201
|
Yeh SW, Liu JW, Yu SH, Shih CH, Hwang JK, Echave J. Site-specific structural constraints on protein sequence evolutionary divergence: local packing density versus solvent exposure. Mol Biol Evol 2013; 31:135-9. [PMID: 24109601 DOI: 10.1093/molbev/mst178] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein sequences evolve under selection pressures imposed by functional and biophysical requirements, resulting in site-dependent rates of amino acid substitution. Relative solvent accessibility (RSA) and local packing density (LPD) have emerged as the best candidates to quantify structural constraint. Recent research assumes that RSA is the main determinant of sequence divergence. However, it is not yet clear which is the best predictor of substitution rates. To address this issue, we compared RSA and LPD with site-specific rates of evolution for a diverse data set of enzymes. In contrast with recent studies, we found that LPD measures correlate better than RSA with evolutionary rate. Moreover, the independent contribution of RSA is minor. Taking into account that LPD is related to backbone flexibility, we put forward the possibility that the rate of evolution of a site is determined by the ease with which the backbone deforms to accommodate mutations.
Collapse
Affiliation(s)
- So-Wei Yeh
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
202
|
Janda JO, Meier A, Merkl R. CLIPS-4D: a classifier that distinguishes structurally and functionally important residue-positions based on sequence and 3D data. ACTA ACUST UNITED AC 2013; 29:3029-35. [PMID: 24048358 DOI: 10.1093/bioinformatics/btt519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The precise identification of functionally and structurally important residues of a protein is still an open problem, and state-of-the-art classifiers predict only one or at most two different categories. RESULT We have implemented the classifier CLIPS-4D, which predicts in a mutually exclusively manner a role in catalysis, ligand-binding or protein stability for each residue-position of a protein. Each prediction is assigned a P-value, which enables the statistical assessment and the selection of predictions with similar quality. CLIPS-4D requires as input a multiple sequence alignment and a 3D structure of one protein in PDB format. A comparison with existing methods confirmed state-of-the-art prediction quality, even though CLIPS-4D classifies more specifically than other methods. CLIPS-4D was implemented as a multiclass support vector machine, which exploits seven sequence-based and two structure-based features, each of which was shown to contribute to classification quality. The classification of ligand-binding sites profited most from the 3D features, which were the assessment of the solvent accessible surface area and the identification of surface pockets. In contrast, five additionally tested 3D features did not increase the classification performance achieved with evolutionary signals deduced from the multiple sequence alignment.
Collapse
Affiliation(s)
- Jan-Oliver Janda
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany and Faculty of Mathematics and Computer Science, University of Hagen, D-58084 Hagen, Germany
| | | | | |
Collapse
|
203
|
Buchko GW, Lin G, Tarasevich BJ, Shaw WJ. A solution NMR investigation into the impaired self-assembly properties of two murine amelogenins containing the point mutations T21→I or P41→T. Arch Biochem Biophys 2013; 537:217-24. [PMID: 23896516 PMCID: PMC3788651 DOI: 10.1016/j.abb.2013.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Amelogenesis imperfecta describes a group of inherited disorders that results in defective tooth enamel. Two disorders associated with human amelogenesis imperfecta are the point mutations T21→I or P40→T in amelogenin, the dominant protein present during the early stages of enamel biomineralization. The biophysical properties of wildtype murine amelogenin (M180) and two proteins containing the equivalent mutations in murine amelogenin, T21→I (M180-I) and P41→T (M180-T), were probed by NMR spectroscopy. At low protein concentration (0.1mM), M180, M180-I, and M180-T are predominately monomeric at pH 3.0 in 2% acetic acid and neither mutation produces a major structural change. Chemical shift perturbation studies as a function of protein (0.1-1.8mM) or NaCl (0-400mM) concentrations show that the mutations affect the self-association properties by causing self-assembly at lower protein or salt concentrations, relative to wildtype amelogenin, with the largest effect observed for M180-I. Under both conditions, the premature self-assembly is initiated near the N-terminus, providing further evidence for the importance of this region in the self-assembly process. The self-association of M180-I and M180-T at lower protein concentrations and lower ionic strengths than wildtype M180 may account for the clinical phenotypes of these mutations, defective enamel formation.
Collapse
Affiliation(s)
- Garry W. Buchko
- Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Genyao Lin
- Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Barbara J. Tarasevich
- Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wendy J. Shaw
- Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
204
|
Zafred D, Nandy A, Pump L, Kahlert H, Keller W. Crystal structure and immunologic characterization of the major grass pollen allergen Phl p 4. J Allergy Clin Immunol 2013; 132:696-703.e10. [DOI: 10.1016/j.jaci.2013.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 03/09/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
|
205
|
Marsh JA. Buried and accessible surface area control intrinsic protein flexibility. J Mol Biol 2013; 425:3250-63. [PMID: 23811058 DOI: 10.1016/j.jmb.2013.06.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 11/16/2022]
Abstract
Proteins experience a wide variety of conformational dynamics that can be crucial for facilitating their diverse functions. How is the intrinsic flexibility required for these motions encoded in their three-dimensional structures? Here, the overall flexibility of a protein is demonstrated to be tightly coupled to the total amount of surface area buried within its fold. A simple proxy for this, the relative solvent-accessible surface area (Arel), therefore shows excellent agreement with independent measures of global protein flexibility derived from various experimental and computational methods. Application of Arel on a large scale demonstrates its utility by revealing unique sequence and structural properties associated with intrinsic flexibility. In particular, flexibility as measured by Arel shows little correspondence with intrinsic disorder, but instead tends to be associated with multiple domains and increased α-helical structure. Furthermore, the apparent flexibility of monomeric proteins is found to be useful for identifying quaternary-structure errors in published crystal structures. There is also a strong tendency for the crystal structures of more flexible proteins to be solved to lower resolutions. Finally, local solvent accessibility is shown to be a primary determinant of local residue flexibility. Overall, this work provides both fundamental mechanistic insight into the origin of protein flexibility and a simple, practical method for predicting flexibility from protein structures.
Collapse
Affiliation(s)
- Joseph A Marsh
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| |
Collapse
|
206
|
La D, Kong M, Hoffman W, Choi YI, Kihara D. Predicting permanent and transient protein-protein interfaces. Proteins 2013; 81:805-18. [PMID: 23239312 PMCID: PMC4084939 DOI: 10.1002/prot.24235] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs.
Collapse
Affiliation(s)
- David La
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Misun Kong
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - William Hoffman
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Youn Im Choi
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Computer Science, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
207
|
Mezzenga R, Fischer P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:046601. [PMID: 23455715 DOI: 10.1088/0034-4885/76/4/046601] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aggregation of proteins is of fundamental relevance in a number of daily phenomena, as important and diverse as blood coagulation, medical diseases, or cooking an egg in the kitchen. Colloidal food systems, in particular, are examples that have great significance for protein aggregation, not only for their importance and implications, which touches on everyday life, but also because they allow the limits of the colloidal science analogy to be tested in a much broader window of conditions, such as pH, ionic strength, concentration and temperature. Thus, studying the aggregation and self-assembly of proteins in foods challenges our understanding of these complex systems from both the molecular and statistical physics perspectives. Last but not least, food offers a unique playground to study the aggregation of proteins in three, two and one dimensions, that is to say, in the bulk, at air/water and oil/water interfaces and in protein fibrillation phenomena. In this review we will tackle this very ambitious task in order to discuss the current understanding of protein aggregation in the framework of foods, which is possibly one of the broadest contexts, yet is of tremendous daily relevance.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- ETH Zurich, Food and Soft Materials Science, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland.
| | | |
Collapse
|
208
|
Non-canonical H-bonds in β-lactamases: importance of C–H···π interactions. J Biol Inorg Chem 2013; 18:539-45. [DOI: 10.1007/s00775-013-0998-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/17/2013] [Indexed: 10/27/2022]
|
209
|
Vandermarliere E, Martens L. Protein structure as a means to triage proposed PTM sites. Proteomics 2013; 13:1028-35. [PMID: 23172737 DOI: 10.1002/pmic.201200232] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 09/05/2012] [Indexed: 11/07/2022]
Abstract
PTMs such as phosphorylation are often important actors in protein regulation and recognition. These functions require both visibility and accessibility to other proteins; that the modification is located at the surface of the protein. Currently, many repositories provide information on PTMs but structural information is often lacking. This study, which focuses on phosphorylation sites available in UniProtKB/Swiss-Prot, illustrates that most phosphorylation sites are indeed found at the surface of the protein, but that some sites are found buried in the core of the protein. Several of these identified buried phosphorylation sites can easily become accessible upon small conformational changes while others would require the whole protein to unfold and are hence most unlikely modification sites. Subsequent analysis of phosphorylation sites available in PRIDE demonstrates that taking the structure of the protein into account would be a good guide in the identification of the actual phosphorylated positions in phophoproteomics experiments. This analysis illustrates that care must be taken when simply accepting the position of a PTM without first analyzing its position within the protein structure if the latter is available.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | |
Collapse
|
210
|
Mhlanga P, Wan Hassan WA, Hamerton I, Howlin BJ. Using combined computational techniques to predict the glass transition temperatures of aromatic polybenzoxazines. PLoS One 2013; 8:e53367. [PMID: 23326419 PMCID: PMC3542367 DOI: 10.1371/journal.pone.0053367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
The Molecular Operating Environment software (MOE) is used to construct a series of benzoxazine monomers for which a variety of parameters relating to the structures (e.g. water accessible surface area, negative van der Waals surface area, hydrophobic volume and the sum of atomic polarizabilities, etc.) are obtained and quantitative structure property relationships (QSPR) models are formulated. Three QSPR models (formulated using up to 5 descriptors) are first used to make predictions for the initiator data set (n = 9) and compared to published thermal data; in all of the QSPR models there is a high level of agreement between the actual data and the predicted data (within 0.63–1.86 K of the entire dataset). The water accessible surface area is found to be the most important descriptor in the prediction of Tg. Molecular modelling simulations of the benzoxazine polymer (minus initiator) carried out at the same time using the Materials Studio software suite provide an independent prediction of Tg. Predicted Tg values from molecular modelling fall in the middle of the range of the experimentally determined Tg values, indicating that the structure of the network is influenced by the nature of the initiator used. Hence both techniques can provide predictions of glass transition temperatures and provide complementary data for polymer design.
Collapse
Affiliation(s)
- Phumzile Mhlanga
- Department of Chemistry, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Ian Hamerton
- Department of Chemistry, University of Surrey, Guildford, Surrey, United Kingdom
| | - Brendan J. Howlin
- Department of Chemistry, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
211
|
Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices. J Neurosci 2013; 32:14664-9. [PMID: 23077052 DOI: 10.1523/jneurosci.1303-12.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pulsatile gonadotropin-releasing hormone (GnRH) release is critical for the central regulation of fertility. There is no method allowing real-time GnRH detection in brain slices. We developed fast-scan cyclic voltammetry (FSCV) using carbon-fiber microelectrodes (CFME) to detect GnRH release and validated it using a biologically relevant system. FSCV parameters (holding potential, switching potential, and scan rate) were determined for stable GnRH detection in vitro, then optimized for GnRH detection in mouse brain slices. Placement of CFMEs in the median eminence (ME) near GnRH terminals allowed detection of both KCl-evoked and spontaneous GnRH release. GnRH release was also detected from GnRH fibers passing near GnRH soma and near fiber-fiber appositions in the preoptic area. No GnRH signal was detected from CFMEs in the ME of hpg mice, which lack GnRH, or in regions not containing GnRH neurons in wild-type mice; application of exogenous GnRH produced a signal similar to that observed for spontaneous/evoked endogenous GnRH release. Using an established mouse model that produces diurnal variations in GnRH neuron activity, we demonstrated corresponding changes in spontaneous GnRH release in the median eminence. These results validate FSCV to detect GnRH in brain slices and provide new information on the sites and amounts of GnRH release, providing insight into its neuromodulatory functions.
Collapse
|
212
|
Using QSPR techniques to predict char yield arising from the thermal degradation of polybenzoxazines. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2012.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
213
|
Mosca R, Céol A, Aloy P. Interactome3D: adding structural details to protein networks. Nat Methods 2013; 10:47-53. [PMID: 23399932 DOI: 10.1038/nmeth.2289] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/30/2012] [Indexed: 01/13/2023]
|
214
|
Xu B, Wei X, Deng L, Guan J, Zhou S. A semi-supervised boosting SVM for predicting hot spots at protein-protein interfaces. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 2:S6. [PMID: 23282146 PMCID: PMC3521187 DOI: 10.1186/1752-0509-6-s2-s6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hot spots are residues contributing the most of binding free energy yet accounting for a small portion of a protein interface. Experimental approaches to identify hot spots such as alanine scanning mutagenesis are expensive and time-consuming, while computational methods are emerging as effective alternatives to experimental approaches. RESULTS In this study, we propose a semi-supervised boosting SVM, which is called sbSVM, to computationally predict hot spots at protein-protein interfaces by combining protein sequence and structure features. Here, feature selection is performed using random forests to avoid over-fitting. Due to the deficiency of positive samples, our approach samples useful unlabeled data iteratively to boost the performance of hot spots prediction. The performance evaluation of our method is carried out on a dataset generated from the ASEdb database for cross-validation and a dataset from the BID database for independent test. Furthermore, a balanced dataset with similar amounts of hot spots and non-hot spots (65 and 66 respectively) derived from the first training dataset is used to further validate our method. All results show that our method yields good sensitivity, accuracy and F1 score comparing with the existing methods. CONCLUSION Our method boosts prediction performance of hot spots by using unlabeled data to overcome the deficiency of available training data. Experimental results show that our approach is more effective than the traditional supervised algorithms and major existing hot spot prediction methods.
Collapse
Affiliation(s)
- Bin Xu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | | | | | | | | |
Collapse
|
215
|
Nakaniwa T, Fukada H, Inoue T, Gouda M, Nakai R, Kirii Y, Adachi M, Tamada T, Segawa SI, Kuroki R, Tada T, Kinoshita T. Seven cysteine-deficient mutants depict the interplay between thermal and chemical stabilities of individual cysteine residues in mitogen-activated protein kinase c-Jun N-terminal kinase 1. Biochemistry 2012; 51:8410-21. [PMID: 23020677 DOI: 10.1021/bi300918w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular proteins can have free cysteines that may contribute to their structure, function, and stability; however, free cysteines can lead to chemical instabilities in solution because of oxidation-driven aggregation. The MAP kinase, c-Jun N-terminal kinase 1 (JNK1), possesses seven free cysteines and is an important drug target for autoimmune diseases, cancers, and apoptosis-related diseases. To characterize the role of cysteine residues in the structure, function, and stability of JNK1, we prepared and evaluated wild-type JNK1 and seven cysteine-deficient JNK1 proteins. The nonreduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments showed that the chemical stability of JNK1 increased as the number of cysteines decreased. The contribution of each cysteine residue to biological function and thermal stability was highly susceptible to the environment surrounding the particular cysteine mutation. The mutations of solvent-exposed cysteine to serine did not influence biological function and increased the thermal stability. The mutation of the accessible cysteine involved in the hydrophobic pocket did not affect biological function, although a moderate thermal destabilization was observed. Cysteines in the loosely assembled hydrophobic environment moderately contributed to thermal stability, and the mutations of these cysteines had a negligible effect on enzyme activity. The other cysteines are involved in the tightly filled hydrophobic core, and mutation of these residues was found to correlate with thermal stability and enzyme activity. These findings about the role of cysteine residues should allow us to obtain a stable JNK1 and thus promote the discovery of potent JNK1 inhibitors.
Collapse
Affiliation(s)
- Tetsuko Nakaniwa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Stranzl T, Larsen MV, Lund O, Nielsen M, Brunak S. The cancer exome generated by alternative mRNA splicing dilutes predicted HLA class I epitope density. PLoS One 2012; 7:e38670. [PMID: 23049726 PMCID: PMC3458037 DOI: 10.1371/journal.pone.0038670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/09/2012] [Indexed: 12/22/2022] Open
Abstract
Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I supertype representatives consistently found to contain fewer predicted epitopes compared to normal tissue. We observed a significant difference in amino acid composition between protein sequences associated with normal versus cancer tissue, as transcripts found in cancer are enriched with hydrophilic amino acids. This variation contributes to the observed significant lower likelihood of cancer-specific peptides to be predicted epitopes compared to peptides found in normal tissue.
Collapse
Affiliation(s)
- Thomas Stranzl
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Mette V. Larsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
217
|
Marsh JA, Teichmann SA, Forman-Kay JD. Probing the diverse landscape of protein flexibility and binding. Curr Opin Struct Biol 2012; 22:643-50. [PMID: 22999889 DOI: 10.1016/j.sbi.2012.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/16/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
Protein flexibility spans a broad spectrum, from highly stable folded to intrinsically disordered states. In this review, we discuss how various techniques, including X-ray crystallography, nuclear magnetic resonance spectroscopy and ensemble-modeling strategies employing various experimental measurements, have enabled detailed structural and dynamic characterizations of proteins in their free and bound states. This has revealed a variety of possible binding scenarios in which flexibility can either decrease or increase upon binding. Furthermore, dynamic free-state ensembles have repeatedly been observed to contain transiently formed conformations that partially or completely resemble bound states. These results demonstrate an intimate connection between protein flexibility and protein interactions and illustrate the huge diversity of structure and dynamics in both free proteins and protein complexes.
Collapse
Affiliation(s)
- Joseph A Marsh
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| | | | | |
Collapse
|
218
|
Velyvis A, Ruschak AM, Kay LE. An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS One 2012; 7:e43725. [PMID: 22984438 PMCID: PMC3439479 DOI: 10.1371/journal.pone.0043725] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022] Open
Abstract
NMR studies of very high molecular weight protein complexes have been greatly facilitated through the development of labeling strategies whereby 13CH3 methyl groups are introduced into highly deuterated proteins. Robust and cost-effective labeling methods are well established for all methyl containing amino acids with the exception of Thr. Here we describe an inexpensive biosynthetic strategy for the production of L-[α-2H; β−2H;γ-13C]-Thr that can then be directly added during protein expression to produce highly deuterated proteins with Thr methyl group probes of structure and dynamics. These reporters are particularly valuable, because unlike other methyl containing amino acids, Thr residues are localized predominantly to the surfaces of proteins, have unique hydrogen bonding capabilities, have a higher propensity to be found at protein nucleic acid interfaces and can play important roles in signaling pathways through phosphorylation. The utility of the labeling methodology is demonstrated with an application to the 670 kDa proteasome core particle, where high quality Thr 13C,1H correlation spectra are obtained that could not be generated from samples prepared with commercially available U-[13C,1H]-Thr.
Collapse
Affiliation(s)
- Algirdas Velyvis
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (AV); (LEK)
| | - Amy M. Ruschak
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail: (AV); (LEK)
| |
Collapse
|
219
|
Hernández-Santoyo A, Domínguez-Ramírez L, Reyes-López CA, González-Mondragón E, Hernández-Arana A, Rodríguez-Romero A. Effects of a buried cysteine-to-serine mutation on yeast triosephosphate isomerase structure and stability. Int J Mol Sci 2012; 13:10010-10021. [PMID: 22949845 PMCID: PMC3431843 DOI: 10.3390/ijms130810010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 12/01/2022] Open
Abstract
All the members of the triosephosphate isomerase (TIM) family possess a cystein residue (Cys126) located near the catalytically essential Glu165. The evolutionarily conserved Cys126, however, does not seem to play a significant role in the catalytic activity. On the other hand, substitution of this residue by other amino acid residues destabilizes the dimeric enzyme, especially when Cys is replaced by Ser. In trying to assess the origin of this destabilization we have determined the crystal structure of Saccharomyces cerevisiae TIM (ScTIM) at 1.86 Å resolution in the presence of PGA, which is only bound to one subunit. Comparisons of the wild type and mutant structures reveal that a change in the orientation of the Ser hydroxyl group, with respect to the Cys sulfhydryl group, leads to penetration of water molecules and apparent destabilization of residues 132–138. The latter results were confirmed by means of Molecular Dynamics, which showed that this region, in the mutated enzyme, collapses at about 70 ns.
Collapse
Affiliation(s)
- Alejandra Hernández-Santoyo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU México D.F. 04510, Mexico; E-Mail:
| | - Lenin Domínguez-Ramírez
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Lerma, Lerma de Villada 07360, Mexico; E-Mail:
| | - César A. Reyes-López
- Laboratorio de Investigación Bioquímica, Postgrado Institucional en Biomedicina Molecular, ENMyH-Instituto Politécnico Nacional, CP 07320 México, DF, Mexico; E-Mail:
| | - Edith González-Mondragón
- Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca 69000, Mexico; E-Mail:
| | - Andrés Hernández-Arana
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa 09340, D.F., Mexico
- Authors to whom correspondence should be addressed; E-Mails: (A.H.-A.); (A.R.-R.); Tel.: +52-55-5622-4568 (A.R.-R.); Fax: +52-55-5616-2217 (A.R.-R.)
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU México D.F. 04510, Mexico; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (A.H.-A.); (A.R.-R.); Tel.: +52-55-5622-4568 (A.R.-R.); Fax: +52-55-5616-2217 (A.R.-R.)
| |
Collapse
|
220
|
Bakunts AG. Metal-specific structural changes in parvalbumin. Biochem Biophys Res Commun 2012; 424:730-5. [PMID: 22809511 DOI: 10.1016/j.bbrc.2012.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
Abstract
Parvalbumin is a small protein of EF-hand family whose main role is considered to be metal buffering. Recent evidences indicate that parvalbumin also fulfills more complicated functions, which may be determined by the diversity in structural changes in response to the binding of different metal cations. In the present work the conformations of α and β isoforms of pike parvalbumin in the Ca(2+)- and Mg(2+)-loaded state were studied by intrinsic fluorescence, circular dichroism and bis-ANS extrinsic fluorescence. We have determined the structural region causing different spectral response on the binding of Mg(2+)- and Ca(2+) ions in pike β-parvalbumin. Our data reveal similarity of the metal-bound forms of α-parvalbumin. In contrast, those of β isoform differ significantly in the tyrosine spectral range. We also discuss the possible physiological consequences of the structural rearrangements accompanied Mg(2+)/Ca(2+) exchange in pike β-parvalbumin.
Collapse
Affiliation(s)
- Anush G Bakunts
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str. 7, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
221
|
Carbajo D, Tramontano A. A resource for benchmarking the usefulness of protein structure models. BMC Bioinformatics 2012; 13:188. [PMID: 22856649 PMCID: PMC3473236 DOI: 10.1186/1471-2105-13-188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023] Open
Abstract
Background Increasingly, biologists and biochemists use computational tools to design experiments to probe the function of proteins and/or to engineer them for a variety of different purposes. The most effective strategies rely on the knowledge of the three-dimensional structure of the protein of interest. However it is often the case that an experimental structure is not available and that models of different quality are used instead. On the other hand, the relationship between the quality of a model and its appropriate use is not easy to derive in general, and so far it has been analyzed in detail only for specific application. Results This paper describes a database and related software tools that allow testing of a given structure based method on models of a protein representing different levels of accuracy. The comparison of the results of a computational experiment on the experimental structure and on a set of its decoy models will allow developers and users to assess which is the specific threshold of accuracy required to perform the task effectively. Conclusions The ModelDB server automatically builds decoy models of different accuracy for a given protein of known structure and provides a set of useful tools for their analysis. Pre-computed data for a non-redundant set of deposited protein structures are available for analysis and download in the ModelDB database. Implementation, availability and requirements Project name: A resource for benchmarking the usefulness of protein structure models. Project home page: http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php. Operating system(s): Platform independent. Programming language: Perl-BioPerl (program); mySQL, Perl DBI and DBD modules (database); php, JavaScript, Jmol scripting (web server). Other requirements: Java Runtime Environment v1.4 or later, Perl, BioPerl, CPAN modules, HHsearch, Modeller, LGA, NCBI Blast package, DSSP, Speedfill (Surfnet) and PSAIA. License: Free. Any restrictions to use by non-academics: No.
Collapse
Affiliation(s)
- Daniel Carbajo
- Department of Physics, Sapienza University of Rome, P,le A, Moro, 5, 00185 Rome, Italy
| | | |
Collapse
|
222
|
Gireesh KK, Rashid A, Chakraborti S, Panda D, Manna T. CIL-102 binds to tubulin at colchicine binding site and triggers apoptosis in MCF-7 cells by inducing monopolar and multinucleated cells. Biochem Pharmacol 2012; 84:633-45. [PMID: 22705644 DOI: 10.1016/j.bcp.2012.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/18/2022]
Abstract
A plant dictamine analog, 1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone (CIL-102) has been shown to exert potent anti-tumor activity. In this study, we examined the mode of interaction of CIL-102 with tubulin and unraveled the cellular mechanism responsible for its anti-tumor activity. CIL-102 bound to tubulin at a single site with a dissociation constant ~0.4 μM. Isothermal titration calorimetry revealed that CIL-102-tubulin interaction is highly enthalpy driven and that the binding affords a large negative heat capacity change (ΔC(p) = -790 cal mol(-1) K(-1)) with an enthalpy-entropy compensation. An analysis of the modified Dixon plot suggested that CIL-102 competitively inhibited the binding of podophyllotoxin, a colchicine-binding site agent, to tubulin. Computational modeling indicated that CIL-102 binds exclusively at the β-subunit of tubulin and that CIL-102 and colchicine partially share their binding sites on tubulin. It bound to tubulin reversibly and the binding was estimated to be ~1000 times faster than that of colchicine. CIL-102 potently inhibited the proliferation of MCF-7 cells, induced monopolar spindle formation and multi-nucleation. At half-maximal inhibitory concentration, the spindle microtubules were visibly depolymerized and disorganized. CIL-102 reduced the inter-polar distances of bipolar mitotic cells indicating that it impaired microtubule-kinetochore attachments. CIL-102-treatment induced apoptosis in MCF-7 cells in association with increased nuclear accumulation of p53 and p21 suggesting that apoptosis is triggered through a p53-p21 dependent pathway. The results indicated that CIL-102 exerted anti-proliferative activity by disrupting microtubule functions through tubulin binding and provided important insights into the differential mode of tubulin binding by CIL-102 and colchicine.
Collapse
Affiliation(s)
- K K Gireesh
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, CET Campus, Thiruvananthapuram 695016, Kerala, India
| | | | | | | | | |
Collapse
|
223
|
Protein model discrimination using mutational sensitivity derived from deep sequencing. Structure 2012; 20:371-81. [PMID: 22325784 DOI: 10.1016/j.str.2011.11.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 11/21/2022]
Abstract
A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.
Collapse
|
224
|
Toll-Riera M, Bostick D, Albà MM, Plotkin JB. Structure and age jointly influence rates of protein evolution. PLoS Comput Biol 2012; 8:e1002542. [PMID: 22693443 PMCID: PMC3364943 DOI: 10.1371/journal.pcbi.1002542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/17/2012] [Indexed: 12/01/2022] Open
Abstract
What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group – including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution. Rates of protein evolution vary dramatically within and between organisms. But the factors that determine a protein's evolutionary rate are still under debate, despite extensive studies over the past decade. Several determinants have been proposed, for example gene expression, the importance of the gene for the organism, the number of physical or genetic interactions it has, its structural characteristics, or when it originated. Here we study how age and structural characteristics interact with one another to influence evolutionary rates. We use a set of one-to-one orthologs of human and mouse proteins, with known crystal structures. We find that these two determinants interact: for example, the age of protein modulates how its structure correlates with evolutionary rate. Nonetheless, the influence of age on evolutionary rate cannot be explained by its interplay with structure.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Evolutionary Genomics Group, Fundació Institut Municipal d'Investigació Mèdica (FIMIM)- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David Bostick
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Mar Albà
- Evolutionary Genomics Group, Fundació Institut Municipal d'Investigació Mèdica (FIMIM)- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- * E-mail: (MMA); (JBP)
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MMA); (JBP)
| |
Collapse
|
225
|
Chen YC, Wright JD, Lim C. DR_bind: a web server for predicting DNA-binding residues from the protein structure based on electrostatics, evolution and geometry. Nucleic Acids Res 2012; 40:W249-56. [PMID: 22661576 PMCID: PMC3394278 DOI: 10.1093/nar/gks481] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DR_bind is a web server that automatically predicts DNA-binding residues, given the respective protein structure based on (i) electrostatics, (ii) evolution and (iii) geometry. In contrast to machine-learning methods, DR_bind does not require a training data set or any parameters. It predicts DNA-binding residues by detecting a cluster of conserved, solvent-accessible residues that are electrostatically stabilized upon mutation to Asp−/Glu−. The server requires as input the DNA-binding protein structure in PDB format and outputs a downloadable text file of the predicted DNA-binding residues, a 3D visualization of the predicted residues highlighted in the given protein structure, and a downloadable PyMol script for visualization of the results. Calibration on 83 and 55 non-redundant DNA-bound and DNA-free protein structures yielded a DNA-binding residue prediction accuracy/precision of 90/47% and 88/42%, respectively. Since DR_bind does not require any training using protein–DNA complex structures, it may predict DNA-binding residues in novel structures of DNA-binding proteins resulting from structural genomics projects with no conservation data. The DR_bind server is freely available with no login requirement at http://dnasite.limlab.ibms.sinica.edu.tw.
Collapse
Affiliation(s)
- Yao Chi Chen
- Institute of Biomedical Sciences, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
226
|
Yu I, Nakada K, Nagaoka M. Spatio-temporal characteristics of the transfer free energy of apomyoglobin into the molecular crowding condition with trimethylamine N-oxide: a study with three types of the Kirkwood-Buff integral. J Phys Chem B 2012; 116:4080-8. [PMID: 22372820 DOI: 10.1021/jp300380p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transfer free energy (TFE) of apomyoglobin (AMb) from pure water into aqueous solution with trimethylamine N-oxide (TMAO) was investigated by all-atom molecular dynamics (MD) simulation combined with the Kirkwood-Buff (KB) integral method. The simulated TFE and the preferential interaction parameter correlated favorably with experimental values. In addition, the time-resolved KB integral revealed that a significant fluctuation in the TFE arose from the alteration in TMAO solvation around AMb. Furthermore, spatial decomposition of the KB integrals revealed how the local elements of the TFE are spatially distributed around AMb. These results revealed the spatio-temporal characteristics of the protein TFE into the molecular crowding condition with TMAO.
Collapse
Affiliation(s)
- Isseki Yu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan.
| | | | | |
Collapse
|
227
|
Sides CR, Liyanage R, Lay JO, Philominathan STL, Matsushita O, Sakon J. Probing the 3-D structure, dynamics, and stability of bacterial collagenase collagen binding domain (apo- versus holo-) by limited proteolysis MALDI-TOF MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:505-519. [PMID: 22207568 PMCID: PMC3389352 DOI: 10.1007/s13361-011-0309-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/23/2011] [Accepted: 11/26/2011] [Indexed: 05/31/2023]
Abstract
Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.
Collapse
Affiliation(s)
- Cynthia R. Sides
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Rohana Liyanage
- Arkansas Statewide Mass Spectrometry Facility, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jackson O. Lay
- Arkansas Statewide Mass Spectrometry Facility, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Osamu Matsushita
- Department of Microbiology, Kitasato University Medical School, Kanagawa 228-8555, Japan
| | - Joshua Sakon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
228
|
Aledo JC, Valverde H, Ruíz-Camacho M. Thermodynamic stability explains the differential evolutionary dynamics of cytochrome b and COX I in mammals. J Mol Evol 2012; 74:69-80. [PMID: 22362464 DOI: 10.1007/s00239-012-9489-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 02/02/2012] [Indexed: 12/29/2022]
Abstract
By using a combination of evolutionary and structural data from 231 species, we have addressed the relationship between evolution and structural features of cytochrome b and COX I, two mtDNA-encoded proteins. The interior of cytochrome b, in contrast to that of COX I, exhibits a remarkable tolerance to changes. The higher evolvability of cytochrome b contrasts with the lower rate of synonymous substitutions of its gene when compared to that of COX I, suggesting that the latter is subjected to a stronger purifying selection. We present evidences that the stability effect of mutations (ΔΔG) may be behind these differential behaviour.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain.
| | | | | |
Collapse
|
229
|
Jamroz M, Kolinski A, Kihara D. Structural features that predict real-value fluctuations of globular proteins. Proteins 2012; 80:1425-35. [PMID: 22328193 DOI: 10.1002/prot.24040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 12/20/2022]
Abstract
It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins.
Collapse
Affiliation(s)
- Michal Jamroz
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | | | | |
Collapse
|
230
|
Abstract
Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the "protein-adsorption problem" to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations C(B). This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume V(I) by expulsion of either-or-both interphase water and initially adsorbed protein. Interphase protein concentration C(I) increases as V(I) decreases, resulting in slow reduction in interfacial energetics. Steady state is governed by a net partition coefficient P=(C(I)/C(B)). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This "adsorption-dehydration" step is the significant free energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, adsorbent capacity monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ→65(°). Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ<65(°). For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔG(ads)(o) is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends by proposing several changes to the protein-adsorption paradigm that might advance answers to the three core questions that frame the "protein-adsorption problem" that is so fundamental to biomaterials surface science.
Collapse
Affiliation(s)
- Erwin A Vogler
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
231
|
Abstract
To thrive, cells must control their own physical and chemical properties. This process is known as cellular homeostasis. The dilute solutions traditionally favored by experimenters do not simulate the cytoplasm, where macromolecular crowding and preferential interactions among constituents may dominate critical processes. Solutions that do simulate cytoplasmic conditions are now being characterized. Corresponding cytoplasmic properties can be varied systematically by imposing osmotic stress. This osmotic stress approach is revealing how cytoplasmic properties modulate protein folding and protein?nucleic acid interactions. Results suggest that cytoplasmic homeostasis may require adjustments to multiple, interwoven cytoplasmic properties. Osmosensory transporters with diverse structures and bioenergetic mechanisms activate in response to osmotic stress as other proteins inactivate. These transporters are serving as paradigms for the study of in vivo protein-solvent interactions. Experimenters have proposed three different osmosensory mechanisms. Distinct mechanisms may exist, or these proposals may reflect different perceptions of a single, unifying mechanism.
Collapse
Affiliation(s)
- Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
232
|
Correia M, Neves-Petersen MT, Parracino A, di Gennaro AK, Petersen SB. Photophysics, photochemistry and energetics of UV light induced disulphide bridge disruption in apo-α-lactalbumin. J Fluoresc 2012; 22:323-37. [PMID: 21997288 DOI: 10.1007/s10895-011-0963-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
Continuous 295 nm excitation of whey protein bovine apo-α-lactalbumin (apo-bLA) results in an increase of tryptophan fluorescence emission intensity, in a progressive red-shift of tryptophan fluorescence emission, and breakage of disulphide bridges (SS), yielding free thiol groups. The increase in fluorescence emission intensity upon continuous UV-excitation is correlated with the increase in concentration of free thiol groups in apo-bLA. UV-excitation and consequent SS breakage induce conformational changes on apo-bLA molecules, which after prolonged illumination display molten globule spectral features. The rate of tryptophan fluorescence emission intensity increase at 340 nm with excitation time increases with temperature in the interval 9.3-29.9°C. The temperature-dependent 340 nm emission kinetic traces were fitted by a 1st order reaction model. Native apo-bLA molecules with intact SS bonds and low tryptophan emission intensity are gradually converted upon excitation into apo-bLA molecules with disrupted SS, molten-globule-like conformation, high tryptophan emission intensity and red-shifted tryptophan emission. Experimental Ahrrenius activation energy was 21.8 ± 2.3 kJ x mol(-1). Data suggests that tryptophan photoionization from the S(1) state is the likely pathway leading to photolysis of SS in apo-bLA. Photoionization mechanism(s) of tryptophan in proteins and in solution and the activation energy of tryptophan photoionization from S(1) leading to SS disruption in proteins are discussed. The observations present in this paper raise concern regarding UV-light pasteurization of milk products. Though UV-light pasteurization is a faster and cheaper method than traditional thermal denaturation, it may also lead to loss of structure and functionality of milk proteins.
Collapse
Affiliation(s)
- Manuel Correia
- Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220, Aalborg, Denmark.
| | | | | | | | | |
Collapse
|
233
|
A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine 2012; 30:637-46. [DOI: 10.1016/j.vaccine.2011.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/27/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022]
|
234
|
Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:35-62. [PMID: 23076578 PMCID: PMC3555569 DOI: 10.1007/978-94-007-4954-2_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
235
|
Glyakina AV, Bogatyreva NS, Galzitskaya OV. Accessible surfaces of beta proteins increase with increasing protein molecular mass more rapidly than those of other proteins. PLoS One 2011; 6:e28464. [PMID: 22145047 PMCID: PMC3228773 DOI: 10.1371/journal.pone.0028464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022] Open
Abstract
Here we present a systematic analysis of accessible surface areas and hydrogen bonds of 2554 globular proteins from four structural classes (all-α, all-β, α/β and α+β proteins) that is aimed to learn in which structural class the accessible surface area increases with increasing protein molecular mass more rapidly than in other classes, and what structural peculiarities are responsible for this effect. The beta structural class of proteins was found to be the leader, with the following possible explanations of this fact. First, in beta structural proteins, the fraction of residues not included in the regular secondary structure is the largest, and second, the accessible surface area of packaged elements of the beta-structure increases more rapidly with increasing molecular mass in comparison with the alpha-structure. Moreover, in the beta structure, the probability of formation of backbone hydrogen bonds is higher than that in the alpha helix for all residues of α+β proteins (the average probability is 0.73±0.01 for the beta-structure and 0.60±0.01 for the alpha-structure without proline) and α/β proteins, except for asparagine, aspartic acid, glycine, threonine, and serine (0.70±0.01 for the beta-structure and 0.60±0.01 for the alpha-structure without the proline residue). There is a linear relationship between the number of hydrogen bonds and the number of amino acid residues in the protein ().
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Natalya S. Bogatyreva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- * E-mail:
| |
Collapse
|
236
|
Borer AS, Wassmann P, Schmidt M, Hoffman DR, Zhou JJ, Wright C, Schirmer T, Marković-Housley Z. Crystal structure of Sol I 2: a major allergen from fire ant venom. J Mol Biol 2011; 415:635-48. [PMID: 22100449 DOI: 10.1016/j.jmb.2011.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/28/2022]
Abstract
Sol i 2 is a potent allergen from the venom of red imported fire ant, which contains allergens Sol i 1, Sol i 2, Sol i 3, and Sol i 4 that are known to be powerful triggers of anaphylaxis. Sol i 2 causes IgE antibody production in about one-third of individuals stung by fire ants. Baculovirus recombinant dimeric Sol i 2 was crystallized as a native and selenomethionyl-derivatized protein, and its structure has been determined by single-wavelength anomalous dispersion at 2.6 Å resolution. The overall fold of each subunit consists of five helices that enclose a central hydrophobic cavity. The structure is stabilized by three intramolecular disulfide bridges and one intermolecular disulfide bridge. The nearest structural homologue is the sequence-unrelated odorant binding protein and pheromone binding protein LUSH of the fruit fly Drosophila, which may suggest a similar biological function. To test this hypothesis, we measured the reversible binding of various pheromones, plant odorants, and other ligands to Sol i 2 by the changes in N-phenyl-1-naphthylamine fluorescence emission upon binding of ligands that compete with N-phenyl-1-naphthylamine. The highest binding affinity was observed for hydrophobic ligands such as aphid alarm pheromone (E)-β-farnesene, analogs of ant alarm pheromones, and plant volatiles decane, undecane, and β-caryophyllene. Conceivably, Sol i 2 may play a role in capturing and/or transporting small hydrophobic ligands such as pheromones, odors, fatty acids, or short-living hydrophobic primers. Molecular surface analysis, in combination with sequence alignment, can explain the serological cross-reactivity observed between some ant species.
Collapse
Affiliation(s)
- Aline S Borer
- Department of Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Pearlman SM, Serber Z, Ferrell JE. A mechanism for the evolution of phosphorylation sites. Cell 2011; 147:934-46. [PMID: 22078888 PMCID: PMC3220604 DOI: 10.1016/j.cell.2011.08.052] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/28/2011] [Accepted: 08/19/2011] [Indexed: 12/22/2022]
Abstract
Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.
Collapse
Affiliation(s)
- Samuel M. Pearlman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA
- Biomedical Informatics Program, Stanford University School of Medicine, Stanford CA 94305-5479, USA
| | - Zach Serber
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA
| |
Collapse
|
238
|
The molecular stoichiometric hydration model (SHM) as applied to tendon/collagen, globular proteins and cells. Cell Biol Int 2011; 35:1205-15. [DOI: 10.1042/cbi20090226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
239
|
Zellner H, Staudigel M, Trenner T, Bittkowski M, Wolowski V, Icking C, Merkl R. Prescont: Predicting protein-protein interfaces utilizing four residue properties. Proteins 2011; 80:154-68. [DOI: 10.1002/prot.23172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/18/2011] [Accepted: 08/29/2011] [Indexed: 12/26/2022]
|
240
|
Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation. PLoS Comput Biol 2011; 7:e1002178. [PMID: 22022240 PMCID: PMC3192803 DOI: 10.1371/journal.pcbi.1002178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.
Collapse
|
241
|
La D, Kihara D. A novel method for protein-protein interaction site prediction using phylogenetic substitution models. Proteins 2011; 80:126-41. [PMID: 21989996 DOI: 10.1002/prot.23169] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 07/07/2011] [Accepted: 08/17/2011] [Indexed: 11/10/2022]
Abstract
Protein-protein binding events mediate many critical biological functions in the cell. Typically, functionally important sites in proteins can be well identified by considering sequence conservation. However, protein-protein interaction sites exhibit higher sequence variation than other functional regions, such as catalytic sites of enzymes. Consequently, the mutational behavior leading to weak sequence conservation poses significant challenges to the protein-protein interaction site prediction. Here, we present a phylogenetic framework to capture critical sequence variations that favor the selection of residues essential for protein-protein binding. Through the comprehensive analysis of diverse protein families, we show that protein binding interfaces exhibit distinct amino acid substitution as compared with other surface residues. On the basis of this analysis, we have developed a novel method, BindML, which utilizes the substitution models to predict protein-protein binding sites of protein with unknown interacting partners. BindML estimates the likelihood that a phylogenetic tree of a local surface region in a query protein structure follows the substitution patterns of protein binding interface and nonbinding surfaces. BindML is shown to perform well compared to alternative methods for protein binding interface prediction. The methodology developed in this study is very versatile in the sense that it can be generally applied for predicting other types of functional sites, such as DNA, RNA, and membrane binding sites in proteins.
Collapse
Affiliation(s)
- David La
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
242
|
Mitra P, Pal D. Combining Bayes classification and point group symmetry under Boolean framework for enhanced protein quaternary structure inference. Structure 2011; 19:304-12. [PMID: 21397182 DOI: 10.1016/j.str.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
Abstract
Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces ≥90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.
Collapse
Affiliation(s)
- Pralay Mitra
- Bioinformatics Centre, Supercomputer Education Research Centre, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
243
|
Kale A, Phansopa C, Suwannachart C, Craven CJ, Rafferty JB, Kelly DJ. The virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni. J Biol Chem 2011; 286:21254-65. [PMID: 21524997 PMCID: PMC3122185 DOI: 10.1074/jbc.m111.220442] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/08/2011] [Indexed: 11/06/2022] Open
Abstract
The PEB4 protein is an antigenic virulence factor implicated in host cell adhesion, invasion, and colonization in the food-borne pathogen Campylobacter jejuni. peb4 mutants have defects in outer membrane protein assembly and PEB4 is thought to act as a periplasmic chaperone. The crystallographic structure of PEB4 at 2.2-Å resolution reveals a dimer with distinct SurA-like chaperone and peptidyl-prolyl cis/trans isomerase (PPIase) domains encasing a large central cavity. Unlike SurA, the chaperone domain is formed by interlocking helices from each monomer, creating a domain-swapped architecture. PEB4 stimulated the rate of proline isomerization limited refolding of denatured RNase T(1) in a juglone-sensitive manner, consistent with parvulin-like PPIase domains. Refolding and aggregation of denatured rhodanese was significantly retarded in the presence of PEB4 or of an engineered variant specifically lacking the PPIase domain, suggesting the chaperone domain possesses a holdase activity. Using bioinformatics approaches, we identified two other SurA-like proteins (Cj1289 and Cj0694) in C. jejuni. The 2.3-Å structure of Cj1289 does not have the domain-swapped architecture of PEB4 and thus more resembles SurA. Purified Cj1289 also enhanced RNase T(1) refolding, although poorly compared with PEB4, but did not retard the refolding of denatured rhodanese. Structurally, Cj1289 is the most similar protein to SurA in C. jejuni, whereas PEB4 has most structural similarity to the Par27 protein of Bordetella pertussis. Our analysis predicts that Cj0694 is equivalent to the membrane-anchored chaperone PpiD. These results provide the first structural insights into the periplasmic assembly of outer membrane proteins in C. jejuni.
Collapse
Affiliation(s)
- Avinash Kale
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Chatchawal Phansopa
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Chatrudee Suwannachart
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - C. Jeremy Craven
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - John B. Rafferty
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - David J. Kelly
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
244
|
Marsh JA, Teichmann SA. Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure 2011; 19:859-67. [PMID: 21645856 PMCID: PMC3145976 DOI: 10.1016/j.str.2011.03.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 11/20/2022]
Abstract
Protein interactions are often accompanied by significant changes in conformation. We have analyzed the relationships between protein structures and the conformational changes they undergo upon binding. Based upon this, we introduce a simple measure, the relative solvent accessible surface area, which can be used to predict the magnitude of binding-induced conformational changes from the structures of either monomeric proteins or bound subunits. Applying this to a large set of protein complexes suggests that large conformational changes upon binding are common. In addition, we observe considerable enrichment of intrinsically disordered sequences in proteins predicted to undergo large conformational changes. Finally, we demonstrate that the relative solvent accessible surface area of monomeric proteins can be used as a simple proxy for protein flexibility. This reveals a powerful connection between the flexibility of unbound proteins and their binding-induced conformational changes, consistent with the conformational selection model of molecular recognition.
Collapse
Affiliation(s)
- Joseph A Marsh
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB20QH, UK.
| | | |
Collapse
|
245
|
Era S, Sogami M, Uyesaka N, Kato K, Murakami M, Matsushima S, Kinosada Y. Comparative intermolecular cross-relaxation studies of human hemoglobin in red blood cells and bovine serum albumin in solution. NMR IN BIOMEDICINE 2011; 24:483-491. [PMID: 21274959 DOI: 10.1002/nbm.1612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 07/19/2010] [Accepted: 07/27/2010] [Indexed: 05/30/2023]
Abstract
Intermolecular cross-relaxation rate (CR) spectra [1/T(IS) (HDO) or 1/T(IS) (H(2) O) vs f(2) (ppm) profiles] for bovine serum albumin [BSA; molecular weight (MW), 66 kDa] solution, partially hydrolyzed BSA gel (BSA*gel) and packed human red blood cells (RBCs) with normal or unstable hemoglobin (Hb; MW, 65 kDa) were studied using f(2) irradiation ranging from - 100 to 100 ppm at γH(2) /2π of 250 Hz. The CR spectra for BSA*gel (pD 4.01, 0.10 M NaCl, 4.83 and 14.39%) exhibited different features in the off-resonance region (below - 2.00 and above 12.0 ppm) relative to that for BSA solution (pD 7.14, 0.10 M NaCl, 14.39%), indicating the association of BSA* molecules in the gel state. The CR spectrum for packed RBCs was compared with those for BSA*gel and BSA solution (14.39%) by correcting for differences in protein concentration. The corrected CR spectrum for packed normal RBCs in the off-resonance region was similar to that for BSA solution, indicating that the physical characteristics of Hb in normal RBCs may be in a solution-like state. Our results on normal RBCs were approximately consistent with the previously reported thermodynamic and hydrodynamic findings that Hb in RBCs and/or in concentrated solution seems to be in a suspension of hard scaled particles.
Collapse
Affiliation(s)
- Seiichi Era
- Department of Physiology and Biophysics, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
246
|
Bush J, Makhatadze GI. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges. Proteins 2011; 79:2027-32. [PMID: 21560169 DOI: 10.1002/prot.23067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 02/25/2011] [Accepted: 04/19/2011] [Indexed: 11/10/2022]
Abstract
It is well known that nonpolar residues are largely buried in the interior of proteins, whereas polar and ionizable residues tend to be more localized on the protein surface where they are solvent exposed. Such a distribution of residues between surface and interior is well understood from a thermodynamic point: nonpolar side chains are excluded from the contact with the solvent water, whereas polar and ionizable groups have favorable interactions with the water and thus are preferred at the protein surface. However, there is an increasing amount of information suggesting that polar and ionizable residues do occur in the protein core, including at positions that have no known functional importance. This is inconsistent with the observations that dehydration of polar and in particular ionizable groups is very energetically unfavorable. To resolve this, we performed a detailed analysis of the distribution of fractional burial of polar and ionizable residues using a large set of ˜2600 nonhomologous protein structures. We show that when ionizable residues are fully buried, the vast majority of them form hydrogen bonds and/or salt bridges with other polar/ionizable groups. This observation resolves an apparent contradiction: the energetic penalty of dehydration of polar/ionizable groups is paid off by favorable energy of hydrogen bonding and/or salt bridge formation in the protein interior. Our conclusion agrees well with the previous findings based on the continuum models for electrostatic interactions in proteins.
Collapse
Affiliation(s)
- Jeffrey Bush
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
247
|
Gift SK, McFadden K, Zentner IJ, Rajagopal S, Zhang MY, Dimitrov DS, Chaiken IM. Monoclonal antibody m18 paratope leading to dual receptor antagonism of HIV-1 gp120. Biochemistry 2011; 50:2769-79. [PMID: 21417283 PMCID: PMC3499988 DOI: 10.1021/bi101161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We sought to identify sequences in the monoclonal antibody m18 complementarity determining regions (CDRs) that are responsible for its interaction with HIV-1 gp120 and inhibition of the envelope receptor binding sites. In the accompanying paper (DOI 10.1021/bi101160r), we reported that m18 inhibits CD4 binding through a nonactivating mechanism that, at the same time, induces conformational effects leading to inhibition of the coreceptor site. Here, we sought to define the structural elements in m18 responsible for these actions. Direct binding and competition analyses using surface plasmon resonance showed that YU-2 gp120 binding is stabilized by a broad paratope of residues in the m18 CDRs. Additionally, several m18 residues were identified for which mutants retained high affinity for gp120 but had suppressed CD4 and 17b inhibition activities. A subset of these mutants did, however, neutralize HXBc2 viral infection. The results obtained in this work demonstrate that the combined m18 paratope contains subsets of residues that are differentially important for the binding and inhibition functions of the m18 neutralizing antibody. The data also add to prior observations that high-affinity antibodies that do not inhibit monomeric gp120 receptor site interactions may still exhibit significant antiviral activity.
Collapse
Affiliation(s)
- Syna Kuriakose Gift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Biochemistry Graduate Program, Drexel University College of Medicine
| | - Karyn McFadden
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Isaac J. Zentner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Srivats Rajagopal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Mei-Yun Zhang
- AIDS Institute; Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Dimiter S. Dimitrov
- Center for Cancer Research Nanobiology Program, CCR, NCI-Frederick, NIH, Frederick, Maryland 21702
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Biochemistry Graduate Program, Drexel University College of Medicine
| |
Collapse
|
248
|
Chatterjee T, Mukherjee D, Dey S, Pal A, Hoque KM, Chakrabarti P. Accessory cholera enterotoxin, Ace, from Vibrio cholerae: structure, unfolding, and virstatin binding. Biochemistry 2011; 50:2962-72. [PMID: 21366345 DOI: 10.1021/bi101673x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae accessory cholera enterotoxin (Ace) is the third toxin, along with cholera toxin (CT) and zonula occludens toxin (Zot), that causes the endemic disease cholera. Structural characterization of Ace has been restricted because of the limited production of this toxic protein by V. cholerae. We have cloned, overexpressed, and purified Ace from V. cholerae strain O395 in Escherichia coli to homogeneity and determined its biological activity. The unfolding of the purified protein was investigated using circular dichroism and intrinsic tryptophan fluorescence. Because Ace is predominantly a hydrophobic protein, the degree of exposure of hydrophobic regions was identified from the spectral changes of the environment-sensitive fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) that quenches the fluorescence of tryptophan residues of Ace in a concentration-dependent manner. Results showed that bis-ANS binds one monomeric unit of Ace with a 1:1 stoichiometry and a K' of 0.72 μM. Ace exists as a dimer, with higher oligomeric forms appearing upon glutaraldehyde cross-linking. This study also reports the binding of virstatin, a small molecule that inhibits virulence regulation in V. cholerae, to Ace. The binding constant (K=9×10(4) M(-1)) and the standard free energy change (ΔG°=-12 kcal mol(-1)) of Ace-virstatin interaction have been evaluated by the fluorescence quenching method. The binding does not affect the oligomeric status of Ace. A cell viability assay of the antibacterial activity of Ace has been performed using various microbial strains. A homology model of Ace, consistent with the experimental results, has been constructed.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | | | | | | | | | |
Collapse
|
249
|
Li T, Bonkovsky HL, Guo JT. Structural analysis of heme proteins: implications for design and prediction. BMC STRUCTURAL BIOLOGY 2011; 11:13. [PMID: 21371326 PMCID: PMC3059290 DOI: 10.1186/1472-6807-11-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/03/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Heme is an essential molecule and plays vital roles in many biological processes. The structural determination of a large number of heme proteins has made it possible to study the detailed chemical and structural properties of heme binding environment. Knowledge of these characteristics can provide valuable guidelines in the design of novel heme proteins and help us predict unknown heme binding proteins. RESULTS In this paper, we constructed a non-redundant dataset of 125 heme-binding protein chains and found that these heme proteins encompass at least 31 different structural folds with all-α class as the dominating scaffold. Heme binding pockets are enriched in aromatic and non-polar amino acids with fewer charged residues. The differences between apo and holo forms of heme proteins in terms of the structure and the binding pockets have been investigated. In most cases the proteins undergo small conformational changes upon heme binding. We also examined the CP (cysteine-proline) heme regulatory motifs and demonstrated that the conserved dipeptide has structural implications in protein-heme interactions. CONCLUSIONS Our analysis revealed that heme binding pockets show special features and that most of the heme proteins undergo small conformational changes after heme binding, suggesting the apo structures can be used for structure-based heme protein prediction and as scaffolds for future heme protein design.
Collapse
Affiliation(s)
- Ting Li
- Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA
| | | | | |
Collapse
|
250
|
Sacquin-Mora S, Delalande O, Baaden M. Functional modes and residue flexibility control the anisotropic response of guanylate kinase to mechanical stress. Biophys J 2011; 99:3412-9. [PMID: 21081090 DOI: 10.1016/j.bpj.2010.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/11/2010] [Accepted: 09/15/2010] [Indexed: 01/27/2023] Open
Abstract
The coupling between the mechanical properties of enzymes and their biological activity is a well-established feature that has been the object of numerous experimental and theoretical works. In particular, recent experiments show that enzymatic function can be modulated anisotropically by mechanical stress. We study such phenomena using a method for investigating local flexibility on the residue scale that combines a reduced protein representation with Brownian dynamics simulations. We performed calculations on the enzyme guanylate kinase to study its mechanical response when submitted to anisotropic deformations. The resulting modifications of the protein's rigidity profile can be related to the changes in substrate binding affinity observed experimentally. Further analysis of the principal components of motion of the trajectories shows how the application of a mechanical constraint on the protein can disrupt its dynamics, thus leading to a decrease of the enzyme's catalytic rate. Eventually, a systematic probe of the protein surface led to the prediction of potential hotspots where the application of an external constraint would produce a large functional response both from the mechanical and dynamical points of view. Such enzyme-engineering approaches open the possibility to tune catalytic function by varying selected external forces.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique, CNRS UPR9080, Paris, France.
| | | | | |
Collapse
|