantly boost BCI performances.
Collapse
|
237
|
Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during observation of an object-directed grasp. ACTA ACUST UNITED AC 2004; 19:195-201. [PMID: 15019715 DOI: 10.1016/j.cogbrainres.2003.12.001] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2003] [Indexed: 11/21/2022]
Abstract
Recent electrophysiological studies have shown that the human electroencephalographic mu rhythm is suppressed during the observation of actions performed by other persons, an effect that may be functionally related to the behaviour of so-called "mirror neurons" observed in area F5 of nonhuman primates. Because mirror neuron activity has been reported to be functionally specific to object-oriented actions, the present study was designed to determine if the human mu rhythm also exhibits this property. EEG measurements were obtained from 12 normal subjects while they observed either a precision grip of a manipulandum or an empty grip using the same hand position. Our results showed that the magnitude of the mu rhythm was significantly lower for the object grip condition than for the empty grip condition. These data support the notion that the human mu rhythm indexes a brain system that is functionally comparable to the monkey mirror neuron system. We propose that nonobject-directed actions may result in representational schemas that are either different or less salient than motorically equivalent actions that are directed toward objects.
Collapse
Affiliation(s)
- Suresh D Muthukumaraswamy
- Department of Psychology, Research Centre for Cognitive Neuroscience, Private Bag 92019, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
238
|
Babiloni C, Babiloni F, Carducci F, Cappa S, Cincotti F, Del Percio C, Miniussi C, Moretti DV, Pasqualetti P, Rossi S, Sosta K, Rossini PM. Human cortical EEG rhythms during long-term episodic memory task. A high-resolution EEG study of the HERA model. Neuroimage 2004; 21:1576-84. [PMID: 15050581 DOI: 10.1016/j.neuroimage.2003.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 11/17/2003] [Accepted: 11/20/2003] [Indexed: 11/27/2022] Open
Abstract
Many recent neuroimaging studies of episodic memory have indicated an asymmetry in prefrontal involvement, with the left prefrontal cortex more involved than the right in encoding, the right more than the left in retrieval (hemispheric encoding and retrieval asymmetry, or HERA model). In this electroencephalographic (EEG) high-resolution study, we studied brain rhythmicity during a visual episodic memory (recognition) task. The theta (4-6 Hz), alpha (6-12 Hz) and gamma (28-48 Hz) oscillations were investigated during a visuospatial long-term episodic memory task including an encoding (ENC) and retrieval (RET) phases. During the ENC phase, 25 figures representing interiors of buildings ("indoor") were randomly intermingled with 25 figures representing landscapes ("landscapes"). Subject's response was given at left ("indoor") or right ("landscapes") mouse button. During the RET phase (1 h later), 25 figures representing previously presented "indoor" pictures ("tests") were randomly intermingled with 25 figures representing novel "indoor" ("distractors"). Again, a mouse response was required. Theta and alpha EEG results showed no change of frontal rhythmicity. In contrast, the HERA prediction of asymmetry was fitted only by EEG gamma responses, but only in the posterior parietal areas. The ENC phase was associated with gamma EEG oscillations over left parietal cortex. Afterward, the RET phase was associated with gamma EEG oscillations predominantly over right parietal cortex. The predicted HERA asymmetry was thus observed in an unexpected location. This discrepancy may be due to the differential sensitivity of neuroimaging methods to selected components of cognitive processing. The strict relation between gamma response and perception suggests that retrieval processes of long-term memory deeply impinged upon sensory representation of the stored material.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia Sezione di EEG ad Alta Risoluzione Università degli Studi di Roma "La Sapienza" P.le Aldo Moro 5 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Rossini PM, Dal Forno G. Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am 2004; 15:263-306. [PMID: 15029909 DOI: 10.1016/s1047-9651(03)00124-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The study of neural plasticity has expanded rapidly in the past decades and has shown the remarkable ability of the developing, adult, and aging brain to be shaped by environmental inputs in health and after a lesion. Robust experimental evidence supports the hypothesis that neuronal aggregates adjacent to a lesion in the sensorimotor brain areas can take over progressively the function previously played by the damaged neurons. It definitely is accepted that such a reorganization modifies sensibly the interhemispheric differences in somatotopic organization of the sensorimotor cortices. This reorganization largely subtends clinical recovery of motor performances and sensorimotor integration after a stroke. Brain functional imaging studies show that recovery from hemiplegic strokes is associated with a marked reorganization of the activation patterns of specific brain structures. To regain hand motor control, the recovery process tends over time to bring the bilateral motor network activation toward a more normal intensity/extent, while overrecruiting simultaneously new areas, perhaps to sustain this process. Considerable intersubject variability exists in activation/hyperactivation pattern changes over time. Some patients display late-appearing dorsolateral prefrontal cortex activation, suggesting the development of "executive" strategies to compensate for the lost function. The AH in stroke often undergoes a significant "remodeling" of sensory and motor hand somatotopy outside the "normal" areas, or enlargement of the hand representation. The UH also undergoes reorganization, although to a lesser degree. Although absolute values of the investigated parameters fluctuate across subjects, secondary to individual anatomic variability, variation is minimal with regards to interhemispheric differences, due to the fact that individual morphometric characters are mirrored in the two hemispheres. Excessive interhemispheric asymmetry of the sensorimotor hand areas seems to be the parameter with highest sensitivity in describing brain reorganization after a monohemispheric lesion, and mapping motor and somatosensory cortical areas through focal TMS, fMRI, PET, EEG, and MEG is useful in studying hand representation and interhemispheric asymmetries in normal and pathologic conditions. TMS and MEG allow the detection of sensorimotor areas reshaping, as a result of either neuronal reorganization or recovery of the previously damaged neural network. These techniques have the advantage of high temporal resolution but also have limitations. TMS provides only bidimensional scalp maps, whereas MEG, even if giving three-dimensional mapping of generator sources, does so by means of inverse procedures that rely on the choice of a mathematical model of the head and the sources. These techniques do not test movement execution and sensorimotor integration as used in everyday life. fMRI and PET may provide the ideal means to integrate the findings obtained with the other two techniques. This multitechnology combined approach is at present the best way to test the presence and amount of plasticity phenomena underlying partial or total recovery of several functions, sensorimotor above all. Dynamic patterns of recovery are emerging progressively from the relevant literature. Enhanced recruitment of the affected cortex, be it spared perilesional tissue, as in the case of cortical stroke, or intact but deafferented cortex, as in subcortical strokes, seems to be the rule, a mechanism especially important in early postinsult stages. The transfer over time of preferential activation toward contralesional cortices, as observed in some cases, seems, however, to reflect a less efficient type of plastic reorganization, with some aspects of maladaptive plasticity. Reinforcing the use of the affected side can cause activation to increase again in the affected side with a corresponding enhancement of clinical function. Activation of the UH MI may represent recruitment of direct (uncrossed) corticospinal tracts and relate more to mirror movements, but it more likely reflects activity redistribution within preexisting bilateral, large-scale motor networks. Finally, activation of areas not normally engaged in the dysfunctional tasks, such as the dorsolateral prefrontal cortex or the superior parietal cortex in motor paralysis, might reflect the implication of compensatory cognitive strategies. An integrated approach with technologies able to investigate functional brain imaging is of considerable value in providing information on the excitability, extension, localization, and functional hierarchy of cortical brain areas. Deepening knowledge of the mechanisms regulating the long-term recovery (even if partial), observed for most neurologic sequelae after neural damage, might prompt newer and more efficacious therapeutic and rehabilitative strategies for neurologic diseases.
Collapse
Affiliation(s)
- Paolo M Rossini
- Department of Clinical Neuroscience, Hospital Fatebenefratelli, Isola Tiberina 39, 00186-Rome, Italy
| | | |
Collapse
|
240
|
Babiloni C, Del Percio C, Babiloni F, Carducci F, Cincotti F, Moretti DV, Rossini PM. Transient human cortical responses during the observation of simple finger movements: a high-resolution EEG study. Hum Brain Mapp 2004; 20:148-57. [PMID: 14601141 PMCID: PMC6872072 DOI: 10.1002/hbm.10135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
High-resolution event-related potentials (ERPs) were used to model the hemispherical representation of the transient cortical responses relating to the observation of movement during execution (right or left aimless finger extension). Subjects were seated in front of the observed person and looked at both their own and the observer's hand to receive similar visual feedback during the two conditions. In a visual control condition, a diode light moved at the observed person's hand. A first potential accompanying the movement execution peaked at about +110 msec over the contralateral somatomotor areas. It was followed by a potential (P300) peaking at about +350 msec over the central midline. In contrast, the potentials accompanying the movement observation peaked later over parietal-occipital other than somatomotor areas (N200 peak, +200 msec; P300 peak, +400 msec). Notably, the N200 was maximum in left parietal area whereas the P300 was maximum in right parietal area regardless the side of the movement. They markedly differed by the potentials following the displacement of the diode light. These results suggest a rapid time evolution (approximately 200-400 msec) of the cortical responses characterizing the observation of aimless movements (as opposite to grasping or handling). The execution of these movements would mainly involve somatomotor cortical responses and would be scarcely founded on the visual feedback. In contrast, the observation of the same movements carried out by others would require dynamical responses of somatomotor and parietal-occipital areas (especially of the right hemisphere), possibly for a stringent visuospatial analysis of the motor event.
Collapse
Affiliation(s)
- Claudio Babiloni
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
241
|
Babiloni C, Miniussi C, Moretti DV, Vecchio F, Salinari S, Frisoni G, Rossini PM. Cortical Networks Generating Movement-Related EEG Rhythms in Alzheimer's Disease: An EEG Coherence Study. Behav Neurosci 2004; 118:698-706. [PMID: 15301597 DOI: 10.1037/0735-7044.118.4.698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patients with mild Alzheimer's disease (AD) present with abnormally strong values of frontal and ipsilateral central sensorimotor rhythms. The authors tested 2 working hypotheses of the related electroencephalographic (EEG) coherence: disconnection, defined as a sign of a reduced coordination within the frontoparietal and interhemispheric networks, and cooperation, defined as a reflection of the reorganization of the brain sensorimotor networks. Results showed that, compared with healthy controls, patients with mild AD had an unreactive and abnormally low interhemispheric EEG coherence and an unreactive and abnormally high frontoparietal EEG coherence. These findings support the hypothesis of an impaired mechanism of sensorimotor cortical coupling (disconnection) in mild AD.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento Fisiologia Umana e Farmacologia, Università degli Studi di Roma "La Sapienza', Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
242
|
Babiloni C, Babiloni F, Carducci F, Cappa SF, Cincotti F, Del Percio C, Miniussi C, Moretti DV, Rossi S, Sosta K, Rossini PM. Human cortical responses during one-bit short-term memory. A high-resolution EEG study on delayed choice reaction time tasks. Clin Neurophysiol 2004; 115:161-70. [PMID: 14706484 DOI: 10.1016/s1388-2457(03)00286-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated whether a very simple short-term memory (STM) demand induces a visible change of EEG rhythms over the two hemispheres. METHODS High-resolution EEG was obtained in young adults during two delayed choice reaction time tasks. In the STM condition, a simple cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). The task was visuo-spatial in nature. RESULTS In the control (NSTM) condition, the cue stimulus remained available along the delay period. Compared to the control condition, the theta power (4-6 Hz) decreased in left frontal and bilateral parietal areas (delay period). Furthermore, low alpha power (6-8 Hz) decreased in bilateral frontal and left parietal areas, while high alpha power (10-12 Hz) decreased in the left fronto-parietal areas. CONCLUSIONS The decrease of the alpha power is as an expression of the efficient information transfer within thalamo-cortical pathways. The significance of the study stands in the fact that even a very simple STM task (only one bit to be memorized) revealed changes in fronto-parietal theta and alpha rhythms.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Sezione di EEG ad Alta Risoluzione, Università La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Lee PL, Wu YT, Chen LF, Chen YS, Cheng CM, Yeh TC, Ho LT, Chang MS, Hsieh JC. ICA-based spatiotemporal approach for single-trial analysis of postmovement MEG beta synchronization⋆. Neuroimage 2003; 20:2010-30. [PMID: 14683706 DOI: 10.1016/j.neuroimage.2003.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The extraction of event-related oscillatory neuromagnetic activities from single-trial measurement is challenging due to the non-phase-locked nature and variability from trial to trial. The present study presents a method based on independent component analysis (ICA) and the use of a template-based correlation approach to extract Rolandic beta rhythm from magnetoencephalographic (MEG) measurements of right finger lifting. A single trial recording was decomposed into a set of coupled temporal independent components and corresponding spatial maps using ICA and the reactive beta frequency band for each trial identified using a two-spectrum comparison between the postmovement interval and a reference period. Task-related components survived dual criteria of high correlation with both the temporal and the spatial templates with an acceptance rate of about 80%. Phase and amplitude information for noise-free MEG beta activities were preserved not only for optimal calculation of beta rebound (event-related synchronization) but also for profound penetration into subtle dynamics across trials. Given the high signal-to-noise ratio (SNR) of this method, various methods of source estimation were used on reconstructed single-trial data and the source loci coherently anchored in the vicinity of the primary motor area. This method promises the possibility of a window into the intricate brain dynamics of motor control mechanisms and the cortical pathophysiology of movement disorder on a trial-by-trial basis.
Collapse
Affiliation(s)
- Po-Lei Lee
- Laboratory of Integrated Brain Research, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol 2003; 114:1226-36. [PMID: 12842719 DOI: 10.1016/s1388-2457(03)00067-1] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the spatiotemporal pattern of event-related desynchronization (ERD) and event-related synchronization (ERS) in electrocorticographic (ECoG) data with closely spaced electrodes. METHODS Four patients with epilepsy performed self-paced hand movements. The ERD/ERS was quantified and displayed in the form of time-frequency maps. RESULTS In all subjects, a significant beta ERD with embedded gamma ERS was found. CONCLUSIONS Self-paced movement is accompanied not only by a relatively widespread mu and beta ERD, but also by a more focused gamma ERS in the 60-90 Hz frequency band.
Collapse
Affiliation(s)
- G Pfurtscheller
- Department of Medical Informatics, Institute of Biomedical Engineering, University of Technology Graz, Inffeldgasse 16a/II, A-8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
245
|
Thut G, Théoret H, Pfennig A, Ives J, Kampmann F, Northoff G, Pascual-Leone A. Differential effects of low-frequency rTMS at the occipital pole on visual-induced alpha desynchronization and visual-evoked potentials. Neuroimage 2003; 18:334-47. [PMID: 12595187 DOI: 10.1016/s1053-8119(02)00048-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Visual-induced alpha desynchronization (VID) and visual-evoked potentials (VEPs) characterize occipital activation in response to visual stimulation but their exact relationship is unclear. Here, we tested the hypothesis that VID and VEPs reflect different aspects of cortical activation. For this purpose, we determined whether VID and VEPs are differentially modulated by low-frequency repetitive transcranial magnetic stimulation (rTMS) over the occipital pole. Scalp EEG responses to visual stimuli (flashed either to the left or to the right visual field) were recorded for 8 min in six healthy subjects (1) before, (2) immediately following, and (3) 20 min after left occipital rTMS (1 Hz, 10 min). The parameters aimed to reduce cortical excitability beyond the end of the TMS train. In addition, simple reaction times to visual stimulation were recorded (left or right hand in separate blocks). In all subjects, VID was significantly and prominently reduced by rTMS (P = 0.0001). In contrast, rTMS failed to modulate early VEP components (P1/N1). A moderate effect was found on a late VEP component close to manual response onset (P = 0.014) but this effect was in the opposite direction to the VID change. All changes were restricted to the targeted left occipital cortex. The effects were present only after right visual field stimulation when a right hand response was required, were associated with a behavioral effect, and had washed out 20 min after rTMS. We conclude that VID and early VEPs represent different aspects of cortical activation. The findings that rTMS did not change early VEPs and selectively affected VID and late VEPs in conditions where the visual input must be transferred intrahemispherically for visuomotor integration (right visual field/right hand) are suggestive of rTMS interference with higher-order visual functions beyond visual input. This is consistent with the idea that alpha desynchronization serves an integrative role through a corticocortical "gating function."
Collapse
Affiliation(s)
- G Thut
- Laboratory for Magnetic Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Kirstein Building KS 454, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
246
|
Babiloni C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Hallett M, Kelso AJS, Moretti DV, Liepert J, Rossini PM. Shall I Move My Right or My Left Hand? J PSYCHOPHYSIOL 2003. [DOI: 10.1027//0269-8803.17.2.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract Event-related desynchronization/synchronization (ERD/ERS) at alpha (10Hz), beta (20Hz), and gamma (40Hz) bands and movement-related potentials (MRPs) were investigated in right-handed subjects who were “free” to decide the side of unilateral finger movements (“fixed” side as a control). As a novelty, this “multi-modal” EEG analysis was combined with the evaluation of involuntary mirror movements, taken as an index of “bimanual competition.” A main issue was whether the decision regarding the hand to be moved (“free” movements) could modulate ERD/ERS or MRPs overlying sensorimotor cortical areas typically involved in bimanual tasks. Compared to “fixed” movements, “free” movements induced the following effects: (1) more involuntary mirror movements discarded from EEG analysis; (2) stronger vertex MRPs (right motor acts); (3) a positive correlation between these potentials and the number of involuntary mirror movements; (4) gamma ERS over central areas; and (5) preponderance of postmovement beta ERS over left central area (dominant hemisphere). These results suggest that ERD/ERS and MRPs provide complementary information on the cortical processes belonging to a lateralized motor act. In this context, the results on vertex MRPs would indicate a key role of supplementary/cingulate motor areas not only for bimanual coordination but also for the control of “bimanual competition” and involuntary mirror movements.
Collapse
Affiliation(s)
- Claudio Babiloni
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza,”, P.le A. Moro, 5, I-00185 Roma, IRCCS “S. Giovanni di Dio,”, Via Pilastroni, 4, I-25123 Brescia, Italy
| | - Fabio Babiloni
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza,”, P.le A. Moro, 5, I-00185 Roma, Italy
| | - Filippo Carducci
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza,”, P.le A. Moro, 5, I-00185 Roma, IRCCS “S. Giovanni di Dio,”, Via Pilastroni, 4, I-25123 Brescia, Italy
| | - Febo Cincotti
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza,”, P.le A. Moro, 5, I-00185 Roma, Italy
| | - Claudio Del Percio
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza,”, P.le A. Moro, 5, I-00185 Roma, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, USA
| | - AJ Scott Kelso
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road
| | - Davide Vito Moretti
- Sezione di EEG ad Alta Risoluzione, Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma “La Sapienza,”, P.le A. Moro, 5, I-00185 Roma, Italy
| | - Joachim Liepert
- Department of Neurology, University of Hamburg, 52, D-20246 Hamburg, Germany
| | - Paolo Maria Rossini
- IRCCS “S. Giovanni di Dio,”, Via Pilastroni, 4, I-25123 Brescia, Clinica Neurologica, Università “Campus Biomedico,”, Roma, A.Fa.R. CRCCS - Dip. di Neurologia, Osp. FBF Isola Tiberina, I-00186 Roma, Italy
| |
Collapse
|
247
|
Lim VK, Bradshaw JL, Nicholls ME, Kirk IJ, Hamm JP, Grossbach M, Altenmüller E. Aberrant Sensorimotor Integration in Musicians' Cramp Patients. J PSYCHOPHYSIOL 2003. [DOI: 10.1027/0269-8803.17.4.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AbstractSimple tapping and complex movements (Luria finger apposition task) were performed unimanually and bimanually by two groups of professional guitarists while EEG was recorded from electrodes over the sensorimotor cortex. One group had a task-specific movement disorder (focal dystonia or musicians' cramp), while the other group did not (controls). There were no significant group interactions in the task-related power (TRPow) within the alpha range of 8-10Hz (mu1). In contrast, there was a significant group interaction within the alpha range of 10-12Hz (mu2); these latter frequencies are associated with task-specific sensorimotor integration. The significant group interaction included task (simple and complex) by hand (left, right, and both) by electrodes (10 electrodes over the sensorimotor areas). In the rest conditions, the alpha power (10-12Hz) was comparable between the groups; during movement, however, compared to the controls, patients demonstrated the greatest TRPow (10-12Hz) over all conditions. This was particularly evident when patients used their affected hand and suggests that patients with musicians' cramp have impaired task-specific sensorimotor integration.
Collapse
Affiliation(s)
- Vanessa K. Lim
- Department of Sport & Exercise, Human Motor Control Laboratory and Department of Psychology, Research Centre for Cognitive Neuroscience, The University of Auckland, Auckland, New Zealand, Institut für Musikphysiologie und Musiker-Medizin, Hochschule für Musik und Theater Hannover, Hannover, Germany
| | | | - Michael E.R. Nicholls
- Department of Sport & Exercise, Human Motor Control Laboratory, The University of Auckland, Auckland, New Zealand
| | - Ian J. Kirk
- Department of Psychology, Research Centre for Cognitive Neuroscience, The University of Auckland, Auckland, New Zealand
| | - Jeff P. Hamm
- Department of Psychology, Research Centre for Cognitive Neuroscience, The University of Auckland, Auckland, New Zealand
| | - Michael Grossbach
- Institut für Musikphysiologie und Musiker-Medizin, Hochschule für Musik und Theater Hannover, Hannover, Germany
| | - Eckart Altenmüller
- Institut für Musikphysiologie und Musiker-Medizin, Hochschule für Musik und Theater Hannover, Hannover, Germany
| |
Collapse
|
248
|
Human Cortical Electroencephalography (EEG) Rhythms during the Observation of Simple Aimless Movements: A High-Resolution EEG Study. Neuroimage 2002. [DOI: 10.1006/nimg.2002.1192] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
249
|
Babiloni F, Carducci F, Cincotti F, Del Gratta C, Pizzella V, Romani GL, Rossini PM, Tecchio F, Babiloni C. Linear inverse source estimate of combined EEG and MEG data related to voluntary movements. Hum Brain Mapp 2001; 14:197-209. [PMID: 11668651 PMCID: PMC6871788 DOI: 10.1002/hbm.1052] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Accepted: 07/09/2001] [Indexed: 11/09/2022] Open
Abstract
A method for the modeling of human movement-related cortical activity from combined electroencephalography (EEG) and magnetoencephalography (MEG) data is proposed. This method includes a subject's multi-compartment head model (scalp, skull, dura mater, cortex) constructed from magnetic resonance images, multi-dipole source model, and a regularized linear inverse source estimate based on boundary element mathematics. Linear inverse source estimates of cortical activity were regularized by taking into account the covariance of background EG and MEG sensor noise. EEG (121 sensors) and MEG (43 sensors) data were recorded in separate sessions whereas normal subjects executed voluntary right one-digit movements. Linear inverse source solution of EEG, MEG, and EEG-MEG data were quantitatively evaluated by using three performance indexes. The first two indexes (Dipole Localization Error [DLE] and Spatial Dispersion [SDis]) were used to compute the localization power for the source solutions obtained. Such indexes were based on the information provided by the column of the resolution matrix (i.e., impulse response). Ideal DLE values tend to zero (the source current was correctly retrieved by the procedure). In contrast, high DLE values suggest severe mislocalization in the source reconstruction. A high value of SDis at a source space point mean that such a source will be retrieved by a large area with the linear inverse source estimation. The remaining performance index assessed the quality of the source solution based on the information provided by the rows of the resolution matrix R, i.e., resolution kernels. The i-th resolution kernels of the matrix R describe how the estimation of the i-th source is distorted by the concomitant activity of all other sources. A statistically significant lower dipole localization error was observed and lower spatial dispersion in source solutions produced by combined EEG-MEG data than from EEG and MEG data considered separately (P < 0.05). These effects were not due to an increased number of sensors in the combined EEG-MEG solutions. They result from the independence of source information conveyed by the multimodal measurements. From a physiological point of view, the linear inverse source solution of EEG-MEG data suggested a contralaterally preponderant bilateral activation of primary sensorimotor cortex from the preparation to the execution of the movement. This activation was associated with that of the supplementary motor area. The activation of bilateral primary sensorimotor cortical areas was greater during the processing of afferent information related to the ongoing movement than in the preparation for the motor act. In conclusion, the linear inverse source estimate of combined MEG and EEG data improves the estimate of movement-related cortical activity.
Collapse
Affiliation(s)
- F Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma La Sapienza, Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Deiber MP, Caldara R, Ibañez V, Hauert CA. Alpha band power changes in unimanual and bimanual sequential movements, and during motor transitions. Clin Neurophysiol 2001; 112:1419-35. [PMID: 11459682 DOI: 10.1016/s1388-2457(01)00536-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the cortical activation during execution of unimanual and bimanual synchronous and asynchronous finger sequences, as well as during transitions between those sequences. METHODS Task-related power (TRPow) analysis of multichannel surface EEG was used to examine the regional oscillatory brain activity in the lower (7.8-9.8 Hz) and upper (10.8-11.8 Hz) alpha band. Unimanual to bimanual, bimanual to unimanual, and unimanual to unimanual transitions, prompted by visual cues, were studied in 10 right handed subjects. RESULTS (1) Execution of unimanual and bimanual movements was accompanied by a bilateral activation over the central regions. (2) The 7.8-9.8 Hz TRPow decrease was more prominent for left and bimanual movements, suggesting sensitivity of the lower alpha band to task difficulty. (3) No difference in alpha oscillatory activity was found between bimanual synchronous and asynchronous sequences. (4) Transitions between motor sequences were invariably accompanied by a mesioparietal TRPow decrease in the lower alpha band. (5) This mesioparietal activation was contingent to the change of motor program, and could not be accounted for by the change of visual cue, or related attentional processes. CONCLUSION The 7.8-9.8 Hz mesioparietal activation most likely reflects a posterior parietal motor command initiating transition between motor programs.
Collapse
Affiliation(s)
- M P Deiber
- Faculté de Psychologie et des Sciences de l'Education, Université de Genève, UniMail, Boulevard du Pont d'Arve 40, CH-1211 4, Geneva, Switzerland.
| | | | | | | |
Collapse
|