201
|
Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 2018; 360:55-75. [DOI: 10.1016/j.heares.2017.12.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/17/2017] [Accepted: 12/23/2017] [Indexed: 11/21/2022]
|
202
|
Johnson TA, Cooper S, Stamper GC, Chertoff M. Noise Exposure Questionnaire: A Tool for Quantifying Annual Noise Exposure. J Am Acad Audiol 2018; 28:14-35. [PMID: 28054909 DOI: 10.3766/jaaa.15070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Exposure to both occupational and nonoccupational noise is recognized as a risk factor for noise-induced hearing loss (NIHL). Although audiologists routinely inquire regarding history of noise exposure, there are limited tools available for quantifying this history or for identifying those individuals who are at highest risk for NIHL. Identifying those at highest risk would allow hearing conservation activities to be focused on those individuals. PURPOSE To develop a detailed, task-based questionnaire for quantifying an individual's annual noise exposure (ANE) arising from both occupational and nonoccupational sources (aim 1) and to develop a short screening tool that could be used to identify individuals at high risk of NIHL (aim 2). RESEARCH DESIGN Review of relevant literature for questionnaire development followed by a cross-sectional descriptive and correlational investigation of the newly developed questionnaire and screening tool. STUDY SAMPLE One hundred fourteen college freshmen completed the detailed questionnaire for estimating ANE (aim 1) and answered the potential screening questions (aim 2). An additional 59 adults participated in data collection where the accuracy of the screening tool was evaluated (aim 2). DATA COLLECTION AND ANALYSIS In study aim 1, all participants completed the detailed questionnaire and the potential screening questions. Descriptive statistics were used to quantify participant participation in various noisy activities and their associated ANE estimates. In study aim 2, linear regression techniques were used to identify screening questions that could be used to predict a participant's estimated ANE. Clinical decision theory was then used to assess the accuracy with which the screening tool predicted high and low risk of NIHL in a new group of participants. RESULTS Responses on the detailed questionnaire indicated that our sample of college freshmen reported high rates of participation in a variety of occupational and nonoccupational activities associated with high sound levels. Although participation rates were high, ANE estimates were below highest-risk levels for many participants because the frequency of participation in these activities was low in many cases. These data illustrate how the Noise Exposure Questionnaire (NEQ) could be used to provide detailed and specific information regarding an individual's exposure to noise. The results of aim 2 suggest that the screening tool, the 1-Minute Noise Screen, can be used to identify those participants with high- and low-risk noise exposure, allowing more in-depth assessment of noise exposure history to be targeted at those most at risk. CONCLUSIONS The NEQ can be used to estimate an individual's ANE and the 1-Minute Noise Screen can be used to identify those participants at highest risk of NIHL. These tools allow audiologists to focus hearing conservation efforts on those individuals who are most in need of those services.
Collapse
Affiliation(s)
- Tiffany A Johnson
- Hearing and Speech Department, University of Kansas Medical Center, Kansas City, KS
| | | | | | - Mark Chertoff
- Hearing and Speech Department, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
203
|
Auditory Brainstem Response Altered in Humans With Noise Exposure Despite Normal Outer Hair Cell Function. Ear Hear 2018; 38:e1-e12. [PMID: 27992391 DOI: 10.1097/aud.0000000000000370] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent animal studies demonstrated that cochlear synaptopathy, a partial loss of inner hair cell-auditory nerve fiber synapses, can occur in response to noise exposure without any permanent auditory threshold shift. In animal models, this synaptopathy is associated with a reduction in the amplitude of wave I of the auditory brainstem response (ABR). The goal of this study was to determine whether higher lifetime noise exposure histories in young people with clinically normal pure-tone thresholds are associated with lower ABR wave I amplitudes. DESIGN Twenty-nine young military Veterans and 35 non Veterans (19 to 35 years of age) with normal pure-tone thresholds were assigned to 1 of 4 groups based on their self-reported lifetime noise exposure history and Veteran status. Suprathreshold ABR measurements in response to alternating polarity tone bursts were obtained at 1, 3, 4, and 6 kHz with gold foil tiptrode electrodes placed in the ear canal. Wave I amplitude was calculated from the difference in voltage at the positive peak and the voltage at the following negative trough. Distortion product otoacoustic emission input/output functions were collected in each participant at the same four frequencies to assess outer hair cell function. RESULTS After controlling for individual differences in sex and distortion product otoacoustic emission amplitude, the groups containing participants with higher reported histories of noise exposure had smaller ABR wave I amplitudes at suprathreshold levels across all four frequencies compared with the groups with less history of noise exposure. CONCLUSIONS Suprathreshold ABR wave I amplitudes were reduced in Veterans reporting high levels of military noise exposure and in non Veterans reporting any history of firearm use as compared with Veterans and non Veterans with lower levels of reported noise exposure history. The reduction in ABR wave I amplitude in the groups with higher levels of noise exposure cannot be accounted for by sex or variability in outer hair cell function. This change is similar to the decreased ABR wave I amplitudes observed in animal models of noise-induced cochlear synaptopathy. However, without post mortem examination of the temporal bone, no direct conclusions can be drawn concerning the presence of synaptopathy in the study groups with higher noise exposure histories.
Collapse
|
204
|
Abstract
Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example.
Collapse
|
205
|
Fluvastatin protects cochleae from damage by high-level noise. Sci Rep 2018; 8:3033. [PMID: 29445111 PMCID: PMC5813011 DOI: 10.1038/s41598-018-21336-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure to noise and ototoxic drugs are responsible for much of the debilitating hearing loss experienced by about 350 million people worldwide. Beyond hearing aids and cochlear implants, there have been no other FDA approved drug interventions established in the clinic that would either protect or reverse the effects of hearing loss. Using Auditory Brainstem Responses (ABR) in a guinea pig model, we demonstrate that fluvastatin, an inhibitor of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, protects against loss of cochlear function initiated by high intensity noise. A novel synchrotron radiation based X-ray tomographic method that imaged soft tissues at micrometer resolution in unsectioned cochleae, allowed an efficient, qualitative evaluation of the three-dimensional internal structure of the intact organ. For quantitative measures, plastic embedded cochleae were sectioned followed by hair cell counting. Protection in noise-exposed cochleae is associated with retention of inner and outer hair cells. This study demonstrates the potential of HMG-CoA reductase inhibitors, already vetted in human medicine for other purposes, to protect against noise induced hearing loss.
Collapse
|
206
|
Mulders WHAM, Chin IL, Robertson D. Persistent hair cell malfunction contributes to hidden hearing loss. Hear Res 2018; 361:45-51. [PMID: 29477697 DOI: 10.1016/j.heares.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 11/19/2022]
Abstract
Noise exposures that result in fully reversible changes in cochlear neural threshold can cause a reduced neural output at supra-threshold sound intensity. This so-called "hidden hearing loss" has been shown to be associated with selective degeneration of high threshold afferent nerve fiber-inner hair cell (IHC) synapses. However, the electrophysiological function of the IHCs themselves in hidden hearing loss has not been directly investigated. We have made round window (RW) measurements of cochlear action potentials (CAP) and summating potentials (SP) after two levels of a 10 kHz acoustic trauma. The more intense acoustic trauma lead to notch-like permanent threshold changes and both CAP and SP showed reductions in supra-threshold amplitudes at frequencies with altered thresholds as well as from fully recovered regions. However, the interpretation of the results in normal threshold regions was complicated by the likelihood of reduced contributions from adjacent regions with elevated thresholds. The milder trauma showed full recovery of all neural thresholds, but there was a persistent depression of the amplitudes of both CAP and SP in response to supra-threshold sounds. The effect on SP amplitude in particular shows that occult damage to hair cell transduction mechanisms can contribute to hidden hearing loss. Such damage could potentially affect the supra-threshold output properties of surviving primary afferent neurons.
Collapse
Affiliation(s)
- Wilhelmina H A M Mulders
- The Auditory Laboratory, School of Human Sciences, The University of Western Australia, Nedlands, Western Australia, 6009 Australia; Ear Science Institute Australia, 1/1 Salvado Rd, Subiaco, Western Australia, 6008, Australia.
| | - Ian L Chin
- The Auditory Laboratory, School of Human Sciences, The University of Western Australia, Nedlands, Western Australia, 6009 Australia
| | - Donald Robertson
- The Auditory Laboratory, School of Human Sciences, The University of Western Australia, Nedlands, Western Australia, 6009 Australia
| |
Collapse
|
207
|
Cai R, Montgomery SC, Graves KA, Caspary DM, Cox BC. The FBN rat model of aging: investigation of ABR waveforms and ribbon synapse changes. Neurobiol Aging 2018; 62:53-63. [PMID: 29107847 PMCID: PMC5743589 DOI: 10.1016/j.neurobiolaging.2017.09.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/22/2017] [Accepted: 09/30/2017] [Indexed: 01/25/2023]
Abstract
Age-related hearing loss is experienced by one-third of individuals aged 65 years and older and can be socially debilitating. Historically, there has been poor correlation between age-related threshold changes, loss of speech understanding, and loss of cochlear hair cells. We examined changes in ribbon synapse number at four different ages in Fisher Brown Norway rats, an extensively studied rat model of aging. In contrast to previous work in mice/Wistar rats, we found minimal ribbon synapse loss before 20 months, with significant differences in 24- and 28-month-old rats at 4 kHz. Significant outer HC loss was observed at 24 and 28 months in low- to mid-frequency regions. Age-related reductions in auditory brainstem response wave I amplitude and increases in threshold were strongly correlated with ribbon synapse loss. Wave V/I ratios increased across age for click, 2, 4, and 24 kHz. Together, we find that ribbon synapses in the Fisher Brown Norway rat cochlea show resistance to aging until ∼60% of their life span, suggesting species/strain differences may underpin decreased peripheral input into the aging central processor.
Collapse
Affiliation(s)
- Rui Cai
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Scott C Montgomery
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Division of Otolaryngology, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kaley A Graves
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Donald M Caspary
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Division of Otolaryngology, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Brandon C Cox
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Division of Otolaryngology, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
208
|
Hauser SN, Burton JA, Mercer ET, Ramachandran R. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hear Res 2018; 357:33-45. [PMID: 29175767 PMCID: PMC5743633 DOI: 10.1016/j.heares.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
This report explores the consequences of acoustic overexposures on hearing in noisy environments for two macaque monkeys trained to perform a reaction time detection task using a Go/No-Go lever release paradigm. Behavioral and non-invasive physiological assessments were obtained before and after narrowband noise exposure. Physiological measurements showed elevated auditory brainstem response (ABR) thresholds and absent distortion product otoacoustic emissions (DPOAEs) post-exposure relative to pre-exposure. Audiograms revealed frequency specific increases in tone detection thresholds, with the greatest increases at the exposure band frequency and higher. Masked detection was affected in a similar frequency specific manner: threshold shift rates (change of masked threshold per dB increase in noise level) were lower than pre-exposure values at frequencies higher than the exposure band. Detection thresholds in sinusoidally amplitude modulated (SAM) noise post-exposure showed no difference from those in unmodulated noise, whereas pre-exposure masked detection thresholds were lower in the presence of SAM noise compared to unmodulated noise. These frequency-dependent results were correlated with cochlear histopathological changes in monkeys that underwent similar noise exposure. These results reveal that behavioral and physiological effects of noise exposure in macaques are similar to those seen in humans and provide preliminary information on the relationship between noise exposure, cochlear pathology and perceptual changes in hearing within individual subjects.
Collapse
Affiliation(s)
- Samantha N Hauser
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jane A Burton
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Evan T Mercer
- Vanderbilt University Interdisciplinary Program in Neuroscience for Undergraduates, Vanderbilt University, Nashville, TN 37212, USA.
| | - Ramnarayan Ramachandran
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
209
|
Abstract
OBJECTIVES The long-term goal of this research is to determine whether the middle ear muscle reflex can be used to predict the number of healthy auditory nerve fibers in hearing-impaired ears. In this study, we develop a high-impedance source and an animal model of the middle ear muscle reflex and explore the influence of signal frequency and level on parameters of the reflex to determine an optimal signal to examine auditory nerve fiber survival. DESIGN A high-impedance source was developed using a hearing aid receiver attached to a 0.06 diameter 10.5-cm length tube. The impedance probe consisted of a microphone probe placed near the tip of a tube coupled to a sound source. The probe was calibrated by inserting it into a syringe of known volumes and impedances. The reflex in the anesthetized rat was measured with elicitor stimuli ranging from 3 to 16 kHz presented at levels ranging from 35 to 100 dB SPL to one ear while the reflex was measured in the opposite ear containing the probe and probe stimulus. RESULTS The amplitude of the reflex increased with elicitor level and was largest at 3 kHz. The lowest threshold was approximately 54 dB SPL for the 3-kHz stimulus. The rate of decay of the reflex was greatest at 16 kHz followed by 10 and 3 kHz. The rate of decay did not change significantly with elicitor signal level for 3 and 16 kHz, but decreased as the level of the 10-kHz elicitor increased. A negative feedback model accounts for the reflex decay by having the strength of feedback dependent on auditory nerve input. The rise time of the reflex varied with frequency and changed with level for the 10- and 16-kHz signals but not significantly for the 3-kHz signal. The latency of the reflex increased with a decrease in elicitor level, and the change in latency with level was largest for the 10-kHz stimulus. CONCLUSIONS Because the amplitude of the reflex in rat was largest with an elicitor signal at 3 kHz, had the lowest threshold, and yielded the least amount of decay, this may be the ideal frequency to estimate auditory nerve survival in hearing-impaired ears.
Collapse
|
210
|
Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, Hall DA, Heinz MG, Plack CJ. Effects of noise exposure on young adults with normal audiograms II: Behavioral measures. Hear Res 2017; 356:74-86. [PMID: 29126651 PMCID: PMC5714059 DOI: 10.1016/j.heares.2017.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
Abstract
An estimate of lifetime noise exposure was used as the primary predictor of performance on a range of behavioral tasks: frequency and intensity difference limens, amplitude modulation detection, interaural phase discrimination, the digit triplet speech test, the co-ordinate response speech measure, an auditory localization task, a musical consonance task and a subjective report of hearing ability. One hundred and thirty-eight participants (81 females) aged 18-36 years were tested, with a wide range of self-reported noise exposure. All had normal pure-tone audiograms up to 8 kHz. It was predicted that increased lifetime noise exposure, which we assume to be concordant with noise-induced cochlear synaptopathy, would elevate behavioral thresholds, in particular for stimuli with high levels in a high spectral region. However, the results showed little effect of noise exposure on performance. There were a number of weak relations with noise exposure across the test battery, although many of these were in the opposite direction to the predictions, and none were statistically significant after correction for multiple comparisons. There were also no strong correlations between electrophysiological measures of synaptopathy published previously and the behavioral measures reported here. Consistent with our previous electrophysiological results, the present results provide no evidence that noise exposure is related to significant perceptual deficits in young listeners with normal audiometric hearing. It is possible that the effects of noise-induced cochlear synaptopathy are only measurable in humans with extreme noise exposures, and that these effects always co-occur with a loss of audiometric sensitivity.
Collapse
Affiliation(s)
- Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK.
| | - Rebecca E Millman
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Rebecca S Dewey
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham Nottingham, NG7 2RD, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, NG1 5DU, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, NG1 5DU, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Michael G Heinz
- Department of Speech, Language, & Hearing Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| |
Collapse
|
211
|
Weak Middle-Ear-Muscle Reflex in Humans with Noise-Induced Tinnitus and Normal Hearing May Reflect Cochlear Synaptopathy. eNeuro 2017; 4:eN-NWR-0363-17. [PMID: 29181442 PMCID: PMC5702873 DOI: 10.1523/eneuro.0363-17.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 11/21/2022] Open
Abstract
Chronic tinnitus is a prevalent hearing disorder, and yet no successful treatments or objective diagnostic tests are currently available. The aim of this study was to investigate the relationship between the presence of tinnitus and the strength of the middle-ear-muscle reflex (MEMR) in humans with normal and near-normal hearing. Clicks were used as test stimuli to obtain a wideband measure of the effect of reflex activation on ear-canal sound pressure. The reflex was elicited using a contralateral broadband noise. The results show that the reflex strength is significantly reduced in individuals with noise-induced continuous tinnitus and normal or near-normal audiometric thresholds compared with no-tinnitus controls. Due to a shallower growth of the reflex strength in the tinnitus group, the difference between the two groups increased with increasing elicitor level. No significant difference in the effect of tinnitus on the strength of the middle-ear muscle reflex was found between males and females. The weaker reflex could not be accounted for by differences in audiometric hearing thresholds between the tinnitus and control groups. Similarity between our findings in humans and the findings of a reduced middle-ear muscle reflex in noise-exposed animals suggests that noise-induced tinnitus in individuals with clinically normal hearing may be a consequence of cochlear synaptopathy, a loss of synaptic connections between inner hair cells (IHCs) in the cochlea and auditory-nerve (AN) fibers that has been termed hidden hearing loss.
Collapse
|
212
|
Mahboubi H, Lin HW, Bhattacharyya N. Prevalence, Characteristics, and Treatment Patterns of Hearing Difficulty in the United States. JAMA Otolaryngol Head Neck Surg 2017; 144:65-70. [PMID: 29167904 DOI: 10.1001/jamaoto.2017.2223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Hearing loss is one of the most prevalent chronic conditions in the United States and has been associated with negative physical, social, cognitive, economic, and emotional consequences. Despite the high prevalence of hearing loss, substantial gaps in the utilization of amplification options, including hearing aids and cochlear implants (CI), have been identified. Objective To investigate the contemporary prevalence, characteristics, and patterns of specialty referral, evaluation, and treatment of hearing difficulty among adults in the United States. Design, Setting, and Participants A cross-sectional analysis of responses from a nationwide clustered representative sample of adults who participated in the 2014 National Health Interview Survey and responded to the hearing module questions was carried out. Main Outcomes and Measures Data regarding demographics as well as self-reported hearing status, functional hearing, laterality, onset, and primary cause of the hearing loss were collected. In addition, specific data regarding hearing-related clinician visits, hearing tests, referrals to hearing specialist, and utilization of hearing aids and CIs were analyzed. Results Among 239.6 million adults, 40.3 million (16.8%) indicated their hearing was less than "excellent/good," ranging from "a little trouble hearing" to "deaf." The mean (SD) age of participants was 47 (0.2) years with 48.2% being men and 51.8% women. Approximately 48.8 million (20.6%) had visited a physician for hearing problems in the preceding 5 years. Of these, 32.6% were referred to an otolaryngologist and 27.3% were referred to an audiologist. Functional hearing was reported as the ability to hear "whispering" or "normal voice" (225.4 million; 95.5%), to "only hear shouting" (8.0 million; 3.4%), and "not appreciating shouting" (2.8 million; 1.1%). Among the last group, 5.3% were recommended to have a CI, of which 22.1% had received one. Of the adults who indicated their hearing from "a little trouble hearing" to being "deaf," 12.9 million (32.2%) had never seen a clinician for hearing problems and 11.1 million (28.0%) had never had their hearing tested. Conclusions and Relevance There are considerable gaps between self-reported hearing loss and patients receiving medical evaluation and recommended treatments for hearing loss. Improved awareness regarding referrals to otolaryngologists and audiologists as well as auditory rehabilitative options among clinicians may improve hearing loss care.
Collapse
Affiliation(s)
- Hossein Mahboubi
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine
| | - Harrison W Lin
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine
| | - Neil Bhattacharyya
- Department of Otology & Laryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
213
|
Noise History and Auditory Function in Young Adults With and Without Type 1 Diabetes Mellitus. Ear Hear 2017; 38:724-735. [DOI: 10.1097/aud.0000000000000457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
214
|
Fulbright AN, Le Prell CG, Griffiths SK, Lobarinas E. Effects of Recreational Noise on Threshold and Suprathreshold Measures of Auditory Function. Semin Hear 2017; 38:298-318. [PMID: 29026263 PMCID: PMC5634805 DOI: 10.1055/s-0037-1606325] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noise exposure that causes a temporary threshold shift but no permanent threshold shift can cause degeneration of synaptic ribbons and afferent nerve fibers, with a corresponding reduction in wave I amplitude of the auditory brainstem response (ABR) in animals. This form of underlying damage, hypothesized to also occur in humans, has been termed synaptopathy , and it has been hypothesized that there will be a hidden hearing loss consisting of functional deficits at suprathreshold stimulus levels. This study assessed whether recreational noise exposure history was associated with smaller ABR wave I amplitude and poorer performance on suprathreshold auditory test measures. Noise exposure histories were collected from 26 men and 34 women with hearing thresholds ≤ 25 dB hearing loss (HL; 250 Hz to 8 kHz), and a variety of functional suprathreshold hearing tests were performed. Wave I amplitudes of click-evoked ABR were obtained at 70, 80, 90, and 99 dB (nHL) and tone-burst evoked ABR were obtained at 90 dB nHL. Speech recognition performance was measured in quiet and in competing noise, using the Words in Noise test, and the NU-6 word list in broadband noise (BBN). In addition, temporal summation to tonal stimuli was assessed in quiet and in competing BBN. To control for the effects of subclinical conventional hearing loss, distortion product otoacoustic emission amplitude, an indirect measure of outer hair cell integrity, was measured. There was no statistically significant relationship between noise exposure history scores and ABR wave I amplitude in either men or women for any of the ABR conditions. ABR wave I amplitude and noise exposure history were not reliably correlated with suprathreshold functional hearing tests. Taken together, this study found no evidence of noise-induced decreases in ABR wave I amplitude or signal processing in noise in a cohort of subjects with a history of recreational noise exposure.
Collapse
|
215
|
Shinn-Cunningham B. Cortical and Sensory Causes of Individual Differences in Selective Attention Ability Among Listeners With Normal Hearing Thresholds. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:2976-2988. [PMID: 29049598 PMCID: PMC5945067 DOI: 10.1044/2017_jslhr-h-17-0080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 05/28/2023]
Abstract
PURPOSE This review provides clinicians with an overview of recent findings relevant to understanding why listeners with normal hearing thresholds (NHTs) sometimes suffer from communication difficulties in noisy settings. METHOD The results from neuroscience and psychoacoustics are reviewed. RESULTS In noisy settings, listeners focus their attention by engaging cortical brain networks to suppress unimportant sounds; they then can analyze and understand an important sound, such as speech, amidst competing sounds. Differences in the efficacy of top-down control of attention can affect communication abilities. In addition, subclinical deficits in sensory fidelity can disrupt the ability to perceptually segregate sound sources, interfering with selective attention, even in listeners with NHTs. Studies of variability in control of attention and in sensory coding fidelity may help to isolate and identify some of the causes of communication disorders in individuals presenting at the clinic with "normal hearing." CONCLUSIONS How well an individual with NHTs can understand speech amidst competing sounds depends not only on the sound being audible but also on the integrity of cortical control networks and the fidelity of the representation of suprathreshold sound. Understanding the root cause of difficulties experienced by listeners with NHTs ultimately can lead to new, targeted interventions that address specific deficits affecting communication in noise. PRESENTATION VIDEO http://cred.pubs.asha.org/article.aspx?articleid=2601617.
Collapse
Affiliation(s)
- Barbara Shinn-Cunningham
- Center for Research in Sensory Communication and Emerging Neural Technology, Boston University, MA
| |
Collapse
|
216
|
Lai J, Sommer AL, Bartlett EL. Age-related changes in envelope-following responses at equalized peripheral or central activation. Neurobiol Aging 2017; 58:191-200. [PMID: 28753474 PMCID: PMC5581704 DOI: 10.1016/j.neurobiolaging.2017.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 11/20/2022]
Abstract
Previous work has debated about the comparisons of hearing abilities faced with alterations in hearing thresholds and evoked potentials between groups following acoustic trauma- or age-related changes. This study compares envelope-following responses (EFRs) of young and aged rats when sound levels were matched according to (1) wave I amplitudes of auditory brainstem responses (ABRs) elicited by 8-kHz tones or (2) EFR amplitudes evoked by sinusoidally amplitude-modulated (SAM) tones at 100% depth. Matched wave I amplitudes across age corresponded to approximately 20-dB sound level differences. For matched wave I, no age-related differences were observed in wave V amplitudes. However, EFRs recorded in silence were enhanced with aging at 100% but not at 25% depth, consistent with enhanced central gain in aging. For matched EFRs, there were no age-related differences in EFRs of amplitude modulation (AM) depth and AM frequency processing. These results suggest novel, objective measures beyond threshold to compensate for differences in auditory nerve activation and to differentiate peripheral and central contributions of EFRs.
Collapse
Affiliation(s)
- Jesyin Lai
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Alexandra L Sommer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Edward L Bartlett
- Department of Biological Sciences and the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
217
|
Bhatt JM, Lin HW, Bhattacharyya N. Epidemiology of firearm and other noise exposures in the United States. Laryngoscope 2017; 127:E340-E346. [PMID: 28301677 PMCID: PMC6067011 DOI: 10.1002/lary.26540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Identify contemporary noise exposures and hearing protection use among adults. STUDY DESIGN Cross-sectional analysis of national health survey. METHODS Adult respondents in the 2014 National Health Interview Series hearing survey module were analyzed. Potentially harmful exposures to occupational and recreational noises in the past 12 months were extracted and quantified. Patterns of hearing protection use also were analyzed. RESULTS Among 239.7 million adults, "loud" and "very loud" occupational noise exposures were reported by 5.3% and 21.7%, respectively. Of those exposed to "loud" or "very loud" sounds at work, only 18.7% and 43.6%, respectively, always used hearing protection. A total of 38.2% (1.9 million) of those with "very loud" occupational exposures never used hearing protection. Frequent (> 10/year) "loud" and "very loud" recreational noise exposures were reported by 13.9% and 21.1%, respectively, most commonly to lawn mowers (72.6% and 55.2%, respectively). When exposed to recreational "loud/very loud" noise, only 11.4% always used hearing protection, whereas 62.3% (6.3 million) never used any protection. Lifetime exposure to firearm noise was reported by 36.6% of adults, 11.5% of whom had used firearms in the prior 12 months. Of those, only 58.5% always used hearing protection, whereas 21.4% (7.4 million) never used hearing protection. CONCLUSION Substantial noise exposures with potentially serious long-term hearing health consequences frequently are occurring in occupational and recreational settings, and with the use of firearms. Only a minority of those exposed consistently are using hearing protection. Healthcare providers should actively identify and encourage the use of hearing protection with those patients at risk. LEVEL OF EVIDENCE 4. Laryngoscope, 127:E340-E346, 2017.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| | - Harrison W Lin
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| | - Neil Bhattacharyya
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
218
|
Śliwińska-Kowalska M, Zaborowski K. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Permanent Hearing Loss and Tinnitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101139. [PMID: 28953238 PMCID: PMC5664640 DOI: 10.3390/ijerph14101139] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
Abstract
Background: Hearing loss is defined as worsening of hearing acuity and is usually expressed as an increase in the hearing threshold. Tinnitus, defined as "ringing in the ear", is a common and often disturbing accompaniment of hearing loss. Hearing loss and environmental exposures to noise are increasingly recognized health problems. Objectives: The objective was to assess whether the exposure-response relationship can be established between exposures to non-occupational noise and permanent hearing outcomes such as permanent hearing loss and tinnitus. Methods: Information sources: Computer searches of all accessible medical and other databases (PubMed, Web of Science, Scopus) were performed and complemented with manual searches. The search was not limited to a particular time span, except for the effects of personal listening devices (PLDs). The latter was limited to the years 2008-June 2015, since previous knowledge was summarized by SCENIHR descriptive systematic review published in 2008. Study eligibility criteria: The inclusion criteria were as follows: the exposure to noise was measured in sound pressure levels (SPLs) and expressed in individual equivalent decibel values (LEX,8h), the studies included both exposed and reference groups, the outcome was a permanent health effect, i.e., permanent hearing loss assessed with pure-tone audiometry and/or permanent tinnitus assessed with a questionnaire. The eligibility criteria were evaluated by two independent reviewers. Study appraisal and synthesis methods: The risk of bias was assessed for all of the papers using a template for assessment of quality and the risk of bias. The GRADE (grading of recommendations assessment, development, and evaluation) approach was used to assess the overall quality of evidence. Meta-analysis was not possible due to methodological heterogeneity of included studies and the inadequacy of data. Results: Out of 220 references identified, five studies fulfilled the inclusion criteria. All of them were related to the use of PLDs and comprised in total of 1551 teenagers and young adults. Three studies used hearing loss as the outcome and three tinnitus. There was a positive correlation between noise level and hearing loss either at standard or extended high frequencies in all three of the studies on hearing loss. In one study, there was also a positive correlation between the duration of PLD use and hearing loss. There was no association between prolonged listening to loud music through PLDs and tinnitus or the results were contradictory. All of the evidence was of low quality. Limitations: The studies are cross-sectional. No study provides odds ratios of hearing loss by the level of exposure to noise. Conclusions: While using very strict inclusion criteria, there is low quality GRADE evidence that prolonged listening to loud music through PLDs increases the risk of hearing loss and results in worsening standard frequency audiometric thresholds. However, specific threshold analyses focused on stratifying risk according to clearly defined levels of exposure are missing. Future studies are needed to provide actionable guidance for PLDs users. No studies fulfilling the inclusion criteria related to other isolated or combined exposures to environmental noise were identified.
Collapse
Affiliation(s)
- Mariola Śliwińska-Kowalska
- Clinic of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, 8 Sw.Teresy Str., 91-348 Lodz, Poland.
| | - Kamil Zaborowski
- Department of Physical Hazards, Nofer Institute of Occupational Medicine, 8 Sw.Teresy Str., 91-348 Lodz, Poland.
| |
Collapse
|
219
|
Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss. Otol Neurotol 2017; 37:1223-30. [PMID: 27631825 DOI: 10.1097/mao.0000000000001191] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HYPOTHESIS Applying neurotrophins to the round window immediately after a single noise exposure will prevent noise-induced hidden hearing loss. BACKGROUND Loud noise can eliminate neural connections between inner hair cells and their afferent neurons (thereby diminishing sound perception) without causing a detectable change on audiogram. This phenomenon is termed hidden hearing loss. METHODS Guinea pigs were exposed for 2 hours to 4 to 8 kHz noise at either 95 or 105 dB SPL. Immediately afterward a 4 μl bolus of neurotrophins (brain-derived neurotrophic factor 1 μg/μl, and neurotrophin-3 1 μg/μl) was delivered to the round window of one ear, and saline to the other. Auditory brainstem responses to pure-tone pips were acquired preoperatively, and at 1 and 2 weeks' postexposure. Cochleae were removed and whole mounted for immunohistochemical analysis, with presynaptic ribbons of inner hair cells and associated postsynaptic glutamatergic AMPA receptors identified using CtBP2 and GluA2 antibodies respectively. RESULTS After exposure to 105 dB noise, threshold did not change, but the amplitude growth of the auditory brainstem response was significantly reduced in control ears in response to 16 and 32 kHz tones. The amplitude growth was also reduced neurotrophin ears, but to a lesser degree and the reduction was not significant. Similar results were obtained from control ears exposed to 95 dB, but amplitude growth recovered in neurotrophin-treated ears, this reaching statistical significance in response to 16 kHz tones. There were significantly more presynaptic ribbons, postsynaptic glutamate receptors, and colocalized ribbons after neurotrophin treatment. CONCLUSION A single dose of neurotrophins delivered to the round window reduced synaptopathy and recovered high-frequency hearing in ears exposed to 95 dB noise. These findings suggest that hidden hearing loss may be reduced by providing trophic support to the cochlea after injury.
Collapse
|
220
|
Abstract
HYPOTHESIS The compound action potential (CAP) is a purely neural component of the cochlea's response to sound, and may provide information regarding the existing neural substrate in cochlear implant (CI) subjects that can help account for variance in speech perception outcomes. BACKGROUND Measurement of the "total response" (TR), or sum of the magnitudes of spectral components in the ongoing responses to tone bursts across frequencies, has been shown to account for 40 to 50% of variance in speech perception outcomes. The ongoing response is composed of both hair cell and neural components. This correlation may be improved with the addition of the CAP. METHODS Intraoperative round window electrocochleography (ECochG) was performed in adult and pediatric CI subjects (n = 238). Stimuli were tones of different frequencies (250 Hz-4 kHz) at 90 dB nHL. The CAP was assessed in two ways, as an amplitude and with a scaling factor derived from a function fitted to the response. The results were correlated with consonant-nucleus-consonant (CNC) word scores at 6 months post-implantation (n = 51). RESULTS Only about half of the subjects had a measurable CAP at any frequency. The CNC word scores correlated weakly with both amplitude (r = 0.20, p < 0.001) and scaling factor (r = 0.25, p < 0.01). In contrast, the TR alone accounted for 43% of the variance, and addition of either CAP measurement in multiple regression did not account for additional variance. CONCLUSIONS The underlying pathology in CI patients causes the CAP to be often absent and highly variable when present. The TR is a better predictor of speech perception outcomes than the CAP.
Collapse
|
221
|
Möhrle D, Reimann K, Wolter S, Wolters M, Varakina K, Mergia E, Eichert N, Geisler HS, Sandner P, Ruth P, Friebe A, Feil R, Zimmermann U, Koesling D, Knipper M, Rüttiger L. NO-Sensitive Guanylate Cyclase Isoforms NO-GC1 and NO-GC2 Contribute to Noise-Induced Inner Hair Cell Synaptopathy. Mol Pharmacol 2017; 92:375-388. [DOI: 10.1124/mol.117.108548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
|
222
|
Kil J, Lobarinas E, Spankovich C, Griffiths SK, Antonelli PJ, Lynch ED, Le Prell CG. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2017; 390:969-979. [PMID: 28716314 DOI: 10.1016/s0140-6736(17)31791-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Noise-induced hearing loss is a leading cause of occupational and recreational injury and disease, and a major determinant of age-related hearing loss. No therapeutic agent has been approved for the prevention or treatment of this disorder. In animal models, glutathione peroxidase 1 (GPx1) activity is reduced after acute noise exposure. Ebselen, a novel GPx1 mimic, has been shown to reduce both temporary and permanent noise-induced hearing loss in preclinical studies. We assessed the safety and efficacy of ebselen for the prevention of noise-induced hearing loss in young adults in a phase 2 clinical trial. METHODS In this single-centre, randomised, double-blind, placebo-controlled phase 2 trial, healthy adults aged 18-31 years were randomly assigned (1:1:1:1) at the University of Florida (Gainsville, FL, USA) to receive ebselen 200 mg, 400 mg, or 600 mg, or placebo orally twice daily for 4 days, beginning 2 days before a calibrated sound challenge (4 h of pre-recorded music delivered by insert earphones). Randomisation was done with an allocation sequence generated by an independent third party. The primary outcome was mean temporary threshold shift (TTS) at 4 kHz measured 15 min after the calibrated sound challenge by pure tone audiometry; a reduction of 50% in an ebselen dose group compared with the placebo group was judged to be clinically relevant. All participants who received the calibrated sound challenge and at least one dose of study drug were included in the efficacy analysis. All randomly assigned patients were included in the safety analysis. This trial is registered with ClinicalTrials.gov, number NCT01444846. FINDINGS Between Jan 11, 2013, and March 24, 2014, 83 participants were enrolled and randomly assigned to receive ebselen 200 mg (n=22), 400 mg (n=20), or 600 mg (n=21), or placebo (n=20). Two participants in the 200 mg ebselen group were discontinued from the study before the calibrated sound challenge because they no longer met the inclusion criteria; these participants were excluded from the efficacy analysis. Mean TTS at 4 kHz was 1·32 dB (SE 0·91) in the 400 mg ebselen group compared with 4·07 dB (0·90) in the placebo group, representing a significant reduction of 68% (difference -2·75 dB, 95% CI -4·54 to -0·97; p=0·0025). Compared with placebo, TTS at 4 kHz was non-significantly reduced by 21% in the 200 mg ebselen group (3·23 dB [SE 0·91] vs 4·07 dB [0·90] in the placebo group; difference -0·84 dB, 95% CI -2·63 to 0·94; p=0·3542) and by 7% in the 600 mg ebselen group (3·81 dB [0·90] vs 4·07 dB [0·90] in the placebo group; difference -0·27, 95% CI -2·03 to 1·50; p=0·7659). Ebselen treatment was well tolerated across all doses and no significant differences were seen in any haematological, serum chemistry, or radiological assessments between the ebselen groups and the placebo group. INTERPRETATION Treatment with ebselen was safe and effective at a dose of 400 mg twice daily in preventing a noise-induced TTS. These data lend support to a role of GPx1 activity in acute noise-induced hearing loss. FUNDING Sound Pharmaceuticals.
Collapse
Affiliation(s)
| | - Edward Lobarinas
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Christopher Spankovich
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA; Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Scott K Griffiths
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | | | | | - Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
223
|
Grinn SK, Wiseman KB, Baker JA, Le Prell CG. Hidden Hearing Loss? No Effect of Common Recreational Noise Exposure on Cochlear Nerve Response Amplitude in Humans. Front Neurosci 2017; 11:465. [PMID: 28919848 PMCID: PMC5585187 DOI: 10.3389/fnins.2017.00465] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/07/2017] [Indexed: 11/22/2022] Open
Abstract
This study tested hypothesized relationships between noise exposure and auditory deficits. Both retrospective assessment of potential associations between noise exposure history and performance on an audiologic test battery and prospective assessment of potential changes in performance after new recreational noise exposure were completed. Methods: 32 participants (13M, 19F) with normal hearing (25-dB HL or better, 0.25–8 kHz) were asked to participate in 3 pre- and post-exposure sessions including: otoscopy, tympanometry, distortion product otoacoustic emissions (DPOAEs) (f2 frequencies 1–8 kHz), pure-tone audiometry (0.25–8 kHz), Words-in-Noise (WIN) test, and electrocochleography (eCochG) measurements at 70, 80, and 90-dB nHL (click and 2–4 kHz tone-bursts). The first session was used to collect baseline data, the second session was collected the day after a loud recreational event, and the third session was collected 1-week later. Of the 32 participants, 26 completed all 3 sessions. Results: The retrospective analysis did not reveal statistically significant relationships between noise exposure history and any auditory deficits. The day after new exposure, there was a statistically significant correlation between noise “dose” and WIN performance overall, and within the 4-dB signal-to-babble ratio. In contrast, there were no statistically significant correlations between noise dose and changes in threshold, DPOAE amplitude, or AP amplitude the day after new noise exposure. Additional analyses revealed a statistically significant relationship between TTS and DPOAE amplitude at 6 kHz, with temporarily decreased DPOAE amplitude observed with increasing TTS. Conclusions: There was no evidence of auditory deficits as a function of previous noise exposure history, and no permanent changes in audiometric, electrophysiologic, or functional measures after new recreational noise exposure. There were very few participants with TTS the day after exposure - a test time selected to be consistent with previous animal studies. The largest observed TTS was approximately 20-dB. The observed pattern of small TTS suggests little risk of synaptopathy from common recreational noise exposure, and that we should not expect to observe changes in evoked potentials for this reason. No such changes were observed in this study. These data do not support suggestions that common, recreational noise exposure is likely to result in “hidden hearing loss”.
Collapse
Affiliation(s)
- Sarah K Grinn
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States.,College of Public Health and Health Professions, University of FloridaGainesville, FL, United States
| | - Kathryn B Wiseman
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Jason A Baker
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| |
Collapse
|
224
|
The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hear Res 2017; 353:224-236. [DOI: 10.1016/j.heares.2017.07.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/25/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
|
225
|
The effect of noise exposure during the developmental period on the function of the auditory system. Hear Res 2017; 352:1-11. [DOI: 10.1016/j.heares.2016.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
|
226
|
Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 2017; 353:213-223. [PMID: 28712672 PMCID: PMC5632522 DOI: 10.1016/j.heares.2017.07.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
Abstract
Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents.
Collapse
Affiliation(s)
- M D Valero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.
| | - J A Burton
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - S N Hauser
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - T A Hackett
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - R Ramachandran
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - M C Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
227
|
Abstract
Noise levels are truly continuous in relatively few occupations, with some degree of intermittency the most common condition. The sound levels of intermittent noise are often referred to as non-Gaussian in that they are not normally distributed in the time domain. In some conditions, intermittent noise affects the ear differently from continuous noise, and it is this assumption that underlies the selection of the 5-dB exchange rate (ER). The scientific and professional communities have debated this assumption over recent decades. This monograph explores the effect of non-Gaussian noise on the auditory system. It begins by summarizing an earlier report by the same author concentrating on the subject of the ER. The conclusions of the earlier report supported the more conservative 3-dB ER with possible adjustments to the permissible exposure limit for certain working conditions. The current document has expanded on the earlier report in light of the relevant research accomplished in the intervening decades. Although some of the animal research has supported the mitigating effect of intermittency, a closer look at many of these studies reveals certain weaknesses, along with the fact that these noise exposures were not usually representative of the conditions under which people actually work. The more recent animal research on complex noise shows that intermittencies do not protect the cochlea and that many of the previous assumptions about the ameliorative effect of intermittencies are no longer valid, lending further support to the 3-dB ER. The neurologic effects of noise on hearing have gained increasing attention in recent years because of improvements in microscopy and immunostaining techniques. Animal experiments showing damage to auditory synapses from noise exposures previously considered harmless may signify the need for a more conservative approach to the assessment of noise-induced hearing loss and consequently the practice of hearing conservation programs.
Collapse
|
228
|
Ouyang J, Pace E, Lepczyk L, Kaufman M, Zhang J, Perrine SA, Zhang J. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study. Sci Rep 2017; 7:4852. [PMID: 28687812 PMCID: PMC5501813 DOI: 10.1038/s41598-017-04941-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Collapse
Affiliation(s)
- Jessica Ouyang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Edward Pace
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura Lepczyk
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael Kaufman
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jessica Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jinsheng Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, 48201, USA.
| |
Collapse
|
229
|
Noise-induced cochlear synaptopathy: Past findings and future studies. Hear Res 2017; 349:148-154. [DOI: 10.1016/j.heares.2016.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023]
|
230
|
Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion. Hear Res 2017; 349:177-181. [DOI: 10.1016/j.heares.2016.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 11/23/2022]
|
231
|
Ca 2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. J Neurosci 2017; 37:6162-6175. [PMID: 28539424 DOI: 10.1523/jneurosci.3644-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
We report functional and structural evidence for GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs) at the mature hair cell ribbon synapse. By using the methodological advantages of three species (of either sex), we demonstrate that CP-AMPARs are present at the hair cell synapse in an evolutionarily conserved manner. Via a combination of in vivo electrophysiological and Ca2+ imaging approaches in the larval zebrafish, we show that hair cell stimulation leads to robust Ca2+ influx into afferent terminals. Prolonged application of AMPA caused loss of afferent terminal responsiveness, whereas blocking CP-AMPARs protects terminals from excitotoxic swelling. Immunohistochemical analysis of AMPAR subunits in mature rat cochlea show regions within synapses lacking the GluA2 subunit. Paired recordings from adult bullfrog auditory synapses demonstrate that CP-AMPARs mediate a major component of glutamatergic transmission. Together, our results support the importance of CP-AMPARs in mediating transmission at the hair cell ribbon synapse. Further, excess Ca2+ entry via CP-AMPARs may underlie afferent terminal damage following excitotoxic challenge, suggesting that limiting Ca2+ levels in the afferent terminal may protect against cochlear synaptopathy associated with hearing loss.SIGNIFICANCE STATEMENT A single incidence of noise overexposure causes damage at the hair cell synapse that later leads to neurodegeneration and exacerbates age-related hearing loss. A first step toward understanding cochlear neurodegeneration is to identify the cause of initial excitotoxic damage to the postsynaptic neuron. Using a combination of immunohistochemical, electrophysiological, and Ca2+ imaging approaches in evolutionarily divergent species, we demonstrate that Ca2+-permeable AMPARs (CP-AMPARs) mediate glutamatergic transmission at the adult auditory hair cell synapse. Overexcitation of the terminal causes Ca2+ accumulation and swelling that can be prevented by blocking CP-AMPARs. We demonstrate that CP-AMPARs mediate transmission at this first-order sensory synapse and that limiting Ca2+ accumulation in the terminal may protect against hearing loss.
Collapse
|
232
|
Severe hearing loss and outer hair cell death in homozygous Foxo3 knockout mice after moderate noise exposure. Sci Rep 2017; 7:1054. [PMID: 28432353 PMCID: PMC5430619 DOI: 10.1038/s41598-017-01142-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022] Open
Abstract
Noise induced hearing loss (NIHL) is a disease that affects millions of Americans. Identifying genetic pathways that influence recovery from noise exposure is an important step forward in understanding NIHL. The transcription factor Foxo3 integrates the cellular response to oxidative stress and plays a role in extending lifespan in many organisms, including humans. Here we show that Foxo3 is required for auditory function after noise exposure in a mouse model system, measured by ABR. Absent Foxo3, outer hair cells are lost throughout the middle and higher frequencies. SEM reveals persistent damage to some surviving outer hair cell stereocilia. However, DPOAE analysis reveals that some function is preserved in low frequency outer hair cells, despite concomitant profound hearing loss. Inner hair cells, auditory synapses and spiral ganglion neurons are all present after noise exposure in the Foxo3KO/KO fourteen days post noise (DPN). We also report anti-Foxo3 immunofluorescence in adult human outer hair cells. Taken together, these data implicate Foxo3 and its transcriptional targets in outer hair cell survival after noise damage. An additional role for Foxo3 in preserving hearing is likely, as low frequency auditory function is absent in noise exposed Foxo3KO/KOs even though all cells and structures are present.
Collapse
|
233
|
Hoben R, Easow G, Pevzner S, Parker MA. Outer Hair Cell and Auditory Nerve Function in Speech Recognition in Quiet and in Background Noise. Front Neurosci 2017; 11:157. [PMID: 28439223 PMCID: PMC5383716 DOI: 10.3389/fnins.2017.00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/10/2017] [Indexed: 11/17/2022] Open
Abstract
The goal of this study was to describe the contribution of outer hair cells (OHCs) and the auditory nerve (AN) to speech understanding in quiet and in the presence of background noise. Fifty-three human subjects with hearing ranging from normal to moderate sensorineural hearing loss were assayed for both speech in quiet (Word Recognition) and speech in noise (QuickSIN test) performance. Their scores were correlated with OHC function as assessed via distortion product otoacoustic emissions, and AN function as measured by amplitude, latency, and threshold of the VIIIth cranial nerve Compound Action Potential (CAP) recorded during electrocochleography (ECochG). Speech and ECochG stimuli were presented at equivalent sensation levels in order to control for the degree of hearing sensitivity across patients. The results indicated that (1) OHC dysfunction was evident in the lower range of normal audiometric thresholds, which demonstrates that OHC damage can produce “Hidden Hearing Loss,” (2) AN dysfunction was evident beginning at mild levels of hearing loss, (3) when controlled for normal OHC function, persons exhibiting either high or low ECochG amplitudes exhibited no statistically significant differences in neither speech in quiet nor speech in noise performance, (4) speech in noise performance was correlated with OHC function, (5) hearing impaired subjects with OHC dysfunction exhibited better speech in quiet performance at or near threshold when stimuli were presented at equivalent sensation levels. These results show that OHC dysfunction contributes to hidden hearing loss, OHC function is required for optimum speech in noise performance, and those persons with sensorineural hearing loss exhibit better word discrimination in quiet at or near their audiometric thresholds than normal listeners.
Collapse
Affiliation(s)
- Richard Hoben
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA
| | - Gifty Easow
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA
| | - Sofia Pevzner
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA
| | - Mark A Parker
- Department of Otolaryngology, Steward St. Elizabeth's Medical CenterBoston, MA, USA.,Department of Otolaryngology, Head and Neck Surgery, Tufts University School of MedicineBoston, MA, USA
| |
Collapse
|
234
|
Riga M, Komis A, Marangoudakis P, Naxakis S, Ferekidis E, Kandiloros D, Danielides V. Differences in the suppression of distortion product otoacoustic emissions by contralateral white noise between patients with acute or chronic tinnitus. Int J Audiol 2017; 56:589-595. [DOI: 10.1080/14992027.2017.1305516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Riga
- University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece,
| | - Agis Komis
- Attikon University Hospital, National University of Athens, Athens, Greece,
| | | | - Stefanos Naxakis
- University Hospital of Patras, University of Patras, Patras, Greece, and
| | | | | | | |
Collapse
|
235
|
Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 2017; 8:14487. [PMID: 28211470 PMCID: PMC5321746 DOI: 10.1038/ncomms14487] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hidden hearing loss (HHL) is a recently described auditory neuropathy believed to contribute to speech discrimination and intelligibility deficits in people with normal audiological tests. Animals and humans with HHL have normal auditory thresholds but defective cochlear neurotransmission, that is, reduced suprathreshold amplitude of the sound-evoked auditory nerve compound action potential. Currently, the only cellular mechanism known for HHL is loss of inner hair cell synapses (synaptopathy). Here we report that transient loss of cochlear Schwann cells results in permanent auditory deficits characteristic of HHL. This auditory neuropathy is not associated with synaptic loss, but rather with disruption of the first heminodes at the auditory nerve peripheral terminal. Thus, this study identifies a new mechanism for HHL, highlights the long-term consequences of transient Schwann cell loss on hearing and might provide insights into the causes of the auditory deficits reported in patients that recover from acute demyelinating diseases such as Guillain–Barré syndrome. Hidden hearing loss (HHL) is an auditory neuropathy that impairs one's ability to hear, particularly in a noisy environment. Here the authors show that in mice, transient loss of cochlear Schwann cells results in permanent disruption of the cochlear heminodal structure, leading to auditory deficits characteristic of HHL.
Collapse
Affiliation(s)
- Guoqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA.,MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu Province, China
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
236
|
Prendergast G, Guest H, Munro KJ, Kluk K, Léger A, Hall DA, Heinz MG, Plack CJ. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hear Res 2017; 344:68-81. [PMID: 27816499 PMCID: PMC5256477 DOI: 10.1016/j.heares.2016.10.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Noise-induced cochlear synaptopathy has been demonstrated in numerous rodent studies. In these animal models, the disorder is characterized by a reduction in amplitude of wave I of the auditory brainstem response (ABR) to high-level stimuli, whereas the response at threshold is unaffected. The aim of the present study was to determine if this disorder is prevalent in young adult humans with normal audiometric hearing. One hundred and twenty six participants (75 females) aged 18-36 were tested. Participants had a wide range of lifetime noise exposures as estimated by a structured interview. Audiometric thresholds did not differ across noise exposures up to 8 kHz, although 16-kHz audiometric thresholds were elevated with increasing noise exposure for females but not for males. ABRs were measured in response to high-pass (1.5 kHz) filtered clicks of 80 and 100 dB peSPL. Frequency-following responses (FFRs) were measured to 80 dB SPL pure tones from 240 to 285 Hz, and to 80 dB SPL 4 kHz pure tones amplitude modulated at frequencies from 240 to 285 Hz (transposed tones). The bandwidth of the ABR stimuli and the carrier frequency of the transposed tones were chosen to target the 3-6 kHz characteristic frequency region which is usually associated with noise damage in humans. The results indicate no relation between noise exposure and the amplitude of the ABR. In particular, wave I of the ABR did not decrease with increasing noise exposure as predicted. ABR wave V latency increased with increasing noise exposure for the 80 dB peSPL click. High carrier-frequency (envelope) FFR signal-to-noise ratios decreased as a function of noise exposure in males but not females. However, these correlations were not significant after the effects of age were controlled. The results suggest either that noise-induced cochlear synaptopathy is not a significant problem in young, audiometrically normal adults, or that the ABR and FFR are relatively insensitive to this disorder in young humans, although it is possible that the effects become more pronounced with age.
Collapse
Affiliation(s)
- Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; Audiology Department, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Agnès Léger
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, Nottingham, NG1 5DU, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Michael G Heinz
- Department of Speech, Language, & Hearing Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| |
Collapse
|
237
|
Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP. Translational issues in cochlear synaptopathy. Hear Res 2017; 349:164-171. [PMID: 28069376 DOI: 10.1016/j.heares.2016.12.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Understanding the biology of the previously underappreciated sensitivity of cochlear synapses to noise insult, and its clinical consequences, is becoming a mission for a growing number of auditory researchers. In addition, several research groups have become interested in developing therapeutic approaches that can reverse synaptopathy and restore hearing function. One of the major challenges to realizing the potential of synaptopathy rodent models is that current clinical audiometric approaches cannot yet reveal the presence of this subtle cochlear pathology in humans. This has catalyzed efforts, both from basic and clinical perspectives, to investigate novel means for diagnosing synaptopathy and to determine the main functional consequences for auditory perception and hearing abilities. Such means, and a strong concordance between findings in pre-clinical animal models and clinical studies in humans, are important for developing and realizing therapeutics. This paper frames the key outstanding translational questions that need to be addressed to realize this ambitious goal.
Collapse
Affiliation(s)
- Ann E Hickox
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Erik Larsen
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Michael G Heinz
- Speech, Language, and Hearing Sciences and Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, IN, 47907, USA.
| | - Leslie Shinobu
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
238
|
Guthrie OW. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum-A Response in the Auditory Nerve. J Histochem Cytochem 2017; 65:173-184. [PMID: 28056182 DOI: 10.1369/0022155416683661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum-A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona (OWG).,Research Service-151, Loma Linda Veterans Affairs Medical Center, Loma Linda, California (OWG).,Department of Otolaryngology and Head & Neck Surgery, School of Medicine, Loma Linda University Medical Center, Loma Linda, California (OWG)
| |
Collapse
|
239
|
Grose JH, Buss E, Hall JW. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences. Trends Hear 2017; 21:2331216517737417. [PMID: 29105620 PMCID: PMC5676494 DOI: 10.1177/2331216517737417] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/21/2017] [Indexed: 01/20/2023] Open
Abstract
The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.
Collapse
Affiliation(s)
- John H. Grose
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Emily Buss
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Joseph W. Hall
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
240
|
|
241
|
Abstract
OBJECTIVE Hearing loss is the most common sensory deficit and congenital anomaly, yet the decision-making processes involved in disclosing hearing loss have been little studied. To address this issue, we have explored the phrases that adults with hearing loss use to disclose their hearing loss. DESIGN Since self-disclosure research has not focused on hearing loss-specific issues, we created a 15-question survey about verbally disclosing hearing loss. English speaking adults (>18 years old) with hearing loss of any etiology were recruited from otology clinics in a major referral hospital. Three hundred and thirty-seven participants completed the survey instrument. Participants' phrase(s) used to tell people they have hearing loss were compared across objective characteristics (age; sex; type, degree, and laterality of hearing loss; word recognition scores) and self-reported characteristics (degree of hearing loss; age of onset and years lived with hearing loss; use of technology; hearing handicap score). RESULTS Participants' responses revealed three strategies to address hearing loss: Multipurpose disclosure (phrases that disclose hearing loss and provide information to facilitate communication), Basic disclosure (phrases that disclose hearing loss through the term, a label, or details about the condition), or nondisclosure (phrases that do not disclose hearing loss). Variables were compared between patients who used and who did not use each disclosure strategy using χ or Wilcoxon rank sum tests. Multipurpose disclosers were mostly female (p = 0.002); had experienced reactions of help, support, and accommodation after disclosing (p = 0.008); and had experienced reactions of being overly helpful after disclosing (p=0.039). Basic disclosers were predominantly male (p = 0.004); reported feeling somewhat more comfortable disclosing their hearing loss over time (p = 0.009); had not experienced reactions of being treated unfairly or discriminated against (p = 0.021); and were diagnosed with mixed hearing loss (p = 0.004). Nondisclosers tended not to disclose in a group setting (p = 0.002) and were diagnosed with bilateral hearing loss (p = 0.005). In addition, all of the variables were examined to build logistic regression models to predict the use of each disclosure strategy. CONCLUSIONS Our results reveal three simple strategies for verbally addressing hearing loss that can be used in a variety of contexts. We recommend educating people with hearing loss about these strategies-this could improve the experience of disclosing hearing loss, and could educate society at large about how to interact with those who have a hearing loss.
Collapse
|
242
|
Lobarinas E, Spankovich C, Le Prell CG. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions. Hear Res 2016; 349:155-163. [PMID: 28003148 DOI: 10.1016/j.heares.2016.12.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/21/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment.
Collapse
Affiliation(s)
- Edward Lobarinas
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, USA.
| | - Christopher Spankovich
- University of Mississippi Medical Center, Department of Otolaryngology and Communicative Sciences, USA
| | - Colleen G Le Prell
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| |
Collapse
|
243
|
Guest H, Munro KJ, Prendergast G, Howe S, Plack CJ. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy. Hear Res 2016; 344:265-274. [PMID: 27964937 PMCID: PMC5256478 DOI: 10.1016/j.heares.2016.12.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022]
Abstract
In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure.
Collapse
Affiliation(s)
- Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Simon Howe
- Audiology Department, James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Department of Psychology, Lancaster University, Lancaster, UK
| |
Collapse
|
244
|
Wolak T, Cieśla K, Rusiniak M, Piłka A, Lewandowska M, Pluta A, Skarżyński H, Skarżyński PH. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study. Med Sci Monit 2016; 22:4623-4635. [PMID: 27893698 PMCID: PMC5132427 DOI: 10.12659/msm.897929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.
Collapse
Affiliation(s)
- Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Katarzyna Cieśla
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Mateusz Rusiniak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Adam Piłka
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Monika Lewandowska
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Agnieszka Pluta
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Piotr H Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
245
|
Dobie RA, Humes LE. Commentary on the regulatory implications of noise-induced cochlear neuropathy. Int J Audiol 2016; 56:74-78. [DOI: 10.1080/14992027.2016.1255359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Robert A. Dobie
- Department of Otolaryngology, Head and Neck Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA and
| | - Larry E. Humes
- Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
246
|
Verhulst S, Jagadeesh A, Mauermann M, Ernst F. Individual Differences in Auditory Brainstem Response Wave Characteristics: Relations to Different Aspects of Peripheral Hearing Loss. Trends Hear 2016; 20:2331216516672186. [PMID: 27837052 PMCID: PMC5117250 DOI: 10.1177/2331216516672186] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Little is known about how outer hair cell loss interacts with noise-induced and age-related auditory nerve degradation (i.e., cochlear synaptopathy) to affect auditory brainstem response (ABR) wave characteristics. Given that listeners with impaired audiograms likely suffer from mixtures of these hearing deficits and that ABR amplitudes have successfully been used to isolate synaptopathy in listeners with normal audiograms, an improved understanding of how different hearing pathologies affect the ABR source generators will improve their sensitivity in hearing diagnostics. We employed a functional model for human ABRs in which different combinations of hearing deficits were simulated and show that high-frequency cochlear gain loss steepens the slope of the ABR Wave-V latency versus intensity and amplitude versus intensity curves. We propose that grouping listeners according to a ratio of these slope metrics (i.e., the ABR growth ratio) might offer a way to factor out the outer hair cell loss deficit and maximally relate individual differences for constant ratios to other peripheral hearing deficits such as cochlear synaptopathy. We compared the model predictions to recorded click-ABRs from 30 participants with normal or high-frequency sloping audiograms and confirm the predicted relationship between the ABR latency growth curve and audiogram slope. Experimental ABR amplitude growth showed large individual differences and was compared with the Wave-I amplitude, Wave-V/I ratio, or the interwaveI-W latency in the same listeners. The model simulations along with the ABR recordings suggest that a hearing loss profile depicting the ABR growth ratio versus the Wave-I amplitude or Wave-V/I ratio might be able to differentiate outer hair cell deficits from cochlear synaptopathy in listeners with mixed pathologies.
Collapse
Affiliation(s)
- Sarah Verhulst
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
- Department of Information Technology, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Anoop Jagadeesh
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| | - Manfred Mauermann
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| | - Frauke Ernst
- Cluster of Excellence Hearing4all and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Oldenburg, Germany
| |
Collapse
|
247
|
The Role of the Transcription Factor Foxo3 in Hearing Maintenance: Informed Speculation on a New Player in the Cochlea. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1870675. [PMID: 27818997 PMCID: PMC5081746 DOI: 10.1155/2016/1870675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 01/12/2023]
Abstract
Molecular genetics has proven to be a powerful approach for understanding early-onset hearing loss. Recent work in late-onset hearing loss uses mouse genetics to identify molecular mechanisms that promote the maintenance of hearing. One such gene, Foxo3, is ontologically involved in preserving mitochondrial function. Significant evidence exists to support the idea that mitochondrial dysfunction is correlated with and can be causal for hearing loss. Foxo3 is also ontologically implicated in driving the circadian cycle, which has recently been shown to influence the molecular response to noise damage. In this review, the molecular framework connecting these cellular processes is discussed in relation to the cellular pathologies observed in human specimens of late-onset hearing loss. In bringing these observations together, the possibility arises that distinct molecular mechanisms work in multiple cell types to preserve hearing. This diversity offers great opportunities to understand and manipulate genetic processes for therapeutic gain.
Collapse
|
248
|
|
249
|
Longenecker RJ, Galazyuk AV. Variable Effects of Acoustic Trauma on Behavioral and Neural Correlates of Tinnitus In Individual Animals. Front Behav Neurosci 2016; 10:207. [PMID: 27826232 PMCID: PMC5078752 DOI: 10.3389/fnbeh.2016.00207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
The etiology of tinnitus is known to be diverse in the human population. An appropriate animal model of tinnitus should incorporate this pathological diversity. Previous studies evaluating the effect of acoustic over exposure (AOE) have found that animals typically display increased spontaneous firing rates and bursting activity of auditory neurons, which often has been linked to behavioral evidence of tinnitus. However, only a subset of studies directly associated these neural correlates to individual animals. Furthermore, the vast majority of tinnitus studies were conducted on anesthetized animals. The goal of this study was to test for a possible relationship between tinnitus, hearing loss, hyperactivity and bursting activity in the auditory system of individual unanesthetized animals following AOE. Sixteen mice were unilaterally exposed to 116 dB SPL narrowband noise (centered at 12.5 kHz) for 1 h under ketamine/xylazine anesthesia. Gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) was used to assess behavioral evidence of tinnitus whereas hearing performance was evaluated by measurements of auditory brainstem response (ABR) thresholds and prepulse inhibition PPI audiometry. Following behavioral assessments, single neuron firing activity was recorded from the inferior colliculus (IC) of four awake animals and compared to recordings from four unexposed controls. We found that AOE increased spontaneous activity in all mice tested, independently of tinnitus behavior or severity of threshold shifts. Bursting activity did not increase in two animals identified as tinnitus positive (T+), but did so in a tinnitus negative (T−) animal with severe hearing loss (SHL). Hyperactivity does not appear to be a reliable biomarker of tinnitus. Our data suggest that multidisciplinary assessments on individual animals following AOE could offer a powerful experimental tool to investigate mechanisms of tinnitus.
Collapse
Affiliation(s)
- Ryan J Longenecker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Alexander V Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|
250
|
Davis R. Long-term noise exposures: A brief review. Hear Res 2016; 349:31-33. [PMID: 27780746 DOI: 10.1016/j.heares.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Rickie Davis
- US Public Health Service, 522 Belleville Street, New Orleans, LA 70114, USA.
| |
Collapse
|