201
|
Abstract
B52, also called SRp55, is a 52-kDa member of the Drosophila SR protein family of general splicing factors. Escherichia coli-produced B52 is capable of both activating splicing and affecting the alternative splice site choice in human in vitro splicing reactions. Here we report the isolation of a B52 null mutant generated by remobilizing a P element residing near the B52 gene. The resulting deletion, B52(28), is confined to the B52 gene and its neighbor the Hrb87F gene. Second-instar larvae homozygous for the deletion are deficient in both B52 mRNA and protein. The B52 null mutant is lethal at the first- and second-instar larval stages. Germ line transformation of Drosophila flies with B52 genomic DNA rescues this lethality. Thus, B52 is an essential gene and has a critical role in Drosophila development. Larvae deficient in B52 are still capable of splicing the five endogenous pre-mRNAs tested here, including both constitutively and alternatively spliced genes. Therefore, B52 is not required for all splicing in vivo. This is the first in vivo deficiency analysis of a member of the SR protein family.
Collapse
|
202
|
Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development. Mol Cell Biol 1994. [PMID: 7935469 DOI: 10.1128/mcb.14.11.7535] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown that the enzyme glutamic acid decarboxylase (GAD; EC 4.1.1.15), which catalyzes the conversion of L-glutamate to gamma-aminobutyric acid in the central nervous system of vertebrates, can be first detected in rodents at late embryonic stages. In contrast, we have found that the gene coding for the 67-kDa form of GAD is already transcriptionally active at embryonic day E10.5 in the mouse. In addition to the 3.5-kb adult-type mRNA, we have detected two 2-kb embryonic messages that contain alternatively spliced exons of 80 (I-80) and 86 (I-86) bp, respectively. The overlapping stop-start codon TGATG, found in the embryonic exons, converts the monocistronic adult-type transcript into a bicistronic one, coding for a 25-kDa leader peptide and a 44-kDa enzymatically active truncated GAD. A second stop codon at the 3' end of the 86-bp exon abolishes the expression of truncated GAD. The products of the two embryonic mRNAs were identified in a rabbit reticulocyte in vitro translation system, COS cells, and mouse embryos. The two GAD embryonic forms represent distinct functional domains and display characteristic developmental patterns, consistent with a possible role in the formation of the gamma-aminobutyric acid-ergic inhibitory synapses.
Collapse
|
203
|
cis-regulatory sequences responsible for alternative splicing of the Drosophila dopa decarboxylase gene. Mol Cell Biol 1994. [PMID: 7935452 DOI: 10.1128/mcb.14.11.7385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila dopa decarboxylase gene, Ddc, is expressed in the hypoderm and in specific sets of cells in the central nervous system (CNS). The unique Ddc primary transcript is alternatively spliced in these two tissues. The Ddc CNS mRNA contains all four exons (A through D), whereas the hypodermal mRNA contains only three exons (A, C, and D). To localize cis-regulatory sequences responsible for Ddc alternative splicing, a Ddc minigene and several fusion genes containing various amounts of Ddc sequences fused to fushi tarazu (ftz) exon 1 were constructed and introduced into flies by P-element-mediated germ line transformation. We find that Ddc intron ab and exon B are sufficient to regulate Ddc alternative splicing, since transcripts of a minimal fusion gene containing most of Ddc intron ab and exon B are spliced to exon B in the CNS but not in the hypoderm. These results indicate that Ddc alternative splicing is regulated by either a negative mechanism preventing splicing to exon B in the hypoderm or a positive mechanism activating splicing to exon B in the CNS. Our previous data suggest that Ddc hypodermal splicing is the actively regulated splicing pathway (J. Shen, C. J. Beall, and J. Hirsh, Mol. Cell. Biol. 13:4549-4555, 1993). Here we show that deletion of Ddc intron ab sequences selectively disrupts hypodermal splicing specificity. These results support a model in which Ddc alternative splicing is negatively regulated by a blockage mechanism preventing splicing to exon B in the hypoderm.
Collapse
|
204
|
Shen J, Hirsh J. cis-regulatory sequences responsible for alternative splicing of the Drosophila dopa decarboxylase gene. Mol Cell Biol 1994; 14:7385-93. [PMID: 7935452 PMCID: PMC359273 DOI: 10.1128/mcb.14.11.7385-7393.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila dopa decarboxylase gene, Ddc, is expressed in the hypoderm and in specific sets of cells in the central nervous system (CNS). The unique Ddc primary transcript is alternatively spliced in these two tissues. The Ddc CNS mRNA contains all four exons (A through D), whereas the hypodermal mRNA contains only three exons (A, C, and D). To localize cis-regulatory sequences responsible for Ddc alternative splicing, a Ddc minigene and several fusion genes containing various amounts of Ddc sequences fused to fushi tarazu (ftz) exon 1 were constructed and introduced into flies by P-element-mediated germ line transformation. We find that Ddc intron ab and exon B are sufficient to regulate Ddc alternative splicing, since transcripts of a minimal fusion gene containing most of Ddc intron ab and exon B are spliced to exon B in the CNS but not in the hypoderm. These results indicate that Ddc alternative splicing is regulated by either a negative mechanism preventing splicing to exon B in the hypoderm or a positive mechanism activating splicing to exon B in the CNS. Our previous data suggest that Ddc hypodermal splicing is the actively regulated splicing pathway (J. Shen, C. J. Beall, and J. Hirsh, Mol. Cell. Biol. 13:4549-4555, 1993). Here we show that deletion of Ddc intron ab sequences selectively disrupts hypodermal splicing specificity. These results support a model in which Ddc alternative splicing is negatively regulated by a blockage mechanism preventing splicing to exon B in the hypoderm.
Collapse
Affiliation(s)
- J Shen
- Biology Department, University of Virginia, Charlottesville 22903
| | | |
Collapse
|
205
|
Szabo G, Katarova Z, Greenspan R. Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development. Mol Cell Biol 1994; 14:7535-45. [PMID: 7935469 PMCID: PMC359290 DOI: 10.1128/mcb.14.11.7535-7545.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It has been shown that the enzyme glutamic acid decarboxylase (GAD; EC 4.1.1.15), which catalyzes the conversion of L-glutamate to gamma-aminobutyric acid in the central nervous system of vertebrates, can be first detected in rodents at late embryonic stages. In contrast, we have found that the gene coding for the 67-kDa form of GAD is already transcriptionally active at embryonic day E10.5 in the mouse. In addition to the 3.5-kb adult-type mRNA, we have detected two 2-kb embryonic messages that contain alternatively spliced exons of 80 (I-80) and 86 (I-86) bp, respectively. The overlapping stop-start codon TGATG, found in the embryonic exons, converts the monocistronic adult-type transcript into a bicistronic one, coding for a 25-kDa leader peptide and a 44-kDa enzymatically active truncated GAD. A second stop codon at the 3' end of the 86-bp exon abolishes the expression of truncated GAD. The products of the two embryonic mRNAs were identified in a rabbit reticulocyte in vitro translation system, COS cells, and mouse embryos. The two GAD embryonic forms represent distinct functional domains and display characteristic developmental patterns, consistent with a possible role in the formation of the gamma-aminobutyric acid-ergic inhibitory synapses.
Collapse
Affiliation(s)
- G Szabo
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | | | | |
Collapse
|
206
|
Abstract
B52, also called SRp55, is a 52-kDa member of the Drosophila SR protein family of general splicing factors. Escherichia coli-produced B52 is capable of both activating splicing and affecting the alternative splice site choice in human in vitro splicing reactions. Here we report the isolation of a B52 null mutant generated by remobilizing a P element residing near the B52 gene. The resulting deletion, B52(28), is confined to the B52 gene and its neighbor the Hrb87F gene. Second-instar larvae homozygous for the deletion are deficient in both B52 mRNA and protein. The B52 null mutant is lethal at the first- and second-instar larval stages. Germ line transformation of Drosophila flies with B52 genomic DNA rescues this lethality. Thus, B52 is an essential gene and has a critical role in Drosophila development. Larvae deficient in B52 are still capable of splicing the five endogenous pre-mRNAs tested here, including both constitutively and alternatively spliced genes. Therefore, B52 is not required for all splicing in vivo. This is the first in vivo deficiency analysis of a member of the SR protein family.
Collapse
Affiliation(s)
- H Z Ring
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
207
|
Sakashita E, Sakamoto H. Characterization of RNA binding specificity of the Drosophila sex-lethal protein by in vitro ligand selection. Nucleic Acids Res 1994; 22:4082-6. [PMID: 7524034 PMCID: PMC331893 DOI: 10.1093/nar/22.20.4082] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Drosophila sex-lethal (Sxl) protein, a regulator of somatic sexual differentiation, is an RNA binding protein with two potential RNA recognition motifs (RRMs). It is thought to exert its function on splicing by binding to specific RNA sequences within Sxl and transformer (tra) pre-mRNAs. To examine the Sxl RNA binding specificity in detail, we performed in vitro selection and amplification of ligand RNAs from a random sequence pool on the basis of affinity with Sxl protein. After three cycles of selection and amplification, we cloned and sequenced 17 cDNAs corresponding to the RNAs selected in vitro. Sequencing showed that most of the RNAs selected contain polyuridine stretches surrounded by purine residues. In vitro binding analysis revealed that the sequences of the in vitro selected RNAs with relatively high affinity for Sxl show similarity to that of the Sxl- and tra-regulated acceptor regions, including the invariant AG sequence for splicing. These results suggest that Sxl recognizes and preferentially binds to a polyuridine stretch with a downstream AG sequence.
Collapse
Affiliation(s)
- E Sakashita
- Department of Biology, Faculty of Science, Kobe University, Japan
| | | |
Collapse
|
208
|
Abstract
Dosage compensation is the process by which the expression of X-linked genes is equalized in males and females. In Drosophila, dosage compensation occurs by coordinately upregulating the transcription rates of all the genes on the single X chromosome in males. This hypertranscription requires the functioning of four autosomal male-specific lethal (msl) genes and is under the control of the Sxl gene. Recent genetic and molecular studies have suggested that the msl proteins may associate with one another in a sex-specific heteromeric complex on the male X chromosome, where they may function to alter its chromatin structure.
Collapse
Affiliation(s)
- M Gorman
- Department of Biological Sciences, Stanford University, CA 94305
| | | |
Collapse
|
209
|
Wang J, Bell LR. The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev 1994; 8:2072-85. [PMID: 7958879 DOI: 10.1101/gad.8.17.2072] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex-lethal (Sxl) acts as a binary switch that regulates Drosophila sexual differentiation and dosage compensation and also maintains a stable female state through autoregulation. As part of a cascade of genes that are regulated by sex-specific splicing, Sxl controls the sex-specific splicing of transformer (tra) RNA and also its own RNA. Sxl contains two RNP-CS (RNA-binding) domains and is known to bind tra pre-mRNA near the alternative 3' splice site, thus blocking use of that site to give the female-specific splicing pattern. Here, we test how Sxl protein interacts with Sxl RNA during autoregulation. We show that Sxl not only binds Sxl pre-mRNA near the alternative 3' splice site but also at distant, multiple sites surrounding the Sxl alternative exon. Moreover, Sxl binds cooperatively at these multiple sites. The Sxl amino terminus is essential for the cooperative interaction and is also required for regulatory activity in vivo. It appears that this region of Sxl protein, which resembles regions in some other RNA-binding proteins, is a domain that mediates protein-protein interactions during RNA binding and plays an important role in splicing regulation.
Collapse
Affiliation(s)
- J Wang
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | |
Collapse
|
210
|
Synergistic interaction between particular X-chromosome deletions andSex-lethal causes female lethality inDrosophila melanogaster. J Genet 1994. [DOI: 10.1007/bf02927944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
211
|
Abstract
Sxl has been proposed to regulate splicing of specific target genes by directly interacting with their pre-mRNAs. We have therefore examined the RNA-binding properties of Sxl protein in vitro and in vivo. Gel shift and UV cross-linking assays with a purified recombinant MBP-Sxl fusion protein demonstrated preferential binding to RNAs containing poly(U) tracts, and the protein footprinted over the poly(U) region. The protein did not appear to recognize either branch point or AG dinucleotide sequences, but an adenosine residue at the 5' end of the poly(U) tract enhanced binding severalfold. MBP-Sxl formed two shifted complexes on a tra regulated acceptor site RNA; the doubly shifted form may have been stabilized by protein-protein interactions. Consistent with its proposed role in pre-mRNA processing, in nuclear extracts Sxl was found in large ribonucleoprotein (RNP) complexes which sedimented significantly faster than bulk heterogeneous nuclear RNP and small nuclear RNPs. Anti-Sxl staining of polytene chromosomes showed Sxl protein at a number of chromosomal locations, among which was the Sxl locus itself. Sxl protein could also be targeted to a new chromosomal site carrying a transgene containing splicing regulatory sequences from the Sxl gene, following transcriptional induction. After prolonged heat shock, all Sxl protein was restricted to the heat-induced puff at the hs93D locus. In contrast, a presumptive small nuclear RNP protein was observed at several heat puffs following shock.
Collapse
|
212
|
Samuels ME, Bopp D, Colvin RA, Roscigno RF, Garcia-Blanco MA, Schedl P. RNA binding by Sxl proteins in vitro and in vivo. Mol Cell Biol 1994; 14:4975-90. [PMID: 7516476 PMCID: PMC358869 DOI: 10.1128/mcb.14.7.4975-4990.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sxl has been proposed to regulate splicing of specific target genes by directly interacting with their pre-mRNAs. We have therefore examined the RNA-binding properties of Sxl protein in vitro and in vivo. Gel shift and UV cross-linking assays with a purified recombinant MBP-Sxl fusion protein demonstrated preferential binding to RNAs containing poly(U) tracts, and the protein footprinted over the poly(U) region. The protein did not appear to recognize either branch point or AG dinucleotide sequences, but an adenosine residue at the 5' end of the poly(U) tract enhanced binding severalfold. MBP-Sxl formed two shifted complexes on a tra regulated acceptor site RNA; the doubly shifted form may have been stabilized by protein-protein interactions. Consistent with its proposed role in pre-mRNA processing, in nuclear extracts Sxl was found in large ribonucleoprotein (RNP) complexes which sedimented significantly faster than bulk heterogeneous nuclear RNP and small nuclear RNPs. Anti-Sxl staining of polytene chromosomes showed Sxl protein at a number of chromosomal locations, among which was the Sxl locus itself. Sxl protein could also be targeted to a new chromosomal site carrying a transgene containing splicing regulatory sequences from the Sxl gene, following transcriptional induction. After prolonged heat shock, all Sxl protein was restricted to the heat-induced puff at the hs93D locus. In contrast, a presumptive small nuclear RNP protein was observed at several heat puffs following shock.
Collapse
Affiliation(s)
- M E Samuels
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | | | | | | | |
Collapse
|
213
|
Denhez F, Lafyatis R. Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
214
|
Abstract
In both Drosophila melanogaster and Caenorhabditis elegans somatic sex determination, germline sex determination, and dosage compensation are controlled by means of a chromosomal signal known as the X:A ratio. A variety of mechanisms are used for establishing and implementing the chromosomal signal, and these do not appear to be similar in the two species. Instead, the study of sex determination and dosage compensation is providing more general lessons about different types of signaling pathways used to control alternative developmental states of cells and organisms.
Collapse
Affiliation(s)
- S M Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
215
|
Flickinger TW, Salz HK. The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. Genes Dev 1994; 8:914-25. [PMID: 7926776 DOI: 10.1101/gad.8.8.914] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal. Previous studies have suggested that snf plays a role in regulating Sex-lethal splicing. Here, we demonstrate that snf is an integral component of the machinery required for splice site recognition. We have cloned snf and found that it has sequence homology to the mammalian U1A and U2B" snRNP proteins. Moreover, we establish that snf encodes a Drosophila protein shown previously to have functional similarity to U1A. Finally, with the isolation and analysis of a null mutation, we demonstrate that snf is an essential gene. These studies provide the first demonstration, in a multicellular organism, that mutations in a U1 snRNP protein alter splicing in vivo.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Autoantigens
- Base Sequence
- Cross Reactions
- Drosophila/embryology
- Drosophila Proteins
- Genes, Insect/genetics
- Genes, Lethal/genetics
- Genomic Library
- Models, Genetic
- Molecular Sequence Data
- Phenotype
- RNA Splicing
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA-Binding Proteins
- Restriction Mapping
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/immunology
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/immunology
- Sequence Homology, Amino Acid
- Sex Differentiation/genetics
- snRNP Core Proteins
Collapse
Affiliation(s)
- T W Flickinger
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955
| | | |
Collapse
|
216
|
Abstract
X chromosome inactivation in mammals was first described over 30 years ago. The biological problem is how to achieve gene dosage equivalence between XX females and XY males; the solution is to genetically silence one whole X chromosome in each cell of the early developing female embryo. The molecular mechanism by which this is achieved, however, remains a mystery. Recently, through the discovery of the Xist gene, it appears that we may be on the brink of learning how this unique phenomenon is mediated. Here, I discuss the developmental regulation of X inactivation and the candidacy of Xist as the X chromosome inactivation centre, with particular reference to its possible role in the initiation, spread and maintenance of X inactivation.
Collapse
Affiliation(s)
- S Rastan
- MRC Clinical Research Centre, Harrow, UK
| |
Collapse
|
217
|
Gee SL, Conboy JG. Mouse erythroid cells express multiple putative RNA helicase genes exhibiting high sequence conservation from yeast to mammals. Gene 1994; 140:171-7. [PMID: 8144024 DOI: 10.1016/0378-1119(94)90541-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RNA secondary structure is a critical determinant of RNA function in ribosome assembly, pre-mRNA splicing, mRNA translation and RNA stability. The 'DEAD/H' family of putative RNA helicases may help regulate these processes by utilizing intrinsic RNA-dependent ATPase activity to catalyze conformational changes in RNA secondary structure. To investigate the repertoire of DEAD/H box proteins expressed in mammals, we used PCR techniques to clone from mouse erythroleukemia (MEL) cells three new DEAD box cDNAs with high similarity to known yeast (Saccharomyces cerevisiae) genes. mDEAD2 and mDEAD3 (mouse DEAD box proteins) are > 95% identical to mouse PL10 but exhibit differential tissue-specific expression patterns; mDEAD2 and mDEAD3 are also approx. 70% identical (at the aa level) to yeast DED1 and DBP1 proteins. Members of this DEAD box subclass contain C-terminal domains with high content of Arg, Ser, Gly and Phe, reminiscent of the RS domain in several Drosophila and mammalian splicing factors. mDEAD5 belongs to a second class related to translation initiation factors from yeast (TIF1/TIF2) and mammals (eIF-4A); this class contains a novel conserved peptide motif not found in other DEAD box proteins. Northern blotting shows that mDEAD5 is differentially expressed in testis vs. somatic tissues. Thus, mouse erythroid cells produce two highly conserved families of putative RNA helicases likely to play important roles in RNA metabolism and gene expression.
Collapse
Affiliation(s)
- S L Gee
- Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | |
Collapse
|
218
|
Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5' splice site. Mol Cell Biol 1994. [PMID: 8246990 DOI: 10.1128/mcb.13.12.7734] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The on/off state of the binary switch gene Sex-lethal (Sxl), which controls somatic sexual development in Drosophila melanogaster, is regulated at the level of alternative splicing. In males, in which the gene is off, the default splicing machinery produces nonfunctional mRNAs; in females, in which the gene is on, the autoregulatory activity of the Sxl proteins directs the splicing machinery to produce functional mRNAs. We have used germ line transformation to analyze the mechanism of default and regulated splicing. Our results demonstrate that a blockage mechanism is employed in Sxl autoregulation. However, in contrast to transformer, in which Sxl appears to function by preventing the interaction of splicing factors with the default 3' splice site, a different strategy is used in autoregulation. (i) Multiple cis-acting elements, both upstream and downstream of the male exon, are required. (ii) These cis-acting elements are distant from the splice sites they regulate, suggesting that the Sxl protein cannot function in autoregulation by directly competing with splicing factors for interaction with the regulated splice sites. (iii) The 5' splice site of the male exon appears to be dominant in regulation while the 3' splice site plays a subordinate role.
Collapse
|
219
|
Sánchez L, Granadino B, Torres M. Sex determination in Drosophila melanogaster: X-linked genes involved in the initial step of sex-lethal activation. DEVELOPMENTAL GENETICS 1994; 15:251-64. [PMID: 8062457 DOI: 10.1002/dvg.1020150307] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex determination is the commitment of an embryo to either the female or the male developmental pathway. The ratio of X chromosomes to sets of autosomes is the primary genetic signal that determines sex in Drosophila, by triggering the functional state of the gene Sex-lethal: in females (2X;2A) Sxl will be ON, whereas in males (X;2A) Sxl will be OFF. Genetic and molecular studies have defined a set of genes involved in the formation of the X:A signal, as well as other genes, with either maternal or zygotic effects, which are also involved in regulating the initial step of Sex-lethal activation. We review these data and present new data on two more regions of the X chromosome that define other genes needed for Sxl activation. In addition, we report on the interaction between some of the genes regulating Sxl activation.
Collapse
Affiliation(s)
- L Sánchez
- Centro de Investigaciones Biológicas, Velázquez, Madrid, Spain
| | | | | |
Collapse
|
220
|
Duffy JB, Gergen JP. Sex, segments, and the central nervous system: common genetic mechanisms of cell fate determination. ADVANCES IN GENETICS 1994; 31:1-28. [PMID: 8036992 DOI: 10.1016/s0065-2660(08)60394-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J B Duffy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
221
|
Hodges D, Bernstein SI. Genetic and biochemical analysis of alternative RNA splicing. ADVANCES IN GENETICS 1994; 31:207-81. [PMID: 8036995 DOI: 10.1016/s0065-2660(08)60399-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D Hodges
- Biology Department, San Diego State University, California 92182-0057
| | | |
Collapse
|
222
|
Taylor BJ, Villella A, Ryner LC, Baker BS, Hall JC. Behavioral and neurobiological implications of sex-determining factors in Drosophila. DEVELOPMENTAL GENETICS 1994; 15:275-96. [PMID: 8062459 DOI: 10.1002/dvg.1020150309] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The function of the central nervous system as it controls sex-specific behaviors in Drosophila has been studied with renewed intensity, in the context of genetic factors that influence the development of sexually differentiated aspects of this insect. Three categories of genetic variations that cause anomalies in courtship and mating behaviors are discussed: (1) mutants isolated with regard to courtship defects, of which putatively courtship-specific variants such as the fruitless mutant are a subset; (2) general behavioral and neurological variants (including sensory and learning mutants), whose defects include subnormal reproductive performance; and (3) mutations of genes within the sex-determination regulatory hierarchy of Drosophila, the analysis of which has included studies of reproductive behavior. Recent studies of mutations in two of these categories have provided new insights into the control of neuronally based aspects of sex-specific behavior. The doublesex gene, the final factor acting in the sex-determination hierarchy, had been previously thought to regulate all aspects of sexual differentiation. Yet, it has been recently shown that doublesex does not control at least one neuronally-determined feature of sex-specific anatomy--a muscle in the male's abdomen, whose normal development is, however, dependent on the action of fruitless. These considerations prompted us to examine further (and in some cases re-examine) the influences exerted by sex-determination hierarchy genes on behavior. Our results--notably those obtained from assessments of doublesex mutations' effects on general reproductive actions and on a particular component of the courtship sequence (male "singing" behavior)--lead to the suggestion that there is a previously unrecognized branch within the sex-determination hierarchy, which controls the differentiation of the male- and female- specific phenotypes of Drosophila. This new branch separates from the doublesex-related one immediately before the action of that gene (just after transformer and transformer-2) and appears to control as least some aspects of neuronally determined sexual differentiation of males.
Collapse
Affiliation(s)
- B J Taylor
- Department of Zoology, Oregon State University, Corvallis
| | | | | | | | | |
Collapse
|
223
|
Hodgkin J. Epigenetics and the maintenance of gene activity states in Caenorhabditis elegans. DEVELOPMENTAL GENETICS 1994; 15:471-7. [PMID: 7834906 DOI: 10.1002/dvg.1020150605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nematode Caenorhabditis elegans has been the subject of many detailed investigations in developmental biology. Molecular analyses have failed to detect covalent alterations to DNA, such as methylation or rearrangement, during development of C. elegans. Genetic experiments indicate that imprinting of gamete genomes does not occur to any significant extent. The maintenance of gene activity states in this organism may depend predominantly on regulatory gene circuitry. Some possible examples of maintenance circuits are discussed.
Collapse
Affiliation(s)
- J Hodgkin
- MRC Laboratory of Molecular Biology, Cambridge, England
| |
Collapse
|
224
|
Burtis KC. The regulation of sex determination and sexually dimorphic differentiation in Drosophila. Curr Opin Cell Biol 1993; 5:1006-14. [PMID: 8129938 DOI: 10.1016/0955-0674(93)90085-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex determination and sexually dimorphic differentiation in Drosophila involve multiple regulatory mechanisms, including alternative splicing, transcriptional control, subcellular compartmentalization, and intercellular signal transduction. Regulatory interactions occur throughout the development of the fly, some requiring the continuous function of the genes involved, and others being temporally limited, but having permanent consequences. The control of sexual differentiation in Drosophila is, for the most part, subject to the continuous active control of numerous regulatory proteins operating at many levels.
Collapse
|
225
|
Horabin JI, Schedl P. Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5' splice site. Mol Cell Biol 1993; 13:7734-46. [PMID: 8246990 PMCID: PMC364845 DOI: 10.1128/mcb.13.12.7734-7746.1993] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The on/off state of the binary switch gene Sex-lethal (Sxl), which controls somatic sexual development in Drosophila melanogaster, is regulated at the level of alternative splicing. In males, in which the gene is off, the default splicing machinery produces nonfunctional mRNAs; in females, in which the gene is on, the autoregulatory activity of the Sxl proteins directs the splicing machinery to produce functional mRNAs. We have used germ line transformation to analyze the mechanism of default and regulated splicing. Our results demonstrate that a blockage mechanism is employed in Sxl autoregulation. However, in contrast to transformer, in which Sxl appears to function by preventing the interaction of splicing factors with the default 3' splice site, a different strategy is used in autoregulation. (i) Multiple cis-acting elements, both upstream and downstream of the male exon, are required. (ii) These cis-acting elements are distant from the splice sites they regulate, suggesting that the Sxl protein cannot function in autoregulation by directly competing with splicing factors for interaction with the regulated splice sites. (iii) The 5' splice site of the male exon appears to be dominant in regulation while the 3' splice site plays a subordinate role.
Collapse
Affiliation(s)
- J I Horabin
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
226
|
Inamdar M, Vijayraghavan K, Rodrigues V. The Drosophila homolog of the human transcription factor TEF-1, scalloped, is essential for normal taste behavior. J Neurogenet 1993; 9:123-39. [PMID: 8126597 DOI: 10.3109/01677069309083454] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The scalloped (sd) locus of Drosophila melanogaster encodes a protein with a novel DNA binding domain bearing a high degree of similarity to the human transcription factor TEF-1 (Campbell et al., 1992). We demonstrate that sd mutants show defects in response to a number of taste stimuli. Higher stimulus concentrations are required to elicit behavioral responses from mutant larvae and adult flies. The electrophysiological responses of the peripheral taste neurons in the labellum were found to be normal, suggesting that an inability to detect stimuli is not the cause of the mutant phenotype. The range of mutant responses of sd alleles to salt and sugar stimuli define a functional requirement for the gene in the nervous system and provide an assay for the genetic and molecular analysis of this role.
Collapse
Affiliation(s)
- M Inamdar
- Molecular Biology Unit, Tata Institute of Fundamental Research, Bombay, India
| | | | | |
Collapse
|
227
|
Abstract
Seventy years after the discovery that sex in Drosophila melanogaster is determined by the balance between X chromosomes and autosomes, we can finally identify some of the specific genes whose relative dosage is responsible for the male/female decision in somatic cells and study how they act at the molecular level. Discovery of these sex determination genes was delayed because their mutant phenotypes were unanticipated. It now seems appropriate to consider how the concept of the X/A balance may have limited thinking about the fruit fly sex determination signal.
Collapse
Affiliation(s)
- T W Cline
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| |
Collapse
|
228
|
Rinfret A, Anderson SK. IL-2 regulates the expression of the NK-TR gene via an alternate RNA splicing mechanism. Mol Immunol 1993; 30:1307-13. [PMID: 8413330 DOI: 10.1016/0161-5890(93)90047-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have recently isolated and characterized human and mouse genes of a putative natural killer (NK) cell tumour-recognition protein (NK-TR) that is specifically expressed in NK cells. This gene codes for a 150 kD protein with a cyclophilin-related amino terminus followed by several positively charged domains. We report here the discovery of two sites of alternate splicing in the 5' region of the NK-TR mRNA. One of these events caused a frameshift in the open reading frame by splicing in a 28 bp exon within the cyclophilin coding region, resulting in the premature termination of the NK-TR protein. The second alternate splice stemmed from the use of an internal splice acceptor within an exon, producing a deletion of 25 amino acids in the NK-TR protein. The activation of NK cells by IL-2 produced a change in the splicing pattern that resulted in increased production of mRNAs capable of producing the complete NK-TR protein.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blood Proteins/biosynthesis
- Blood Proteins/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/isolation & purification
- DNA/metabolism
- DNA Primers/chemistry
- Female
- Gene Expression Regulation, Neoplastic/physiology
- Interleukin-2/physiology
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred CBA
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Natural Killer Cell
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- A Rinfret
- National Research Council, Biotechnology Research Institute, Montréal, Québec, Canada
| | | |
Collapse
|
229
|
Pauli D, Oliver B, Mahowald AP. The role of the ovarian tumor locus in Drosophila melanogaster germ line sex determination. Development 1993; 119:123-34. [PMID: 8275850 DOI: 10.1242/dev.119.1.123] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The locus ovarian tumor (otu) is involved in several aspects of oogenesis in Drosophila melanogaster. The possible role of otu in the determination of the sexual identity of germ cells has not been extensively explored. Some otu alleles produce a phenotype known as ovarian tumors: ovarioles are filled with numerous poorly differentiated germ cells. We show that these mutant germ cells have a morphology similar to primary spermatocytes and that they express male germ line-specific reporter genes. This indicates that they are engaged along the male pathway of germ line differentiation. Consistent with this conclusion, we found that the splicing of Sex-lethal (Sxl) pre-mRNAs occurs in the male-specific mode in otu-transformed germ cells. The position of the otu locus in the regulatory cascade of germ line sex determination has been studied by using mutations that constitutively express the feminizing activity of the Sxl gene. The sexual transformation of the germ cells observed with several combinations of otu alleles can be reversed by constitutive expression of Sxl. This shows that otu acts upstream of Sxl in the process of germ line sex determination. Other phenotypes of otu mutations were not rescued by constitutive expression of Sxl, suggesting that several functions of otu are likely to be independent of sex determination. Finally, we show that the gene dosage of otu modifies the phenotype of ovaries heterozygous for the dominant alleles of ovo, another gene involved in germ line sex determination. One dose of otu+ enhances the ovoD ovarian phenotypes, while three doses partially suppress these phenotypes. Synergistic interaction between ovoD1 and otu alleles leads to the occasional transformation of chromosomally female germ cells into early spermatocytes. These interactions are similar to those observed between ovoD and one allele of the sans fille (snf) locus. Altogether, our results imply that the otu locus acts, along with ovo, snf, and Sxl, in a pathway (or parallel pathways) required for proper sex determination of the female germ line.
Collapse
Affiliation(s)
- D Pauli
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
230
|
Erickson JW, Cline TW. A bZIP protein, sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex. Genes Dev 1993; 7:1688-702. [PMID: 8370520 DOI: 10.1101/gad.7.9.1688] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sexual identity in Drosophila is determined by zygotic X-chromosome dose. Two potent indicators of X-chromosome dose are sisterless-a (sis-a) and sisterless-b (sis-b). Genetic analysis has shown that a diplo-X dose of these genes activates their regulatory target, the feminizing switch gene Sex-lethal (Sxl), whereas a haplo-X dose leaves Sxl inactive. sis-b encodes a transcriptional activator of the bHLH family that dimerizes with several other HLH proteins required for the proper assessment of X dose. Here, we report that sis-a encodes a bZIP protein homolog that functions in all somatic nuclei to activate Sxl transcription. In contrast with other elements of the sex-determination signal, the functioning of this transcription factor in somatic cells may be specific to X-chromosome counting. Using in situ hybridization, we determined the time course of sis-a, sis-b, and Sxl transcription during the first few hours after fertilization. The pattern of sis-a RNA accumulation is very similar to that for sis-b, with a peak in nuclear cycle 12 at about the time of onset of Sxl transcription. Considered in the context of other studies, these results suggest that the ability to distinguish one X from two is attributable to combinatorial interactions between bZIP and bHLH proteins and their target, Sxl, as well as to positive and negative interactions with maternally supplied and zygotically produced proteins.
Collapse
Affiliation(s)
- J W Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
231
|
Bopp D, Horabin JI, Lersch RA, Cline TW, Schedl P. Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis. Development 1993; 118:797-812. [PMID: 8076518 DOI: 10.1242/dev.118.3.797] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to controlling somatic sexual development in Drosophila melanogaster, the Sex-lethal (Sxl) gene is required for proper differentiation of female germ cells. To investigate its role in germ-line development, we have examined the expression of Sxl in wild-type ovaries and ovaries that are defective in early steps of germ cell differentiation. As in the soma, the basic mechanism for on/off regulation of Sxl relies on sex-specific processing of its transcripts in germ cells. One class of female-sterile mutations, which includes fs(1)1621 and the tumorous-ovary-producing allele of the ovarian tumor gene, otu1, is defective in the splicing process. These mutants have germ lines with high amounts of Sxl RNA spliced in the male mode and a severe reduction of protein levels in the germ cells. Another class of female-sterile mutations produces a phenotype similar to that seen in fs(1)1621 and otu1 but appears to express normal levels of Sxl protein in the germ cells. However, this second class does not show the changes in protein distribution normally observed in wild-type germ cells. In the wild-type germarium, the non-differentiated germ cells show a strong cytoplasmic accumulation of Sxl protein followed, as the germ cells differentiate, by a dramatic reduction and redistribution of the protein into nuclear foci. Interestingly, two female-sterile alleles of Sxl, Sxlf4 and Sxlf5 belong to the second class, which shows persistent cytoplasmic accumulation of Sxl protein. These Sxl female-sterile mutants encode an altered protein indicating that Sxl regulates processes that eventually lead to the changes in Sxl protein distribution. Lastly, we demonstrate that during the final stages of oogenesis several mechanisms must operate to prevent the progeny from inheriting Sxl protein. Conceivably, this regulation safeguards the inadvertent activation of the Sxl autoregulatory feedback loop in the male zygote.
Collapse
Affiliation(s)
- D Bopp
- Department of Molecular Biology, Moffett laboratory, Princeton University, NJ 08544
| | | | | | | | | |
Collapse
|
232
|
|
233
|
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73:1019-30. [PMID: 7684656 DOI: 10.1016/0092-8674(93)90279-y] [Citation(s) in RCA: 851] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sry is expressed at higher levels in the adult testis, where no function has been determined, than in the genital ridge, its critical site of action. cDNA and 5' RACE clones isolated from testis or from Sry-transfected cell lines have an unusual structure, with 3' sequences located in a 5' position. RNAase protection assays and reverse transcription polymerase chain reactions confirmed that these unusual RNA molecules represent the most abundant transcript in testis. Furthermore, oligonucleotide hybridization and RNAase H digestion proved that these Sry RNA molecules are circular. Similar transcripts were detected in the testes of mice with Mus musculus musculus, Mus musculus domesticus, and Mus spretus Sry genes. The circular RNA is found in the cytoplasm but is not substantially bound to polysomes. We suggest that the circles arise from normal splicing processes as a consequence of the unusual genomic structure surrounding the Sry locus in the mouse.
Collapse
Affiliation(s)
- B Capel
- Laboratory of Eukaryotic Molecular Genetics, Medical Research Council, National Institute for Medical Research, London, England
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Miller LM, Gallegos ME, Morisseau BA, Kim SK. lin-31, a Caenorhabditis elegans HNF-3/fork head transcription factor homolog, specifies three alternative cell fates in vulval development. Genes Dev 1993; 7:933-47. [PMID: 8504934 DOI: 10.1101/gad.7.6.933] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell-cell signaling controls the specification of vulval cell fates in Caenorhabditis elegans. Although previous studies have identified genes that function at early steps in the signaling pathway, the late steps are not well understood. Here, we begin to characterize those late events by showing that the lin-31 gene acts near the end of the vulval signaling pathway. We show that lin-31 acts downstream of the ras homolog let-60 and that lin-31 encodes a member of the HNF-3/fork head family of DNA-binding transcription factors. lin-31 regulates how vulval precursor cells choose their fate; in lin-31 mutants, these cells do not properly choose which fate to express and therefore adopt any one of the three possible vulval cell fates in a deregulated fashion. This interesting mutant phenotype suggests mechanisms for how vulval cell fates become determined.
Collapse
Affiliation(s)
- L M Miller
- Department of Developmental Biology, Stanford University Medical Center, California 94305
| | | | | | | |
Collapse
|
235
|
Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol 1993. [PMID: 8441386 DOI: 10.1128/mcb.13.3.1408] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila melanogaster, sex determination in somatic cells is controlled by a cascade of genes whose expression is regulated by alternative splicing [B. S. Baker, Nature (London) 340:521-524, 1989; J. Hodgkin, Cell 56:905-906, 1989]. The master switch gene in this hierarchy is Sex-lethal. Sex-lethal is turned on only in females, and an autoregulatory feedback loop which controls alternative splicing maintains this state (L. R. Bell, J. I. Horabin, P. Schedl, and T. W. Cline, Cell 65:229-239, 1991; L. N. Keyes, T. W. Cline, and P. Schedl, Cell 68:933-943, 1992). Sex-lethal also promotes female differentiation by controlling the splicing of RNA from the next gene in the hierarchy, transformer. Sosnowski et al. (B. A. Sosnowski, J. M. Belote, and M. McKeown, Cell 58:449-459, 1989) have shown that the mechanism for generating female transformer transcripts is not through the activation of the alternative splice site but by the blockage of the default splice site. We have tested whether an activation or a blockage mechanism is involved in Sex-lethal autoregulation. The male exon of Sex-lethal with flanking splice sites was placed into the introns of heterologous genes. Our results support the blockage mechanism. The poly(U) run at the male exon 3' splice site is required for sex-specific splicing. However, unlike transformer, default splicing to the male exon is sensitive to the sequence context within which the exon resides. This and the observation that the splice signals at the exon are suboptimal are discussed with regard to alternate splicing.
Collapse
|
236
|
Horabin JI, Schedl P. Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol 1993; 13:1408-14. [PMID: 8441386 PMCID: PMC359450 DOI: 10.1128/mcb.13.3.1408-1414.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Drosophila melanogaster, sex determination in somatic cells is controlled by a cascade of genes whose expression is regulated by alternative splicing [B. S. Baker, Nature (London) 340:521-524, 1989; J. Hodgkin, Cell 56:905-906, 1989]. The master switch gene in this hierarchy is Sex-lethal. Sex-lethal is turned on only in females, and an autoregulatory feedback loop which controls alternative splicing maintains this state (L. R. Bell, J. I. Horabin, P. Schedl, and T. W. Cline, Cell 65:229-239, 1991; L. N. Keyes, T. W. Cline, and P. Schedl, Cell 68:933-943, 1992). Sex-lethal also promotes female differentiation by controlling the splicing of RNA from the next gene in the hierarchy, transformer. Sosnowski et al. (B. A. Sosnowski, J. M. Belote, and M. McKeown, Cell 58:449-459, 1989) have shown that the mechanism for generating female transformer transcripts is not through the activation of the alternative splice site but by the blockage of the default splice site. We have tested whether an activation or a blockage mechanism is involved in Sex-lethal autoregulation. The male exon of Sex-lethal with flanking splice sites was placed into the introns of heterologous genes. Our results support the blockage mechanism. The poly(U) run at the male exon 3' splice site is required for sex-specific splicing. However, unlike transformer, default splicing to the male exon is sensitive to the sequence context within which the exon resides. This and the observation that the splice signals at the exon are suboptimal are discussed with regard to alternate splicing.
Collapse
Affiliation(s)
- J I Horabin
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
237
|
Steinmann-Zwicky M. Sex determination in Drosophila: sis-b, a major numerator element of the X:A ratio in the soma, does not contribute to the X:A ratio in the germ line. Development 1993; 117:763-7. [PMID: 8330539 DOI: 10.1242/dev.117.2.763] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In soma and germ cells of Drosophila, the X:A ratio builds a primary signal for sex determination, and in both tissues Sex-lethal (Sxl) function is required for cells to enter the female pathway. In somatic cells of XX animals, the products of X-chromosomal elements of the X:A ratio activate Sxl. Here I show that sisterless-b (sis-b), which is the X-chromosomal element of the somatic X:A ratio that has best been analysed, is not required for oogenesis. I also present evidence that Sxl function might not be sufficient to direct germ cells into the female pathway. These results show that the elements forming the X:A ratio in the germ line are different from the elements forming the X:A ratio in the soma and they suggest that, in the germ line, Sxl might not be regulated by the X:A ratio.
Collapse
|
238
|
Parkhurst SM, Lipshitz HD, Ish-Horowicz D. achaete-scute feminizing activities and Drosophila sex determination. Development 1993; 117:737-49. [PMID: 8330537 DOI: 10.1242/dev.117.2.737] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sex determination in Drosophila depends on X-linked ‘numerator’ genes activating early Sex-lethal (Sxl) transcription in females. One numerator gene, sisterless-b (sis-b), corresponds to the achaete-scute (AS-C) T4 basic-helix-loop-helix (bHLH) gene. Two other closely related AS-C bHLH genes, T3 and T5, appear not to function as numerator elements. We analyzed endogenous AS-C expression and show that T4 is the major AS-C numerator gene because it is expressed earlier and more strongly than are T3 and T5. Only T4 expression is detectable during the early syncytial stages when Sxl state is being determined. Nevertheless, the effects of ectopic AS-C gene expression show that T3 and T5 proteins display weak but significant feminizing activities, enhancing male-lethality, and rescuing the female-lethality of sis mutations. Detailed examination of Sxl expression in rescued embryos suggests that female cells may be viable in the absence of detectable Sxl protein expression.
Collapse
Affiliation(s)
- S M Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
239
|
Gorman M, Kuroda MI, Baker BS. Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila. Cell 1993; 72:39-49. [PMID: 8422681 DOI: 10.1016/0092-8674(93)90048-u] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In Drosophila, the single male X chromosome is transcribed at twice the rate of a single female X chromosome. This hypertranscription requires the functions of at least four autosomal male-specific lethal genes (msls) and is under the control of the Sex-lethal (Sxl) gene. One of the msls, the maleless (mle) gene, encodes a protein that is associated with the male X chromosome. To investigate how dosage compensation is regulated, we have determined whether Sxl and the other msls are required for mle X chromosome binding. We have found that in females, Sxl functions to prevent mle from binding to the two X chromosomes. Additionally, we have found that mle X chromosome binding requires wild-type msl1, msl2, and msl3 functions. These data support a model whereby the activity of the mle protein is regulated through its association with one or more of the other msl proteins.
Collapse
Affiliation(s)
- M Gorman
- Department of Biological Sciences, Stanford University, California 94305
| | | | | |
Collapse
|
240
|
Sakamoto H, Inoue K, Higuchi I, Ono Y, Shimura Y. Control of Drosophila Sex-lethal pre-mRNA splicing by its own female-specific product. Nucleic Acids Res 1992; 20:5533-40. [PMID: 1454517 PMCID: PMC334383 DOI: 10.1093/nar/20.21.5533] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drosophila melanogaster somatic sexual differentiation is accomplished by serial function of the products of sex-determination genes. Sex-lethal (Sxl), is one such gene. It is functionally expressed only in female flies. The sex-specific expression of this gene is regulated by alternative mRNA splicing which results in either the inclusion or exclusion of the translation stop codon containing third exon. Although previous genetic and molecular analyses suggest that functional Sxl expression is maintained by a positive feedback loop, where the female-specific Sxl product promotes the synthesis of its own female-specific mRNA, the mechanistic details of such regulation have remained unclear. We have developed a cotransfection system using Drosophila cultured (Kc) cells in which Sxl primary transcripts are expressed with or without the female specific Sxl product. Here we show that the female-specific Sxl product induces the synthesis of its own female-specific mRNA by negative control of male-specific splicing. Deletion, substitution, and binding experiments have demonstrated that multiple uridine-rich sequences in the introns around the male-specific third exon are involved in the splicing regulation of Sxl pre-mRNA.
Collapse
Affiliation(s)
- H Sakamoto
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
241
|
Bellen HJ, Kooyer S, D'Evelyn D, Pearlman J. The Drosophila couch potato protein is expressed in nuclei of peripheral neuronal precursors and shows homology to RNA-binding proteins. Genes Dev 1992; 6:2125-36. [PMID: 1427076 DOI: 10.1101/gad.6.11.2125] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Through enhancer detection screens we have isolated and cloned an essential gene that is expressed in the neuronal precursors and their daughter cells in the Drosophila embryonic peripheral nervous system (PNS). The gene is named couch potato (cpo), because several partial loss-of-function alleles cause hypoactive behavior in adults. Here, we present evidence that the structure of the cpo locus is unusually complex: It spans > 100 kb, encodes three different messages, is differentially spliced, lacks an AUG initiation codon, and may encode three different proteins. Two putative Cpo proteins contain similar but nonidentical RNA-binding domains that are most homologous to the RNA-binding domains of the Drosophila embryonic lethal abnormal vision (elav) gene and a human brain protein that has been implicated in a paraneoplastic sensory neuropathy. Polyclonal antibodies raised against a fusion protein localize Cpo to the nucleus. Immunocytochemical studies demonstrate that the achaete-scute and daughterless genes are required for proper expression of cpo in the PNS but not in other cells that express cpo. On the basis of our observations, we present a model in which cpo is controlled by genes that determine cells to become PNS cells. Cpo, in turn, may control the processing of RNA molecules required for the proper functioning of the PNS.
Collapse
Affiliation(s)
- H J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
242
|
Younger-Shepherd S, Vaessin H, Bier E, Jan LY, Jan YN. deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell 1992; 70:911-22. [PMID: 1525829 DOI: 10.1016/0092-8674(92)90242-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In Drosophila, sex is determined by the X:A ratio. One major numerator element on the X chromosome is sisterless-b (sis-b), also called scute, which encodes an HLH-type transcription factor. We report here that an essential pan-neural gene, the autosomal HLH gene deadpan (dpn), acts as a denominator element. As revealed by dosage-dependent dominant interactions, males die with too high a ratio of sc+ to dpn+, caused by misexpression of Sex lethal (Sxl) in embryos, and females die with too low a ratio of sc+ to dpn+, because of altered embryonic Sxl expression. In addition, we found that the HLH gene extramacrochaetae (emc), like daughterless (da), is needed maternally for proper communication of the X:A ratio, thus supporting the idea that a set of HLH genes comprises a functional cassette that makes a sensitive and stable genetic switch used in both neural determination and sex determination.
Collapse
Affiliation(s)
- S Younger-Shepherd
- Howard Hughes Medical Institute, University of California, San Francisco 94143
| | | | | | | | | |
Collapse
|
243
|
Mattox W, Ryner L, Baker B. Autoregulation and multifunctionality among trans-acting factors that regulate alternative pre-mRNA processing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41731-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
244
|
Torres M, Sánchez L. The segmentation gene runt is needed to activate Sex-lethal, a gene that controls sex determination and dosage compensation in Drosophila. Genet Res (Camb) 1992; 59:189-98. [PMID: 1511868 DOI: 10.1017/s0016672300030470] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Drosophila, sex is determined by the relative number of X chromosomes to autosomal sets (X:A ratio). The amount of products from several X-linked genes, called sisterless elements, is used to indicate to Sex-lethal the relative number of X chromosomes present in the cell. In response to the X:A signal, Sex-lethal is activated in females but remains inactive in males, being responsible for the control of both sex determination and dosage compensation. Here we find that the X-linked segmentation gene runt plays a role in this process. Reduced function of runt results in female-specific lethality and sexual transformation of XX animals that are heterozygous for Sxl or sis loss-of-function mutations. These interactions are suppressed by SxlM1, a mutation that constitutively expresses female Sex-lethal functions, and occur at the time when the X:A signal determines Sex-lethal activity. Moreover, the presence of a loss-of-function runt mutation masculinizes triploid intersexes. On the other hand, runt duplications cause a reduction in male viability by ectopic activation of Sex-lethal. We conclude that runt is needed for the initial step of Sex-lethal activation, but does not have a major role as an X-counting element.
Collapse
Affiliation(s)
- M Torres
- Centro de Investigaciones Biologicas, Madrid, Spain
| | | |
Collapse
|
245
|
Abstract
Significant progress has been made over the last year in our understanding of the roles that RNA-binding proteins play in pre-mRNA splicing, the components of the spliceosome and how these components relate to the mechanism of splicing. Of particular importance has been the sequence analysis of the first mammalian splicing factors and structural determination of an RNA-binding domain.
Collapse
Affiliation(s)
- D C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|
246
|
Affiliation(s)
- A Gann
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1P 8BT, UK
| |
Collapse
|
247
|
Abstract
Sex differentiation in Drosophila is controlled by a regulatory cascade with at least three regulated alternative RNA-processing events. The results of recent work have verified much of the earlier molecular and genetic work in this field and have provided a demonstration that both positive and negative regulatory mechanisms are involved.
Collapse
Affiliation(s)
- M McKeown
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186
| |
Collapse
|
248
|
Abstract
Different animal groups exhibit a surprisingly diversity of sex determination systems. Moreover, even systems that are superficially similar may utilize different underlying mechanisms. This diversity is illustrated by a comparison of sex determination in three well-studied model organisms: the fruitfly Drosophila melanogaster, the nematode Caenorhabditis elegans, and the mouse. All three animals exhibit male heterogamety, extensive sexual dimorphism and sex chromosome dosage compensation, yet the molecular and cellular processes involved are now known to be quite unrelated. The similarities must have arisen by convergent evolution. Studies of sex determination demonstrate that evolution can produce a variety of solutions to the same basic problems in development.
Collapse
Affiliation(s)
- J Hodgkin
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
249
|
Keyes LN, Cline TW, Schedl P. The primary sex determination signal of Drosophila acts at the level of transcription. Cell 1992; 68:933-43. [PMID: 1547493 DOI: 10.1016/0092-8674(92)90036-c] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For Drosophila, the choice between male and female development is made by the switch gene, Sxl, in response to the X:A ratio. Once Sxl is turned on in females, it actively maintains the determined state, independent of the X:A signal, by a positive autoregulatory feedback loop in which Sxl proteins direct the female-specific splicing of Sxl transcripts. In this paper we have investigated the mechanism controlling pathway initiation. Our results suggest a two-step model for the initial activation of Sxl in females. In the first step, a special class of Sxl mRNAs is expressed in female embryos from an early promoter that responds to the genes signaling the X:A ratio. The proteins produced from these early mRNAs then initiate the autoregulatory loop by directing the female-specific processing of transcripts from the late Sxl promoter.
Collapse
Affiliation(s)
- L N Keyes
- Department of Biology, Princeton University, New Jersey 08544
| | | | | |
Collapse
|
250
|
Hilfiker A, Nothiger R. The temperature-sensitive mutation vir ts(virilizer) identifies a new gene involved in sex determination of Drosophila. ACTA ACUST UNITED AC 1991; 200:240-248. [PMID: 28305793 DOI: 10.1007/bf00241293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1990] [Accepted: 07/08/1991] [Indexed: 10/26/2022]
Abstract
When XX animals homozygous for the temperature-sensitive mutation vir tsof virilizer (2-103.9) are raised at the restrictive temperature of 29° C, they are transformed into sterile intersexes with a morphology comparable to XX flies mutant at the sex-determining gene doublesex (dsx). The gonads of the vir tsintersexes are ovaries in which the germ cells undergo abortive oogenesis. At the permissive temperature of 25° C or below, XX vir tsanimals develop into marginally fertile females. The temperature-sensitive period of vir tsis within the third larval instar. XY males are not affected by the mutation. Animals that are homozygous for vir tsand either transformer (tra) or tra2 develop as pseudomales; on the other hand, constitutive expression of a female-specific tra product rescues XX animals from the effect of vir ts, but these females are sterile. The data show that tra and tra2 are epistatic to vir. Animals with only one wildtype copy of either tra or tra2 and mutant for vir tsare already transformed into intersexes at 25° C. Conversely, the presence of three copies of the tra + gene largely prevents the effect of vir tsat 29° C; such flies are practically female, but sterile. Animals homozygous for vir tsand heterozygous for dsx D/+, raised at 29° C, are transformed into severely masculinized intersexes or almost pseudomales. The observations suggest that vir acts above and via tra and tra2 to achieve proper female-specific expression of the dsx gene in XX zygotes.
Collapse
Affiliation(s)
- Andres Hilfiker
- Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Rolf Nothiger
- Zoological Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|