201
|
Soltani N, Keshavarzi B, Moore F, Busquets R, Nematollahi MJ, Javid R, Gobert S. Effect of land use on microplastic pollution in a major boundary waterway: The Arvand River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154728. [PMID: 35331773 DOI: 10.1016/j.scitotenv.2022.154728] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of microplastics (MPs) was investigated in the Arvand River (Iran). The Arvand River (200 Km) is a major water body that flows through land with diverse use and it meets the Persian Gulf. This study constitutes the first assessment of MP pollution (prevalence and physico-chemical characteristics) in the Arvand river, both in the sediment and in the water. MP monitoring has been carried out in 24 stations located along the river. The MP pollution found ranged between 1 and 291 items·L-1 and 70 to 15,620 items·kg-1 (dw), in water and sediment, respectively. The majority of MPs were fibres, black/grey and yellow/orange in colour, and mainly 250-500 μm and >1000 μm in size. Polyethylene terephthalate (PET), polypropylene (PP), nylon (NYL), high-density polyethylene (HDPE), and polystyrene (PS) were found in sediment samples. All these polymers, except HDPE, were also identified in the water samples. PET and PP were dominant in the water samples; whereas PET and PS were the most abundant in the sediments. The vicinity of urban wastewater effluents could be behind MP pollution in both water and sediments. Significant differences (p < 0.05) of MP concentrations were affected by different land uses when comparing MP levels in undisturbed natural area with urban areas. A strong correlation between MP fibres and fragments found with PCA biplots revealed their similar distribution in water. In the sediment samples, fibre and fragment MP particles were significantly correlated with colloidal particles (e.g., clay and organic matter) suggesting a relevant role of colloidal particles in the aquatic ecosystem of the Arvand River in transporting MPs. This study contributes to the better understanding of the presence of MP in major rivers, which are systems that have been scarcely investigated for this type of pollution, and it can inform interventions to reduce MP inputs to the river and sea.
Collapse
Affiliation(s)
- Naghmeh Soltani
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, Surrey KT1 2EE, UK
| | | | - Reza Javid
- Khorramshahr Environmental Protection Office, Khorramshahr 6491846783, Iran; Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Sylvie Gobert
- STAtion de REcherche Sous-Marineset Océanographiques (STARESO), 20260 Calvi, France; Université de Liège, Centre MARE, Laboratoire d'Océanologie, Sart-Tilman, B6c, 4000 Liège, Belgium
| |
Collapse
|
202
|
Bobori DC, Dimitriadi A, Feidantsis K, Samiotaki A, Fafouti D, Sampsonidis I, Kalogiannis S, Kastrinaki G, Lambropoulou DA, Kyzas GZ, Koumoundouros G, Bikiaris DN, Kaloyianni M. Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: Size matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154603. [PMID: 35337874 DOI: 10.1016/j.scitotenv.2022.154603] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 05/12/2023]
Abstract
The built up of microplastic (MPs) remains is shaping a new aquatic habitat and imposes the necessity for research of the effects that these relatively new pollutants exert on organisms, environment, and human health. The purpose of the present study was to verify if there is a particle-size dependence of fish response to MPs. Thus, we exposed two freshwater fish species, the zebrafish (Danio rerio) and perch (Perca fluviatilis) for 21 days to polyethylene microplastics (PE-MPs) sized 10-45 μm and 106-125 μm. Thereafter, in the liver and gills tissues, biochemical and molecular parameters and the metabolic profile were examined. Ex-vivo characterization by ATR-FTIR spectroscopy exhibited increased concentration of 10-45 μm PE-MPs in the liver of the two fish species while 106-125 μm PE-MPs mostly concentrated in fish gills. The penetration of PE-MPs to fish and the induced oxidative stress triggered changes in lipid peroxidation, DNA damage and ubiquitination and furthermore stimulated signal transduction pathways leading to autophagy and apoptosis. The smaller PE-MPs were more potent in inducing alterations to all the latter parameters measured than the larger ones. Tissue response in both fish seems to depend on the parameter measured and does not seem to follow a specific pattern. Our results showed that there is no clear sensitivity of one fish species versus the other, against both sizes of PE-MPs they were exposed. In perch the metabolic changes in gills were distinct to the ones observed in liver, following a size dependent pattern, indicating that stress conditions are generated through different mechanisms. All the parameters employed can be suggested further as biomarkers in biomonitoring studies against PE-MPs.
Collapse
Affiliation(s)
- Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | | | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Athina Samiotaki
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Danai Fafouti
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece
| | - Georgia Kastrinaki
- Laboratory of Inorganic Materials, CERTH/CPERI, GR-570 01 Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
203
|
Occurrence of Natural and Synthetic Micro-Fibers in the Mediterranean Sea: A Review. TOXICS 2022; 10:toxics10070391. [PMID: 35878296 PMCID: PMC9320265 DOI: 10.3390/toxics10070391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023]
Abstract
Among microplastics (MPs), fibers are one of the most abundant shapes encountered in the aquatic environment. Growing attention is being focused on this typology of particles since they are considered an important form of marine contamination. Information about microfibers distribution in the Mediterranean Sea is still limited and the increasing evidence of the high amount of fibers in the aquatic environment should lead to a different classification from MPs which, by definition, are composed only of synthetic materials and not natural. In the past, cellulosic fibers (natural and regenerated) have been likely included in the synthetic realm by hundreds of studies, inflating “micro-plastic” counts in both environmental matrices and organisms. Comparisons are often hampered because many of the available studies have explicitly excluded the micro-fibers (MFs) content due, for example, to methodological problems. Considering the abundance of micro-fibers in the environment, a chemical composition analysis is fundamental for toxicological assessments. Overall, the results of this review work provide the basis to monitor and mitigate the impacts of microfiber pollution on the sea ecosystems in the Mediterranean Sea, which can be used to investigate other basins of the world for future risk assessment.
Collapse
|
204
|
In situ laboratory for plastic degradation in the Red Sea. Sci Rep 2022; 12:11956. [PMID: 35831329 PMCID: PMC9279475 DOI: 10.1038/s41598-022-15310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Degradation and fragmentation of plastics in the environment are still poorly understood. This is partly caused by the lack of long-term studies and methods that determine weathering duration. We here present a novel study object that preserves information on plastic age: microplastic (MP) resin pellets from the wreck of the SS Hamada, a ship that foundered twenty-nine years ago at the coast of Wadi el Gemal national park, Egypt. Its sinking date enabled us to precisely determine how long MP rested in the wreck and a nearby beach, on which part of the load was washed off. Pellets from both sampling sites were analyzed by microscopy, X-ray tomography, spectroscopy, calorimetry, gel permeation chromatography, and rheology. Most pellets were made of low-density polyethylene, but a minor proportion also consisted of high-density polyethylene. MP from inside the wreck showed no signs of degradation compared to pristine reference samples. Contrary, beached plastics exhibited changes on all structural levels, which sometimes caused fragmentation. These findings provide further evidence that plastic degradation under saltwater conditions is comparatively slow, whereas UV radiation and high temperatures on beaches are major drivers of that process. Future long-term studies should focus on underlying mechanisms and timescales of plastic degradation.
Collapse
|
205
|
Tong L, Song K, Wang Y, Yang J, Ji J, Lu J, Chen Z, Zhang W. Zinc oxide nanoparticles dissolution and toxicity enhancement by polystyrene microplastics under sunlight irradiation. CHEMOSPHERE 2022; 299:134421. [PMID: 35346738 DOI: 10.1016/j.chemosphere.2022.134421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) dissolution is a critical process for the transformation and toxicity of ZnO NPs in aquatic environments. However, the effect of microplastics (MPs) on dissolution and toxicity of ZnO NPs under sunlight irradiation is still lacking. Herein, the dramatic increase in sunlight-induced ZnO NPs dissolution by polystyrene (PS) MPs was proven, which was attributed to the increase in h+-dependent and proton-dependent ZnO NPs dissolution by PS MPs, yielding 1O2 generation inhibition and acid release, respectively. The sizes, functional groups and aging status of PS MPs and pH were characteristic ZnO NPs dissolution through modifying 1O2, •OH and O2•- generation and acid release. Furthermore, the ZnO NPs dissolution affected by PS MPs also occurred in three realistic water samples, which were mainly governed by dissolved organic matter (DOM) and CO32-, rather than Cl- or SO42-. The PS MPs (1 μg/mL) dramatically altered the Zn2+:ZnO ratio in ZnO NPs suspension after 96 h of sunlight irradiation and presented vehicle effects on Zn2+, which in turn significantly increased the ion-related toxicity of ZnO NPs to Daphnia magna. Based on the PS MPs enhanced dissolution and toxicity of ZnO NPs, the effects of PS MPs on the environmental risk assessment of ZnO NPs should be seriously considered in freshwater environments under sunlight irradiation.
Collapse
Affiliation(s)
- Ling Tong
- Collaborative Innovation Center of Water Security for Water Source Region of Midline of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Ke Song
- Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| | - Yingqi Wang
- Collaborative Innovation Center of Water Security for Water Source Region of Midline of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Jianwei Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Midline of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Jun Ji
- Collaborative Innovation Center of Water Security for Water Source Region of Midline of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Jianrong Lu
- Collaborative Innovation Center of Water Security for Water Source Region of Midline of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Zhaojin Chen
- Collaborative Innovation Center of Water Security for Water Source Region of Midline of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Weicheng Zhang
- Collaborative Innovation Center of Water Security for Water Source Region of Midline of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
206
|
Tian Y, Yang Z, Yu X, Jia Z, Rosso M, Dedman S, Zhu J, Xia Y, Zhang G, Yang J, Wang J. Can we quantify the aquatic environmental plastic load from aquaculture? WATER RESEARCH 2022; 219:118551. [PMID: 35561617 DOI: 10.1016/j.watres.2022.118551] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 05/28/2023]
Abstract
Aquaculture provides livelihoods for hundreds of millions of people, but it also forms a significant source of plastic litter that poses a serious hazard to aquatic ecosystems. How to assess and subsequently manage plastic loads from aquaculture is a pending and pressing issue for aquaculture sustainability, and an important concern for water environment monitoring and management. In this study, we developed the first framework for estimating plastic litter from aquaculture by combining data from satellite remote sensing, drones, questionnaires, and in situ measurements. By acquiring multidimensional (human and nature) and multiscale (centimeter to basin scale) data, this framework helped us understand the aquaculture farming patterns and its spatial and temporal evolution, and thus estimate the plastic load it generates and suggest effective management approaches. Applying this framework, we assessed the marine plastic load from oyster floating raft farming in the Maowei Sea, a typical mariculture bay in China, with an increasing farming area. Approximately 3840 tons of plastic waste is expected to be discharged into the sea in the next four years (the average service life of a floating raft) without improvements in aquaculture waste management. Strengthening governance, timely plastic removal, innovative replacement, and transforming farmers' behavior patterns are recommended as the subsequent measures for plastic management. This framework can be extended to other regions and other aquaculture patterns, and is applicable to local, regional, and global aquaculture plastic litter assessments. It is a source-based method for evaluating plastic pollution that is more conducive to subsequent plastic management than traditional post-contamination environmental monitoring. In the context of the global expansion of mariculture and the global commitment to action to combat plastic pollution, this approach could play a critical role in the investigation and management of plastic waste in aquatic environments.
Collapse
Affiliation(s)
- Yichao Tian
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Zongyao Yang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xueying Yu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Zhen Jia
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | | | - Simon Dedman
- Hopkins Marine Station, Stanford University, Pacific Grove Pacific Grove 93950, California, USA
| | - Jingmin Zhu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Yuxiang Xia
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Guangping Zhang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Jiaqi Yang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China; CIMA Research Foundation, Savona, 17100, Italy; Hopkins Marine Station, Stanford University, Pacific Grove Pacific Grove 93950, California, USA; Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
207
|
Capparelli MV, Martínez-Colón M, Lucas-Solis O, Valencia-Castañeda G, Celis-Hernández O, Ávila E, Moulatlet GM. Can the bioturbation activity of the fiddler crab Minuca rapax modify the distribution of microplastics in sediments? MARINE POLLUTION BULLETIN 2022; 180:113798. [PMID: 35665620 DOI: 10.1016/j.marpolbul.2022.113798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Fiddler crabs are known as "eco-engineers" who maintain habitat health through sediment bioturbation. They regularly interact with microplastics (MPs) due to their contact with the sediment. In this study we compared MPs concentration between burrows and pellets resulting from bioturbation, and MPs bioaccumulation in the soft tissues of Minuca rapax (Smith, 1870), along a gradient of urbanization in Isla del Carmen, southern Gulf of Mexico. Overall, MPs shape and color in the pellets and in the tissues reflected those of the burrow's sediments. MPs were more abundant and diverse in burrows (9 ± 12 MPs.g-1) than in pellets (5 ± 5 MPs.g-1) or in the soft tissues (1.3 ± 1.2 MPs.g-1). Bioturbation can concentrate MPs in pellets and tissues, depending on the MPs contamination and urbanization level. M. rapax is an important structuring agent of sedimentary MPs, showing a strong top-down translocation of MPs in subtropical tidal flats.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km. 9.5, CP 24157 Ciudad del Carmen, Campeche, Mexico.
| | - Michael Martínez-Colón
- School of the Environment, Florida A&M University, 1515 S MLK Boulevard, Tallahassee, FL 32307, United States of America
| | - Oscar Lucas-Solis
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, 150150 Tena, Napo, Ecuador
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mexico
| | - Omar Celis-Hernández
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km. 9.5, CP 24157 Ciudad del Carmen, Campeche, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez 03940, Ciudad de México, Mexico
| | - Enrique Ávila
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km. 9.5, CP 24157 Ciudad del Carmen, Campeche, Mexico
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| |
Collapse
|
208
|
Chen HL, Selvam SB, Ting KN, Tshai KY, Gibbins CN. Relative contributions of different local sources to riverborne microplastic in a mixed landuse area within a tropical catchment. ENVIRONMENTAL RESEARCH 2022; 210:112972. [PMID: 35219629 DOI: 10.1016/j.envres.2022.112972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Information on the relative contributions of microplastics coming from different sources is important to help prioritise measures to reduce river contamination levels and limit human and ecological health risks. This paper reports on work which aimed to quantitatively assess the relative concentrations and types of microplastic delivered from differed sources to a second order river. The study was undertaken in a mixed landuse area within a rapidly urbanising catchment in Malaysia. Over a six-week period, water samples were collected from road culverts and drains in residential and industrial areas across the area to assess microplastic concentrations, while inputs from atmospheric deposition and wastewater treatment plants (WWTPs) were also quantified. Microplastic fibres and fragments were the dominant material in all sources, with the majority consisting of styrene-butadiene rubber and nylon. Culverts draining main roads were the main contributor to riverborne microplastic, delivering 42.20 ± 35.29 particles/L directly to the river channel. Road inputs were up to seven times greater than those from residential (8.53 ± 9.91 particles/L) and industrial (5.67 ± 4.88 particles/L) areas. The five WWTPs had removal efficiencies of between 30.95 ± 5.51% and 69.94 ± 22.17%, with their outflows delivering microplastics to the river in concentrations similar to those in uncontrolled residential and industrial drains. Atmospheric deposition across the study area was estimated to be 76.07 ± 32.85 particles/m2/day (=8.35 ± 5.11 particles/L). Mitigation strategies in the study area should focus on improving management of water draining roads, and re-routing discharges from domestic and industrial areas to WWTPs rather than allowing them to flow directly to the river. The low efficiencies of some of the WWTPs are not unusual, and indicate the need for additional water treatment to deal with microplastic present in wastewater.
Collapse
Affiliation(s)
- Hui Ling Chen
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| | - Sivathass Bannir Selvam
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| | - Kang Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| | - Kim Yeow Tshai
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| | - Christopher Neil Gibbins
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
209
|
Tong L, Duan P, Tian X, Huang J, Ji J, Chen Z, Yang J, Yu H, Zhang W. Polystyrene microplastics sunlight-induce oxidative dissolution, chemical transformation and toxicity enhancement of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154180. [PMID: 35231509 DOI: 10.1016/j.scitotenv.2022.154180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The coexistence of microplastics (MPs) and nanomaterials has been increasingly studied, but the influence of MPs on the chemical transformation of nanomaterials remains unclear. Herein, it was demonstrated that polystyrene (PS) MPs induce the oxidative dissolution, transformation and toxicity of silver nanoparticles (Ag NPs) under simulated sunlight irradiation. The PS MPs induced the oxidation dissolution of pristine Ag NPs by 1O2, OH and/or acid release and simultaneously reduced the released Ag+ to secondary Ag NPs by O2-. The sizes, functional groups and ageing status of the PS MPs and pH characterized secondary Ag NPs formation. Secondary formation of Ag NPs induced by PS MPs also occurred in realistic water and was governed by dissolved organic matter (DOM) and Cl-, rather than SO42- or CO32-. Moreover, PS MPs remarkably promoted Ag+ release, altered the Ag+:Ag0 ratio, and presented vehicle effects on Ag+ toxicity to Daphnia magna. The concentration addition model demonstrated that the ion-related toxicity of Ag NPs was significantly increased by PS MPs. Therefore, PS MPs induced the oxidative dissolution, transformation and toxicity enhancement of Ag NPs under sunlight irradiation, and accordingly, the coexistence of PS MPs and Ag NPs in freshwater environments should be seriously considered.
Collapse
Affiliation(s)
- Ling Tong
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| | - Xiang Tian
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Jiaolong Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| | - Jun Ji
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Zhaojin Chen
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Jianwei Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weicheng Zhang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
210
|
Araújo APDC, Luz TMD, Rocha TL, Ahmed MAI, Silva DDME, Rahman MM, Malafaia G. Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: Perspective study of genotoxicity, mutagenicity, and redox unbalance. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128691. [PMID: 35334274 DOI: 10.1016/j.jhazmat.2022.128691] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite the toxicity of microplastics (MPs) in freshwater fish has been demonstrated in previous studies, their effects when mixed with other pollutants (organic and inorganic) are poorly understood. Thus, we aimed to test the hypothesis that the association of polyethylene MPs (PE-MPs) to a mix of emerging pollutants induces more adverse genotoxic, mutagenic, and redox unbalance effects in adult zebrafish (Danio rerio), after 15 days of exposure. Although the accumulation of MPs in animals was greater in animals exposed to PE-MPs alone, erythrocyte DNA damage (comet assay) and the frequency of erythrocytic nuclear abnormalities (ENAs) evidenced in zebrafish exposed to PE-MPs alone were as pronounced as those observed in animals exposed to the mix of pollutant (alone or in combination with MPs), which constitutes the big picture of the current study. Moreover, we noticed that such effects were associated with an imbalance between pro-and antioxidant metabolism in animals, whose activity of superoxide dismutase (SOD) and catalase (CAT) was assessed in different organs which were not sufficient to counterbalance the production of reactive oxygen species [hydrogen peroxide (H2O2)] and nitrogen [nitric oxide (NO)] evaluated. The principal component analysis (PCA) also revealed that while the antioxidant activity was more pronounced in the brain and liver of animals, the highest production of H2O2 was perceived in the gills and muscles, suggesting that the biochemical response of the animals was organ-dependent. Thus, the present study did not demonstrate antagonistic, synergistic, or additive effects on animals exposed to the combination between PE-MPs and a mix of pollutants in the zebrafish, which reinforces the theory that interactions between pollutants in aquatic ecosystems may be as complex as their effects on freshwater ichthyofauna.
Collapse
Affiliation(s)
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
211
|
Zhou C, Bi R, Su C, Liu W, Wang T. The emerging issue of microplastics in marine environment: A bibliometric analysis from 2004 to 2020. MARINE POLLUTION BULLETIN 2022; 179:113712. [PMID: 35525060 DOI: 10.1016/j.marpolbul.2022.113712] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution in marine environment has been a growing public concern in recent years. This article analyzed the scientific literatures related to marine microplastics through a combination of social network analysis and bibliometrics. Researches related to microplastics have grown rapidly since 2011, with approximately two-thirds of the total number of articles published in the last three years. Researchers in United States and Europe have provided tremendous support, however, the efforts and progress of Chinese researchers cannot be ignored. Moreover, the international cooperation is getting closer, and related strategies are launched continuously. The results showed that Marine Pollution Bulletin is the most active journal. Through keyword analysis, we understand the development history and current hotspots of the whole microplastics researches, including ecological risks, interrelationship between microplastics and other pollutants, and detection methodology. Finally, some suggestions and perspectives for future microplastics research are provided.
Collapse
Affiliation(s)
- Chongyu Zhou
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
212
|
Korez Š, Gutow L, Saborowski R. Fishing in troubled waters: Limited stress response to natural and synthetic microparticles in brown shrimp (Crangon crangon). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119023. [PMID: 35189296 DOI: 10.1016/j.envpol.2022.119023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Marine invertebrates inhabiting estuaries and coastal areas are exposed to natural suspended particulate matter (SPM) like clay or diatom shells but also to anthropogenic particles like microplastics. SPM concentrations may reach 1 g per liter and more, comprising hundreds of millions of items in the size range of less than 100 μm. Suspension feeders and deposit feeders involuntarily ingest these particles along with their food. We investigated whether natural and anthropogenic microparticles at concentrations of 20 mg L-1, which correspond to natural environmental SPM concentrations in coastal marine waters, are ingested by the brown shrimp Crangon crangon and whether these particles induce an oxidative stress response in digestive gland tissue. Shrimp were exposed to clay, silica, TiO2, polyvinyl chloride (PVC), or polylactide microplastics (PLA) for 6, 12, 24, and 48 h, respectively. The activities of the anti-oxidative enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured. All five particle types were ingested by the shrimp along with food. The presence of the particles in the shrimp stomach was verified by scanning electron microscopy. The activities of the anti-oxidative enzymes did not vary between animals exposed to different types of microparticles and control animals that did not receive particles. The temporal activity differed between the three enzymes. The lack of a specific biochemical response may reflect an adaptation of C. crangon to life in an environment where frequent ingestion of non-digestible microparticles is unavoidable and continuous maintenance of inducible biochemical defense would be energetically costly. Habitat characteristics as well as natural feeding habits may be important factors to consider in the interpretation of hazard and species-specific risk assessment.
Collapse
Affiliation(s)
- Špela Korez
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Lars Gutow
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
213
|
Marzuki I, Septiningsih E, Kaseng ES, Herlinah H, Sahrijanna A, Sahabuddin S, Asaf R, Athirah A, Isnawan BH, Samidjo GS, Rumagia F, Hamidah E, Santi IS, Nisaa K. Investigation of Global Trends of Pollutants in Marine Ecosystems around Barrang Caddi Island, Spermonde Archipelago Cluster: An Ecological Approach. TOXICS 2022; 10:301. [PMID: 35736909 PMCID: PMC9229392 DOI: 10.3390/toxics10060301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022]
Abstract
High-quality marine ecosystems are free from global trending pollutants' (GTP) contaminants. Accuracy and caution are needed during the exploitation of marine resources during marine tourism to prevent future ecological hazards that cause chain effects on aquatic ecosystems and humans. This article identifies exposure to GTP: microplastic (MP); polycyclic aromatic hydrocarbons (PAH); pesticide residue (PR); heavy metal (HM); and medical waste (MW), in marine ecosystems in the marine tourism area (MTA) area and Barrang Caddi Island (BCI) waters. A combination of qualitative and quantitative analysis methods were used with analytical instruments and mathematical formulas. The search results show the average total abundance of MPs in seawater (5.47 units/m3) and fish samples (7.03 units/m3), as well as in the sediment and sponge samples (8.18 units/m3) and (8.32 units/m3). Based on an analysis of the polymer structure, it was identified that the dominant light group was MPs: polyethylene (PE); polypropylene (PP); polystyrene (PS); followed by polyamide-nylon (PA); and polycarbonate (PC). Several PAH pollutants were identified in the samples. In particular, naphthalene (NL) types were the most common pollutants in all of the samples, followed by pyrene (PN), and azulene (AZ). Pb+2 and Cu+2 pollutants around BCI were successfully calculated, showing average concentrations in seawater of 0.164 ± 0.0002 mg/L and 0.293 ± 0.0007 mg/L, respectively, while in fish, the concentrations were 1.811 ± 0.0002 µg/g and 4.372 ± 0.0003 µg/g, respectively. Based on these findings, the BCI area is not recommended as a marine tourism destination.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, South Sulawesi, Indonesia
| | - Early Septiningsih
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ernawati Syahruddin Kaseng
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Herlinah Herlinah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Andi Sahrijanna
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Sahabuddin Sahabuddin
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Ruzkiah Asaf
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Admi Athirah
- Research Institute for Coastal Aquaculture and Fisheries Extension, Maros 90512, South Sulawesi, Indonesia; (E.S.); (E.S.K.); (H.H.); (A.S.); (S.S.); (R.A.); (A.A.)
| | - Bambang Heri Isnawan
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Gatot Supangkat Samidjo
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia; (B.H.I.); (G.S.S.)
| | - Faizal Rumagia
- Study Program of Fisheries Resource Utilization, Faculty of Fisheries and Marine, Khairun University, Ternate 97719, North Maluku, Indonesia;
| | - Emmy Hamidah
- Department of Agrotechnology, Universitas Islam Darul ‘Ulum, Lamongan 62253, Jawa Timur, Indonesia;
| | - Idum Satia Santi
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia;
| | - Khairun Nisaa
- National Research and Innovation Agency (BRIN), Jakarta 10340, DKI, Indonesia;
| |
Collapse
|
214
|
Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential. Sci Rep 2022; 12:9021. [PMID: 35637211 PMCID: PMC9151778 DOI: 10.1038/s41598-022-12912-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
Biodegradable plastics (BDP) are expected to mineralize easily, in particular under conditions of technical composting. However, the complexity of the sample matrix has largely prevented degradation studies under realistic conditions. Here composts and fertilizers from state-of-the-art municipal combined anaerobic/aerobic biowaste treatment plants were investigated for residues of BDP. We found BDP fragments > 1 mm in significant numbers in the final composts intended as fertilizer for agriculture and gardening. Compared to pristine compostable bags, the recovered BDP fragments showed differences in their material properties, which potentially renders them less prone to further biodegradation. BDP fragments < 1 mm were extracted in bulk and came up to 0.43 wt% of compost dry weight. Finally, the liquid fertilizer produced during the anaerobic treatment contained several thousand BDP fragments < 500 µm per liter. Hence, our study questions, if currently available BDP are compatible with applications in areas of environmental relevance, such as fertilizer production.
Collapse
|
215
|
Fudlosid S, Ritchie MW, Muzzatti MJ, Allison JE, Provencher J, MacMillan HA. Ingestion of Microplastic Fibres, But Not Microplastic Beads, Impacts Growth Rates in the Tropical House Cricket Gryllodes Sigillatus. Front Physiol 2022; 13:871149. [PMID: 35634147 PMCID: PMC9132090 DOI: 10.3389/fphys.2022.871149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Microplastic is a growing concern as an environmental contaminant as it is ubiquitous in our ecosystems. Microplastics are present in terrestrial environments, yet the majority of studies have focused on the adverse effects of microplastics on aquatic biota. We hypothesized that microplastic ingestion by a terrestrial insect would have localized effects on gut health and nutrient absorption, such that prolonged dietary microplastic exposure would impact growth rate and adult body size. We further hypothesized that plastic form (fibres vs. beads) would influence these effects because of the nature of gut-plastic interactions. Freshly hatched tropical house crickets (Gryllodes sigillatus) were fed a standard diet containing different concentrations of either fluorescent polyethylene microplastic beads (75–105 μm), or untreated polyethylene terephthalate microfibers (< 5 mm) until they died or reached adulthood (approximately 8 weeks). Weight and body length were measured weekly and microplastic ingestion was confirmed through fluorescence microscopy and visual inspection of the frass. While, to our surprise, we found no effect of polyethylene bead ingestion on growth rate or final body size of G. sigillatus, females experienced a reduction in size and weight when fed high concentrations of polyethylene terephthalate microfibers. These results suggest that high concentrations of polyethylene beads of the 100 μm size range can pass through the cricket gut without a substantial negative effect on their growth and development time, but high concentrations of polyethylene terephthalate microfibers cannot. Although we report the negative effects of microplastic ingestion on the growth of G. sigillatus, it remains uncertain what threats microplastics pose to terrestrial insects.
Collapse
Affiliation(s)
- Serita Fudlosid
- Department of Biology, Carleton University, Ottawa, ON, Canada
- *Correspondence: Serita Fudlosid,
| | | | | | - Jane E. Allison
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer Provencher
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Environment and Climate Change Canada, Ottawa, ON, Canada
| | | |
Collapse
|
216
|
Huang J, Duan P, Tong L, Zhang W. Influence of polystyrene microplastics on the volatilization, photodegradation and photoinduced toxicity of anthracene and pyrene in freshwater and artificial seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152049. [PMID: 34856264 DOI: 10.1016/j.scitotenv.2021.152049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the influences of polystyrene microplastics (PS MPs) on the volatilization, photodegradation and photoinduced toxicities of anthracene and pyrene were determined in freshwater and artificial seawater. The PS MPs reduced the volatilization of anthracene and pyrene, and the volatilization reduction was highly dependent on the PS MPs sizes and concentrations. The PS MPs increased the photodegradation kinetics (kp) of anthracene by promoting 1O2 generation and altered the photodegradation pathways through OH attack of the photodegradation byproducts. However, the kp of pyrene was decreased by PS MPs suppressing the transfer of electrons from excited pyrene to oxygen. The PS MPs modified the pathways of pyrene photodegradation via OH attack of the photodegradation byproducts. Due to light shielding by DOM and/or PS MPs aggregates in seawater, the modification of the photodegradation pathways of anthracene and pyrene by PS MPs was hardly happened in seawater compared with in freshwater. By changing the concentrations of anthracene or pyrene and their photodegradation byproducts, the PS MPs greatly affected the photoinduced toxicities of anthracene and pyrene to Selenastrum capricornutum and Phaeodactylum tricornutum. The influences of PS MPs on the volatilization, photodegradation and photoinduced toxicity of anthracene and pyrene are important and should be carefully considered during environmental risk assessments of anthracene and pyrene.
Collapse
Affiliation(s)
- Jiaolong Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, China
| | - Ling Tong
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Weicheng Zhang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
217
|
Xu L, Xu X, Li C, Li J, Sun M, Zhang L. Is mulch film itself the primary source of meso- and microplastics in the mulching cultivated soil? A preliminary field study with econometric methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118915. [PMID: 35101559 DOI: 10.1016/j.envpol.2022.118915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/05/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
There has been an increasing interest in the pollution caused by meso- and microplastics (MMPs) in terrestrial ecosystems. Mulch film was once considered to be the most important source of MMPs in the mulching cultivated soil. However, the academic community has not given sufficient scientific evidence. In this study, stratified random sampling method was used to selectively interview households in Hebei province, China (400 households, 20 villages, 5 counties). Finally, household characteristics and mulch film use behavior of 41 households were collected, and corresponding soil samples were sampled. The results showed that 1) the abundance of MMPs was 29.3 ± 33.1 items·kg-1 (DW) and the particle size of MMPs was 2.95 × 103±1.75 × 103 μm, and the proportion of MMPs derived from Polyethylene (PE) was only 18.8%; 2) the mass of MMPs was 2.90 ± 3.72 mg kg-1 (DW) and the proportion of PE MMPs was 43.75%, which has the highest mass percentage; 3) After controlling the endogenous and dummy variables, the use history of mulch film (HistMF) was found to be positively correlated to the abundance of MMPs and inversely correlated to the particle size, but nor with the mass of MMPs; 4) Regarding the heterogeneous characteristics of MMPs, including particle size, color, shape, and type, the findings found the absence of a significant correlation between HistMF and the abundance and mass of PE. In summary, mulch-derived MMPs are not the primary source of MMPs in the mulching cultivated soil in terms of abundance but probably be in terms of mass.
Collapse
Affiliation(s)
- Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Xiangbo Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingxing Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linxiu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
218
|
Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14084425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plastic waste (PW) is one of the most rapid-growing waste streams in municipal solid waste all over the world. India has become a global player in the plastic value chain. Despite low consumption, domestic generation and imports create a significant burden on the overall waste management system, which requires in-depth understanding of the scenario and pathways that can mitigate the crisis. Although Indian researchers have widely researched technology-related issues in academic papers, a substantial knowledge gap exists in understanding the problem’s depth and possible solutions. This review article focuses on current plastic production, consumption, and waste generation in India. This review article mainly analyzes data and information regarding Indian PW management and highlights some critical issues such as reverse supply chain, effective PW management, source-specific recovery, and PW rules in India. Comprehensively, this review will help to identify implementable strategies for policymakers and research opportunities for future researchers in holistic PW management and recycling in India, focusing on the circular economy and sustainable development goals.
Collapse
|
219
|
Cai Y, Lin J, Gimeno S, Begnaud F, Nowack B. Country-Specific Environmental Risks of Fragrance Encapsulates Used in Laundry Care Products. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:905-916. [PMID: 34265099 PMCID: PMC9291008 DOI: 10.1002/etc.5168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Fragrance encapsulates (FEs) are designed to deliver fragrance components, notably in laundry care products. They are made of thermoset polymeric shells surrounding the fragrance content. These materials enter the environment mainly during laundry washing, but little is known about their distribution in and impact on the environment. The aim of the present study was to estimate the environmental concentrations of FE shells in freshwater, sediment, and soil compartments for 34 selected countries and to compare them with ecotoxicological effects. Probabilistic material flow analysis was used to estimate worst-case predicted environmental concentrations (PECs). The lowest freshwater PEC was predicted for Finland (0.00011 µg/L) and the highest for Belgium (0.13 µg/L). Accumulation of FE shells between 2010 and 2019 was considered for sediments and sludge-treated soils. The PECs in sediments ranged from 3.0 µg/kg (Finland) to 3400 µg/kg (Belgium). For sludge-treated soil, the concentration was estimated to be between 0 (Malta and Switzerland) and 3600 µg/kg (Vietnam). Ecotoxicological tests showed no effects for FE shells at any tested concentration (up to 2700 µg/L freshwater, 5400 µg/kg sediment, and 9100 µg/kg soil), thus not allowing derivation of a predicted-no-effect concentration (PNEC). Therefore, to characterize the environmental risks, the PEC values were compared with highest-observed-no-effect concentrations (HONECs) derived from ecotoxicological tests. The PEC/HONEC ratios were 9.3 × 10-6 , 0.13, and 0.04 for surface waters, sediments, and sludge-treated soils, respectively, which are much below 1, suggesting no environmental risk. Because the PEC values constitute an upper boundary (no fate considered) and the HONEC values represent a lower boundary (actual PNEC values based on NOECs will be higher), the current risk estimation can be considered a precautionary worst-case assessment. Environ Toxicol Chem 2022;41:905-916. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yaping Cai
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology, St. GallenSwitzerland
| | | | | | | | - Bernd Nowack
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology, St. GallenSwitzerland
| |
Collapse
|
220
|
Mengatto MF, Nagai RH. A first assessment of microplastic abundance in sandy beach sediments of the Paranaguá Estuarine Complex, South Brazil (RAMSAR site). MARINE POLLUTION BULLETIN 2022; 177:113530. [PMID: 35299148 DOI: 10.1016/j.marpolbul.2022.113530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Here we present the first assessment of microplastic (1-5 mm) abundance in drift line sediments from nineteen sandy beaches at the Paranaguá Estuarine Complex, a subtropical estuarine system from South Brazil. This estuarine system harbors Brazil's second-largest grain port, the Guaraqueçaba Environmental Protection Area, and a RAMSAR site. Sediment samples were washed through a 5 and 1 mm mesh sieve and then visually inspected. We found a total of 398 microplastic particles, of which the majority were foams (63.7%), hard plastic fragments (13.8%), paint fragments (12.8%), and pellets (7.2%). Almost all sampled beaches, including those located within the Guaraqueçaba Environmental Protection Area, were contaminated by microplastics. The most likely microplastic sources for the Paranaguá Estuarine Complex beaches are urban and port activities. However, small communities and marine sources may also contribute to microplastic presence.
Collapse
Affiliation(s)
- Mateus Farias Mengatto
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil.
| | - Renata Hanae Nagai
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil.
| |
Collapse
|
221
|
Caldwell A, Brander S, Wiedenmann J, Clucas G, Craig E. Incidence of microplastic fiber ingestion by Common Terns (Sterna hirundo) and Roseate Terns (S. dougallii) breeding in the Northwestern Atlantic. MARINE POLLUTION BULLETIN 2022; 177:113560. [PMID: 35314396 DOI: 10.1016/j.marpolbul.2022.113560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Ingestion of microplastics has been documented across marine species, but exposure remains sparsely described in many seabird species. We assess microplastic (between 0.2 and 5.0 mm) ingestion in two Northwestern Atantic - breeding species for which exposure to microplastics is entirely or largely undescribed: Common Terns (Sterna hirundo) and Roseate Terns (S. dougallii). Common Tern microplastic load did not vary between life stages (p = 0.590); microplastic load did differ in Common Tern adults breeding at two of three colonies explored (p = 0.002), with no other regional differences observed. Roseate Terns ingested significantly more microplastics than Common Terns (p = 0.007). Our results show that microplastic ingestion by terns varies regionally and interspecifically, but not by life stage, trends potentially explained by dietary differences. We provide the first quantification of microplastic fiber ingestion by terns in the Northwestern Atlantic and identify trophic dynamics related to microplastic ingestion, representing an important step toward understanding the risk of the pollutant to terns across regions, as well as toward the use of terns as potential bioindicators of microplastics.
Collapse
Affiliation(s)
- Aliya Caldwell
- University of New Hampshire, 38 Academic Way, Durham, NH, United States of America.
| | - Susanne Brander
- Oregon State University, 2820 SW Campus Way, Corvallis, OR 97331, United States of America.
| | - John Wiedenmann
- Rutgers University-New Brunswick, 14 College Farm Rd., New Brunswick, NJ, United States of America
| | - Gemma Clucas
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY, United States of America.
| | - Elizabeth Craig
- Shoals Marine Laboratory, 8 College Rd., Durham, NH, United States of America.
| |
Collapse
|
222
|
Shi Q, Xiong Y, Kaur P, Sy ND, Gan J. Contaminants of emerging concerns in recycled water: Fate and risks in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152527. [PMID: 34953850 DOI: 10.1016/j.scitotenv.2021.152527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Recycled water (RW) has been increasingly recognized as a valuable source of water for alleviating the global water crisis. When RW is used for agricultural irrigation, many contaminants of emerging concern (CECs) are introduced into the agroecosystem. The ubiquity of CECs in field soil, combined with the toxic, carcinogenic, or endocrine-disrupting nature of some CECs, raises significant concerns over their potential risks to the environment and human health. Understanding such risks and delineating the fate processes of CECs in the water-soil-plant continuum contributes to the safe reuse of RW in agriculture. This review summarizes recent findings and provides an overview of CECs in the water-soil-plant continuum, including their occurrence in RW and irrigated soil, fate processes in agricultural soil, offsite transport including runoff and leaching, and plant uptake, metabolism, and accumulation. The potential ecological and human health risks of CECs are also discussed. Studies to date have shown limited accumulation of CECs in irrigated soils and plants, which may be attributed to multiple attenuation processes in the rhizosphere and plant, suggesting minimal health risks from RW-fed food crops. However, our collective understanding of CECs is rather limited and knowledge of their offsite movement and plant accumulation is particularly scarce for field conditions. Given a large number of CECs and their occurrence at trace levels, it is urgent to develop strategies to prioritize CECs so that future research efforts are focused on CECs with elevated risks for offsite contamination or plant accumulation. Irrigating specific crops such as feed crops and fruit trees may be a viable option to further minimize potential plant accumulation under field conditions. To promote the beneficial reuse of RW in agriculture, it is essential to understand the human health and ecological risks imposed by CEC mixtures and metabolites.
Collapse
Affiliation(s)
- Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
223
|
Hamm T, Barkhau J, Gabriel AL, Gottschalck LL, Greulich M, Houiller D, Kawata U, Tump LN, Leon AS, Vasconcelos P, Yap V, Almeida C, Chase Z, Hurd CL, Lavers JL, Nakaoka M, Rilov G, Thiel M, Wright JT, Lenz M. Plastic and natural inorganic microparticles do not differ in their effects on adult mussels (Mytilidae) from different geographic regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151740. [PMID: 34871693 DOI: 10.1016/j.scitotenv.2021.151740] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are ubiquitous in the marine environment and studies on their effects on benthic filter feeders at least partly revealed a negative influence. However, it is still unclear whether the effects of microplastics differ from those of natural suspended microparticles, which constitute a common stressor in many coastal environments. We present a series of experiments that compared the effects of six-week exposures of marine mussels to two types of natural particles (red clay and diatom shells) to two types of plastic particles (Polymethyl Methacrylate and Polyvinyl Chloride). Mussels of the family Mytilidae from temperate regions (Japan, Chile, Tasmania) through subtropical (Israel) to tropical environments (Cabo Verde) were exposed to concentrations of 1.5 mg/L, 15 mg/L and 150 mg/L of the respective microparticles. At the end of this period, we found significant effects of suspended particles on respiration rate, byssus production and condition index of the animals. There was no significant effect on clearance rate and survival. Surprisingly, we observed only small differences between the effects of the different types of particles, which suggests that the mussels were generally equally robust towards exposure to variable concentrations of suspended solids regardless of whether they were natural or plastic. We conclude, that microplastics and suspended solids elicit similar effects on the tested response variables, and that both types of microparticles mainly cause acute responses rather than more persistent carry-over effects.
Collapse
Affiliation(s)
- Thea Hamm
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24138 Kiel, Germany.
| | - Jonas Barkhau
- University of Rostock, Faculty of Biological Sciences, Department of Marine Biology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Anna-Louise Gabriel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, 26111 Oldenburg, Germany
| | - Leo L Gottschalck
- University of Rostock, Faculty of Biological Sciences, Department of Marine Biology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | | | - Daphne Houiller
- Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Uki Kawata
- School of Science, Hokkaido University, Aikappu 1, Akkeshi, Hokkaido 088-1113, Japan
| | - Lukas Novaes Tump
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, 26111 Oldenburg, Germany
| | - Abril Sanchez Leon
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | | | - Vincent Yap
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | | | - Zanna Chase
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Aikappu 1, Akkeshi, Hokkaido 088-1113, Japan
| | - Gil Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | - Martin Thiel
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Millennium Nucleus of Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Avenida Ossandón 877, Coquimbo, Chile
| | - Jeffrey T Wright
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24138 Kiel, Germany
| |
Collapse
|
224
|
Zhou SYD, Lin C, Yang K, Yang LY, Yang XR, Huang FY, Neilson R, Su JQ, Zhu YG. Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127774. [PMID: 34801300 PMCID: PMC8659516 DOI: 10.1016/j.jhazmat.2021.127774] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 05/09/2023]
Abstract
The demand for facial masks remains high. However, little is known about discarded masks as a potential refuge for contaminants and to facilitate enrichment and spread of antibiotic resistance genes (ARG) in the environment. We address this issue by conducting an in-situ time-series experiment to investigate the dynamic changes of ARGs, bacteria and protozoa associated with discarded masks. Masks were incubated in an estuary for 30 days. The relative abundance of ARGs in masks increased after day 7 but levelled off after 14 days. The absolute abundance of ARGs at 30 days was 1.29 × 1012 and 1.07 × 1012 copies for carbon and surgical masks, respectively. According to normalized stochasticity ratio analysis, the assembly of bacterial and protistan communities was determined by stochastic (NST = 62%) and deterministic (NST = 40%) processes respectively. A network analysis highlighted potential interactions between bacteria and protozoa, which was further confirmed by culture-dependent assays, that showed masks shelter and enrich microbial communities. An antibiotic susceptibility test suggested that antibiotic resistant pathogens co-exist within protozoa. This study provides an insight into the spread of ARGs through discarded masks and highlights the importance of managing discarded masks with the potential ecological risk of mask contamination.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
225
|
Characterization and identification of microplastics using Raman spectroscopy coupled with multivariate analysis. Anal Chim Acta 2022; 1197:339519. [DOI: 10.1016/j.aca.2022.339519] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
|
226
|
Genotoxic Properties of Polystyrene (PS) Microspheres in the Filter-Feeder Mollusk Mytilus trossulus (Gould, 1850). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microplastic pollution of the aquatic environment is one of the most serious environmental problems today. The potential environmental risks of such particles have become growing concerns in recent years, as direct or indirect exposure to these particles leads to adverse effects on marine organisms. In this study, we investigated the potential risk of polystyrene (PS) microspheres on the genome integrity of cells of different tissues (gills and digestive gland) of the filter-feeder mollusk Mytilus trossulus, using a comet assay. With the help of the comet assay, we estimated the level of genome destruction in the cells of two different mussel tissues after short-term exposure to polystyrene. It was discovered that, despite their chemical inertness, PS microspheres that are 0.9 µm in diameter, at a concentration of 106 particles/L, exhibit genotoxic properties, which are expressed as a two-fold increase in the level of cell DNA damage of the mussel’s digestive gland. It is noted that, after exposure to PS, about half of the mussel’s digestive gland cells experienced damage in 25–35% of their DNA. In addition, the proportion of cells with significant DNA damage (50%) was about 5%. Given the unique role of the genome, DNA damage in these cells may be the earliest stage in the development of biochemical events that lead to toxic effects. These findings provide a basis for studying specific biomarkers of microplastic contamination.
Collapse
|
227
|
Ouyang X, Duarte CM, Cheung SG, Tam NFY, Cannicci S, Martin C, Lo HS, Lee SY. Fate and Effects of Macro- and Microplastics in Coastal Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2386-2397. [PMID: 35089026 DOI: 10.1021/acs.est.1c06732] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coastal wetlands trap plastics from terrestrial and marine sources, but the stocks of plastics and their impacts on coastal wetlands are poorly known. We evaluated the stocks, fate, and biological and biogeochemical effects of plastics in coastal wetlands with plastic abundance data from 112 studies. The representative abundance of plastics that occurs in coastal wetland sediments and is ingested by marine animals reaches 156.7 and 98.3 items kg-1, respectively, 200 times higher than that (0.43 items kg-1) in the water column. Plastics are more abundant in mangrove forests and tidal marshes than in tidal flats and seagrass meadows. The variation in plastic abundance is related to climatic and geographic zones, seasons, and population density or plastic waste management. The abundance of plastics ingested by pelagic and demersal fish increases with fish length and dry weight. The dominant characteristics of plastics ingested by marine animals are correlated with those found in coastal wetland sediments. Microplastics exert negative effects on biota abundance and mangrove survival but positive effects on sediment nutrients, leaf drop, and carbon emission. We highlight that plastic pollution is widespread in coastal wetlands and actions are urged to include microplastics in ecosystem health and degradation assessment.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region, China
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Siu-Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong Special Administrative Region, China
| | - Nora Fung-Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong Special Administrative Region, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin 999077, Hong Kong Special Administrative Region, China
| | - Stefano Cannicci
- The Swire Institute of Marine Sciences and the Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong Special Administrative Region, China
- Department of Biology, University of Florence, Via Madonna Del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Cecilia Martin
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Hoi Shing Lo
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin 999077, Hong Kong Special Administrative Region, China
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Shing Yip Lee
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region, China
| |
Collapse
|
228
|
Arias AH, Alfonso MB, Girones L, Piccolo MC, Marcovecchio JE. Synthetic microfibers and tyre wear particles pollution in aquatic systems: Relevance and mitigation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118607. [PMID: 34883149 DOI: 10.1016/j.envpol.2021.118607] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/13/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Evidence shows that the majority of aquatic field microplastics (MPs) could be microfibers (MFs) which can be originated directly from massive sources such as textile production and shedding from garments, agricultural textiles and clothes washing. In addition, wear and tear of tyres (TRWPs) emerges as a stealthy major source of micro and nanoplastics, commonly under-sampled/detected in the field. In order to compile the current knowledge in regards to these two major MPs sources, concentrations of concern in aquatic environments, their distribution, bulk emission rates and water mitigation strategies were systematically reviewed. Most of the aquatic field studies presented MFs values above 50%. MPs concentrations varied from 0.3 to 8925 particles m-3 in lakes, from 0.69 to 8.7 × 106 particles m-3 in streams and rivers, from 0.16 to 192000 particles m-3 estuaries, and from 0 to 4600 particles m-3 in the ocean. Textiles at every stage of production, use and disposal are the major source of synthetic MFs to water. Laundry estimates showed an averaged release up to 279972 tons year-1 (high washing frequency) from which 123000 tons would annually flow through untreated effluents to rivers, streams, lakes or directly to the ocean. TRWPs in the aquatic environments showed concentrations up to 179 mg L-1 (SPM) in runoff river sediments and up to 480 mg g-1 in highway runoff sediments. Even though average TRWR emission is of 0.95 kg year-1 per capita (10 nm- 500 μm) there is a general scarcity of information about their aquatic environmental levels probably due to no-availability or inadequate methods of detection. The revision of strategies to mitigate the delivering of MFs and TRWP into water streams illustrated the importance of domestic laundry retention devices, Waste Water Treatment Plants (WWTP) with at least a secondary treatment and stormwater and road-runoff collectors quality improvement devices.
Collapse
Affiliation(s)
- Andrés H Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida, 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW, Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, B8000DIC, Bahía Blanca, Argentina.
| | - María B Alfonso
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida, 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW, Bahía Blanca, Argentina; Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga, 816-8580, Japan
| | - Lautaro Girones
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida, 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW, Bahía Blanca, Argentina
| | - María C Piccolo
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida, 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW, Bahía Blanca, Argentina; Departamento de Geografía y Turismo, Universidad Nacional del Sur, 12 de Octubre 1198, B8000CTX, Bahía Blanca, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida, 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW, Bahía Blanca, Argentina; Universidad Tecnológica Nacional-Facultad Regional Bahía Blanca (UTN-FRBB),11 de Abril 461, B8000LMI, Bahía Blanca, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón, 3145, B7600FNK, Mar del Plata, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, C1014 AAE, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
229
|
Xu L, Han L, Li J, Zhang H, Jones K, Xu EG. Missing relationship between meso- and microplastics in adjacent soils and sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127234. [PMID: 34583166 DOI: 10.1016/j.jhazmat.2021.127234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Meso- and microplastics (MMPs) have attracted attention as globally dispersed environmental pollutants. However, little is known about the transfers of MMPs between aquatic and terrestrial systems. A large watershed-estuarine area of Bohai Sea was used as a case study, and soils and sediments were sampled adjacent to each other at a wide range of sites. MMPs were detected in all sediments (6.7-320 MMPs/kg) and soils (40-980 MMPs/kg), with the average abundance in soils double that in sediments on a dry mass basis. MMPs < 1 mm were most abundant and the dominant shape was film in both sediments and soils. Over twenty polymer types were detected and their compositions in sediments and soils were different. MMP abundance in sediments was lower in the upper catchment than the lower catchment, while the abundance of soil MMPs was the opposite. Despite the proximity of the sampling locations, no clear relationship was identified between the soil and sediment MMPs, suggesting low transfer between the two compartments and high heterogeneity of the sources. The missing associations between aquatic and terrestrial MMPs should be systematically examined in future studies, which is crucial for understanding the environmental fate and impacts of MMPs.
Collapse
Affiliation(s)
- Li Xu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Lihua Han
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Kevin Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| |
Collapse
|
230
|
Lee J, Jeong S, Long C, Chandran K. Size dependent impacts of a model microplastic on nitrification induced by interaction with nitrifying bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127363. [PMID: 34634706 DOI: 10.1016/j.jhazmat.2021.127363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Two sizes of polystyrene (PS) were compared to investigate their impact on nitrification. The smaller PS (50 nm) had a higher impact than the larger PS (500 nm). Lower NO2- and NO3- accumulation was observed in the 50 nm PS treatment. There was no significant difference in DIN concentration between the control and 500 nm PS treatments. PS treatment did not have a significant influence on the specific ammonia oxidation rate, but the specific nitrite utilization rate was the lowest in the 50 nm PS treatment. The changes in transcript levels of amoA gene did not correspond well with the observed changes in DIN concentrations, suggesting that the effects of 50 nm PS treatment might be unrelated to biological phenomena, for which an actual uptake of PS is needed. The fluorescent images revealed that the smaller PS can easily access bacterial cells, which corroborated the results of inhibition of nitrification by the smaller PS. Notably, most of the PS particles did not penetrate bacterial cells, suggesting that the observed effects of 50 nm PS on nitrification might be due to disruption of the membrane potential of the cells.
Collapse
Affiliation(s)
- Jongkeun Lee
- Department of Earth and Environmental Engineering, Columbia University in the City of New York, 500 West 120th Street, New York, NY 10027, USA; Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seulki Jeong
- Department of Earth and Environmental Engineering, Columbia University in the City of New York, 500 West 120th Street, New York, NY 10027, USA; Seoul center, Korea Basic Science Institute, 6-7, Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855, South Korea.
| | - Chenghua Long
- Department of Earth and Environmental Engineering, Columbia University in the City of New York, 500 West 120th Street, New York, NY 10027, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University in the City of New York, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
231
|
Chernick M, Kennedy A, Thomas T, Scott KCK, Hendren CO, Wiesner MR, Hinton DE. Impacts of ingested MWCNT-Embedded nanocomposites in Japanese medaka ( Oryzias latipes). Nanotoxicology 2022; 15:1403-1422. [PMID: 35166633 DOI: 10.1080/17435390.2022.2028919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Polymer nanocomposites combine the versatile, lightweight characteristics of polymers with the properties of nanomaterials. Polyethylene terephthalate glycol (PETG) is commonly used in polymer additive manufacturing due to its controllable transparency, high modulus, and mechanical properties. Multi-walled carbon nanotubes (MWCNTs) add tensile strength, electrical conductivity, and thermal stability. The increased use of nanocomposites has led to concern over potential human health risks. We assessed morphologic alterations to determine impacts of ingested abraded nanocomposites compared to its component materials, pristine MWCNTs (1000 mg/L) and PETG. Adult transparent Japanese medaka (Oryzias latipes) were administered materials via oral gavage in 7 doses over 16 days. In vivo observations revealed altered livers and gallbladders following exposure to pristine MWCNTs and nanocomposites. Subsequent histologic sections showed fish exposed to pristine MWCNTs had highly altered biliary structures, and exposure to nanocomposites resulted in hepatocellular alteration. Thyroid follicle proliferation was also observed in fish exposed to materials containing MWCNTs. Transmission electron microscopy of livers showed that hepatocytes of fish exposed to MWCNTs had widespread swelling of rough endoplasmic reticulum, pronounced lysosomal activity, and swelling of intrahepatic biliary passageways. Fish exposed to nanocomposites had areas of degenerated hepatocytes with interspersed cellular debris. Each analysis showed that fish exposed to pristine PETG were most similar to controls. These results suggest that MWCNTs are the source of toxicity in abraded nanocomposite materials but that nanocomposites may also have some unique effects. The similarities of many teleost and mammalian tissues are such that these findings may indicate human health risks.
Collapse
Affiliation(s)
- Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Alan Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Treye Thomas
- United States Consumer Product Safety Commission, Bethesda, Maryland, USA
| | - Keana C K Scott
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Christine Ogilvie Hendren
- Civil and Environmental Engineering, Duke University, Durham, NC, USA.,Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | - Mark R Wiesner
- Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
232
|
Gündogdu S, Rathod N, Hassoun A, Jamroz E, Kulawik P, Gokbulut C, Aït-Kaddour A, Özogul F. The impact of nano/micro-plastics toxicity on seafood quality and human health: facts and gaps. Crit Rev Food Sci Nutr 2022; 63:6445-6463. [PMID: 35152807 DOI: 10.1080/10408398.2022.2033684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Contamination of the food and especially marine environment with nano/micro-plastic particles has raised serious concern in recent years. Environmental pollution and the resulting seafood contamination with microplastic (MP) pose a potential threat to consumers. The absorption rate of the MP by fish is generally considered low, although the bioavailability depends on the physical and chemical properties of the consumed MP. The available safety studies are inconclusive, although there is an indication that prolonged exposure to high levels of orally administered MP can be hazardous for consumers. This review details novel findings about the occurrence of MP, along with its physical and chemical properties, in the marine environment and seafood. The effect of processing on the content of MP in the final product is also reviewed. Additionally, recent findings regarding the impact of exposure of MP on human health are discussed. Finally, gaps in current knowledge are underlined, and the possibilities for future research are indicated in the review. There is an urgent need for further research on the absorption and bioavailability of consumed MP and in vivo studies on chronic exposure. Policymakers should also consider the implementation of novel legislation related to MP presence in food.
Collapse
Affiliation(s)
- Sedat Gündogdu
- Department of Basic Sciences, Cukurova University Faculty of Fisheries, Adana, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Dapoli, Maharashtra State, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Ewelina Jamroz
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Karakow, Poland
| | - Piotr Kulawik
- Department of Pharmacology and Toxicology, University of Adnan Menderes, Isikli Koyu, Aydin, Turkey
| | - Cengiz Gokbulut
- Faculty of Medicine, Department of Pharmacology, Balikesir University, Cagis Campus, Balikesir, Turkey
| | | | - Fatih Özogul
- Department of Seafood Processing Technology, Cukurova University Faculty of Fisheries, Adana, Turkey
| |
Collapse
|
233
|
Chen G, Li Y, Liu S, Junaid M, Wang J. Effects of micro(nano)plastics on higher plants and the rhizosphere environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150841. [PMID: 34627902 DOI: 10.1016/j.scitotenv.2021.150841] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastic/nanoplastic (MP/NP) pollution has emerged as one of the world's most serious environmental issues, with the potential for grave consequences for ecosystems and human health. This review summarizes the current literature on the impacts of MPs/NPs on higher plants to reveal their phytotoxicity. MPs/NPs can be absorbed into plant roots and then enter and translocate to other tissues by transpirational pull. The interaction between plastic particles and plants not only causes oxidative stress but also induces adverse impacts on photosynthesis, metabolism, genetic expression, and other growth parameters. Furthermore, the combination of MP/NP pollution with other contaminants makes the joint effect more complex. The phytotoxicity of MPs/NPs depends on the characteristics of the plastic particles (exposure dose, size, shape, type, age, and surface charge) and of the plants (species, tissues, and growth stage). The ecotoxicity of MPs/NPs in plant species' surrounding habitats is also discussed. MPs/NPs can alter soil characteristics such as soil structure, water holding capacity, and pH in the rhizosphere. In addition, the rhizosphere microbial community composition and diversity were observed to change in the presence of MPs/NPs. Therefore, MPs/NPs can indirectly affect plant growth by changing the soil properties and the microbial community. In addition, suggestions for future study directions were also given. In summary, this review highlights the potential effects of MPs/NPs on higher plants and the surrounding environment and calls for additional studies to be carried out on the impact of plastic particles on the ecosystem and human health.
Collapse
Affiliation(s)
- Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China
| | - Yizheng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China; Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
234
|
Fernández B, Campillo JA, Chaves-Pozo E, Bellas J, León VM, Albentosa M. Comparative role of microplastics and microalgae as vectors for chlorpyrifos bioacumulation and related physiological and immune effects in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150983. [PMID: 34678373 DOI: 10.1016/j.scitotenv.2021.150983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MP) are contaminants of concern per se, and also by their capacity to sorb dissolved chemicals from seawater, acting as vehicles for their transfer into marine organisms. Still, the role of MP as vehicles for contaminants and their associated toxicological effects have been poorly investigated. In this work we have compared the role of MP (high density polyethylene, HDPE, ≤22 μm) and of natural organic particles (microalgae, MA) as vehicle for chlorpyrifos (CPF), one of the most common pesticides found in river and coastal waters. We have compared the capacity of MP and MA to carry CPF. Then, the mussel Mytilus galloprovincialis has been exposed for 21 days to dissolved CPF, and to the same amount of CPF loaded onto MP and MA. The concentration of CPF in mussel' tissues and several physiological, energetics and immune parameters have been analyzed after 7 and 21 days of exposure. Results showed similar CPF accumulation in mussel exposed to MP and to MA spiked with CPF. This revealed that MP acted as vector for CPF in a similar way (or even to a lesser extent) than MA. After 21 days of exposure mussels exposed to MP spiked with CPF displayed similar or more pronounced biological effects than mussels exposed to dissolved CPF or to MA loaded with CPF. This suggested that the combined "particle" and "organic contaminant" effect produced an alteration on the biological responses greater than that produced by each stressor alone, although this was evident only after 3 weeks of exposure.
Collapse
Affiliation(s)
- Beatriz Fernández
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Juan A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Elena Chaves-Pozo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Carretera de la Azohía s/n, 30860, Puerto de Mazarrón, Murcia, Spain.
| | - Juan Bellas
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida Radio Faro, 50, 36200, Vigo, Spain.
| | - Víctor M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Marina Albentosa
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
235
|
Tran-Nguyen QA, Vu TBH, Nguyen QT, Nguyen HNY, Le TM, Vo VM, Trinh-Dang M. Urban drainage channels as microplastics pollution hotspots in developing areas: A case study in Da Nang, Vietnam. MARINE POLLUTION BULLETIN 2022; 175:113323. [PMID: 35093786 DOI: 10.1016/j.marpolbul.2022.113323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
This study provides information on the current situation of microplastics contamination in inland freshwater bodies in Vietnam. An urban drainage channel in Da Nang City was selected as a case study. Receiving mainly domestic wastewater and landfill leachate, the channel itself is becoming a microplastic pollution hotspot with a microplastic concentration of 1482.0 ± 1060.4 items m-3 in waters and 6120.0 ± 2145.7 items kg-1 in sediments. The dominant shapes of microplastics were fibers and fragments, in which the polymer types were mainly polyethylene, polypropylene, and polyethylene terephthalate. Microplastics with sizes ranging from 1000 to 5000 μm tended to be distributed primarily in surface waters, whereas particles from 300 to 1000 μm accumulated in sediments. The channel places Da Nang Bay at a high risk for microplastic pollution, with an estimated pollution load of approximately 623 × 106 items d-1 in dry weather.
Collapse
Affiliation(s)
- Quynh Anh Tran-Nguyen
- The University of Da Nang - University of Science and Education, 459 Ton Duc Thang St., Danang 550000, Viet Nam.
| | - Thi Bich Hau Vu
- Danang Department of Science and Technology, 53 Nguyen Thi Minh Khai St., Danang 550000, Viet Nam
| | - Quy Tuan Nguyen
- The University of Da Nang - University of Science and Education, 459 Ton Duc Thang St., Danang 550000, Viet Nam
| | - Hoai Nhu Y Nguyen
- The University of Da Nang - University of Science and Education, 459 Ton Duc Thang St., Danang 550000, Viet Nam
| | - Thi Mai Le
- The University of Da Nang - University of Science and Education, 459 Ton Duc Thang St., Danang 550000, Viet Nam
| | - Van Minh Vo
- The University of Da Nang - University of Science and Education, 459 Ton Duc Thang St., Danang 550000, Viet Nam
| | - Mau Trinh-Dang
- The University of Da Nang - University of Science and Education, 459 Ton Duc Thang St., Danang 550000, Viet Nam.
| |
Collapse
|
236
|
Xu G, Yang L, Xu L, Yang J. Soil microplastic pollution under different land uses in tropics, southwestern China. CHEMOSPHERE 2022; 289:133176. [PMID: 34883129 DOI: 10.1016/j.chemosphere.2021.133176] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial ecosystems encounter emerging risks of microplastic (MP) pollution. However, the distribution characteristics of soil MPs across different land uses in tropical areas have remain largely unknown. We sampled soils from two natural ecosystems (primary and secondary forests) and two artificial ecosystems (rubber and banana plantations) in tropical region of southwestern China. We aimed to evaluate the overall characteristics of soil MPs and analyze the distribution and source of MPs in different soil layers and land uses. We found that the dominant size of soil MPs were <1 mm and the major shapes were fragments and fibres, with colours blue, yellow, and green-blue. Most MPs were polyethylene (PE, 59.6%), rayon (RY, 12.0%), and polypropylene (PP, 10.9%). In artificial ecosystems, the abundance of MPs in the top soil (0-10 cm) was approximately 2.5 times that of in deep soil (10-20 cm), whereas it was only 50% in the natural ecosystems. The abundance of MPs in banana plantations reached as high as 10975.0 ± 261.0 particles kg-1 (p kg-1), which was about 10 times that of in rubber plantations (1112.5 ± 151.6 p kg-1) and 18 times of those in secondary and primary forests (612.5 ± 119.2 p kg-1 and 637.5 ± 181.6 p kg-1). Anthropogenic and atmospheric transport may be the major sources of soil MPs for artificial ecosystems to natural ecosystems, respectively. Our results revealed the widespread presence of soil MPs in tropical areas, from artificial ecosystems to natural ecosystems, in both the top and deep soil layers. MP pollution in artificial ecosystems is considerably serious than that in natural ecosystems. Our study provides important support for further research on ecosystem risks pertaining to MPs in the context of land use changes, and promotes the development of effective measures and policies to control MP pollution in tropical areas.
Collapse
Affiliation(s)
- Guorui Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100095, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, China.
| |
Collapse
|
237
|
Villegas L, Cabrera M, Moulatlet GM, Capparelli M. The synergistic effect of microplastic and malathion exposure on fiddler crab Minuca ecuadoriensis microplastic bioaccumulation and survival. MARINE POLLUTION BULLETIN 2022; 175:113336. [PMID: 35066410 DOI: 10.1016/j.marpolbul.2022.113336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We assessed the combined effects of polyethylene microplastic (MP) and malathion (MLT) on the survival of the fiddler crab Minuca ecuadoriensis, and MP tissue bioaccumulation in four treatments following 120 h exposure: T1) Control; T2) MLT 50 mg L-1; T3) MP 200 mg L-1; and T4) MLT (50 mg L-1) + MP (200 mg L-1). The highest mortality (80%) was in T4, followed by T2 (28%) and no mortality was in T3. Higher MP bioaccumulation was observed in T4 (572 items g tissue-1) followed by T3 (70 items g tissue-1). Our findings indicate that the synergistic effect of MLT and MP increased M. ecuadoriensis bioaccumulative capacity and decreases survival. Thus, as MP contamination in aquatic environments is ubiquitous, our study raises a warning on the synergistic effects of MP with other environmental contaminants and serves as a baseline for further studies.
Collapse
Affiliation(s)
- Lipsi Villegas
- Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Marcela Cabrera
- Laboratorio Nacional de Referencia del Agua, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Gabriel M Moulatlet
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador; Instituto de Ecología A.C, Xalapa, Mexico
| | - Mariana Capparelli
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador; Instituto de Ciencias del Mar y Limnología-Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen 24157, Mexico.
| |
Collapse
|
238
|
Pekmezekmek AB, Emre M, Erdogan S, Yilmaz B, Tunc E, Sertdemir Y, Emre Y. Effects of high-molecular-weight polyvinyl chloride on Xenopus laevis adults and embryos: the mRNA expression profiles of Myf5, Esr1, Bmp4, Pax6, and Hsp70 genes during early embryonic development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14767-14779. [PMID: 34617235 DOI: 10.1007/s11356-021-16527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and associated adverse effects have been on the global agenda in recent years. Because of its importance as a model organism for studies on developmental biology, Xenopus laevis has been chosen as the study animal in in vitro teratogenesis studies. FETAX test uses early-stage embryos of X. laevis to measure the potential of substances to cause mortality, malformation, and growth inhibition in developing embryos. The aim of this study was to examine the effects of high molecular weight polyvinyl chloride (HMW-PVC) on parental X. laevis frogs and their embryos using the FETAX test. To this purpose, a HMW-PVC dose of 1% of body weight/twice each week was provided to frogs by oral gavage throughout 6 weeks. After the procedure, oocytes and sperms of HMW-PVC-exposed frogs were fertilized and FETAX was applied to selected embryos. After the completion of a 96-h incubation period, tadpoles were examined, their live/dead status were determined, their lengths were measured, and their anomalies were photographed. Besides, excised organs of the parental frogs were referred to histopathology examination. On the other hand, the mRNA expression levels of Hsp70, Myf5, Bmp4, Pax6, and Esr1 genes were determined by applying real-time quantitative PCR method to cDNA which was synthesized from the total RNA of embryos. The results showed that treatment with HMW-PVC dose of 1% of body weight/twice each week caused malformations and decreased viability. Hsp70 and Pax6 gene expression levels significantly decreased in all assay groups, as compared with controls. Lung and intestine tissues showed normal appearance in histopatological examination. Further research is required to explain the whole effects of HMW-PVC exposure on X. laevis embryos.
Collapse
Affiliation(s)
- Ayper Boga Pekmezekmek
- Department of Physiology, School of Medicine, Çukurova University, 01330 Balcalı, Adana, Turkey.
| | - Mustafa Emre
- Department of Biophysics, School of Medicine, Çukurova University, Adana, Turkey
| | - Seyda Erdogan
- Department of Pathology, School of Medicine, Çukurova University, Adana, Turkey
| | - Bertan Yilmaz
- Department of Medical Biology, School of Medicine, Çukurova University, Adana, Turkey
| | - Erdal Tunc
- Department of Medical Biology, School of Medicine, Çukurova University, Adana, Turkey
| | - Yasar Sertdemir
- Department of Bioistatictics, School of Medicine, Çukurova University, Adana, Turkey
| | - Yılmaz Emre
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
| |
Collapse
|
239
|
Lajmanovich RC, Attademo AM, Lener G, Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Demonte LD, Repetti MR. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150177. [PMID: 34520929 DOI: 10.1016/j.scitotenv.2021.150177] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The effects of glyphosate (GLY)-based and glufosinate ammonium (GA)-based herbicides (GBH and GABH, respectively) and polyethylene microplastic particles (PEMPs) on Scinax squalirostris tadpoles were assessed. Tadpoles were exposed to nominal concentrations of both herbicides (from 1.56 to 100 mg L-1) and PEMPs (60 mg L-1), either alone or in combination, and toxicity evaluated at 48 h. Acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione-S-transferase (GST) activities were analyzed at the three lowest concentrations (1.56, 3.12 and 6.25 mg L-1, survival rates >85%) of both herbicides alone and with PEMPs. Additionally, the thermochemistry of the interactions between the herbicides and polyethylene (PE) was analyzed by Density Functional Theory (DFT). The median-lethal concentration (LC50) was 43.53 mg L-1 for GBH, 38.56 mg L-1 for GBH + PEMPs, 7.69 for GABH, and 6.25 mg L-1 for GABH+PEMPs. The PEMP treatment increased GST but decreased CbE activity, whereas GBH and GABH treatments increased GST but decreased AChE activity. In general, the mixture of herbicides with PEMPs increased the effect observed in the individual treatments: the highest concentration of GBH + PEMPs increased GST activity, whereas GABH+PEMP treatments decreased both AChE and CbE activities. DFT analysis revealed spontaneous interactions between the herbicides and PE, leading to the formation of bonds at the herbicide-PE interface, significantly stronger for GA than for GLY. The experimental and theoretical findings of our study indicate that these interactions may lead to an increase in toxicity when pollutants are together, meaning potential environmental risk of these combinations, especially in the case of GA.
Collapse
Affiliation(s)
- Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán Lener
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba-CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Luisina D Demonte
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
240
|
Hamed M, Monteiro CE, Sayed AEDH. Investigation of the impact caused by different sizes of polyethylene plastics (nano, micro, and macro) in common carp juveniles, Cyprinus carpio L., using multi-biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149921. [PMID: 34482135 DOI: 10.1016/j.scitotenv.2021.149921] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Plastic pollution poses a global threat to aquatic organisms, yet its effect on many species remains poorly documented and understood. This study addresses the impact caused by different sizes of polyethylene (PE) plastics on the common carp and evaluates their multi-biomarkers response. We investigated the histological structure and measurement of biochemical alterations, antioxidant enzymes, immunological responses, and fluctuations in blood profiles of the organisms after 15 days of exposure to a concentration of 100 mg/L of nano- (NPs), micro- (MPs) and macroplastics (MaPs). The fish health status was altered in the sole presence of PE particles. All biomarkers changed after exposure compared to the control group, with larger changes being observed with the decreasing size of particles (NPs > MPs > MaPs) compared to their absence. A synergistic effect resulting from the individual impact of plastics penetration in the circulatory system, bursting biochemical responses, and lesions in tissues, might explain the more considerable impact of NPs compared to MPs and/or MaPs.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt
| | - Carlos E Monteiro
- Environmental Biogeochemistry, Centro de Química Estrutural, IST-UL, Lisboa, Portugal
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
241
|
Amobonye A, Bhagwat P, Raveendran S, Singh S, Pillai S. Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Front Microbiol 2022; 12:768297. [PMID: 34975796 PMCID: PMC8714882 DOI: 10.3389/fmicb.2021.768297] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/12/2023] Open
Abstract
The increasing distribution of miniaturized plastic particles, viz. microplastics (100 nm–5 mm) and nanoplastics (less than 100 nm), across the various ecosystems is currently a subject of major environmental concern. Exacerbating these concerns is the fact that microplastics and nanoplastics (MNPs) display different properties from their corresponding bulk materials; thus, not much is understood about their full biological and ecological implications. Currently, there is evidence to prove that these miniaturized plastic particles release toxic plastic additives and can adsorb various chemicals, thereby serving as sinks for various poisonous compounds, enhancing their bioavailability, toxicity, and transportation. Furthermore, there is a potential danger for the trophic transfer of MNPs to humans and other higher animals, after being ingested by lower organisms. Thus, this paper critically analyzes our current knowledge with regard to the environmental impacts of MNPs. In this regard, the properties, sources, and damaging effects of MNPs on different habitats, particularly on the biotic components, were elucidated. Similarly, the consequent detrimental effects of these particles on humans as well as the current and future efforts at mitigating these detrimental effects were discussed. Finally, the self-cleaning efforts of the planet via a range of saprophytic organisms on these synthetic particles were also highlighted.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Sindhu Raveendran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
242
|
Prarat P, Hongsawat P. Microplastic pollution in surface seawater and beach sand from the shore of Rayong province, Thailand: Distribution, characterization, and ecological risk assessment. MARINE POLLUTION BULLETIN 2022; 174:113200. [PMID: 34902767 DOI: 10.1016/j.marpolbul.2021.113200] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The distribution, characteristics, and ecological risk of microplastics in beach sand and seawater samples collected along the shore of Rayong province, Thailand, were investigated in this study. The average microplastics abundance in beach sand and seawater was 338.89 ± 264.94 particles/kg d.w. and 1781.48 ± 1598.36 particles/m3, respectively. Beach sand and seawater had the most yellow-brown particles and transparent microfibers, respectively. The most common microplastics (100-500 μm) and polyethylene were found. In beach sand, the potential ecological risk (RI) is classified as minor, while in seawater, it is classified as medium. The PLIzone in beach sand and seawater was Hazard Level II and Hazard Level IV, respectively. Despite their apparent proximity, the non-correlation between risk levels in beach sand and seawater may be due to polymer type variations influenced by the different land-based and sea-based sources.
Collapse
Affiliation(s)
- Panida Prarat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Rayong, Thailand.
| | - Parnuch Hongsawat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Rayong, Thailand
| |
Collapse
|
243
|
Koyilath Nandakumar V, Palani SG, Raja Raja Varma M. Interactions between microplastics and unit processes of wastewater treatment plants: a critical review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:496-514. [PMID: 35050898 DOI: 10.2166/wst.2021.502] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics are classified as emerging pollutants of the aquatic environment, necessitating a comprehensive understanding of their properties for successful management and treatment. Wastewater treatment plants (WWTPs) serve as point sources of microplastic pollution of the aquatic and terrestrial (eco)systems. The first part of this review explores the basic definitions of microplastics, sources, types, physical and chemical methods of identifying and characterizing microplastics in WWTPs. The next part of the review details the occurrence of microplastics in various unit processes of WWTPs and sewage sludge. Followed by this, various methods for removing microplastics from wastewater are presented. Finally, the research gaps in this area were identified, and suggestions for future perspectives were provided.
Collapse
Affiliation(s)
- Vaishnavi Koyilath Nandakumar
- Department of Civil Engineering, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sankar Ganesh Palani
- Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India E-mail:
| | - Murari Raja Raja Varma
- Department of Civil Engineering, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
| |
Collapse
|
244
|
Pragliola S, Grisi F, Vitale V, Sacco O, Venditto V, Izzo L, Grimaldi A, Baranzini N. New fluorescence labeling isotactic polypropylenes as a tracer: a proof of concept. Polym Chem 2022. [DOI: 10.1039/d2py00302c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propylene-co-N-pentenyl-carbazole copolymers P(P-co-PK)s containing a low amount of isolated PK units were prepared by using the isospecific homogeneous Ziegler-Natta (Z-N) catalytic system rac-dimethylsilylbis(1-indenyl)zirconium dichloride / methylaluminoxane (MAO) with the aim...
Collapse
|
245
|
Liu L, Wu Q, Miao X, Fan T, Meng Z, Chen X, Zhu W. Study on toxicity effects of environmental pollutants based on metabolomics: A review. CHEMOSPHERE 2022; 286:131815. [PMID: 34375834 DOI: 10.1016/j.chemosphere.2021.131815] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In the past few decades, the toxic effects of environmental pollutants on non-target organisms have received more and more attention. As a new omics technology, metabolomics can clarify the metabolic homeostasis of the organism at the overall level by studying the changes in the relative contents of endogenous metabolites in the organism. Recently, a large number of studies have used metabolomics technology to study the toxic effects of environmental pollutants on organisms. In this review, we reviewed the analysis processes and data processes of metabolomics and its application in the study of the toxic effects of environmental pollutants including heavy metals, pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and microplastics. In addition, we emphasized that the combination of metabolomics and other omics technologies will help to explore the toxic mechanism of environmental pollutants and provide new research ideas for the toxicological evaluation of environmental pollutants.
Collapse
Affiliation(s)
- Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qinchao Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinyi Miao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tianle Fan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
246
|
Rummel CD, Schäfer H, Jahnke A, Arp HPH, Schmitt-Jansen M. Effects of leachates from UV-weathered microplastic on the microalgae Scenedesmus vacuolatus. Anal Bioanal Chem 2021; 414:1469-1479. [PMID: 34936008 PMCID: PMC8761717 DOI: 10.1007/s00216-021-03798-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
Plastics undergo successive fragmentation and chemical leaching steps in the environment due to weathering processes such as photo-oxidation. Here, we report the effects of leachates from UV-irradiated microplastics towards the chlorophyte Scenedesmus vacuolatus. The microplastics tested were derived from an additive-containing electronic waste (EW) and a computer keyboard (KB) as well as commercial virgin polymers with low additive content, including polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Whereas leachates from additive-containing EW and KB induced severe effects, the leachates from virgin PET, PP, and PS did not show substantial adverse effects in our autotrophic test system. Leachates from PE reduced algae biomass, cell growth, and photosynthetic activity. Experimental data were consistent with predicted effect concentrations based on the ionization-corrected liposome/water distribution ratios (Dlip/w) of polymer degradation products of PE (mono- and dicarboxylic acids), indicating that leachates from weathering PE were mainly baseline toxic. This study provides insight into algae toxicity elicited by leachates from UV-weathered microplastics of different origin, complementing the current particle- vs. chemical-focused research towards the toxicity of plastics and their leachates.
Collapse
Affiliation(s)
- Christoph D Rummel
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hannah Schäfer
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Annika Jahnke
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806, Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
247
|
Kniazev K, Pavlovetc IM, Zhang S, Kim J, Stevenson RL, Doudrick K, Kuno M. Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in Complex Environmental Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15891-15899. [PMID: 34747612 DOI: 10.1021/acs.est.1c05181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key challenge for addressing micro- and nanoplastics (MNPs) in the environment is being able to characterize their chemical properties, morphologies, and quantities in complex matrices. Current techniques, such as Fourier transform infrared spectroscopy, provide these broad characterizations but are unsuitable for studying MNPs in spectrally congested or complex chemical environments. Here, we introduce a new, super-resolution infrared absorption technique to characterize MNPs, called infrared photothermal heterodyne imaging (IR-PHI). IR-PHI has a spatial resolution of ∼300 nm and can determine the chemical identity, morphology, and quantity of MNPs in a single analysis with high sensitivity. Specimens are supported on CaF2 coverslips under ambient conditions from where we (1) quantify MNPs from nylon tea bags after steeping in ultrapure water at 25 and 95 °C, (2) identify MNP chemical or morphological changes after steeping at 95 °C, and (3) chemically identify MNPs in sieved road dust. In all cases, no special sample preparation was required. MNPs released from nylon tea bags at 25 °C were fiber-like and had characteristic IR frequencies corresponding to thermally extruded nylon. At 95 °C, degradation of the nylon chemical structure was observed via the disappearance of amide group IR frequencies, indicating chain scission of the nylon backbone. This degradation was also observed through morphological changes, where MNPs altered shape from fiber-like to quasi-spherical. In road dust, IR-PHI analysis reveals the presence of numerous aggregate and single-particle (<3 μm) MNPs composed of rubber and nylon.
Collapse
Affiliation(s)
- Kirill Kniazev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ilia M Pavlovetc
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shuang Zhang
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Junyeol Kim
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Robert L Stevenson
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
248
|
Adib D, Mafigholami R, Tabeshkia H. Identification of microplastics in conventional drinking water treatment plants in Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1817-1826. [PMID: 34900309 PMCID: PMC8617154 DOI: 10.1007/s40201-021-00737-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/04/2021] [Indexed: 05/06/2023]
Abstract
The presence of microplastics (MPs), as an emerging pollutant is a growing concern in drinking water, yet most of the studies have been carried out in surface waters and wastewater treatment plants and there are few studies on MPs in drinking water treatment plants (DWTPs). This study investigates these particles in three different conventional DWTPs in the city of Tehran, Iran, and aims to analyze these particles down to the size of 1 µm. A scanning electron microscope was utilized in this study to quantitatively analyze MPs. Accordingly, the average abundance of MPs in raw and treated water samples varied from 1996 ± 268 to 2808 ± 80 MPs L-1 and 971 ± 103 to 1401 ± 86 MPs L-1, respectively. While particles smaller than 10 µm comprised 65-87% of MPs. Moreover, µ-Raman spectroscopy was used to characterize MPs. As the results, polypropylene, polyethylene terephthalate, and polyethylene were the most abundant identified polymers among MPs, comprising more than 53% of particles. Additionally, MPs were categorized as fibers, fragments, and spheres. This study fills the knowledge gap of MPs presence in Tehran conventional DWTPs which is of high importance since they supply drinking water for more than 8 million people and investigates the performance of conventional DWTPs in removing MPs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00737-3.
Collapse
Affiliation(s)
- Danial Adib
- West Tehran Branch, Department of Environmental Science and Engineering, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- West Tehran Branch, Department of Environmental Science and Engineering, Islamic Azad University, Tehran, Iran
| | - Hossein Tabeshkia
- West Tehran Branch, Department of Environmental Science and Engineering, Islamic Azad University, Tehran, Iran
| |
Collapse
|
249
|
Ya H, Jiang B, Xing Y, Zhang T, Lv M, Wang X. Recent advances on ecological effects of microplastics on soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149338. [PMID: 34375233 DOI: 10.1016/j.scitotenv.2021.149338] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
The mass production and wide application of plastics and their derivatives have led to the release of a large number of discarded plastic products into the natural environment, where they continue to accumulate due to their low recycling rate and long durability. These large pieces of plastic will gradually break into microplastics (<5 mm), which are highly persistent organic pollutants and attract worldwide attention due to their small particle size and potential threats to the ecosystem. Compared with the aquatic system, terrestrial systems such as soils, as sinks for microplastics, are more susceptible to plastic pollution. In this article, we comprehensively summarized the occurrence and sources of microplastics in terrestrial soil, and reviewed the eco-toxicological effects of microplastics in soil ecosystems, in terms of physical and chemical properties of soil, soil nutrient cycling, soil flora and fauna. The influence of microplastics on soil microbial community, and particularly the microbial community on the surface of microplastics, were examined in detail. The compound effects of microplastics and other pollutants, e.g., heavy metals and antibiotics, were addressed. Future challenges of research on microplastics include development of new techniques and standardization for the extraction and qualitative and quantitative analysis of microplastics in soils, toxic effects of microplastics at microbial or even molecular levels, the contribution of microplastics to antibiotic resistance genes migration, and unraveling microorganisms for the degradation of microplastics. This work provides as a better understanding of the occurrence, distribution and potential ecological risks of microplastics in terrestrial soil ecosystems.
Collapse
Affiliation(s)
- Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
250
|
Lehtiniemi M, Hartikainen S, Turja R, Lehtonen KK, Vepsäläinen J, Peräniemi S, Leskinen J, Setälä O. Exposure to leachates from post-consumer plastic and recycled rubber causes stress responses and mortality in a copepod Limnocalanus macrurus. MARINE POLLUTION BULLETIN 2021; 173:113103. [PMID: 34741928 DOI: 10.1016/j.marpolbul.2021.113103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Effects of household post-consumer plastics and tyre rubber on a Baltic Sea copepod Limnocalanus macrurus were assessed. Fragments of commercial recycled low-density polyethylene vegetable bags and rubber originating from recycled car tyres were incubated in seawater, and the copepods were exposed to the filtrate of the water. L. macrurus experienced erratic swimming behaviour and increased mortality in the filtrate of unwashed vegetable bags, containing elevated concentrations of alcohols, organic acids and copper. Responses of the antioxidant defence system (ADS) were recorded in copepods exposed to rubber treatments containing high concentrations of zinc. Significant responses in the ADS enzymes indicate that reactive oxygen species (ROS) formation was exceeding the detoxification capacity of the ADS which may further lead to prolonged state of oxidative stress. Observed effects of exposure on the biochemical level coincide with impaired swimming activity of the copepods, indicating possible irreversible cellular responses leading to behavioural changes and mortality.
Collapse
Affiliation(s)
- Maiju Lehtiniemi
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Samuel Hartikainen
- SIB Labs, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Raisa Turja
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Kari K Lehtonen
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sirpa Peräniemi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jari Leskinen
- SIB Labs, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Outi Setälä
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| |
Collapse
|