201
|
Ahn YJ, Zimmerman JL. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. PLANT, CELL & ENVIRONMENT 2006; 29:95-104. [PMID: 17086756 DOI: 10.1111/j.1365-3040.2005.01403.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have examined the ability of a carrot (Daucus carota L.) heat shock protein gene encoding HSP17.7 (DcHSP17.7) to confer enhanced heat tolerance to potato (Solanum tuberosum L.), a cool-season crop. The DcHSP17.7 gene was fused to a 6XHistidine (His) tag to distinguish the engineered protein from endogenous potato proteins and was introduced into the potato cultivar 'Désirée' under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Western analysis showed that engineered DcHSP17.7 was constitutively, but not abundantly, expressed in transgenic potato lines before heat stress. Leaves from multiple regenerated potato lines that contain the transgene exhibited significantly improved cellular membrane stability at high temperatures, compared with wild-type and vector control plants. Transgenic potato lines also exhibited enhanced tuberization in vitro: under a condition of constant heat stress, at 29 degrees C, nodal sections of the transgenic lines produced larger and heavier microtubers at higher rates, compared to the wild type and vector controls. The dry weight and percentages of microtubers that were longer than 5 mm were up to three times higher in the transgenic lines. Our results suggest that constitutive expression of carrot HSP17.7 can enhance thermotolerance in transgenic potato plants. To our knowledge, this is the first study that shows that the thermotolerance of potato can be enhanced through gene transfer.
Collapse
Affiliation(s)
- Yeh-Jin Ahn
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | | |
Collapse
|
202
|
Imin N, Kerim T, Weinman JJ, Rolfe BG. Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol Cell Proteomics 2005; 5:274-92. [PMID: 16263700 DOI: 10.1074/mcp.m500242-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Male reproductive development in rice is very sensitive to various forms of environmental stresses including low temperature. A few days of cold treatment (<20 degrees C) at the young microspore stage induce severe pollen sterility and thus large grain yield reductions. To investigate this phenomenon, anther proteins at the early stages of microspore development, with or without cold treatment at 12 degrees C, were extracted, separated by two-dimensional gel electrophoresis, and compared. The cold-sensitive cultivar Doongara and the relatively cold-tolerant cultivar HSC55 were used. The abundance of 37 anther proteins was changed more than 2-fold after 1, 2, and 4 days of cold treatment in cv. Doongara. Among them, one protein was newly induced, 32 protein spots were up-regulated, and four protein spots were down-regulated. Of these 37 protein spots, we identified two anther-specific proteins (putative lipid transfer protein and Osg6B) and a calreticulin that were down-regulated and a cystine synthase, a beta-6 subunit of the 20 S proteasome, an H protein of the glycine cleavage system, cytochrome c oxidase subunit VB, an osmotin protein homologue, a putative 6-phosphogluconolactonase, a putative adenylate kinase, a putative cysteine proteinase inhibitor, ribosomal protein S12E, a caffeoyl-CoA O-methyltransferase, and a monodehydroascorbate reductase that were up-regulated. Identification of these proteins is available upon request. Accumulation of these proteins did not vary greatly after cold treatment in panicles of cv. Doongara or in the anthers of the cv. HSC55. The newly induced protein named Oryza sativa cold-induced anther protein (OsCIA) was identified as an unknown protein. The OsCIA protein was detected in panicles, leaves, and seedling tissues under normal growth conditions. Quantitative real time RT-PCR analysis of OsCIA mRNA expression showed no significant change between low temperature-treated and untreated plants. A possible regulatory role for the newly induced protein is proposed.
Collapse
Affiliation(s)
- Nijat Imin
- Research Council Centre of Excellence for Integrative Legume Research, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | |
Collapse
|
203
|
Incamps A, Hély-Joly F, Chagvardieff P, Rambourg JC, Dedieu A, Linares E, Quéméneur E. Industrial process proteomics: alfalfa protein patterns during wet fractionation processing. Biotechnol Bioeng 2005; 91:447-59. [PMID: 15948168 DOI: 10.1002/bit.20520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A proteome reference map of major soluble proteins from Medicago sativa (alfalfa) leaves and stems has been established for the first time. Among 195 spots analyzed by mass spectrometry and N-terminal Edman sequencing, 117 spots were unambiguously identified, representing 87 different proteins. Of these 87 proteins, 13 proteins were directly identified from the partial genome of Medicago sativa, 30 from expressed sequenced tags (ESTs) of the model legume Medicago truncatula and 44 from closely relative species by a cross-species protein identification method. The proteome map of Medicago sativa was then set as a reference to study the major high protein content products that are generated during the wet fractionation process of alfalfa green biomass. Using two-dimensional electrophoresis, we studied the variation of the protein patterns at different steps of the industrial-scale process. We clearly show that the process induces significant changes including chemical modifications, proteolytic events, and heat-shock protein responses. Strikingly, a certain level of cellular regulation is conserved during biomass processing, as exemplified by the induction of some heat shock proteins. Finally, all the results obtained in this proteomic study may help to identify novel products and to improve process designs in alfalfa biomass plants.
Collapse
Affiliation(s)
- Anne Incamps
- Viridis S.A., Aulnay-aux-Planches, F-51130 Val des Marais, France
| | | | | | | | | | | | | |
Collapse
|
204
|
Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ. Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 2005; 5:1594-611. [PMID: 15800972 DOI: 10.1002/pmic.200401034] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A combined two-dimensional gel electrophoresis-mass spectrometry approach was utilized to identify over 250 proteins of wheat (Triticum aestivum L., cv. Butte 86) starchy endosperm that participate in 13 biochemical processes: ATP interconversion reactions, carbohydrate metabolism, cell division, cytoskeleton, lipid metabolism, nitrogen metabolism, protein synthesis/assembly, protein turnover, signal transduction, protein storage, stress/defense, transcription/translation, and transport. Endosperm protein populations were compared at early (10 days post-anthesis, dpa) and late (36 dpa) stages of grain development. Analysis of protein number and spot volume revealed that carbohydrate metabolism, transcription/translation, and protein synthesis/assembly were the principal endosperm functions at 10 dpa followed by nitrogen metabolism, protein turnover, cytoskeleton, cell division, signal transduction, and lipid metabolism. Carbohydrate metabolism and protein synthesis/assembly were also major functions at 36 dpa, but stress/defense and storage were predominant. The results provide insight into biochemical events taking place during wheat grain development and highlight the value of proteomics in characterizing complex biochemical processes. Further, the proteome maps will facilitate future studies addressing the effects of genetic and environmental factors on the development and quality of wheat grain.
Collapse
Affiliation(s)
- William H Vensel
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, USA
| | | | | | | | | | | |
Collapse
|
205
|
Nagano AJ, Matsushima R, Hara-Nishimura I. Activation of an ER-body-localized beta-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2005; 46:1140-8. [PMID: 15919674 DOI: 10.1093/pcp/pci126] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ER body is an endoplasmic reticulum (ER)-derived organelle. Because ER bodies are induced by wounding and methyl jasmonate (MeJA) treatment in rosette leaves, they might be responsible for defense systems. Recently, we isolated nai1 mutants that have no ER body and showed that the levels of PYK10 and PBP1 (PYK10-binding protein 1: At3g16420) were decreased in nai1 mutants. PYK10 is a beta-glucosidase that is localized in ER bodies. PBP1 consists of two repeated regions, each of which is highly homologous to the alpha-chain of jacalin, a carbohydrate-binding protein (lectin) of Artocarpus integriforia. We show in this study that PYK10 has two forms, an active form and an inactive form. The amount of active form increased during incubation of root homogenate. On the other hand, PYK10 separated into soluble and insoluble forms. Active PYK10 molecules mainly occurred as the insoluble form and inactive PYK10 molecules remain soluble. This suggests that the activation of PYK10 needs polymerization. In homogenates of both a pbp1 mutant and the wild type, PYK10 becomes insoluble, while PYK10 activity in pbp1 is only half of that in the wild type. PBP1 has an ability to interact with PYK10. Nonetheless, PBP1 does not bind active PYK10. These results suggest that PBP1 has some effect on the activation of PYK10. In addition, PBP1 was found to have a different subcellular distribution from PYK10. PBP1 may act like a molecular chaperone that facilitates the correct polymerization of PYK10, when tissues are damaged and subcellular structures are destroyed by pests.
Collapse
Affiliation(s)
- Atsushi J Nagano
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | |
Collapse
|
206
|
Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T. The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:660-72. [PMID: 15703054 DOI: 10.1111/j.1365-313x.2005.02332.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we report the transcript profile of wheat egg cells and proembryos, just after the first cell division. Microdissected female gametophytes of wheat were used to isolate eggs and two-celled proembryos to construct cell type-specific cDNA libraries. In total, 1197 expressed sequence tags (ESTs) were generated. Analysis of these ESTs revealed numerous novel transcripts. In egg cells, 17.6% of the clustered ESTs represented novel transcripts, while 11.4% novel clusters were identified in the two-celled proembryo. Functional classification of sequences with similarity to previously characterized proteins indicates that the unfertilized egg cell has a higher metabolic activity and protein turnover than previously thought. Transcript composition of two-celled proembryos was significantly distinct from egg cells, reflecting DNA replication as well as high transcriptional and translational activity. Several novel transcripts of the egg cell are specific for this cell. In contrast, some fertilization induced novel mRNAs are abundant also in sporophytic tissues indicating a more general role in plant growth and development. The potential functions of genes based on similarity to known genes involved in developmental processes are discussed. Our analysis has identified numerous genes with potential roles in embryo sac function such as signaling, fertilization or induction of embryogenesis.
Collapse
Affiliation(s)
- Stefanie Sprunck
- Developmental Biology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
207
|
Paul AL, Popp MP, Gurley WB, Guy C, Norwood KL, Ferl RJ. Arabidopsis gene expression patterns are altered during spaceflight. ADVANCES IN SPACE RESEARCH 2005; 36:1175-1181. [PMID: 0 DOI: 10.1016/j.asr.2005.03.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
208
|
Cagliari TC, Tiroli AO, Borges JC, Ramos CH. Identification and in silico expression pattern analysis of Eucalyptus expressed sequencing tags (ESTs) encoding molecular chaperones. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000400006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Thiago C. Cagliari
- Centro de Biologia Molecular Estrutural, Brazil; Universidade Estadual de Campinas, Brazil
| | - Ana O. Tiroli
- Centro de Biologia Molecular Estrutural, Brazil; Universidade Estadual de Campinas, Brazil
| | - Júlio C. Borges
- Centro de Biologia Molecular Estrutural, Brazil; Universidade Estadual de Campinas, Brazil
| | - Carlos H.I. Ramos
- Centro de Biologia Molecular Estrutural, Brazil; Universidade Estadual de Campinas, Brazil
| |
Collapse
|
209
|
Kamata T, Hiramoto H, Morita N, Shen JR, Mann NH, Yamamoto Y. Quality control of Photosystem II: an FtsH protease plays an essential role in the turnover of the reaction center D1 protein in Synechocystis PCC 6803 under heat stress as well as light stress conditions. Photochem Photobiol Sci 2005; 4:983-90. [PMID: 16307111 DOI: 10.1039/b506068k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The role of an AAA protease FtsH (slr0228) in the turnover of the D1 protein was studied under moderate heat stress conditions using wild-type cells of the cyanobacterium Synechocystis PCC 6803 and the mutant cells lacking a homologue of FtsH (slr0228). When the growth temperature of the wild-type was shifted from 30 degrees C to 40 degrees C, growth and oxygen-evolving activity were partially inhibited. Under the same heat stress, growth of the mutant was inhibited more significantly (63% inhibition after 5 days heat stress, compared with 26% inhibition with the wild-type cells) and the oxygen-evolving activity was also impaired in parallel. With heat stress at 42 degrees C, the level of the D1 protein of wild type cells was decreased, whereas that in mutant cells was not. The responses of cyanobacterial cells to heat stress observed here are quite similar to those to light stress that were reported previously. From these results, we suggest that the FtsH protease (slr0228) is responsible for both the heat-induced and light-induced degradation of the D1 protein. Notably, the amount of FtsH increased when the wild-type cells were exposed to heat stress or light stress, indicating that the up-regulation of the FtsH protease in the thylakoids is crucial for the cyanobacterial cells to cope with these abiotic stresses.
Collapse
Affiliation(s)
- Takashi Kamata
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | | | |
Collapse
|
210
|
Rao D, Momcilovic I, Kobayashi S, Callegari E, Ristic Z. Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. ACTA ACUST UNITED AC 2004; 271:3684-92. [PMID: 15355346 DOI: 10.1111/j.1432-1033.2004.04309.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The protein synthesis elongation factor, EF-Tu, is a protein that carries aminoacyl-tRNA to the A-site of the ribosome during the elongation phase of protein synthesis. In maize (Zea mays L) this protein has been implicated in heat tolerance, and it has been hypothesized that EF-Tu confers heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation and inactivation. In this study we investigated the effect of the recombinant precursor of maize EF-Tu (pre-EF-Tu) on thermal aggregation and inactivation of the heat-labile proteins, citrate synthase and malate dehydrogenase. The recombinant pre-EF-Tu was purified from Escherichia coli expressing this protein, and mass spectrometry confirmed that the isolated protein was indeed maize EF-Tu. The purified protein was capable of binding GDP (indicative of protein activity) and was stable at 45 degrees C, the highest temperature used in this study to test this protein for possible chaperone activity. Importantly, the recombinant maize pre-EF-Tu displayed chaperone activity. It protected citrate synthase and malate dehydrogenase from thermal aggregation and inactivation. To our knowledge, this is the first observation of chaperone activity by a plant/eukaryotic pre-EF-Tu protein. The results of this study support the hypothesis that maize EF-Tu plays a role in heat tolerance by acting as a molecular chaperone and protecting chloroplast proteins from thermal aggregation and inactivation.
Collapse
Affiliation(s)
- Damodara Rao
- Department of Biology, University of South Dakota, School of Medicine, Vermillion, SD 57069, USA
| | | | | | | | | |
Collapse
|
211
|
Coleman CE, Yoho PR, Escobar S, Ogawa M. The accumulation of alpha-zein in transgenic tobacco endosperm is stabilized by co-expression of beta-zein. PLANT & CELL PHYSIOLOGY 2004; 45:864-71. [PMID: 15295069 DOI: 10.1093/pcp/pch104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cysteine-poor alpha-zein is the major prolamin storage protein fraction in maize endosperm and is localized in the interior of protein bodies with delta-zein, whereas the hydrophobic cysteine-rich beta- and gamma-zein are found on the exterior of the PB. In transgenic tobacco endosperm expressing zein genes, alpha-zein was unstable unless co-expressed with gamma-zein. Here we showed that alpha-zein was also stabilized by beta-zein. Small accretions of alpha- and beta-zeins, similar in appearance to maize protein bodies, were localized to the endoplasmic reticulum within tobacco endosperm cells. The zein proteins were also localized to protein storage vacuoles in a more dispersed pattern, suggesting that they were transported there after they were post-translationally sequestered into the ER.
Collapse
Affiliation(s)
- Craig E Coleman
- Department of Plant and Animal Sciences, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | |
Collapse
|
212
|
Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. TRENDS IN PLANT SCIENCE 2004; 9:244-52. [PMID: 15130550 DOI: 10.1016/j.tplants.2004.03.006] [Citation(s) in RCA: 1430] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Wangxia Wang
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
213
|
Shen GA, Pang YZ, Lin CF, Wei C, Qian XY, Jiang LZ, Du XL, Li KG, Attia K, Yang JS. Cloning and characterization of a novel Hsp100/Clp gene (osClpD) from Oryza sativa. ACTA ACUST UNITED AC 2004; 14:285-93. [PMID: 14640074 DOI: 10.1080/1085566031000141153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel osClpD gene, encoding a highly conservative ClpD subfamily member, was first isolated and characterized from Oryza sativa. The full-length cDNA of osClpD gene was 3140 bp and contained a 2884 bp open reading frame encoding a 938 amino acid protein. The phylogenetic tree and blast search showed that OSClpD belonged to the ClpD subfamily of the Hsp100/Clp family, and contained all protein motifs characteristic for the ClpD subfamily of Hsp100/Clp proteins. The real-time quantitative PCR analysis proved that it was inducible by water deficit and temperature stress in vegetative tissues.
Collapse
Affiliation(s)
- Guo-An Shen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Elyse Ireland H, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JHH. Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 2004; 9:139-55. [PMID: 15370872 DOI: 10.1080/13547500410001732610] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Heat shock proteins (Hsps) are known to be induced in response to short-term stress. The present study aimed to evaluate the potential of Hsp70 as a biomarker of stress produced by increased temperature, osmotic pressure, and exposure to cadmium and sodium chloride in marine macroalgae and fresh water plant species. An indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) was developed with a working range of 0.025-10 microg ml(-1) using a monoclonal antibody raised against purified Hsp70 of Phaseolus aureus (mung bean). Fucus serratus (toothed wrack), Chondrus crispus (Stackhouse or Carrageen moss), Ulva lactuca (sea lettuce) and Lemna minor (common duckweed) sample extracts were stressed for up to 24 h and then tested in the IC-ELISA. The presence of Hsp70 and cross-reactivity of the monoclonal antibody was confirmed by Western blot. The heat shock response was confirmed in each species using a 2-h 42 degrees C treatment. Following heat shock, Hsp70 concentrations increased to a peak at 2 h (F. serratus) or 4 h (L. minor), after which concentrations decreased. Osmotic and cadmium stresses also resulted in elevated Hsp70 concentrations in samples of F. serratus and L. minor when compared with unstressed controls. In both, osmotic and metal stress, the production of Hsp70 increased to a maximum and subsequently decreased as the stressor levels increased. Results suggest that Hsp70 IC-ELISA could potentially be applied to the detection of stress in these aquatic species, although it would probably be most effective when used in conjunction with other measurements to provide a stressor-specific biomarker profile or fingerprint.
Collapse
Affiliation(s)
- H Elyse Ireland
- Chester Centre for Stress Research, Department of Biological Sciences, University College Chester, UK
| | | | | | | | | | | |
Collapse
|
215
|
Sanmiya K, Suzuki K, Egawa Y, Shono M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 2004; 557:265-8. [PMID: 14741379 DOI: 10.1016/s0014-5793(03)01494-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To clarify the role of mitochondrial small heat-shock protein (MT-sHSP) in the heat-shock response, we introduced the tomato (Lycopersicon esculentum) MT-sHSP gene under the control of the 35S promoter into tobacco (Nicotiana tabacum), and examined the thermotolerance of the transformed plants. Irrespective of the orientation, sense or antisense, of the gene, the transgenic plants exhibited a normal morphology and growth rate in the vegetative growth stage. When 4-week-old seedlings were exposed to sudden heat stress, the sense plants which overexpress the MT-sHSP gene exhibited thermotolerance, whereas the antisense plants in which the expression of the gene is suppressed exhibited susceptibility.
Collapse
Affiliation(s)
- Kazutsuka Sanmiya
- Okinawa Subtropical Station, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa 9070002, Japan
| | | | | | | |
Collapse
|
216
|
Schroda M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. PHOTOSYNTHESIS RESEARCH 2004; 82:221-40. [PMID: 16143837 DOI: 10.1007/s11120-004-2216-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/11/2004] [Indexed: 05/04/2023]
Abstract
The first draft of the Chlamydomonas nuclear genome was searched for genes potentially encoding members of the five major chaperone families, Hsp100/Clp, Hsp90, Hsp70, Hsp60, the small heat shock proteins, and the Hsp70 and Cpn60 co-chaperones GrpE and Cpn10/20, respectively. This search yielded 34 potential (co-)chaperone genes, among them those 8 that have been reported earlier inChlamydomonas. These 34 genes encode all the (co-)chaperones that have been expected for the different compartments and organelles from genome searches in Arabidopsis, where 74 genes have been described to encode basically the same set of (co-)chaperones. Genome data from Arabidopsis and Chlamydomonas on the five major chaperone families are compared and discussed, with particular emphasis on chloroplast chaperones.
Collapse
Affiliation(s)
- Michael Schroda
- Institut für Biologie II/Biochemie, Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany,
| |
Collapse
|
217
|
Rhoads DM, Vanlerberghe GC. Mitochondria-Nucleus Interactions: Evidence for Mitochondrial Retrograde Communication in Plant Cells. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
218
|
Saarma K, Tarkka MT, Itävaara M, Fagerstedt KV. Heat shock protein synthesis is induced by diethyl phthalate but not by di(2-ethylhexyl) phthalate in radish (Raphanus sativus). JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1001-1010. [PMID: 14593800 DOI: 10.1078/0176-1617-00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The toxicity and effects on protein synthesis of the phthalate esters diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) was studied in radish seedings (Raphanus sativus cv. Kööpenhaminan tori). Phthalate esters are a class of commercially important compounds used mainly as plasticizers in high molecular-weight polymers such as many plastics. They can enter soil through various routes and can affect plant growth and development. First the effect of DEP and DEHP on the growth of radish seedings was determined in an aqueous medium. It was found that DEP, but not DEHP, caused retardation of growth in radish. A further investigation on protein synthesis during DEP-stress was executed by in vivo protein labeling combined with two-dimensional gel electrophoresis (2D-PAGE). For comparisons with known stress-induced proteins a similar experiment was done with heat shock, and the induced heat shock proteins (HSPs) were compared with those of DEP-stress. The results showed that certain HSPs can be used as an indicator of DEP-stress, although the synthesis of most HSPs was not affected by DEP. DEP also elicited the synthesis of numerous proteins found only in DEP-treated roots. The toxic effect of phthalate esters and the roles of the induced proteins are discussed.
Collapse
Affiliation(s)
- Kaari Saarma
- Department of Biosciences, Division of Plant Physiology, PO Box 56, FIN-00014 Helsinki University, Finland
| | | | | | | |
Collapse
|
219
|
Carolino SMB, Vaez JR, Irsigler AST, Valente MAS, Rodrigues LAZ, Fontes EPB. Plant BiP gene family: differential expression, stress induction and protective role against physiological stresses. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s1677-04202003000200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to yeast or mammalian counterpart, BiP (Binding Protein) from several plant species, such as maize, tobacco, Arabidopsis and soybean, is encoded by a multigene family. A systematic characterization and analysis of soybean BiP expression have provided evidence for the existence of multiple, complex regulatory mechanisms controlling plant BiP gene expression. In support of this observation, the soybean BiP gene family has been shown to exhibit organ-specific expression and differential regulation in response to abiotic stresses through distinct signaling pathways. As a member of the stress-regulated HSP70 family of protein, the elucidation of plant BiP function and regulation is likely to lead do new strategies to enhance crop tolerance to environmental stress. Consistent with this observation, transgenic plants overexpressing soybean BiP have demonstrated to exhibit increased tolerance to ER (endoplasmic reticulum) stressors during seed germination and enhanced tolerance to water deficit during plant growth.
Collapse
|
220
|
Houtz RL, Portis AR. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase--posttranslational facts and mysteries. Arch Biochem Biophys 2003; 414:150-8. [PMID: 12781766 DOI: 10.1016/s0003-9861(03)00122-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The life of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), from gene to protein to irreplaceable component of photosynthetic CO2 assimilation, has successfully served as a model for a number of essential cellular processes centered on protein chemistry and amino acid modifications. Once translated, the two subunits of Rubisco undergo a myriad of co- and posttranslational modifications accompanied by constant interactions with structurally modifying enzymes. Even after final assembly, the essential role played by Rubisco in photosynthetic CO2 assimilation is dependent on continuous conformation modifications by Rubisco activase. Rubisco is also continuously assaulted by various environmental factors, resulting in its turnover and degradation by processes that appear to be enhanced during plant senescence.
Collapse
Affiliation(s)
- Robert L Houtz
- Department of Horticulture, Plant Physiology/Biochemistry/Molecular Biology Program, N322D Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | | |
Collapse
|
221
|
Hong SW, Lee U, Vierling E. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. PLANT PHYSIOLOGY 2003; 132:757-67. [PMID: 12805605 PMCID: PMC167015 DOI: 10.1104/pp.102.017145] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Revised: 12/10/2002] [Accepted: 12/10/2002] [Indexed: 05/17/2023]
Abstract
Plants acquire thermotolerance to lethal high temperatures if first exposed to moderately high temperature or if temperature is increased gradually to an otherwise lethal temperature. We have taken a genetic approach to dissecting acquired thermotolerance by characterizing loss-of-function thermotolerance mutants in Arabidopsis. In previous work, we identified single recessive alleles of four loci required for thermotolerance of hypocotyl elongation, hot1-1, hot2-1, hot3-1, and hot4-1. Completed screening of M2 progeny from approximately 2500 M1 plants has now identified new alleles of three of these original loci, along with three new loci. The low mutant frequency suggests that a relatively small number of genes make a major contribution to this phenotype or that other thermotolerance genes encode essential or redundant functions. Further analysis of the original four loci was performed to define the nature of their thermotolerance defects. Although the HOT1 locus was shown previously to encode a major heat shock protein (Hsp), Hsp101, chromosomal map positions indicate that HOT2, 3, and 4 do not correspond to major Hsp or heat shock transcription factor genes. Measurement of thermotolerance at different growth stages reveals that the mutants have growth stage-specific heat sensitivity. Analysis of Hsp accumulation shows that hot2 and hot4 produce normal levels of Hsps, whereas hot3 shows reduced accumulation. Thermotolerance of luciferase activity and of ion leakage also varies in the mutants. These data provide the first direct genetic evidence, to our knowledge, that distinct functions, independent of Hsp synthesis, are required for thermotolerance, including protection of membrane integrity and recovery of protein activity/synthesis.
Collapse
Affiliation(s)
- Suk-Whan Hong
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
222
|
Ishikawa A, Tanaka H, Nakai M, Asahi T. Deletion of a chaperonin 60 beta gene leads to cell death in the Arabidopsis lesion initiation 1 mutant. PLANT & CELL PHYSIOLOGY 2003; 44:255-61. [PMID: 12668771 DOI: 10.1093/pcp/pcg031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lesion mimic mutants develop spontaneous cell death without pathogen attack. Some of the genes defined by these mutations may function as regulators of cell death, whereas others may perturb cellular metabolism in a way that leads to cell death. To understand the molecular mechanism of cell death in lesion mimic mutants, we isolated a lesion initiation 1 (len1) mutant by a T-DNA tagging method. The len1 mutant develops lesions on its leaves and expresses systemic acquired resistance (SAR). LEN1 was identified to encode a chloroplast chaperonin 60 beta (Cpn60 beta), a homologue of bacterial GroEL. The recombinant LEN1 had molecular chaperone activity for suppressing protein aggregation in vitro. Moreover, len1 plants develop accelerated cell death to heat shock stress in comparison with wild-type plants. The chlorophyll a/b binding protein (CAB) was present in len1 plants at a lower level than in the wild-type plants. These results indicate that LEN1 functions as a molecular chaperone in chloroplasts and its deletion leads to cell death in Arabidopsis.
Collapse
Affiliation(s)
- Atsushi Ishikawa
- Department of Bioscience, Fukui Prefectural University, Fukui, 910-1195 Japan.
| | | | | | | |
Collapse
|
223
|
Goggin DE, Lipscombe R, Fedorova E, Millar AH, Mann A, Atkins CA, Smith PMC. Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. PLANT PHYSIOLOGY 2003; 131:1033-41. [PMID: 12644656 PMCID: PMC166869 DOI: 10.1104/pp.102.015081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Revised: 11/11/2002] [Accepted: 12/27/2002] [Indexed: 05/18/2023]
Abstract
De novo purine biosynthesis is localized to both mitochondria and plastids isolated from Bradyrhizobium sp.-infected cells of cowpea (Vigna unguiculata L. Walp) nodules, but several of the pathway enzymes, including aminoimidazole ribonucleotide synthetase (AIRS [EC 6.3.3.1], encoded by Vupur5), are encoded by single genes. Immunolocalization confirmed the presence of AIRS protein in both organelles. Enzymatically active AIRS was purified separately from nodule mitochondria and plastids. N-terminal sequencing showed that these two isoforms matched the Vupur5 cDNA sequence but were processed at different sites following import; the mitochondrial isoform was five amino acids longer than the plastid isoform. Electrospray tandem mass spectrometry of a trypsin digest of mitochondrial AIRS identified two internal peptides identical with the amino acid sequence deduced from Vupur5 cDNA. Western blots of proteins from mitochondria and plastids isolated from root tips showed a single AIRS protein present at low levels in both organelles. (35)S-AIRS protein translated from a Vupur5 cDNA was imported into isolated pea (Pisum sativum) leaf chloroplasts in vitro by an ATP-dependent process but not into import-competent mitochondria from several plant and non-plant sources. Components of the mature protein are likely to be important for import because the N-terminal targeting sequence was unable to target green fluorescent protein to either chloroplasts or mitochondria in Arabidopsis leaves. The data confirm localization of the protein translated from the AIRS gene in cowpea to both plastids and mitochondria and that it is cotargeted to both organelles, but the mechanism underlying import into mitochondria has features that are yet to be identified.
Collapse
Affiliation(s)
- Danica Erin Goggin
- Department of Botany, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
224
|
Murray J, Larsen J, Michaels TE, Schaafsma A, Vallejos CE, Pauls KP. Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs. Genome 2002; 45:1013-24. [PMID: 12502245 DOI: 10.1139/g02-069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A set of 79 previously mapped bean (Phaseolus vulgaris) genomic (Bng) clones were partially sequenced. BLAST database searches detected homologies between 59 of these clones and genes from a variety of plants, especially Arabidopsis thaliana. Some matches in the database to the Bng clones included a putative P-glycoprotein-ABC transporter from Arabidopsis, an early nodulin-binding protein (ENBPI) from Medicago truncatula, a lon-protease protein from spinach, a branched-chain amino-acid aminotransferase from Arabidopsis, and a vacuolar sorting receptor (BP-80) from Pisum sativum. Additional matches were found for genes involved in isoprenoid biosynthesis, sulfur metabolism, proline biosynthesis, and floral development. Sequence tagged site (STSs) were produced for 16 of the clones, 2 of which contain simple sequence repeats (SSRs). Polymorphisms were detected for six of the STSs.
Collapse
Affiliation(s)
- J Murray
- Department of Plant Agriculture, Crop Science Division, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
225
|
Abstract
Type I chaperonins play an essential role in the folding of newly translated and stress-denatured proteins in eubacteria, mitochondria and chloroplasts. Since their discovery, the bacterial chaperonins have provided an excellent model system for investigating the mechanism by which chaperonins mediate protein folding. Due to the high conservation of the primary sequence among Type I chaperonins, it is generally accepted that organellar chaperonins function similar to the bacterial ones. However, recent studies indicate that the chloroplast and mitochondrial chaperonins possess unique structural and functional properties that distinguish them from their bacterial homologs. This review focuses on the unique properties of organellar chaperonins.
Collapse
Affiliation(s)
- Galit Levy-Rimler
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69778, Tel Aviv, Israel
| | | | | | | |
Collapse
|
226
|
Wang WX, Pelah D, Alergand T, Shoseyov O, Altman A. Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen. PLANT PHYSIOLOGY 2002; 130:865-75. [PMID: 12376651 PMCID: PMC166613 DOI: 10.1104/pp.002436] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2002] [Revised: 02/05/2002] [Accepted: 06/20/2002] [Indexed: 05/22/2023]
Abstract
sp1 cDNA was isolated from aspen (Populus tremula) plants by immunoscreening an expression library using polyclonal antibodies against BspA protein. BspA, which is a boiling-stable protein, accumulates in aspen plants in response to water stress and abscisic acid application (Pelah et al., 1995). The sp1 cDNA was found to encode a 12.4-kD generally hydrophilic protein with a hydrophobic C terminus, which is different from the BspA protein and was termed SP1 (stable protein 1). Northern-blot analysis revealed that sp1 encodes a small mRNA (about 0.6 kb) that is expressed in aspen plants under non-stress conditions and is accumulated after salt, cold, heat, and desiccation stress, and during the recovery from stress. The SP1 detected in plants remained soluble upon boiling, migrated both as a 12.4-kD band and a much higher mass of 116 kD on a 17% (w/v) Tricine-sodium dodecyl sulfate-polyacrylamide gel. Comparative protease digestion patterns, amino acid analyses, and the N-terminal sequences of the 12.4- and 116-kD proteins revealed that SP1 is homo-oligomeric. Furthermore, gel filtration chromatography analysis indicated that SP1 exists in aspen plants as a complex, composed of 12 subunits of 12.4 kD. A large number of sequences deduced from expressed sequence tags and genomic sequences of other organisms with unknown function show high homology to SP1. Thus, SP1 may represent a new protein family. Here, we present the first report on this putative protein family: the cloning, isolation, and characterization of SP1, a stress-responsive, boiling-soluble, oligomeric protein.
Collapse
Affiliation(s)
- Wang-Xia Wang
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
227
|
Sun W, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:1-9. [PMID: 12151089 DOI: 10.1016/s0167-4781(02)00417-7] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small heat shock proteins (sHsps) are produced ubiquitously in prokaryotic and eukaryotic cells upon heat. The special importance of sHsps in plants is suggested by unusual abundance and diversity. Six classes of sHsps have been identified in plants based on their intracellular localization and sequence relatedness. In addition to heat stress, plant sHsps are also produced under other stress conditions and at certain developmental stages. Induction of sHsp gene expression and protein accumulation upon environmental stresses point to the hypothesis that these proteins play an important role in stress tolerance. The function of sHsps as molecular chaperones is supported by in vitro and in vivo assays. This review summarizes recent knowledge about plant sHsp gene expression, protein structure and functions.
Collapse
Affiliation(s)
- Weining Sun
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
228
|
Haralampidis K, Milioni D, Rigas S, Hatzopoulos P. Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. PLANT PHYSIOLOGY 2002; 129:1138-49. [PMID: 12114568 PMCID: PMC166508 DOI: 10.1104/pp.004044] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 03/25/2002] [Accepted: 04/02/2002] [Indexed: 05/19/2023]
Abstract
The promoter region of the Arabidopsis AtHsp90-1 gene is congested with heat shock elements and stress response elements, as well as with other potential transcriptional binding sites (activating protein 1, CCAAT/enhancer-binding protein element, and metal regulatory element). To determine how the expression of this bona fide AtHsp90-1 gene is regulated, a comprehensive quantitative and qualitative promoter deletion analysis was conducted under various environmental conditions and during development. The promoter induces gene expression at high levels after heat shock and arsenite treatment. However, our results show that the two stress responses may involve common but not necessarily the same regulatory elements. Whereas for heat induction, heat shock elements and stress response elements act cooperatively to promote high levels of gene expression, arsenite induction seems to require the involvement of activating protein 1 regulatory sequences. In stressed transgenic plants harboring the full-length promoter, beta-glucuronidase activity was prominent in all tissues. Nevertheless, progressive deletion of the promoter decreases the level of expression under heat shock and restricts it predominantly in the two meristems of the plant. In contrast, under arsenite induction, proximal sequences induce AtHsp90-1 gene expression only in the shoot meristem. Distally located elements negatively regulate AtHsp90-1 gene expression under unstressed conditions, whereas flower-specific regulated expression in mature pollen grains suggests the prominent role of the AtHsp90-1 in pollen development. The results show that the regulation of developmental expression, suppression, or stress induction is mainly due to combinatorial contribution of the cis elements in the promoter region of the AtHsp90-1 gene.
Collapse
Affiliation(s)
- Kosmas Haralampidis
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | | | |
Collapse
|
229
|
|
230
|
Iba K. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:225-45. [PMID: 12221974 DOI: 10.1146/annurev.arplant.53.100201.160729] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Temperature stresses experienced by plants can be classified into three types: those occurring at (a) temperatures below freezing, (b) low temperatures above freezing, and (c) high temperatures. This review outlines how biological substances that are deeply related to these stresses, such as heat-shock proteins, glycinebetaine as a compatible solute, membrane lipids, etc., and also detoxifiers of active oxygen species, contribute to temperature stress tolerance in plants. Also presented here are the uses of genetic engineering techniques to improve the adaptability of plants to temperature stress by altering the levels and composition of these substances in the living organism. Finally, the future prospects for molecular breeding are discussed.
Collapse
Affiliation(s)
- Koh Iba
- Department of Biology, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
231
|
Jackson-Constan D, Akita M, Keegstra K. Molecular chaperones involved in chloroplast protein import. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:102-13. [PMID: 11750666 DOI: 10.1016/s0167-4889(01)00148-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transport of cytoplasmically synthesized precursor proteins into chloroplasts, like the protein transport systems of mitochondria and the endoplasmic reticulum, appears to require the action of molecular chaperones. These molecules are likely to be the sites of the ATP hydrolysis required for precursor proteins to bind to and be translocated across the two membranes of the chloroplast envelope. Over the past decade, several different chaperones have been identified, based mainly on their association with precursor proteins and/or components of the chloroplast import complex, as putative factors mediating chloroplast protein import. These factors include cytoplasmic, chloroplast envelope-associated and stromal members of the Hsp70 family of chaperones, as well as stromal Hsp100 and Hsp60 chaperones and a cytoplasmic 14-3-3 protein. While many of the findings regarding the action of chaperones during chloroplast protein import parallel those seen for mitochondrial and endoplasmic reticulum protein transport, the chloroplast import system also has unique aspects, including its hypothesized use of an Hsp100 chaperone to drive translocation into the organelle interior. Many questions concerning the specific functions of chaperones during protein import into chloroplasts still remain that future studies, both biochemical and genetic, will need to address.
Collapse
Affiliation(s)
- D Jackson-Constan
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA
| | | | | |
Collapse
|
232
|
Borges JC, Peroto MC, Ramos CH. Molecular chaperone genes in the sugarcane expressed sequence database (SUCEST). Genet Mol Biol 2001. [DOI: 10.1590/s1415-47572001000100013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some newly synthesized proteins require the assistance of molecular chaperones for their correct folding. Chaperones are also involved in the dissolution of protein aggregates making their study significant for both biotechnology and medicine and the identification of chaperones and stress-related protein sequences in different organisms is an important task. We used bioinformatic tools to investigate the information generated by the Sugarcane Expressed Sequence Tag (SUCEST) genome project in order to identify and annotate molecular chaperones. We considered that the SUCEST sequences belonged to this category of proteins when their E-values were lower than 1.0e-05. Our annotation shows that 4,164 of the 5’ expressed sequence tag (EST) sequences were homologous to molecular chaperones, nearly 1.8% of all the 5’ ESTs sequenced during the SUCEST project. About 43% of the chaperones which we found were Hsp70 chaperones and its co-chaperones, 10% were Hsp90 chaperones and 13% were peptidyl-prolyl cis, trans isomerase. Based on the annotation results we predicted 156 different chaperone gene subclasses in the sugarcane genome. Taken together, our results indicate that genes which encode chaperones were diverse and abundantly expressed in sugarcane cells, which emphasizes their biological importance.
Collapse
Affiliation(s)
- Júlio C. Borges
- Laboratório Nacional de Luz Síncrotron, Brazil; UNICAMP, Brazil
| | - Maria C. Peroto
- Laboratório Nacional de Luz Síncrotron, Brazil; UNICAMP, Brazil
| | | |
Collapse
|
233
|
Ortiz C, Cardemil L. Heat-shock responses in two leguminous plants: a comparative study. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11479337 DOI: 10.1093/jxb/52.361.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Relative growth rates, basal and acclimated thermotolerance, membrane damage, fluorescence emission, and relative levels of free and conjugated ubiquitin and HSP70 were compared after 2 h of treatment at different temperatures between Prosopis chilensis and Glycine max (soybean), cv. McCall, to evaluate if the thermotolerance of these two plants was related to levels of accumulation of heat shock proteins. Seedlings of P. chilensis germinated at 25 degrees C and at 35 degrees C and grown at temperatures above germination temperature showed higher relative growth than soybean seedlings treated under the same conditions. The lethal temperature of both species was 50 degrees C after germination at 25 degrees C. However, they were able to grow at 50 degrees C after germination at 35 degrees C. Membrane damage determinations in leaves showed that P. chilensis has an LT(50) 6 degrees C higher than that of soybean. There were no differences in the quantum yield of photosynthesis (F(v)/F(m)), between both plants when the temperatures were raised. P. chilensis showed higher relative levels of free ubiquitin, conjugated ubiquitin and HSP70 than soybean seedlings when the temperatures were raised. Time-course studies of accumulation of these proteins performed at 40 degrees C showed that the relative accumulation rates of ubiquitin, conjugated ubiquitin and HSP70 were higher in P. chilensis than in soybean. In both plants, free ubiquitin decreased during the first 5 min and increased after 30 min of heat shock, conjugated ubiquitin increased after 30 min and HSP70 began to increase dramatically after 20 min of heat shock. From these data it is concluded that P. chilensis is more tolerant to acute heat stress than soybean.
Collapse
Affiliation(s)
- C Ortiz
- Facultad de Ciencias, Universidad de Chile, Departamento de Biologia, Casilla 653, Santiago, Chile
| | | |
Collapse
|
234
|
Alvim FC, Carolino SM, Cascardo JC, Nunes CC, Martinez CA, Otoni WC, Fontes EP. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. PLANT PHYSIOLOGY 2001; 126:1042-54. [PMID: 11457955 PMCID: PMC116461 DOI: 10.1104/pp.126.3.1042] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2000] [Revised: 02/19/2001] [Accepted: 03/31/2001] [Indexed: 05/17/2023]
Abstract
The binding protein (BiP) is an important component of endoplasmic reticulum stress response of cells. Despite extensive studies in cultured cells, a protective function of BiP against stress has not yet been demonstrated in whole multicellular organisms. Here, we have obtained transgenic tobacco (Nicotiana tabacum L. cv Havana) plants constitutively expressing elevated levels of BiP or its antisense cDNA to analyze the protective role of this endoplasmic reticulum lumenal stress protein at the whole plant level. Elevated levels of BiP in transgenic sense lines conferred tolerance to the glycosylation inhibitor tunicamycin during germination and tolerance to water deficit during plant growth. Under progressive drought, the leaf BiP levels correlated with the maintenance of the shoot turgidity and water content. The protective effect of BiP overexpression against water stress was disrupted by expression of an antisense BiP cDNA construct. Although overexpression of BiP prevented cellular dehydration, the stomatal conductance and transpiration rate in droughted sense leaves were higher than in control and antisense leaves. The rate of photosynthesis under water deficit might have caused a degree of greater osmotic adjustment in sense leaves because it remained unaffected during water deprivation, which was in marked contrast with the severe drought-induced decrease in the CO(2) assimilation in control and antisense leaves. In antisense plants, the water stress stimulation of the antioxidative defenses was higher than in control plants, whereas in droughted sense leaves an induction of superoxide dismutase activity was not observed. These results suggest that overexpression of BiP in plants may prevent endogenous oxidative stress.
Collapse
Affiliation(s)
- F C Alvim
- Departamento de Biologia Vegetal, BIOAGRO-Universidade Federal de Viçosa, 36571.000 Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
235
|
Webb MA, Cavaletto JM, Klanrit P, Thompson GA. Orthologs in Arabidopsis thaliana of the Hsp70 interacting protein Hip. Cell Stress Chaperones 2001; 6:247-55. [PMID: 11599566 PMCID: PMC434406 DOI: 10.1379/1466-1268(2001)006<0247:oiatot>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Hsp70-interacting protein Hip binds to the adenosine triphosphatase domain of Hsp70, stabilizing it in the adenosine 5'-diphosphate-ligated conformation and promoting binding of target polypeptides. In mammalian cells, Hip is a component of the cytoplasmic chaperone heterocomplex that regulates signal transduction via interaction with hormone receptors and protein kinases. Analysis of the complete genome sequence of the model flowering plant Arabidopsis thaliana revealed 2 genes encoding Hip orthologs. The deduced sequence of AtHip-1 consists of 441 amino acid residues and is 42% identical to human Hip. AtHip-1 contains the same functional domains characterized in mammalian Hip, including an N-terminal dimerization domain, an acidic domain, 3 tetratricopeptide repeats flanked by a highly charged region, a series of degenerate GGMP repeats, and a C-terminal region similar to the Sti1/Hop/p60 protein. The deduced amino acid sequence of AtHip-2 consists of 380 amino acid residues. AtHip-2 consists of a truncated Hip-like domain that is 46% identical to human Hip, followed by a C-terminal domain related to thioredoxin. AtHip-2 is 63% identical to another Hip-thioredoxin protein recently identified in Vitis labrusca (grape). The truncated Hip domain in AtHip-2 includes the amino terminus, the acidic domain, and tetratricopeptide repeats with flanking charged region. Analyses of expressed sequence tag databases indicate that both AtHip-1 and AtHip-2 are expressed in A thaliana and that orthologs of Hip are also expressed widely in other plants. The similarity between AtHip-1 and its mammalian orthologs is consistent with a similar role in plant cells. The sequence of AtHip-2 suggests the possibility of additional unique chaperone functions.
Collapse
Affiliation(s)
- M A Webb
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
236
|
Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 2001; 6:201-8. [PMID: 11599561 PMCID: PMC434401 DOI: 10.1379/1466-1268(2001)006<0201:gaoths>2.0.co;2] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Arabidopsis genome contains at least 18 genes encoding members of the 70-kilodalton heat shock protein (Hsp70) family, 14 in the DnaK subfamily and 4 in the Hsp110/SSE subfamily. While the Hsp70s are highly conserved, a phylogenetic analysis including all members of this family in Arabidopsis and in yeast indicates the homology of Hsp70s in the subgroups, such as those predicted to localize in the same subcellular compartment and those similar to the mammalian Hsp110 and Grp170. Gene structure and genome organization suggest duplication in the origin of some genes. The Arabidopsis hsp70s exhibit distinct expression profiles; representative genes of the subgroups are expressed at relatively high levels during specific developmental stages and under thermal stress.
Collapse
Affiliation(s)
- B L Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
237
|
Shank KJ, Su P, Brglez I, Boss WF, Dewey RE, Boston RS. Induction of lipid metabolic enzymes during the endoplasmic reticulum stress response in plants. PLANT PHYSIOLOGY 2001; 126:267-77. [PMID: 11351090 PMCID: PMC102301 DOI: 10.1104/pp.126.1.267] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2000] [Revised: 01/08/2001] [Accepted: 02/07/2001] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) stress response is a signal transduction pathway activated by the perturbation of normal ER metabolism. We used the maize (Zea mays) floury-2 (fl2) mutant and soybean (Glycine max) suspension cultures treated with tunicamycin (Tm) to investigate the ER stress response as it relates to phospholipid metabolism in plants. Four key phospholipid biosynthetic enzymes, including DG kinase and phosphatidylinositol (PI) 4-phosphate 5-kinase were up-regulated in the fl2 mutant, specifically in protein body fractions where the mutation has its greatest effect. The third up-regulated enzyme, choline-phosphate cytidylyltransferase, was regulated by fl2 gene dosage and developmental signals. Elevated accumulation of the fourth enzyme, PI 4-kinase, was observed in the fl2 endosperm and soybean cells treated with Tm. The activation of these phospholipid biosynthetic enzymes was accompanied by alterations in membrane lipid synthesis and accumulation. The fl2 mutant exhibited increased PI content in protein body membranes at 18 d after pollination and more than 3-fold higher triacylglycerol accumulation in the endosperm by 36 d after pollination. Incorporation of radiolabeled acetate into phospholipids in soybean culture cells increased by about 30% with Tm treatment. The coordinated regulation of ER stress related proteins and multiple components of phospholipid biosynthesis is consistent with signaling through a common pathway. We postulate that the plant ER stress response has an important role in general plant metabolism, and more specifically in integrating the synthesis of protein and lipid reserves to allow proper seed formation.
Collapse
Affiliation(s)
- K J Shank
- Department of Crop Science, Boxes 7620 and 7612, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
238
|
Sivakumar P, Sharmila P, Saradhi PP. Proline suppresses Rubisco activity by dissociating small subunits from holoenzyme. Biochem Biophys Res Commun 2001; 282:236-41. [PMID: 11263997 DOI: 10.1006/bbrc.2001.4540] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proline caused irreversible inhibition (involving reduction in V(max) without altering K(m) for RuBP) in Rubisco activity. Proline-induced suppression in Rubisco activity did not exceed beyond approximately 65% of the original activity even upon exposure to higher levels of proline for prolonged duration. However, NaCl-induced reduction in Rubisco activity was reversible. Native PAGE analysis of Rubisco-incubated with proline showed the presence of two distinct bands corresponding to approximately 430 and approximately 28 kDa, but that incubated with NaCl showed a single band. SDS-PAGE analysis revealed that the approximately 430- and approximately 28-kDa bands represent octamers of large subunits and dimers of small subunits, respectively. These results demonstrated for the first time that proline suppresses Rubisco activity by bringing about dissociation of the small subunits from the octamer core of large subunits, probably by weakening hydrophobic interactions between them.
Collapse
Affiliation(s)
- P Sivakumar
- Plant Physiology and Biotechnology Laboratory, Jamia Millia Islamia, New Delhi, 110025, India
| | | | | |
Collapse
|
239
|
Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T, Takabe T. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:455-461. [PMID: 11166432 DOI: 10.1016/s0168-9452(00)00412-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DnaK1 from a halotolerant cyanobacterium Aphanothece halophytica, was overexpressed in the cytosol of tobacco. When the control and transgenic tobacco seeds were incubated at 27 degrees C, more than 95% of the control and transgenic tobacco seeds germinated. However, at a high incubation temperature, 40 degrees C, only 27% of the control seeds germinated whereas 82% of the transgenic seeds germinated. High temperature treatment during the imbibition of seeds delayed germination more in the control plants than in the transformants although the maximum percentage of germination was similar in both plants. The quantum yields of electron transport and plant elongation were higher in the transformant during high temperature treatment in young seedlings, but similar in older leaves. DnaK1 was detected in small amounts in seeds and its levels increased during germination. These data indicate that the expression of DnaK1 from a halotolerant cyanobacterium A. halophytica improved the tolerance to high temperature during germination and early growth.
Collapse
Affiliation(s)
- K Ono
- Research Institute of Meijo University, Tenpaku-ku, Nagoya, 468-8502, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Cascardo JC, Buzeli RA, Almeida RS, Otoni WC, Fontes EP. Differential expression of the soybean BiP gene family. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:273-281. [PMID: 11164599 DOI: 10.1016/s0168-9452(00)00384-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The soybean binding protein (BiP) gene family consists of at least four members designated soyBiPA, soyBiPB, soyBiPC and soyBiPD. We have performed immunoblotting of two-dimensional (2D) gels and RT-PCR assays with gene-specific primers to analyze the differential expression of this gene family in various soybean organs. The 2D gel profiles of the BiP forms from different organs were distinct and suggested that the BiP genes are under organ-specific regulation. In fact, while all four BiP transcripts were detected in leaves by gene-specific reverse transcriptase-polymerase chain reaction (RT-PCR) assays, different subsets were detected in the other organs. The soyBiPD was expressed in all organs, whereas the expression of the soyBiPB was restricted to leaves. The soyBiPA transcripts were detected in leaves, roots and seeds and soyBiPC RNA was confined to leaves, seeds and pods. Our data are consistent with organ-specific expression of the soybean BiP gene family.
Collapse
Affiliation(s)
- J C.M. Cascardo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571.000 MG, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
241
|
Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M. &cestflwr; Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 2001. [DOI: 10.1379/1466-1268(2001)006%3c0201:gaoths%3e2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
242
|
Crowe AU, Han B, Kermode AR, Bendell-Young LI, Plant AL. Effects of oil sands effluent on cattail and clover: photosynthesis and the level of stress proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2001; 113:311-322. [PMID: 11428139 DOI: 10.1016/s0269-7491(00)00187-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The oil sands industry located in northeastern Alberta, Canada, generates large volumes of effluent characterized by a high level of dissolved ions and naphthenic acids. The dikes used to store the effluent seep, creating wetlands which are subsequently invaded by obligate wetland flora such as cattail (Typha latifolia L.). The appearance of these wetlands prompted the oil sands industry to consider wetlands as part of their reclamation strategy. However, to ensure long-term viability of such wetlands, the response of the flora to the industrial effluent needed to be determined. To this end, apparent photosynthesis (APS), the level of ribulose-1,5-bisphosphate carboxylase (RuBisCo) large subunit, dehydrin-related polypeptides, and protein disulphide isomerase (PDI) were evaluated in cattail and alsike clover plants (Trifolium hybridum L.) exposed to the oil sands effluent. APS measured in plants impacted by oil sands effluent was significantly higher than that of plants in the non-impacted off-site location. Among the on-site locations, plants growing in the natural wetlands site had higher APS compared to all other sites. The level of RuBisCo was not increased in cattail or clover growing in effluent-contaminated sites indicating that enhanced photosynthesis was not due to greater levels of this enzyme. Dehydrin-related polypeptides were detected only in the roots of cattail and were absent in clover. The polypeptide profile was altered in cattail exposed to oil sands effluent indicating that they were responding to an osmotic stress. The level of PDI was unaffected in the leaves of cattail regardless of the nature of the effluent to which they were exposed. Overall, the data indicate that cattail and clover are adapted to the oil sands effluent, although further studies are needed to assess their long-term ability to survive in the presence of this anthropogenic stress.
Collapse
Affiliation(s)
- A U Crowe
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | |
Collapse
|
243
|
Reischl S, Thake S, Homuth G, Schumann W. Transcriptional analysis of three Bacillus subtilis genes coding for proteins with the alpha-crystallin domain characteristic of small heat shock proteins. FEMS Microbiol Lett 2001; 194:99-103. [PMID: 11150673 DOI: 10.1111/j.1574-6968.2001.tb09453.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In silico analysis of the complete Bacillus subtilis genome revealed the presence of three genes whose deduced amino acid sequences exhibit an alpha-crystallin domain characteristic for the family of small heat shock proteins: cotM (which has already been identified [Henriques et al. (1997) J. Bacteriol 179, 1887-1897]), yocM, and cotP (formerly ydfT). Analysis of the expression of all three genes by slot-blot experiments and by transcriptional fusions revealed that none of them was heat-inducible. Transcription of cotP was induced late during sporulation by the sporulation-specific sigma factor sigma(K) and negatively controlled by the GerE repressor. No expression of the yocM gene was found under all standard laboratory conditions tested. Both a cotP knockout mutant as well as a cotM cotP double knockout turned out to be viable and form spores and exhibited no germination defect.
Collapse
Affiliation(s)
- S Reischl
- Institute of Genetics, University of Bayreuth, D-95440, Germany
| | | | | | | |
Collapse
|
244
|
White JA, Todd J, Newman T, Focks N, Girke T, de Ilárduya OM, Jaworski JG, Ohlrogge JB, Benning C. A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. PLANT PHYSIOLOGY 2000; 124:1582-94. [PMID: 11115876 PMCID: PMC59857 DOI: 10.1104/pp.124.4.1582] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2000] [Revised: 05/24/2000] [Accepted: 07/27/2000] [Indexed: 05/17/2023]
Abstract
Large-scale single-pass sequencing of cDNAs from different plants has provided an extensive reservoir for the cloning of genes, the evaluation of tissue-specific gene expression, markers for map-based cloning, and the annotation of genomic sequences. Although as of January 2000 GenBank contained over 220,000 entries of expressed sequence tags (ESTs) from plants, most publicly available plant ESTs are derived from vegetative tissues and relatively few ESTs are specifically derived from developing seeds. However, important morphogenetic processes are exclusively associated with seed and embryo development and the metabolism of seeds is tailored toward the accumulation of economically valuable storage compounds such as oil. Here we describe a new set of ESTs from Arabidopsis, which has been derived from 5- to 13-d-old immature seeds. Close to 28,000 cDNAs have been screened by DNA/DNA hybridization and approximately 10,500 new Arabidopsis ESTs have been generated and analyzed using different bioinformatics tools. Approximately 40% of the ESTs currently have no match in dbEST, suggesting many represent mRNAs derived from genes that are specifically expressed in seeds. Although these data can be mined with many different biological questions in mind, this study emphasizes the import of photosynthate into developing embryos, its conversion into seed oil, and the regulation of this pathway.
Collapse
Affiliation(s)
- J A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Taylor MA, Ross HA, McRae D, Stewart D, Roberts I, Duncan G, Wright F, Millam S, Davies HV. A potato alpha-glucosidase gene encodes a glycoprotein-processing alpha-glucosidase II-like activity. Demonstration of enzyme activity and effects of down-regulation in transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:305-316. [PMID: 11069704 DOI: 10.1046/j.1365-313x.2000.00873.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to elucidate more fully the function of a potato gene (MAL1) encoding alpha-glucosidase activity, transgenic plants in which MAL1 expression was down-regulated were generated using antisense technology. In transgenic lines severely down-regulated in the expression of MAL1, total alpha-glucosidase activity was not decreased in leaves and tubers, and the contents of starch, glucose, fructose and sucrose remained unchanged in tubers. Phylogenetic analysis indicated that the MAL1 gene product was more similar to the glycoprotein-processing alpha-glucosidase II of mammalian and yeast origin than to other plant alpha-glucosidases. Using [14C-Glc]-labelled Glc2Man9GlcNAc2 as a substrate, it was demonstrated that glucosidase II activity was markedly down-regulated in microsomes isolated from tubers of four independent antisense lines studied in detail, strongly suggesting that MAL1 encodes glucosidase II activity. In field trials (but not in the glasshouse), MAL1 down-regulation produced an extremely stunted phenotype - the leaves were curled and tuber yield was decreased by 90% compared to control values. Microscopic analysis of leaves revealed significant differences between the antisense and control samples. Plants with down-regulated glucosidase II activity showed a greater degree of plasmolysis, and an increase in the size of mesophyll intracellular spaces. Analysis of cell walls also indicated changes in structure as a result of MAL1 down-regulation. In leaves from four antisense lines, the steady-state transcript level corresponding to the endoplasmic reticulum chaperone, BiP, was enhanced. This is diagnostic of stress in the endoplasmic reticulum.
Collapse
Affiliation(s)
- M A Taylor
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Mas P, Beachy RN. Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc Natl Acad Sci U S A 2000; 97:12345-9. [PMID: 11050252 PMCID: PMC17344 DOI: 10.1073/pnas.97.22.12345] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2000] [Indexed: 11/18/2022] Open
Abstract
Despite its central role in virus infection, little is known about the mechanisms of intracellular trafficking of virus components within infected cells. In this study, we followed the dynamics of tobacco mosaic virus movement protein (MP) distribution in living protoplasts after disruption of microtubules (MTs) by cold treatment and subsequent rewarming to 29 degrees C. At early stages of infection, cold treatment (4 degrees C) caused the accumulation of MP fused to green fluorescent protein (GFP) in large virus replication bodies that localized in perinuclear positions, whereas at midstages of infection, the association of MP:GFP with MTs was disrupted. Rewarming the protoplasts to 29 degrees C reestablished the association of MTs with the replication bodies that subsequently spread throughout the cytoplasm and to the periphery of the cell. The role of MTs in the intracellular distribution of the MP also was analyzed by examining the distribution pattern of a nonfunctional mutant of MP (TAD5). Like MP:GFP, TAD5:GFP interacted with the endoplasmic reticulum membranes and colocalized with its viral RNA but did not colocalize with MTs. The involvement of MTs in the intracellular distribution of tobacco mosaic virus MP is discussed.
Collapse
Affiliation(s)
- P Mas
- Division of Plant Biology, Department of Cell Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
247
|
Skylas D, Mackintosh J, Cordwell S, Basseal D, Walsh B, Harry J, Blumenthal C, Copeland L, Wrigley C, Rathmell W. Proteome Approach to the Characterisation of Protein Composition in the Developing and Mature Wheat-grain Endosperm. J Cereal Sci 2000. [DOI: 10.1006/jcrs.2000.0321] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
248
|
Cascardo JC, Almeida RS, Buzeli RA, Carolino SM, Otoni WC, Fontes EP. The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. J Biol Chem 2000; 275:14494-500. [PMID: 10799532 DOI: 10.1074/jbc.275.19.14494] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian BiP is regulated by phosphorylation, and it is generally accepted that its unmodified form constitutes the biologically active species. In fact, the glycosylation inhibitor tunicamycin induces dephosphorylation of mammalian BiP. The stress-induced phosphorylation state of plant BiP has not been examined. Here, we demonstrated that soybean BiP exists in interconvertible phosphorylated and nonphosphorylated forms, and the equilibrium can be shift to either direction in response to different stimuli. In contrast to tunicamycin treatment, water stress condition stimulated phosphorylation of BiP species in soybean cultured cells and stressed leaves. Despite their phosphorylation state, we demonstrated that BiP isoforms from water-stressed leaves exhibit protein binding activity, suggesting that plant BiP functional regulation may differ from other eukaryotic BiPs. We also compared the induction of the soybean BiP gene family, which consists of at least four members designated soyBiPA, soyBiPB, soyBiPC, and soyBiPD, by tunicamycin and osmotic stress. Although all soybean BiP genes were induced by tunicamycin, just the soyBiPA RNA was up-regulated by osmotic stress. In addition, these stresses promoted BiP induction with different kinetics and acted synergistically to increase BiP accumulation. These results suggest that the soybean BiP gene family is differentially regulated by abiotic stresses through distinct signaling pathways.
Collapse
Affiliation(s)
- J C Cascardo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571.000 Viçosa Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
249
|
Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitanen PV. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 2000; 275:11829-35. [PMID: 10766808 DOI: 10.1074/jbc.275.16.11829] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.
Collapse
Affiliation(s)
- R Dickson
- Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Pla M, Jofré A, Martell M, Molinas M, Gómez J. Large accumulation of mRNA and DNA point modifications in a plant senescent tissue. FEBS Lett 2000; 472:14-6. [PMID: 10781796 DOI: 10.1016/s0014-5793(00)01424-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although nucleic acids are the paradigm of genetic information conservation, they are inherently unstable molecules that suffer intrinsic and environmental damage. Oxidative stress has been related to senescence and aging and, recently, it has been shown that mutations accumulate at high frequency in mitochondrial DNA with age. We investigated RNA and DNA modifications in cork, a senescent plant tissue under high endogenous oxidative stress conditions. When compared to normally growing young tissue, cork revealed an unexpected high frequency of point modifications in both cDNA (Pn = 1/1784) and nuclear DNA (Pn = 1/1520). Cork should be viewed as a mosaic of genetically heterogeneous cells. This has biological implications: it supports somatic mutation models for aging and challenges 'single cDNA clone' as descriptor for the molecular genetics of senescent tissues.
Collapse
Affiliation(s)
- M Pla
- Laboratori del Suro, Universitat de Girona, Campus Montilivi sn, E-17071, Girona, Spain.
| | | | | | | | | |
Collapse
|