201
|
Zwart MP, Dieu BTM, Hemerik L, Vlak JM. Evolutionary trajectory of white spot syndrome virus (WSSV) genome shrinkage during spread in Asia. PLoS One 2010; 5:e13400. [PMID: 20976239 PMCID: PMC2954812 DOI: 10.1371/journal.pone.0013400] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/19/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND White spot syndrome virus (WSSV) is the sole member of the novel Nimaviridae family, and the source of major economic problems in shrimp aquaculture. WSSV appears to have rapidly spread worldwide after the first reported outbreak in the early 1990s. Genomic deletions of various sizes occur at two loci in the WSSV genome, the ORF14/15 and ORF23/24 variable regions, and these have been used as molecular markers to study patterns of viral spread over space and time. We describe the dynamics underlying the process of WSSV genome shrinkage using empirical data and a simple mathematical model. METHODOLOGY/PRINCIPAL FINDINGS We genotyped new WSSV isolates from five Asian countries, and analyzed this information together with published data. Genome size appears to stabilize over time, and deletion size in the ORF23/24 variable region was significantly related to the time of the first WSSV outbreak in a particular country. Parameter estimates derived from fitting a simple mathematical model of genome shrinkage to the data support a geometric progression (k<1) of the genomic deletions, with k = 0.371 ± 0.150. CONCLUSIONS/SIGNIFICANCE The data suggest that the rate of genome shrinkage decreases over time before attenuating. Bioassay data provided support for a link between genome size and WSSV fitness in an aquaculture setting. Differences in genomic deletions between geographic WSSV isolates suggest that WSSV spread did not follow a smooth pattern of geographic radiation, suggesting spread of WSSV over long distances by commercial activities. We discuss two hypotheses for genome shrinkage, an adaptive and a neutral one. We argue in favor of the adaptive hypothesis, given that there is support for a link between WSSV genome size and fitness.
Collapse
Affiliation(s)
- Mark P Zwart
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
202
|
Huang XD, Zhao L, Zhang HQ, Xu XP, Jia XT, Chen YH, Wang PH, Weng SP, Yu XQ, Yin ZX, He JG. Shrimp NF-κB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity. Virology 2010; 406:176-80. [DOI: 10.1016/j.virol.2010.06.046] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/04/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
203
|
Involvement of WSSV-shrimp homologs in WSSV infectivity in kuruma shrimp: Marsupenaeus japonicus. Antiviral Res 2010; 88:217-26. [PMID: 20826185 DOI: 10.1016/j.antiviral.2010.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 01/19/2023]
Abstract
White spot syndrome virus (WSSV) is pathogenic and specific to shrimp, and is capable of producing a persistent infection in the host. Moreover, shrimp are capable of persistently carrying a single or multiple viruses, allowing them to survive for long periods with latent infections. In order to identify genes that are specially involved in the intricate WSSV-shrimp association, we focused on homologs between the WSSV and shrimp genomes. We here investigated whether homologous WssvORFs (WssvORF285, WssvORF332) and their homologs in the kuruma shrimp genome (MjORF16, MjORF18) are important for WSSV infectivity by utilizing dsRNA-mediated RNA interference, and further proposed potential roles of homologous WssvORFs associated with the persistent viral infection stage. Homologous MjORFs were found to be highly up-regulated in several tested tissues upon WSSV infection. Injection of dsRNAs specific to homologous MjORFs, followed by WSSV challenge, led to reduced and delayed shrimp mortality when compared to that of shrimp without dsRNA injection. Silencing of homologous WssvORFs by specific dsRNAs sharply increased shrimp survival. WssvORF332 may function as a latency gene especially associated with the persistent WSSV infection stage while WssvORF285 may be classified into the same group as WssvVP28 and may play a role in virus penetration during the infection. Our results suggest that WSSV-shrimp homologs are involved in WSSV infectivity and support the hypothesis that homologous WssvORFs are related to WSSV latency and pathogenesis.
Collapse
|
204
|
John KR, George MR, Iyappan T, Thangarani AJ, Jeyaseelan MJP. Indian isolates of white spot syndrome virus exhibit variations in their pathogenicity and genomic tandem repeats. JOURNAL OF FISH DISEASES 2010; 33:749-758. [PMID: 20690959 DOI: 10.1111/j.1365-2761.2010.01181.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To detect genomic variation of white spot syndrome virus (WSSV) isolates from different geographical regions of India, the variable number of the tandem repeat (VNTR) region of the ORF 94 (Thailand WSSV isolate - GeneBank Accession No. AF369029) was analysed using five specific sets of primers. Analysis of 70 WSSV-positive samples showed the presence of 14 different genotypes of WSSV with VNTRs ranging from 2 to 16 tandem repeats with the majority (85.47%) having 6-12 tandem repeats. Occurrence of different genotypes of WSSV was found to be neither correlated to any specific geographical region nor to the different growth stage of the tiger shrimp, Penaeus monodon. Pathogenicity studies conducted with 25 isolates of WSSV revealed the presence of virulent and avirulent strains of WSSV in Indian shrimp farms. However, an unambiguous link could not be established between the different genotypes and their virulence.
Collapse
Affiliation(s)
- K R John
- Department of Aquaculture, Tamilnadu Veterinary & Animal Sciences University, Fisheries College and Research Institute, Tuticorin, India.
| | | | | | | | | |
Collapse
|
205
|
Kariithi HM, Ince IA, Boeren S, Vervoort J, Bergoin M, van Oers MM, Abd-Alla AMM, Vlak JM. Proteomic analysis of Glossina pallidipes salivary gland hypertrophy virus virions for immune intervention in tsetse fly colonies. J Gen Virol 2010; 91:3065-74. [PMID: 20719992 DOI: 10.1099/vir.0.023671-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many species of tsetse flies (Diptera: Glossinidae) can be infected by a virus that causes salivary gland hypertrophy (SGH). The genomes of viruses isolated from Glossina pallidipes (GpSGHV) and Musca domestica (MdSGHV) have recently been sequenced. Tsetse flies with SGH have reduced fecundity and fertility which cause a serious problem for mass rearing in the frame of sterile insect technique (SIT) programmes to control and eradicate tsetse populations in the wild. A potential intervention strategy to mitigate viral infections in fly colonies is neutralizing of the GpSGHV infection with specific antibodies against virion proteins. Two major GpSGHV virion proteins of about 130 and 50 kDa, respectively, were identified by Western analysis using a polyclonal rabbit antibody raised against whole GpSHGV virions. The proteome of GpSGHV, containing the antigens responsible for the immune-response, was investigated by liquid chromatography tandem mass spectrometry and 61 virion proteins were identified by comparison with the genome sequence. Specific antibodies were produced in rabbits against seven candidate proteins, including the ORF10/C-terminal fragment, ORF47 and ORF96 as well as proteins involved in peroral infectivity PIF-1 (ORF102), PIF-2 (ORF53), PIF-3 (ORF76) and P74 (ORF1). Antiserum against ORF10 specifically reacted to the 130 kDa protein in a Western blot analysis and to the envelope protein of GpSGHV, detected by using immunogold-electron microscopy. This result suggests that immune intervention of viral infections in colonies of G. pallidipes is a realistic option.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Vazquez-Boucard C, Alvarez-Ruiz P, Escobedo-Fregoso C, Anguiano-Vega G, Duran-Avelar MDJ, Pinto VS, Escobedo-Bonilla CM. Detection of white spot syndrome virus (WSSV) in the Pacific oyster Crassostrea gigas. J Invertebr Pathol 2010; 104:245-7. [DOI: 10.1016/j.jip.2010.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/28/2022]
|
207
|
Liang Y, Cheng JJ, Yang B, Huang J. The role of F1 ATP synthase beta subunit in WSSV infection in the shrimp, Litopenaeus vannamei. Virol J 2010; 7:144. [PMID: 20591132 PMCID: PMC2906456 DOI: 10.1186/1743-422x-7-144] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/30/2010] [Indexed: 11/23/2022] Open
Abstract
Background Knowledge of the virus-host cell interaction could inform us of the molecular pathways exploited by the virus. Studies on viral attachment proteins (VAPs) and candidate receptor proteins involved in WSSV infection, allow a better understanding of how these proteins interact in the viral life cycle. In this study, our aim was to find some host cellular membrane proteins that could bind with white spot syndrome virus (WSSV). Results Two proteins were evident by using a virus overlay protein binding assay (VOPBA) with WSSV. A protein with molecular weight 53 kDa, named BP53, was analyzed in this study, which was homologous with the F1-ATP synthase beta subunit by mass spectrometry analysis. Rapid amplification of cDNA ends (RACE) PCR was performed to identify the full-length cDNA of the bp53 gene. The resulting full-length gene consisted of 1836 bp, encoding 525 amino acids with a calculated molecular mass of 55.98 kDa. The deduced amino acid sequence contained three conserved domains of the F1-ATP synthase beta subunit. BP53 was therefore designated the F1-ATP synthase beta subunit of L. vannamei. The binding of WSSV to BP53 were also confirmed by competitive ELISA binding assay and co-immunoprecipitation on magnetic beads. To investigate the function of BP53 in WSSV infection, it was mixed with WSSV before the mixture was injected intramuscularly into shrimp. The resulting mortality curves showed that recombinant (r) BP53 could attenuate WSSV infection. Conclusions The results revealed that BP53 is involved in WSSV infection. Here is the first time showed the role of shrimp F1-ATP synthase beta subunit in WSSV infection.
Collapse
Affiliation(s)
- Yan Liang
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, the Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | | | | | |
Collapse
|
208
|
Lin Y, Xu L, Yang F. Tetramerization of white spot syndrome virus envelope protein VP33 and its interaction with VP24. Arch Virol 2010; 155:833-8. [DOI: 10.1007/s00705-010-0650-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/19/2010] [Indexed: 11/24/2022]
|
209
|
Sánchez-Paz A. White spot syndrome virus: an overview on an emergent concern. Vet Res 2010; 41:43. [PMID: 20181325 PMCID: PMC2855118 DOI: 10.1051/vetres/2010015] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 02/24/2010] [Indexed: 12/11/2022] Open
Abstract
Viruses are ubiquitous and extremely abundant in the marine environment. One of such marine viruses, the white spot syndrome virus (WSSV), has emerged globally as one of the most prevalent, widespread and lethal for shrimp populations. However, at present there is no treatment available to interfere with the unrestrained occurrence and spread of the disease. The recent progress in molecular biology techniques has made it possible to obtain information on the factors, mechanisms and strategies used by this virus to infect and replicate in susceptible host cells. Yet, further research is still required to fully understand the basic nature of WSSV, its exact life cycle and mode of infection. This information will expand our knowledge and may contribute to developing effective prophylactic or therapeutic measures. This review provides a state-of-the-art overview of the topic, and emphasizes the current progress and future direction for the development of WSSV control strategies.
Collapse
Affiliation(s)
- Arturo Sánchez-Paz
- Centro de Investigaciones Biologicas del Noroeste, Unidad Hermosillo, Hermosillo, Mexico.
| |
Collapse
|
210
|
Koyama T, Asakawa S, Katagiri T, Shimizu A, Fagutao FF, Mavichak R, Santos MD, Fuji K, Sakamoto T, Kitakado T, Kondo H, Shimizu N, Aoki T, Hirono I. Hyper-expansion of large DNA segments in the genome of kuruma shrimp, Marsupenaeus japonicus. BMC Genomics 2010; 11:141. [PMID: 20187930 PMCID: PMC2838849 DOI: 10.1186/1471-2164-11-141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/26/2010] [Indexed: 11/30/2022] Open
Abstract
Background Higher crustaceans (class Malacostraca) represent the most species-rich and morphologically diverse group of non-insect arthropods and many of its members are commercially important. Although the crustacean DNA sequence information is growing exponentially, little is known about the genome organization of Malacostraca. Here, we constructed a bacterial artificial chromosome (BAC) library and performed BAC-end sequencing to provide genomic information for kuruma shrimp (Marsupenaeus japonicus), one of the most widely cultured species among crustaceans, and found the presence of a redundant sequence in the BAC library. We examined the BAC clone that includes the redundant sequence to further analyze its length, copy number and location in the kuruma shrimp genome. Results Mj024A04 BAC clone, which includes one redundant sequence, contained 27 putative genes and seemed to display a normal genomic DNA structure. Notably, of the putative genes, 3 genes encode homologous proteins to the inhibitor of apoptosis protein and 7 genes encode homologous proteins to white spot syndrome virus, a virulent pathogen known to affect crustaceans. Colony hybridization and PCR analysis of 381 BAC clones showed that almost half of the BAC clones maintain DNA segments whose sequences are homologous to the representative BAC clone Mj024A04. The Mj024A04 partial sequence was detected multiple times in the kuruma shrimp nuclear genome with a calculated copy number of at least 100. Microsatellites based BAC genotyping clearly showed that Mj024A04 homologous sequences were cloned from at least 48 different chromosomal loci. The absence of micro-syntenic relationships with the available genomic sequences of Daphnia and Drosophila suggests the uniqueness of these fragments in kuruma shrimp from current arthropod genome sequences. Conclusions Our results demonstrate that hyper-expansion of large DNA segments took place in the kuruma shrimp genome. Although we analyzed only a part of the duplicated DNA segments, our result suggested that it is difficult to analyze the shrimp genome following normal analytical methodology. Hence, it is necessary to avoid repetitive sequence (such as segmental duplications) when studying the other unique structures in the shrimp genome.
Collapse
Affiliation(s)
- Takashi Koyama
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Dieu BTM, Marks H, Zwart MP, Vlak JM. Evaluation of white spot syndrome virus variable DNA loci as molecular markers of virus spread at intermediate spatiotemporal scales. J Gen Virol 2010; 91:1164-72. [PMID: 20089797 DOI: 10.1099/vir.0.018028-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variable genomic loci have been employed in a number of molecular epidemiology studies of white spot syndrome virus (WSSV), but it is unknown which loci are suitable molecular markers for determining WSSV spread on different spatiotemporal scales. Although previous work suggests that multiple introductions of WSSV occurred in central Vietnam, it is largely uncertain how WSSV was introduced and subsequently spread. Here, we evaluate five variable WSSV DNA loci as markers of virus spread on an intermediate (i.e. regional) scale, and develop a detailed and statistically supported model for the spread of WSSV. The genotypes of 17 WSSV isolates from along the coast of Vietnam--nine of which were newly characterized in this study--were analysed to obtain sufficient samples on an intermediate scale and to allow statistical analysis. Only the ORF23/24 variable region is an appropriate marker on this scale, as geographically proximate isolates show similar deletion sizes. The ORF14/15 variable region and variable-number tandem repeat (VNTR) loci are not useful as markers on this scale. ORF14/15 may be suitable for studying larger spatiotemporal scales, whereas VNTR loci are probably suitable for smaller scales. For ORF23/24, there is a clear pattern in the spatial distribution of WSSV: the smallest genomic deletions are found in central Vietnam, and larger deletions are found in the south and the north. WSSV genomic deletions tend to increase over time with virus spread in cultured shrimp, and our data are therefore congruent with the hypothesis that WSSV was introduced in central Vietnam and then radiated out.
Collapse
Affiliation(s)
- Bui Thi Minh Dieu
- Laboratory of Virology, Wageningen University, Radix building (#107), Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
212
|
Villarreal LP. The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 2009; 1178:194-232. [PMID: 19845639 DOI: 10.1111/j.1749-6632.2009.05020.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable colonization of the host by viruses (genetic parasites) can alter the systems of host identity and provide immunity against related viruses. To attain the needed stability, some viruses of prokaryotes (P1 phage) use a strategy called an addiction module. The linked protective and destructive gene functions of an addiction module insures both virus persistence but will also destroy cells that interrupt this module and thereby prevent infection by competitors. Previously, I have generalized this concept to also include persistent and lytic states of virus infection, which can be considered as a virus addiction module. Such states often involve defective viruses. In this report, I examine the origin of the adaptive immune system from the perspective of a virus addiction module. The likely role of both endogenous and exogenous retroviruses, DNA viruses, and their defective elements is considered in the origin of all the basal components of adaptive immunity (T-cell receptor, RAG-mediated gene rearrangement, clonal lymphocyte proliferation, antigen surface presentation, apoptosis, and education of immune cells). It is concluded that colonization by viruses and their defectives provides a more coherent explanation for the origin of adaptive immunity.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
213
|
Assessment of the role of brine shrimp Artemia in white spot syndrome virus (WSSV) transmission. Vet Res Commun 2009; 34:25-32. [DOI: 10.1007/s11259-009-9329-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
|
214
|
Afsharnasa M, Mortezaei R, Yegane V, Kazemi B. Gross Sign, Histopathology and Polymerase Chain Reaction Observations of White Spot Syndrome Virus in Shrimp Specific Pathogen Free Litopeneaus vannamei in Iran. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ajava.2009.297.305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
215
|
Park JE, Shin HJ. Analysis of the VP19 and VP28 genes of white spot syndrome virus in Korea and comparison with strains from other countries. Arch Virol 2009; 154:1709-12. [PMID: 19760362 DOI: 10.1007/s00705-009-0489-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 08/05/2009] [Indexed: 11/26/2022]
Abstract
The results of our DNA analysis showed that there was 100% homology of the VP28 and VP19 genes of white spot syndrome virus (WSSV) among the samples collected from different shrimp farms in Korea. Comparing with an earlier isolated Korean strain, Korea01, the genes nucleotide sequences had only a single base difference which was observed in both VP19 and VP28. This resulted in a single amino acid substitution at position 40 of the latter. This implies that a single genetic strain of WSSV has been circulating in Korea and that its mutation rate is very low. In comparison with known sequences of VP19 and VP28 genes of WSSV isolates from other countries, the Korean strains had more than 99% sequence homology with those in gene and protein. Based on our sequence analysis of VP19 and VP28 of WSSV from various shrimp farms in Korea, the WSSV strains circulating in the region were genetically identical and similar to the strain identified two years ago. In addition, the Korean strain had close genetic identity with strains circulating in other Asian countries as well as other continents.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | | |
Collapse
|
216
|
Development of lateral-flow immunoassay for WSSV with polyclonal antibodies raised against recombinant VP (19+28) fusion protein. Virol Sin 2009. [DOI: 10.1007/s12250-007-0063-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
217
|
Gu WG, Yuan JF, Xu GL, Li LJ, Liu N, Zhang C, Zhang JH, Shi ZL. Production and characterization of monoclonal antibodies of shrimp White spot syndrome virus envelope protein VP28. Virol Sin 2009. [DOI: 10.1007/s12250-007-0057-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
218
|
Chen KY, Hsu TC, Huang PY, Kang ST, Lo CF, Huang WP, Chen LL. Penaeus monodon chitin-binding protein (PmCBP) is involved in white spot syndrome virus (WSSV) infection. FISH & SHELLFISH IMMUNOLOGY 2009; 27:460-465. [PMID: 19576286 DOI: 10.1016/j.fsi.2009.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/10/2009] [Accepted: 06/21/2009] [Indexed: 05/28/2023]
Abstract
White spot syndrome virus (WSSV) can cause the most serious viral disease of shrimp and has a wide host range among crustaceans. Although researches show a lot about its genome and structure, information concerning the mechanism of how WSSV infects' cells is lacking. In this study, some experiments were applied to confirm the biological meaning of the protein-protein interaction between WSSV envelope protein, VP53A, and Penaeus monodon chitin-binding protein (PmCBP). Immunofluorescent study indicated that PmCBP is located on the cell surface of host cells. PmCBP amounts of about 34kDa can be detected in both P. monodon and Litopenaeus vannamei tissues by Western blotting. In the in vivo neutralization experiment, both rVP53A and rPmCBP that were produced by Esherichia coli can promote resp. a 40% and 20% survival rate of the shrimp which were challenged by WSSV. Furthermore, a yeast-two-hybrid result revealed that PmCBP could interact with at least 11 WSSV envelope proteins. Those findings suggest that PmCBP may be involved in WSSV infection.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Marine Biology, National Taiwan Ocean University, Jhongjheng District, Keelung City 20224, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
219
|
Arvizu-Flores AA, Aispuro-Hernandez E, Garcia-Orozco KD, Varela-Romero A, Valenzuela-Soto E, Velazquez-Contreras EF, Rojo-Domínguez A, Yepiz-Plascencia G, Maley F, Sotelo-Mundo RR. Functional identity of the active sites of crustacean and viral thymidylate synthases. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:406-13. [PMID: 19559812 DOI: 10.1016/j.cbpc.2009.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/01/2022]
Abstract
Thymidylate synthase (TS) catalyzes the synthesis of deoxythymidine monophosphate (dTMP), which is an essential precursor for DNA synthesis. The rationale underlying drug design is to identify compounds that differentially inhibit a viral or parasite enzyme vs. the host homologue. We studied the TS of the white spot syndrome virus (WSSV TS) and the corresponding TS from the host, the marine invertebrate shrimp Litopenaeus vannamei. TS is the only de novo source of dTMP and is essential for host and viral DNA replication. To establish proof of principle, we cloned a full-length TS cDNA from the white shrimp L. vannamei (shrimp TS) that corresponds to a deduced sequence of 289 amino acids and over-expressed it to study inhibition of both shrimp and viral TSs. Steady-state kinetic parameters for both TSs are similar, and dissociation (K(d)) or half maximal inhibitory concentration constants (IC(50)) did not show differential inhibition between the folate analogues. Differences in their amino acid sequence are not reflected in theoretical molecular models of both TSs, since both appear to have identical active sites. These results suggest that the eukaryotic TS active site is very constrained into the functional residues involved in reductive methylation of 2'-deoxyuridine-5'-monophosphate (dUMP).
Collapse
Affiliation(s)
- Aldo A Arvizu-Flores
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Syed Musthaq S, Madhan S, Sahul Hameed A, Kwang J. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon. Virology 2009; 391:315-24. [DOI: 10.1016/j.virol.2009.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/24/2009] [Accepted: 06/03/2009] [Indexed: 11/30/2022]
|
221
|
Pradeep B, Karunasagar I, Karunasagar I. Fitness and virulence of different strains of white spot syndrome virus. JOURNAL OF FISH DISEASES 2009; 32:801-805. [PMID: 19531096 DOI: 10.1111/j.1365-2761.2009.01053.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- B Pradeep
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, India
| | | | | |
Collapse
|
222
|
|
223
|
Liu H, Söderhäll K, Jiravanichpaisal P. Antiviral immunity in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2009; 27:79-88. [PMID: 19223016 PMCID: PMC7172356 DOI: 10.1016/j.fsi.2009.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/28/2009] [Accepted: 02/01/2009] [Indexed: 05/27/2023]
Abstract
Viral diseases of shrimp have caused negative effects on the economy in several countries in Asia, South America and America, where they have numerous shrimp culture industries. The studies on the immunity of shrimp and other crustaceans have mainly focused on general aspects of immunity and as a consequence little is known about the antiviral responses in crustaceans. The aim of this review is to update recent knowledge of innate immunity against viral infections in crustaceans. Several antiviral molecules have been isolated and characterized recently from decapods. Characterization and identification of these molecules might provide a promising strategy for protection and treatment of these viral diseases. In addition dsRNA-induced antiviral immunity is also included.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, 361005 Fujian, PR China
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Pikul Jiravanichpaisal
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
- Molecular Aquatic Biology and Genetic Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Rajdhevee, Bangkok 10400, Thailand
| |
Collapse
|
224
|
Reyes-López MA, Salazar-Marroquín EL, Oliva-Hernández AA, Salinas-López N, Narváez-Zapata JA. White-spot syndrome virus diagnostics in frozen shrimp stocks imported to Mexico. CYTA - JOURNAL OF FOOD 2009. [DOI: 10.1080/11358120902907030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
225
|
Inhibition of white spot syndrome virus replication in Penaeus monodon by combined silencing of viral rr2 and shrimp PmRab7. Virus Res 2009; 145:127-33. [PMID: 19596390 DOI: 10.1016/j.virusres.2009.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 11/24/2022]
Abstract
Although a significant progress has been achieved on dsRNA mediated anti-virus strategy development, there is still no effective means to control the virulent white spot syndrome virus (WSSV). Six double-stranded RNAs specific to different essential genes of WSSV (ie1, ie3, pol (DNA polymerase), rr2 (ribonucleotide reductase small subunit), vp26, and vp28) were employed to suppress viral replication in shrimp. At the condition that non-specific inhibitory effect was overwhelmed, the relative protective degree of these dsRNAs against WSSV infection (rr2>ie3>vp26, vp28>ie1>pol) was observed by semi-quantitative PCR. Besides, more than one injection of dsRNA was needed for an efficient viral inhibition. To improve viral protection in Penaeus monodon, synchronized blocking of viral cellular transport (by dsRNA-PmRab7) and viral essential gene synthesis (by dsRNA-rr2) was first performed in this study. The suppression effects of shrimp mortality by either combined dsRNAs of rr2 and PmRab7 or dsRNA-rr2 alone was monitored for 8 days after viral challenge. Approximately 95% of shrimp survivals were detected from both combined dsRNAs and dsRNA-rr2 alone whereas all shrimp without dsRNA were dead. It revealed that there was no additive inhibitory effect of the combined dsRNAs over dsRNA-rr2 alone.
Collapse
|
226
|
Promoter motifs essential to the differential transcription of structural and non-structural genes of the white spot syndrome virus. Virus Genes 2009; 39:223-33. [DOI: 10.1007/s11262-009-0380-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
227
|
Walker PJ, Mohan CV. Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. REVIEWS IN AQUACULTURE 2009; 1:125-154. [PMID: 32328167 PMCID: PMC7169130 DOI: 10.1111/j.1753-5131.2009.01007.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/09/2009] [Indexed: 05/06/2023]
Abstract
Shrimp aquaculture has grown rapidly over several decades to become a major global industry that serves the increasing consumer demand for seafood and has contributed significantly to socio-economic development in many poor coastal communities. However, the ecological disturbances and changes in patterns of trade associated with the development of shrimp farming have presented many of the pre-conditions for the emergence and spread of disease. Shrimp are displaced from their natural environments, provided artificial or alternative feeds, stocked in high density, exposed to stress through changes in water quality and are transported nationally and internationally, either live or as frozen product. These practices have provided opportunities for increased pathogenicity of existing infections, exposure to new pathogens, and the rapid transmission and transboundary spread of disease. Not surprisingly, a succession of new viral diseases has devastated the production and livelihoods of farmers and their sustaining communities. This review examines the major viral pathogens of farmed shrimp, the likely reasons for their emergence and spread, and the consequences for the structure and operation of the shrimp farming industry. In addition, this review discusses the health management strategies that have been introduced to combat the major pathogens and the reasons that disease continues to have an impact, particularly on poor, small-holder farmers in Asia.
Collapse
Affiliation(s)
- Peter J. Walker
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - C. V. Mohan
- Network of Aquaculture Centers Asia‐Pacific (NACA), Kasetsart University Campus, Ladyao, Jatujak, Bangkok, Thailand
| |
Collapse
|
228
|
DNA constructs expressing long-hairpin RNA (lhRNA) protect Penaeus monodon against White Spot Syndrome Virus. Vaccine 2009; 27:3849-55. [DOI: 10.1016/j.vaccine.2009.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/21/2009] [Accepted: 04/03/2009] [Indexed: 11/20/2022]
|
229
|
Wang Y, Jehle JA. Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic. J Invertebr Pathol 2009; 101:187-93. [PMID: 19460388 DOI: 10.1016/j.jip.2009.03.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
Nudiviruses (NVs) are a highly diverse group of large, circular dsDNA viruses pathogenic for invertebrates. They have rod-shaped and enveloped nucleocapsids, replicate in the nucleus of infected host cells, and possess interesting biological and molecular properties. The unassigned viral genus Nudivirus has been proposed for classification of nudiviruses. Currently, the nudiviruses comprise five different viruses: the palm rhinoceros beetle virus (Oryctes rhinoceros NV, OrNV), the Hz-1 virus (Heliothis zea NV-1, HzNV-1), the cricket virus (Gryllus bimaculatus NV, GbNV), the corn earworm moth Hz-2 virus (HzNV-2), and the occluded shrimp Monodon Baculovirus reassigned as Penaeus monodon NV (PmNV). Thus far, the genomes of OrNV, GbNV, HzNV-1 and HzNV-2 have been completely sequenced. They vary between 97 and 230kbp in size and encode between 98 and 160 open reading frames (ORFs). All sequenced nudiviruses have 33 ORFs in common. Strikingly, 20 of them are homologous to baculovirus core genes involved in RNA transcription, DNA replication, virion structural components and other functions. Another nine conserved ORFs are likely associated with DNA replication, repair and recombination, and nucleotide metabolism; one is homologous to baculovirus iap-3 gene; two are nudivirus-specific ORFs of unknown function. Interestingly, one nudivirus ORF is similar to polh/gran gene, encoding occlusion body protein matrix and being conserved in Alpha- Beta- and Gammabaculoviruses. Members of nudiviruses are closely related and form a monophyletic group consisting of two sister clades of OrNV/GbNV and HzNVs/PmNV. It is proposed that nudiviruses and baculoviruses derived from a common ancestor and are evolutionarily related to other large DNA viruses such as the insect-specific salivary gland hypertrophy virus (SGHV) and the marine white spot syndrome virus (WSSV).
Collapse
Affiliation(s)
- Yongjie Wang
- Laboratory for Biotechnological Crop Protection, Department of Phytopathology, Agricultural Service Center Palatinate (DLR Rheinpfalz), Neustadt a.d. Weinstrasse, Germany.
| | | |
Collapse
|
230
|
Zhu F, Du H, Miao ZG, Quan HZ, Xu ZR. Protection of Procambarus clarkii against white spot syndrome virus using inactivated WSSV. FISH & SHELLFISH IMMUNOLOGY 2009; 26:685-90. [PMID: 19268545 DOI: 10.1016/j.fsi.2009.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 02/05/2009] [Accepted: 02/21/2009] [Indexed: 05/11/2023]
Abstract
White spot syndrome virus (WSSV) is a highly pathogenic and prevalent virus infecting shrimp and other crustaceans. The potentiality of binary ethylenimine (BEI)-inactivated WSSV against WSSV in crayfish, Procambarus clarkii, was investigated in this study. Efficacy of BEI-inactivated WSSV was tested by vaccination trials followed by challenge of crayfish with WSSV. The crayfish injected with BEI-inactivated WSSV showed a better survival (P<0.05) to WSSV on the 7th and 21st day post-vaccination (dpv) compared to the control. Calculated relative percent survival (RPS) values were 77% and 60% on the 7th and 21st dpv for 2mM BEI-inactivated WSSV, and 63%, 30% on 7th and 21st dpv for 3mM BEI-inactivated WSSV. However, heat-inactivated WSSV did not provide protection from WSSV even on 7th dpv. In the inactivation process WSSV especially their envelope proteins maybe changed as happened to 3mM BEI and heat-inactivated WSSV particles. These results indicate the protective efficacy of BEI-inactivated WSSV lies on the integrity of envelope proteins of WSSV and the possibility of BEI-inactivated WSSV to protect P. clarkii from WSSV.
Collapse
Affiliation(s)
- Fei Zhu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Feed Science Institute, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | |
Collapse
|
231
|
Zeng Y, Lu CP. Identification of differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. FISH & SHELLFISH IMMUNOLOGY 2009; 26:646-650. [PMID: 19071220 DOI: 10.1016/j.fsi.2008.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
By using suppression subtractive hybridization (SSH) and cDNA microarrays, we studied the differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus (WSSV). Thirty three differentially expressed genes were detected in which 31 were up-regulated and 2 were down-regulated. The up-regulated genes include serine protease inhibitors, chaperonin, synaptasome-associated protein of 25 kD(SNAP25), tubulin, zinc-finger protein, intracellular fatty acid binding protein, extracellular superoxide dismutase precursor, arginine kinase, 70 kD heat shock like protein and Bax inhibitor-1. A lot of genes including the 2 down-regulated genes are still unknown. All these immuno-related genes responding to the virus infection provide a new insight for further study in the shrimp innate immunity.
Collapse
Affiliation(s)
- Yong Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | |
Collapse
|
232
|
Garcia-Maruniak A, Abd-Alla AMM, Salem TZ, Parker AG, Lietze VU, van Oers MM, Maruniak JE, Kim W, Burand JP, Cousserans F, Robinson AS, Vlak JM, Bergoin M, Boucias DG. Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade. J Gen Virol 2009; 90:334-346. [PMID: 19141442 DOI: 10.1099/vir.0.006783-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glossina pallidipes and Musca domestica salivary gland hypertrophy viruses (GpSGHV and MdSGHV) replicate in the nucleus of salivary gland cells causing distinct tissue hypertrophy and reduction of host fertility. They share general characteristics with the non-occluded insect nudiviruses, such as being insect-pathogenic, having enveloped, rod-shaped virions, and large circular double-stranded DNA genomes. MdSGHV measures 65x550 nm and contains a 124 279 bp genome (approximately 44 mol% G+C content) that codes for 108 putative open reading frames (ORFs). GpSGHV, measuring 50x1000 nm, contains a 190 032 bp genome (28 mol% G+C content) with 160 putative ORFs. Comparative genomic analysis demonstrates that 37 MdSGHV ORFs have homology to 42 GpSGHV ORFs, as some MdSGHV ORFs have homology to two different GpSGHV ORFs. Nine genes with known functions (dnapol, ts, pif-1, pif-2, pif-3, mmp, p74, odv-e66 and helicase-2), a homologue of the conserved baculovirus gene Ac81 and at least 13 virion proteins are present in both SGHVs. The amino acid identity ranged from 19 to 39 % among ORFs. An (A/T/G)TAAG motif, similar to the baculovirus late promoter motif, was enriched 100 bp upstream of the ORF transcription initiation sites of both viruses. Six and seven putative microRNA sequences were found in MdSGHV and GpSGHV genomes, respectively. There was genome. Collinearity between the two SGHVs, but not between the SGHVs and the nudiviruses. Phylogenetic analysis of conserved genes clustered both SGHVs in a single clade separated from the nudiviruses and baculoviruses. Although MdSGHV and GpSGHV are different viruses, their pathology, host range and genome composition indicate that they are related.
Collapse
Affiliation(s)
- Alejandra Garcia-Maruniak
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Adly M M Abd-Alla
- Entomology Unit, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Tamer Z Salem
- Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619, Egypt.,Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Andrew G Parker
- Entomology Unit, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Verena-Ulrike Lietze
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - James E Maruniak
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Woojin Kim
- Department of Plant, Soil and Insect Science, University of Massachusetts, Amherst, MA 01003, USA
| | - John P Burand
- Department of Plant, Soil and Insect Science, University of Massachusetts, Amherst, MA 01003, USA
| | - François Cousserans
- Laboratoire de Pathologie Comparée, Université Montpellier II, Montpellier, France
| | - Alan S Robinson
- Entomology Unit, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Max Bergoin
- Laboratoire de Pathologie Comparée, Université Montpellier II, Montpellier, France
| | - Drion G Boucias
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
233
|
Kang ST, Leu JH, Wang HC, Chen LL, Kou GH, Lo CF. Polycistronic mRNAs and internal ribosome entry site elements (IRES) are widely used by white spot syndrome virus (WSSV) structural protein genes. Virology 2009; 387:353-63. [PMID: 19285701 DOI: 10.1016/j.virol.2009.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/06/2009] [Accepted: 02/06/2009] [Indexed: 11/19/2022]
Abstract
The genome of the white spot syndrome virus (WSSV) Taiwan isolate has many structural and non-structural genes that are arranged in clusters. Screening with Northern blots showed that at least four of these clusters produce polycistronic mRNA, and one of these (vp31/vp39b/vp11) was studied in detail. The vp31/vp39b/vp11 cluster produces two transcripts, including a large 3.4-kb polycistronic transcript of all three genes. No monocistronic vp39b mRNA was detected. TNT and in vitro translation assays showed that vp39b translation was independent of vp31 translation, and that ribosomal reinitiation was not a possible mechanism for vp39b. An unusually located IRES (internal ribosome entry site) element was identified in the vp31/vp39b coding region, and this region was able to promote the expression of a downstream firefly luciferase reporter. We show that vp31/vp39b/vp11 is representative of many other WSSV structural/non-structural gene clusters, and argue that these are also likely to produce polycistronic mRNAs and that use an IRES mechanism to regulate their translation.
Collapse
Affiliation(s)
- Shih-Ting Kang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
234
|
Li F, Li M, Ke W, Ji Y, Bian X, Yan X. Identification of the immediate-early genes of white spot syndrome virus. Virology 2009; 385:267-74. [DOI: 10.1016/j.virol.2008.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/19/2008] [Accepted: 12/05/2008] [Indexed: 01/04/2023]
|
235
|
Li LJ, Zhang HJ, Zhang C, Shi ZL. Identification and characterization of nuclear localization signals within the nucleocapsid protein VP15 of white spot syndrome virus. Virol Sin 2009. [DOI: 10.1007/s12250-009-3013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
236
|
Abstract
Early events in white spot syndrome virus (WSSV) morphogenesis, particularly the formation of viral membranes, are poorly understood. The major envelope proteins of WSSV are VP28, VP26, VP24, and VP19. Our previous results indicated that VP28 interacts with VP26 and VP24. In the present study, we used coimmunoprecipitation assays and pull-down assays to confirm that the four major proteins in the WSSV envelope can form a multiprotein complex. Yeast two-hybrid assays were also used to test for interactions among the four proteins. In summary, three pairwise protein interactions (VP19-VP28, VP19-VP24, and VP24-VP26) and one self-association (VP24-VP24) were identified for the first time.
Collapse
|
237
|
Zhou Q, Li H, Qi YP, Yang F. Lipid of white-spot syndrome virus originating from host-cell nuclei. J Gen Virol 2009; 89:2909-2914. [PMID: 18931090 DOI: 10.1099/vir.0.2008/002402-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis that white-spot syndrome virus (WSSV) generates its envelope in the nucleoplasm is based on electron microscopy observations; however, as yet there is no direct evidence for this. In the present study, the lipids of WSSV and the nuclei of its host, the crayfish Procambarus clarkii, were extracted and the neutral lipid and phospholipid contents were analysed by high-performance liquid chromatography, thin-layer chromatography and gas chromatography/mass spectrometry. Phosphatidylcholine (PC) and phosphatidylethanolamine comprised 62.9 and 25.8 %, respectively, of WSSV phospholipids, whereas they comprised 58.5 and 30 %, respectively, of crayfish nuclei phospholipids. These two phospholipids were the dominant phospholipids, and amounts of other phospholipids were very low in the total WSSV and crayfish nuclei phospholipids. The data indicate that the phospholipid profile of WSSV and crayfish nuclei are similar, which is in agreement with the model that the lipids of WSSV are from the host-cell nuclei. However, the fatty acid chains of PC were different between the WSSV virions and crayfish nuclei, and the viral neutral lipid component was also found to be somewhat more complicated than that of the host nuclei. The number of species of cholesterol and hydrocarbon in virus neutral lipid was increased compared with that in host-cell nuclei neutral lipid. It is suggested that the differences between WSSV and its host are either due to selective sequestration of lipids or reflect the fact that the lipid metabolism of the host is changed by WSSV infection.
Collapse
Affiliation(s)
- Qing Zhou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen, PR China
| | - Hui Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen, PR China
| | - Yi-Peng Qi
- State Key Laboratory of Virology, Section of Molecular Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Feng Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, Xiamen, PR China
| |
Collapse
|
238
|
|
239
|
Liu QH, Zhang XL, Ma CY, Liang Y, Huang J. VP37 of white spot syndrome virus interact with shrimp cells. Lett Appl Microbiol 2009; 48:44-50. [DOI: 10.1111/j.1472-765x.2008.02482.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
240
|
He F, Ho Y, Yu L, Kwang J. WSSV ie1 promoter is more efficient than CMV promoter to express H5 hemagglutinin from influenza virus in baculovirus as a chicken vaccine. BMC Microbiol 2008; 8:238. [PMID: 19116038 PMCID: PMC2631607 DOI: 10.1186/1471-2180-8-238] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 12/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The worldwide outbreak of influenza A (H5N1) viruses among poultry species and humans highlighted the need to develop efficacious and safe vaccines based on efficient and scaleable production. RESULTS White spot syndrome virus (WSSV) immediate-early promoter one (ie1) was shown to be a stronger promoter for gene expression in insect cells compared with Cytomegalovirus immediate-early (CMV) promoter in luciferase assays. In an attempt to improve expression efficiency, a recombinant baculovirus was constructed expressing hemagglutinin (HA) of H5N1 influenza virus under the control of WSSV ie1 promoter. HA expression in SF9 cells increased significantly with baculovirus under WSSV ie1 promoter, compared with CMV promoter based on HA contents and hemagglutination activity. Further, immunization with baculovirus under WSSV ie1 promoter in chickens elicited higher level anti-HA antibodies compared to CMV promoter, as indicated in hemagglutination inhibition, virus neutralization and enzyme-linked immunosorbent assays. By immunohistochemistry, strong HA antigen expression was observed in different chicken organs with vaccination of WSSV ie1 promoter controlled baculovirus, confirming higher efficiency in HA expression by WSSV ie1 promoter. CONCLUSION The production of H5 HA by baculovirus was enhanced with WSSV ie1 promoter, especially compared with CMV promoter. This contributed to effective elicitation of HA-specific antibody in vaccinated chickens. This study provides an alternative choice for baculovirus based vaccine production.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
241
|
He F, Kwang J. Identification and characterization of a new E3 ubiquitin ligase in white spot syndrome virus involved in virus latency. Virol J 2008; 5:151. [PMID: 19087357 PMCID: PMC2614973 DOI: 10.1186/1743-422x-5-151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 12/17/2008] [Indexed: 12/15/2022] Open
Abstract
White spot syndrome virus (WSSV) is one major pathogen in shrimp aquaculture. WSSV ORF403 is predicted to encode a protein of 641 amino acids, which contains a C3H2C2 RING structure. In the presence of an E2 conjugating enzyme from shrimp, WSSV403 can ubiquitinate itself in vitro, indicating it can function as a viral E3 ligase. Besides, WSSV403 E3 ligase can be activated by a series of E2 variants. Based on RT-PCR and Real time PCR, we detected transcription of WSSV403 in the commercial specific-pathogen-free (SPF) shrimp, suggesting its role as a latency-associated gene. Identified in yeast two-hybrid screening and verified by pull-down assays, WSSV403 is able to bind to a shrimp protein phosphatase (PPs), which was characterized before as an interaction partner for another latent protein WSSV427. Our studies suggest that WSSV403 is a regulator of latency state of WSSV by virtue of its E3 ligase function.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| | | |
Collapse
|
242
|
Ning JF, Zhu W, Xu JP, Zheng CY, Meng XL. Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine 2008; 27:1127-35. [PMID: 19071178 DOI: 10.1016/j.vaccine.2008.11.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/06/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
Protective immune responses in shrimp induced by DNA vaccines against white spot syndrome virus (WSSV) with intramuscular injection have been reported in recent reports. In this study, we investigated the utilities of attenuated Salmonella enterica serovar Typhimurium (Salmonella typhimurium) as a bactofection vehicle for the oral delivery of a DNA vaccine plasmid to crayfish (Cambarus clarkii). The DNA vaccine plasmid pcDNA3.1-VP28, encoding viral envelope protein VP28, was transformed to an attenuated S. typhimurium strain SV4089 and the resulting recombinant bacteria named SV/pcDNA3.1-VP28 were used to orally immunize crayfish with coated feed. Successful delivery of the DNA vaccine plasmid was shown by the isolation of recombinant bacteria SV/pcDNA3.1-VP28 from the vaccinated crayfish. The distribution analysis of plasmid pcDNA3.1-VP28 in different tissues revealed the effective release of DNA vaccine plasmid into crayfish. RT-PCR and immunoflurescence results confirmed the expression of protein VP28 in the vaccinated crayfish. Challenge experiments with WSSV at 7, 15, 25 days post-vaccination demonstrated significant protection in immunized crayfish with relative survival rate 83.3%, 66.7% and 56.7%, respectively. Studies on stability and safety of SV/pcDNA3.1-VP28 showed the recombinant bacteria could exist in crayfish at least 7 days but not more than 10 days and without any observable harm to the host. Our study here demonstrates, for the first time, the ability of attenuated Salmonella as a live vector to orally deliver a DNA vaccine against WSSV into the arthropod crayfish and provides a new way to design more practical strategies for the control of WSSV and other invertebrate pathogens.
Collapse
Affiliation(s)
- Jian-Fang Ning
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | | | | | | | | |
Collapse
|
243
|
HAN JS. FUSION-EXPRESSION AND BIOACTIVITY ANALYSIS OF CARP GROWTH HORMONE GENE AND ENVELOPE PROTEIN VP28 OF PENAEUS MONODON WSSV. ACTA ACUST UNITED AC 2008. [DOI: 10.3724/sp.j.1035.2008.00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
244
|
Mekata T, Sudhakaran R, Kono T, Supamattaya K, Linh NTH, Sakai M, Itami T. Real-time quantitative loop-mediated isothermal amplification as a simple method for detecting white spot syndrome virus. Lett Appl Microbiol 2008; 48:25-32. [PMID: 19018969 DOI: 10.1111/j.1472-765x.2008.02479.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS White spot syndrome virus (WSSV) continues to be the most pathogenic virus among the crustacean aquaculture causing mass mortality. In the present study, we established a one-step, single tube, real-time accelerated loop-mediated isothermal amplification (real-time LAMP) for quantitative detection of WSSV. MATERIALS AND METHODS A set of six specially designed primers that recognize eight distinct sequences of the target. The whole process can be completed in 1 h under isothermal conditions at 63 degrees C. Detection and quantification can be achieved by real-time monitoring in an inexpensive turbidimeter based on threshold time required for turbidity in the LAMP reaction. A standard curve was constructed by plotting viral titre against the threshold time (T(t)) using plasmid standards with high correlation coefficient (R(2) = 0.988). CONCLUSIONS Sensitivity analysis using 10-fold dilutions (equivalent to 35 ng microl(-1) to 35 ag microl(-1)) of plasmid standards revealed this method is capable of detecting upto 100 copies of template DNA. Cross-reactivity analysis with DNA/cDNA of IHHNV, TSV, YHV-infected and healthy shrimp showed this method is highly specific for quantitative detection of WSSV. SIGNIFICANCE AND IMPACT OF THE STUDY WSSV real-time LAMP assay appears to be precise, accurate and a valuable tool for the detection and quantification of WSSV in large field samples and epidemiological studies.
Collapse
Affiliation(s)
- T Mekata
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
245
|
A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity. J Virol 2008; 83:347-56. [PMID: 18945787 DOI: 10.1128/jvi.00707-08] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-type lectins play key roles in pathogen recognition, innate immunity, and cell-cell interactions. Here, we report a new C-type lectin (C-type lectin 1) from the shrimp Litopenaeus vannamei (LvCTL1), which has activity against the white spot syndrome virus (WSSV). LvCTL1 is a 156-residue polypeptide containing a C-type carbohydrate recognition domain with an EPN (Glu(99)-Pro(100)-Asn(101)) motif that has a predicted ligand binding specificity for mannose. Reverse transcription-PCR analysis revealed that LvCTL1 mRNA was specifically expressed in the hepatopancreas of L. vannamei. Recombinant LvCTL1 (rLvCTL1) had hemagglutinating activity and ligand binding specificity for mannose and glucose. rLvCTL1 also had a strong affinity for WSSV and interacted with several envelope proteins of WSSV. Furthermore, we showed that the binding of rLvCTL1 to WSSV could protect shrimps from viral infection and prolong the survival of shrimps against WSSV infection. Our results suggest that LvCTL1 is a mannose-binding C-type lectin that binds to envelope proteins of WSSV to exert its antiviral activity. To our knowledge, this is the first report of a shrimp C-type lectin that has direct anti-WSSV activity.
Collapse
|
246
|
The C-terminal region of envelope protein VP38 from white spot syndrome virus is indispensable for interaction with VP24. Arch Virol 2008; 153:2103-6. [PMID: 18932021 DOI: 10.1007/s00705-008-0221-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
White spot syndrome virus (WSSV) is a large, rod-shaped, enveloped double-stranded DNA virus. In this study, VP38, a viral envelope protein, was expressed as a glutathione S-transferase (GST) fusion protein, and a polyclonal antibody against VP38 was obtained. Far-Western blotting and GST pull-down showed that VP38 interacted directly with VP24, a major WSSV envelope protein. In addition, to delineate the interaction region of VP38 with VP24, GST-VP38n (aa 1-142) and GST-VP38c (aa 143-309) were expressed. The GST pull-down assay revealed that VP38 binds via its C-terminal region to VP24. The result implies that VP38 may participate in the formation of the WSSV envelope.
Collapse
|
247
|
VP26 of white spot syndrome virus functions as a linker protein between the envelope and nucleocapsid of virions by binding with VP51. J Virol 2008; 82:12598-601. [PMID: 18842736 DOI: 10.1128/jvi.01732-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelopment of the nucleocapsid is an important step in white spot syndrome virus (WSSV) assembly. Previous studies showed that VP26, a major envelope protein of WSSV, can interact with viral nucleocapsid. In this study, using the biotin label transfer technique, we found that the biotin label was transferred from Bio-rVP26 to the viral capsid protein VP51 or from Bio-MBP-VP51 to VP26. Far-Western analyses provided further evidence for direct interaction between VP26 and VP51. Therefore, we conclude that VP26 functions as a matrix-like linker protein between the viral envelope and nucleocapsid, which suggests that VP26 is a key factor in the envelopment of WSSV virion.
Collapse
|
248
|
Transactivation, dimerization, and DNA-binding activity of white spot syndrome virus immediate-early protein IE1. J Virol 2008; 82:11362-73. [PMID: 18768963 DOI: 10.1128/jvi.01244-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immediate-early proteins from many viruses function as transcriptional regulators and exhibit transactivation activity, DNA binding activity, and dimerization. In this study, we investigated these characteristics in white spot syndrome virus (WSSV) immediate-early protein 1 (IE1) and attempted to map the corresponding functional domains. Transactivation was investigated by transiently expressing a protein consisting of the DNA binding domain of the yeast transactivator GAL4 fused to full-length IE1. This GAL4-IE1 fusion protein successfully activated the Autographa californica multicapsid nucleopolyhedrovirus p35 basal promoter when five copies of the GAL4 DNA binding site were inserted upstream of the TATA box. A deletion series of GAL4-IE1 fusion proteins suggested that the transactivation domain of WSSV IE1 was carried within its first 80 amino acids. A point mutation assay further showed that all 12 of the acidic residues in this highly acidic domain were important for IE1's transactivation activity. DNA binding activity was confirmed by an electrophoresis mobility shift assay using a probe with (32)P-labeled random oligonucleotides. The DNA binding region of WSSV IE1 was located in its C-terminal end (amino acids 81 to 224), but mutation of a putative zinc finger motif in this C-terminal region suggested that this motif was not directly involved in the DNA binding activity. A homotypic interaction between IE1 molecules was demonstrated by glutathione S-transferase pull-down assay and a coimmunoprecipitation analysis. A glutaraldehyde cross-linking experiment and gel filtration analysis showed that this self-interaction led to the formation of stable IE1 dimers.
Collapse
|
249
|
Wang Y, Zhang X, Yuan L, Xu T, Rao Y, Li J, Dai H. Generation of recombinant monoclonal antibodies to study structure–function of envelope protein VP28 of white spot syndrome virus from shrimp. Biochem Biophys Res Commun 2008; 372:902-6. [DOI: 10.1016/j.bbrc.2008.05.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/27/2008] [Indexed: 11/29/2022]
|
250
|
|