201
|
Gillespie PJ, Li A, Blow JJ. Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC BIOCHEMISTRY 2001; 2:15. [PMID: 11737877 PMCID: PMC60996 DOI: 10.1186/1471-2091-2-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 12/05/2001] [Indexed: 11/26/2022]
Abstract
BACKGROUND In order to ensure precise chromosome duplication, eukaryotes "license" their replication origins during late mitosis and early G1 by assembling complexes of Mcm2-7 onto them. Mcm2-7 are essential for DNA replication, but are displaced from origins as they initiate, thus ensuring that no origin fires more than once in a single cell cycle. RESULTS Here we show that a combination of purified nucleoplasmin, the origin recognition complex (ORC), Cdc6, RLF-B/Cdt1 and Mcm2-7 can promote functional origin licensing and the assembly of Mcm2-7 onto Xenopus sperm nuclei. The reconstituted reaction is inhibited by geminin, a specific RLF-B/Cdt1 inhibitor. Interestingly, the purified ORC used in the reconstitution had apparently lost the Orc6 subunit, suggesting that Orc6 is not essential for replication licensing. We use the reconstituted system to make a preliminary analysis of the different events occurring during origin assembly, and examine their nucleotide requirements. We show that the loading of Xenopus ORC onto chromatin is strongly stimulated by both ADP, ATP and ATP-gamma-S whilst the loading of Cdc6 and Cdt1 is stimulated only by ATP or ATP-gamma-S. CONCLUSIONS Nucleoplasmin, ORC, Cdc6, RLF-B/Cdt1 and Mcm2-7 are the only proteins required for functional licensing and the loading of Mcm2-7 onto chromatin. The requirement for nucleoplasmin probably only reflects a requirement to decondense sperm chromatin before ORC can bind to it. Use of this reconstituted system should allow a full biochemical analysis of origin licensing and Mcm2-7 loading.
Collapse
Affiliation(s)
- Peter J Gillespie
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
- Current address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Anatoliy Li
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
202
|
Crevel G, Ivetic A, Ohno K, Yamaguchi M, Cotterill S. Nearest neighbour analysis of MCM protein complexes in Drosophila melanogaster. Nucleic Acids Res 2001; 29:4834-42. [PMID: 11726693 PMCID: PMC96677 DOI: 10.1093/nar/29.23.4834] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The MCM proteins are a group of six proteins whose action is vital for DNA replication in eukaryotes. It has been suggested that they constitute the replicative helicase, with a subset of the proteins forming the catalytic helicase (MCM4,6,7) while the others have a loading or control function. In this paper we show that all six MCM proteins are present in equivalent amounts in soluble extracts and on chromatin. We have also analysed soluble and chromatin-associated MCM protein complexes under different conditions. This suggests that all six MCM proteins are always found in a complex with each other, although the interaction between the individual MCM proteins is not equivalent as stringent salt conditions are able to break the intact complex into a number of stable subcomplexes. These data contribute to the ongoing debate about the nature of MCM complexes, supporting the hypothesis that they act as a heterohexamer rather than as a number of different subcomplexes. Finally, using protein-protein cross-linking we have shown that MCM2 interacts directly with MCM5 and MCM6; MCM5 with MCM3 and MCM2; and MCM6 with MCM2 and MCM4. This provides the first direct information about specific subunit contacts in the MCM complex.
Collapse
Affiliation(s)
- G Crevel
- Department of Biochemistry, St Georges Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | |
Collapse
|
203
|
Kong D, DePamphilis ML. Site-specific DNA binding of the Schizosaccharomyces pombe origin recognition complex is determined by the Orc4 subunit. Mol Cell Biol 2001; 21:8095-103. [PMID: 11689699 PMCID: PMC99975 DOI: 10.1128/mcb.21.23.8095-8103.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which origin recognition complexes (ORCs) identify replication origins was investigated using purified Orc proteins from Schizosaccharomyces pombe. Orc4p alone bound tightly and specifically to several sites within S. pombe replication origins that are genetically required for origin activity. These sites consisted of clusters of A or T residues on one strand but were devoid of either alternating A and T residues or GC-rich sequences. Addition of a complex consisting of Orc1, -2, -3, -5, and -6 proteins (ORC-5) altered neither Orc4p binding to origin DNA nor Orc4p protection of specific sequences. ORC-5 alone bound weakly and nonspecifically to DNA; strong binding required the presence of Orc4p. Under these conditions, all six subunits remained bound to chromatin isolated from each phase of the cell division cycle. These results reveal that the S. pombe ORC binds to multiple, specific sites within replication origins and that site selection, at least in vitro, is determined solely by the Orc4p subunit.
Collapse
Affiliation(s)
- D Kong
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | |
Collapse
|
204
|
Saha S, Nicholson A, Kapler GM. Cloning and biochemical analysis of the tetrahymena origin binding protein TIF1: competitive DNA binding in vitro and in vivo to critical rDNA replication determinants. J Biol Chem 2001; 276:45417-26. [PMID: 11577092 DOI: 10.1074/jbc.m106162200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cis-acting type I elements regulate the initiation of DNA replication, replication fork movement, and transcription of the Tetrahymena thermophila rDNA minichromosome and are required for cell cycle-controlled replication and developmentally programmed gene amplification. Previous studies identified three in vitro single-stranded type I element binding activities that were proposed to play distinct roles in replication control. Here we describe the cloning of one of these genes, TIF1, and we provide evidence for its association with type I elements in vivo. Furthermore, we show that TIF1 interacts (in vitro and in vivo) with pause site elements (PSE), which co-localize with replication initiation and fork arrest sites, and are shown to be essential. The in vivo accessibility of PSE and type I elements to potassium permanganate suggests that origin regions are frequently unwound in native chromatin. TIF1 contains sequence similarity to the Solanum tuberosum single strand-specific transcription factor, p24, and a related Arabidopsis protein. Antisense inhibition studies suggest that TIF1 competes with other proteins for PSE and type I element binding. TIF1 displays a marked strand bias in vivo, discriminating between origin- and promoter-proximal type I elements. We propose that this bias selectively modulates the binding of a different subset of proteins to the respective regulatory elements.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding, Competitive
- Chromatin/chemistry
- Chromatin/metabolism
- Cloning, Molecular
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Electrophoresis, Gel, Two-Dimensional
- Gene Deletion
- Mice
- Mice, Knockout
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotides, Antisense/pharmacology
- Plasmids/metabolism
- Potassium Permanganate/pharmacology
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Protozoan Proteins
- Replication Origin
- Ribosomes/metabolism
- S100 Proteins/chemistry
- Sequence Homology, Amino Acid
- Tetrahymena/genetics
- Tetrahymena/metabolism
- Transcription, Genetic
- Ultraviolet Rays
Collapse
Affiliation(s)
- S Saha
- Department of Medical Biochemistry and Genetics, Texas A & M Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
205
|
Nishitani H, Taraviras S, Lygerou Z, Nishimoto T. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 2001; 276:44905-11. [PMID: 11555648 DOI: 10.1074/jbc.m105406200] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-phase onset is controlled, so that it occurs only once every cell cycle. DNA is licensed for replication after mitosis in G(1), and passage through S-phase removes the license to replicate. In fission yeast, Cdc6/18 and Cdt1, two factors required for licensing, are central to ensuring that replication occurs once per cell cycle. We show that the human Cdt1 homologue (hCdt1), a nuclear protein, is present only during G(1). After S-phase onset, hCdt1 levels decrease, and it is hardly detected in cells in early S-phase or G(2). hCdt1 can associate with the DNA replication inhibitor Geminin, however these two proteins are mostly expressed at different cell cycle stages. hCdt1 mRNA, in contrast to hCdt1 protein, is expressed in S-phase-arrested cells, and its levels do not change dramatically during a cell cycle, suggesting that proteolytic rather than transcriptional controls ensure the timely accumulation of hCdt1. Consistent with this view, proteasome inhibitors stabilize hCdt1 in S-phase. In contrast, hCdc6/18 levels are constant through most of the cell cycle and are only low for a brief period at the end of mitosis. These results suggest that the presence of active hCdt1 may be crucial for determining when licensing is legitimate in human cells.
Collapse
Affiliation(s)
- H Nishitani
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
206
|
Bodmer-Glavas M, Edler K, Barberis A. RNA polymerase II and III transcription factors can stimulate DNA replication by modifying origin chromatin structures. Nucleic Acids Res 2001; 29:4570-80. [PMID: 11713306 PMCID: PMC92542 DOI: 10.1093/nar/29.22.4570] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many transcription factors are multifunctional and also influence DNA replication. So far, their mechanism of action has remained elusive. Here we show that a DNA-binding protein could rely on the same biochemical activity that activates transcription to stimulate replication from the yeast chromosomal ARS1 origin. Unexpectedly, the ability to stimulate replication from this origin was not restricted to polymerase II transcription factors, but was a property shared by polymerase III factors. Furthermore, activation of replication did not depend on the process of transcription, but rather on the ability of DNA-binding transcription factors to remodel chromatin. The natural ARS1 activator Abf1 and the other transcription factors that stimulated replication remodeled chromatin in a very similar manner. Moreover, the presence of a histone H3 mutant that was previously shown to generally increase transcription also facilitated replication from ARS1 and partially compensated for the absence of a transcription factor. We propose that multifunctional transcription factors work by influencing the chromatin architecture at replication origins so as to generate a structure that is favorable to the initiation of replication.
Collapse
Affiliation(s)
- M Bodmer-Glavas
- Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
207
|
Koons MD, Van Scoy S, Hearing J. The replicator of the Epstein-Barr virus latent cycle origin of DNA replication, oriP, is composed of multiple functional elements. J Virol 2001; 75:10582-92. [PMID: 11602700 PMCID: PMC114640 DOI: 10.1128/jvi.75.22.10582-10592.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Accepted: 08/09/2001] [Indexed: 11/20/2022] Open
Abstract
Replication of the Epstein-Barr virus genome initiates at one of several sites in latently infected, dividing cells. One of these replication origins is close to the viral DNA maintenance element, and, together, this replication origin and the maintenance element are referred to as oriP. The replicator of oriP contains four binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA-1), the sole viral protein required for the replication and maintenance of oriP plasmids. We showed previously that these EBNA-1 sites function in pairs and that mutational inactivation of one pair does not eliminate replicator function. In this study we characterized the contribution of each EBNA-1 site within the replicator and flanking sequences through the use of an internally controlled replication assay. We present evidence that shows that all four EBNA-1 sites are required for an oriP plasmid to be replicated in every cell cycle. Results from these experiments also show that the paired EBNA-1 binding sites are not functionally equivalent and that the low affinity of sites 2 and 3 compared to that of sites 1 and 4 is not essential for replicator function. Our results suggest that a host cell protein(s) binds sequences flanking the EBNA-1 sites and that interactions between EBNA-1 and this protein(s) are critical for replicator function. Finally, we present evidence that shows that the minimal replicator of oriP consists of EBNA-1 sites 3 and 4 and two copies of a 14-bp repeat that is present in inverse orientation flanking these EBNA-1 sites. EBNA-1 sites 1 and 2, together with an element(s) within nucleotides 9138 to 9516, are ancillary elements required for full replicator activity.
Collapse
Affiliation(s)
- M D Koons
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York 11794-5222, USA
| | | | | |
Collapse
|
208
|
Novac O, Matheos D, Araujo FD, Price GB, Zannis-Hadjopoulos M. In vivo association of Ku with mammalian origins of DNA replication. Mol Biol Cell 2001; 12:3386-401. [PMID: 11694575 PMCID: PMC61172 DOI: 10.1091/mbc.12.11.3386] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ku is a heterodimeric (Ku70/86-kDa) nuclear protein with known functions in DNA repair, V(D)J recombination, and DNA replication. Here, the in vivo association of Ku with mammalian origins of DNA replication was analyzed by studying its association with ors8 and ors12, as assayed by formaldehyde cross-linking, followed by immunoprecipitation and quantitative polymerase chain reaction analysis. The association of Ku with ors8 and ors12 was also analyzed as a function of the cell cycle. This association was found to be approximately fivefold higher in cells synchronized at the G1/S border, in comparison with cells at G0, and it decreased by approximately twofold upon entry of the cells into S phase, and to near background levels in cells at G2/M phase. In addition, in vitro DNA replication experiments were performed with the use of extracts from Ku80(+/+) and Ku80(-/-) mouse embryonic fibroblasts. A decrease of approximately 70% in in vitro DNA replication was observed when the Ku80(-/-) extracts were used, compared with the Ku80(+/+) extracts. The results indicate a novel function for Ku as an origin binding-protein, which acts at the initiation step of DNA replication and dissociates after origin firing.
Collapse
Affiliation(s)
- O Novac
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
209
|
Labib K, Kearsey SE, Diffley JF. MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol Biol Cell 2001; 12:3658-67. [PMID: 11694596 PMCID: PMC60283 DOI: 10.1091/mbc.12.11.3658] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.
Collapse
Affiliation(s)
- K Labib
- ICRF Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom
| | | | | |
Collapse
|
210
|
Takahashi T, Masukata H. Interaction of fission yeast ORC with essential adenine/thymine stretches in replication origins. Genes Cells 2001; 6:837-49. [PMID: 11683912 DOI: 10.1046/j.1365-2443.2001.00468.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Eukaryotic DNA replication is initiated from distinct regions on the chromosome. However, the mechanism for recognition of replication origins is not known for most eukaryotes. In fission yeast, replication origins are isolated as autonomously replicating sequences (ARSs). Multiple adenine/thymine clusters are essential for replication, but no short consensus sequences are found. In this paper, we examined the interaction of adenine/thymine clusters with the replication initiation factor ORC. RESULTS The SpOrc1 or SpOrc2 immunoprecipitates (IPs) containing at least four subunits of SpORC, interacted with the ars2004 fragment, which is derived from a predominant replication origin on the chromosome. SpORC-IPs preferentially interacted with two regions of the ars2004, which consist of consecutive adenines and AAAAT repeats and are essential for ARS activity. The nucleotide sequences required for the interaction with SpORC-IPs correspond closely to those necessary for in vivo ARS activity. CONCLUSION Our results suggest that the SpORC interacts with adenine/thymine stretches, which have been shown to be the most important component in the fission yeast replication origin. The presence of multiple SpORC-binding sites, with certain sequence variations, is characteristic for the fission yeast replication origins.
Collapse
Affiliation(s)
- T Takahashi
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 Japan
| | | |
Collapse
|
211
|
Bielinsky AK, Blitzblau H, Beall EL, Ezrokhi M, Smith HS, Botchan MR, Gerbi SA. Origin recognition complex binding to a metazoan replication origin. Curr Biol 2001; 11:1427-31. [PMID: 11566101 DOI: 10.1016/s0960-9822(01)00444-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The initiation of DNA replication in eukaryotic cells at the onset of S phase requires the origin recognition complex (ORC) [1]. This six-subunit complex, first isolated in Saccharomyces cerevisiae [2], is evolutionarily conserved [1]. ORC participates in the formation of the prereplicative complex [3], which is necessary to establish replication competence. The ORC-DNA interaction is well established for autonomously replicating sequence (ARS) elements in yeast in which the ARS consensus sequence [4] (ACS) constitutes part of the ORC binding site [2, 5]. Little is known about the ORC-DNA interaction in metazoa. For the Drosophila chorion locus, it has been suggested that ORC binding is dispersed [6]. We have analyzed the amplification origin (ori) II/9A of the fly, Sciara coprophila. We identified a distinct 80-base pair (bp) ORC binding site and mapped the replication start site located adjacent to it. The binding of ORC to this 80-bp core region is ATP dependent and is necessary to establish further interaction with an additional 65-bp of DNA. This is the first time that both the ORC binding site and the replication start site have been identified in a metazoan amplification origin. Thus, our findings extend the paradigm from yeast ARS1 to multicellular eukaryotes, implicating ORC as a determinant of the position of replication initiation.
Collapse
Affiliation(s)
- A K Bielinsky
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Yanow SK, Lygerou Z, Nurse P. Expression of Cdc18/Cdc6 and Cdt1 during G2 phase induces initiation of DNA replication. EMBO J 2001; 20:4648-56. [PMID: 11532929 PMCID: PMC125588 DOI: 10.1093/emboj/20.17.4648] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cdc18/Cdc6 and Cdt1 are essential initiation factors for DNA replication. In this paper we show that expression of Cdc18 in fission yeast G2 cells is sufficient to override the controls that ensure one S phase per cell cycle. Cdc18 expression in G2 induces DNA synthesis by re-firing replication origins and recruiting the MCM Cdc21 to chromatin in the presence of low levels of Cdt1. However, when Cdt1 is expressed together with Cdc18 in G2, cells undergo very rapid, uncontrolled DNA synthesis, accumulating DNA contents of 64C or more. Our data suggest that Cdt1 may potentiate re-replication by inducing origins to fire more persistently, possibly by stabilizing Cdc18 on chromatin. In addition, low level expression of a mutant form of Cdc18 that cannot be phosphorylated by cyclin-dependent kinases is not sufficient to induce replication in G2, but does so only when co-expressed with Cdt1. Thus, regulation of both Cdc18 and Cdt1 in G2 plays a crucial role in preventing the re-initiation of DNA synthesis until the next cell cycle.
Collapse
Affiliation(s)
- Stephanie K. Yanow
- Imperial Cancer Research Fund, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK and
Laboratory of General Biology, School of Medicine, University of Patras, 26110, Rio, Patras, Greece Corresponding author e-mail:
| | - Zoi Lygerou
- Imperial Cancer Research Fund, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK and
Laboratory of General Biology, School of Medicine, University of Patras, 26110, Rio, Patras, Greece Corresponding author e-mail:
| | | |
Collapse
|
213
|
Perkins G, Drury LS, Diffley JF. Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. EMBO J 2001; 20:4836-45. [PMID: 11532947 PMCID: PMC125267 DOI: 10.1093/emboj/20.17.4836] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc6 DNA replication initiation factor is targeted for ubiquitin-mediated proteolysis by the E3 ubiquitin ligase SCF(CDC4) from the end of G1phase until mitosis in the budding yeast Saccharomyces cerevisiae. Here we describe a dominant-negative CDC6 mutant that, when overexpressed, arrests the cell cycle by inhibiting cyclin-dependent kinases (CDKs) and, thus, prevents passage through mitosis. This mutant protein inhibits CDKs more efficiently than wild-type Cdc6, in part because it is completely refractory to SCF(CDC4)-mediated proteolysis late in the cell cycle and consequently accumulates to high levels. The mutation responsible for this phenotype destroys a putative CDK phosphorylation site near the middle of the Cdc6 primary amino acid sequence. We show that this site lies within a novel Cdc4-interacting domain distinct from a Cdc4-interacting site identified previously near the N-terminus of the protein. We show that both sites can target Cdc6 for proteolysis in late G1/early S phase whilst only the newly identified site can target Cdc6 for proteolysis during mitosis.
Collapse
Affiliation(s)
- Gordon Perkins
- ICRF Clare Hall Laboratories, South Mimms EN6 3LD, UK
Present address: Department of Immunology, UCL Medical School, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK Corresponding author e-mail: G.Perkins and L.S.Drury contributed equally to this paper
| | | | - John F.X. Diffley
- ICRF Clare Hall Laboratories, South Mimms EN6 3LD, UK
Present address: Department of Immunology, UCL Medical School, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK Corresponding author e-mail: G.Perkins and L.S.Drury contributed equally to this paper
| |
Collapse
|
214
|
Abstract
The initiator protein Cdc6 (Cdc18 in fission yeast) plays an essential role in the initiation of eukaryotic DNA replication. In yeast the protein is expressed before initiation of DNA replication and is thought to be essential for loading of the helicase onto origin DNA. The biochemical properties of the protein, however, are largely unknown. Using three archaeal homologues of Cdc6, it was found that the proteins are autophosphorylated on Ser residues. The winged-helix domain at the C terminus of Cdc6 interacts with DNA, which apparently regulates the autophosphorylation reaction. Yeast Cdc18 was also found to autophosphorylate, suggesting that this function of Cdc6 may play a widely conserved and essential role in replication initiation.
Collapse
Affiliation(s)
- B Grabowski
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | |
Collapse
|
215
|
Vas A, Mok W, Leatherwood J. Control of DNA rereplication via Cdc2 phosphorylation sites in the origin recognition complex. Mol Cell Biol 2001; 21:5767-77. [PMID: 11486016 PMCID: PMC87296 DOI: 10.1128/mcb.21.17.5767-5777.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G(2) and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.
Collapse
Affiliation(s)
- A Vas
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
216
|
Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL. Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 2001; 98:10085-9. [PMID: 11517328 PMCID: PMC56919 DOI: 10.1073/pnas.181347998] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Accepted: 07/09/2001] [Indexed: 11/18/2022] Open
Abstract
The 165-kb chromosome of Epstein-Barr virus (EBV) is replicated by cellular enzymes only once per cell cycle in human cells that are latently infected. Here, we report that the human origin recognition complex, ORC, can be detected in association with an EBV replication origin, oriP, in cells by using antibodies against three different subunits of human ORC to precipitate crosslinked chromatin. Mcm2, a subunit of the MCM replication licensing complex, was found to associate with oriP during G(1) and to dissociate from it during S phase. The detection of ORC and Mcm2 at oriP was shown to require the presence of the 120-bp replicator of oriP. Licensing and initiation of replication at oriP of EBV thus seem to be mediated by ORC. This is an example of a virus apparently using ORC and associated factors for the propagation of its genome.
Collapse
Affiliation(s)
- B Chaudhuri
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
217
|
Schepers A, Ritzi M, Bousset K, Kremmer E, Yates JL, Harwood J, Diffley JF, Hammerschmidt W. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J 2001; 20:4588-602. [PMID: 11500385 PMCID: PMC125560 DOI: 10.1093/emboj/20.16.4588] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epstein-Barr virus (EBV) replicates in its latent phase once per cell cycle in proliferating B cells. The latent origin of DNA replication, oriP, supports replication and stable maintenance of the EBV genome. OriP comprises two essential elements: the dyad symmetry (DS) and the family of repeats (FR), both containing clusters of binding sites for the transactivator EBNA1. The DS element appears to be the functional replicator. It is not yet understood how oriP-dependent replication is integrated into the cell cycle and how EBNA1 acts at the molecular level. Using chromatin immunoprecipitation experiments, we show that the human origin recognition complex (hsORC) binds at or near the DS element. The association of hsORC with oriP depends on the DS element. Deletion of this element not only abolishes hsORC binding but also reduces replication initiation at oriP to background level. Co-immunoprecipitation experiments indicate that EBNA1 is associated with hsORC in vivo. These results indicate that oriP might use the same cellular initiation factors that regulate chromosomal replication, and that EBNA1 may be involved in recruiting hsORC to oriP.
Collapse
Affiliation(s)
- Aloys Schepers
- Department of Gene Vectors and
Institute for Immunology, National Research Centre for Environment and Health, Marchioninistrasse 25, D-81377 München, Germany, Department of Cancer Genetics, Roswell Park Cancer, Elm and Carlton Streets, Buffalo, NY 14263, USA and Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms EN6 3LD, UK Present address: GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK Corresponding author e-mail:
| | | | | | - Elisabeth Kremmer
- Department of Gene Vectors and
Institute for Immunology, National Research Centre for Environment and Health, Marchioninistrasse 25, D-81377 München, Germany, Department of Cancer Genetics, Roswell Park Cancer, Elm and Carlton Streets, Buffalo, NY 14263, USA and Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms EN6 3LD, UK Present address: GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK Corresponding author e-mail:
| | - John L. Yates
- Department of Gene Vectors and
Institute for Immunology, National Research Centre for Environment and Health, Marchioninistrasse 25, D-81377 München, Germany, Department of Cancer Genetics, Roswell Park Cancer, Elm and Carlton Streets, Buffalo, NY 14263, USA and Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms EN6 3LD, UK Present address: GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK Corresponding author e-mail:
| | - Janet Harwood
- Department of Gene Vectors and
Institute for Immunology, National Research Centre for Environment and Health, Marchioninistrasse 25, D-81377 München, Germany, Department of Cancer Genetics, Roswell Park Cancer, Elm and Carlton Streets, Buffalo, NY 14263, USA and Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms EN6 3LD, UK Present address: GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK Corresponding author e-mail:
| | - John F.X. Diffley
- Department of Gene Vectors and
Institute for Immunology, National Research Centre for Environment and Health, Marchioninistrasse 25, D-81377 München, Germany, Department of Cancer Genetics, Roswell Park Cancer, Elm and Carlton Streets, Buffalo, NY 14263, USA and Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms EN6 3LD, UK Present address: GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK Corresponding author e-mail:
| | | |
Collapse
|
218
|
Klemm RD, Bell SP. ATP bound to the origin recognition complex is important for preRC formation. Proc Natl Acad Sci U S A 2001; 98:8361-7. [PMID: 11459976 PMCID: PMC37444 DOI: 10.1073/pnas.131006898] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin recognition complex (ORC) binds origins of replication and directs the assembly of a higher order protein complex at these sites. ORC binds and hydrolyzes ATP in vitro. ATP binding to the largest subunit of ORC, Orc1p, stimulates specific binding to origin DNA; however, the function of ATP hydrolysis by ORC is unknown. To address the role of ATP hydrolysis, we have generated mutants within Orc1p that are dominant lethal. At physiological ATP concentrations, these mutants are defective for ATP hydrolysis but not ATP binding in the absence of DNA. These mutants inhibit formation of the prereplicative complex when overexpressed. The dominant lethal phenotype of these mutant ORC complexes is suppressed by simultaneous overexpression of wild-type, but not mutant, Cdc6p. Our findings suggest that these hydrolysis-defective mutants inhibit growth by titrating Cdc6p away from the origin. Based on these observations, we propose that Cdc6p specifically recognizes the ATP-bound state of Orc1p and that ATP hydrolysis is coupled to preRC disassembly.
Collapse
Affiliation(s)
- R D Klemm
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
219
|
Takeda T, Ogino K, Tatebayashi K, Ikeda H, Arai Ki, Masai H. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol Biol Cell 2001; 12:1257-74. [PMID: 11359920 PMCID: PMC34582 DOI: 10.1091/mbc.12.5.1257] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 12/27/2000] [Accepted: 02/20/2001] [Indexed: 01/31/2023] Open
Abstract
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.
Collapse
Affiliation(s)
- T Takeda
- Departments of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
220
|
Schepers A, Diffley JF. Mutational analysis of conserved sequence motifs in the budding yeast cdc6 protein 1 1Edited by M. Yaniv. J Mol Biol 2001; 308:597-608. [PMID: 11350163 DOI: 10.1006/jmbi.2001.4637] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cdc6 protein is required to load a complex of Mcm2-7 family members (the MCM complex) into prereplicative complexes at budding yeast origins of DNA replication. Cdc6p is a member of the AAA(+) superfamily of proteins, which includes the prokaryotic and eukaryotic clamp loading proteins. These proteins share a number of conserved regions of homology and a common three-dimensional architecture. Two of the conserved sequence motifs are the Walker A and B motifs that are involved in nucleotide metabolism and are essential for Cdc6p function in vivo. Here, we analyse mutants in the other conserved sequence motifs. Several of these mutants are temperature-sensitive for growth and are unable to recruit the MCM complex to chromatin at the restrictive temperature. In one such temperature-sensitive mutant, a highly conserved asparagine residue in the sensor I motif was changed to alanine. Overexpression of this mutant protein is lethal. This phenotype is very similar to the phenotype previously described for a mutation in the Walker B motif, suggesting a common role for sensor I and the Walker B motif in Cdc6 function.
Collapse
Affiliation(s)
- A Schepers
- Clare Hall Laboratories, Imperial Cancer Research Fund, South Mimms, EN6 3LD, UK
| | | |
Collapse
|
221
|
Abstract
The exact duplication of a genome once per cell division is required of every proliferating cell. To achieve this goal, eukaryotes adopt a strategy that limits every replication origin to a single initiation event within a narrow window of the cell cycle by temporally separating the assembly of the pre-replication complex (pre-RC) from the initiation of DNA synthesis. A key component of the pre-RC is the hexameric MCM complex, which is also the presumed helicase of the growing forks. An elaborate mechanism recruits the MCM complex to replication origins, and a regulatory chain reaction converts the poised, but inactive, MCM complex into an enzymatically active helicase. A growing list of proteins, including Mcm10 and Cdt1, are involved in the recruitment process. Two protein kinases, the Cdc7-Dbf4 kinase (DDK) and the cyclin-dependent kinase (CDK), trigger a chain reaction that results in the phosphorylation of the MCM complex and finally in the initiation of DNA synthesis. A composite picture from recent studies suggests that DDK is recruited to the pre-RC during G(1) phase but must wait until S phase to phosphorylate the MCM complex. CDK is required for the recruitment of Cdc45 and other downstream components of the elongation machinery.
Collapse
Affiliation(s)
- M Lei
- Dept of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
222
|
van Brabant AJ, Buchanan CD, Charboneau E, Fangman WL, Brewer BJ. An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol Cell 2001; 7:705-13. [PMID: 11336695 DOI: 10.1016/s1097-2765(01)00216-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.
Collapse
Affiliation(s)
- A J van Brabant
- University of Washington, Department of Genetics, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
223
|
Lengronne A, Pasero P, Bensimon A, Schwob E. Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. Nucleic Acids Res 2001; 29:1433-42. [PMID: 11266543 PMCID: PMC31278 DOI: 10.1093/nar/29.7.1433] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Revised: 02/01/2001] [Accepted: 02/01/2001] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic chromosome replication is initiated from numerous origins and its activation is temporally controlled by cell cycle and checkpoint mechanisms. Yeast has been very useful in defining the genetic elements required for initiation of DNA replication, but simple and precise tools to monitor S phase progression are lacking in this model organism. Here we describe a TK(+) yeast strain and conditions that allow incorporation of exogenous BrdU into genomic DNA, along with protocols to detect the sites of DNA synthesis in yeast nuclei or on combed DNA molecules. S phase progression is monitored by quantification of BrdU in total yeast DNA or on individual chromosomes. Using these tools we show that yeast chromosomes replicate synchronously and that DNA synthesis occurs at discrete subnuclear foci. Analysis of BrdU signals along single DNA molecules from hydroxyurea-arrested cells reveals that replication forks stall 8-9 kb from origins that are placed 46 kb apart on average. Quantification of total BrdU incorporation suggests that 190 'early' origins have fired in these cells and that late replicating territories might represent up to 40% of the yeast genome. More generally, the methods outlined here will help understand the kinetics of DNA replication in wild-type yeast and refine the phenotypes of several mutants.
Collapse
Affiliation(s)
- A Lengronne
- Institute of Molecular Genetics, CNRS UMR 5535 and Université Montpellier II, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
224
|
Holmes SG, Mitchell Smith M. Replication of minichromosomes in Saccharomyces cerevisiae is sensitive to histone gene copy number and strain ploidy. Yeast 2001; 18:291-300. [PMID: 11223938 DOI: 10.1002/1097-0061(20010315)18:4<291::aid-yea668>3.0.co;2-v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have characterized a defect in the mitotic transmission of plasmid minichromosomes in yeast strains deleted for the more highly expressed pair of histone H3 and H4 genes. Several observations indicate that an impairment in DNA replication contributes to the decrease in minichromosome stability. First, the maintenance of ARS plasmids that lack centromeres was also defective. Second, the addition of multiple ARS elements suppressed the defect in plasmid maintenance. Third, a synergistic increase in plasmid loss rate was seen when a plasmid containing an inefficient mutated ARS was tested in a strain deleted for histone genes, implying an interaction between ARS activity and the histone gene deletion. These results support the existence of a histone-dependent step in the initiation of DNA replication. We find that the stability of native chromosomes is not affected in strains deleted for histone genes. We propose that reduced histone H3 and H4 protein decreases the efficiency of initiation at ARS elements on plasmids and chromosomes, but that the presence of multiple origins on chromosomes compensates for the reduced efficiency. We find that decreased minichromosome stability is suppressed by increases in strain ploidy. The greater stability due to ploidy increases is not due to a relative increase in the expression of histone genes. We discuss models for the effect of strain ploidy on minichromosome maintenance.
Collapse
Affiliation(s)
- S G Holmes
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA.
| | | |
Collapse
|
225
|
Kreitz S, Ritzi M, Baack M, Knippers R. The human origin recognition complex protein 1 dissociates from chromatin during S phase in HeLa cells. J Biol Chem 2001; 276:6337-42. [PMID: 11102449 DOI: 10.1074/jbc.m009473200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the association of human origin recognition complex (ORC) proteins hOrc1p and hOrc2p with chromatin in HeLa cells. Independent procedures including limited nuclease digestion and differential salt extraction of isolated nuclei showed that a complex containing hOrc1p and hOrc2p occurs in a nuclease-resistant compartment of chromatin and can be eluted with moderate high salt concentrations. A second fraction of hOrc2p that dissociates in vitro at low salt conditions was found to occur in a chromatin compartment characterized by its high accessibility to micrococcal nuclease. Functional differences between these two sites become apparent in HeLa cells that synchronously enter the S phase after a release from a double-thymidine block. The hOrc1p/hOrc2p-containing complexes dissociate from their chromatin sites during S phase and reassociate at the end of mitosis. In contrast, the fraction of hOrc2p in nuclease-accessible, more open chromatin remains bound during all phases of the cell cycle. We propose that the hOrc1p/hOrc2p-containing complexes are components of the human origin recognition complex. Thus, the observed cell cycle-dependent release of the hOrc1p/hOrc2p-containing complexes is in line with previous studies with Xenopus and Drosophila systems, which indicated that a change in ORC stability occurs after prereplication complex formation. This could be a powerful mechanism that prevents the rereplication of already replicated chromatin in the metazoan cell cycle.
Collapse
Affiliation(s)
- S Kreitz
- Department of Biology, Universität Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
226
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
227
|
Abstract
Chromosomal origins of DNA replication in eukaryotic cells not only are crucial for understanding the basic process of DNA duplication but also provide a tool to analyze how cell cycle regulators are linked to the replication machinery. During the past decade much progress has been made in identifying replication origins in eukaryotic genomes. More recently, replication initiation point (RIP) mapping has allowed us to detect start sites for DNA synthesis at the nucleotide level and thus to monitor replication initiation events at the origin very precisely. Beyond giving us the precise positions of start sites, the application of RIP mapping in yeast and human cells has revealed a single, defined start point at which replication initiates, a scenario very reminiscent of transcription initiation. More importantly, studies in yeast have shown that the binding site for the initiator, the origin recognition complex (ORC), lies immediately adjacent to the replication start point, which suggests that ORC directs the initiation machinery to a distinct site. Therefore, in our pursuit of identifying ORC-binding sites in higher eukaryotes, RIP mapping may lead the way.
Collapse
Affiliation(s)
- A K Bielinsky
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
228
|
Tada S, Li A, Maiorano D, Méchali M, Blow JJ. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 2001; 3:107-13. [PMID: 11175741 PMCID: PMC3605706 DOI: 10.1038/35055000] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eukaryotic replication origins are 'licensed' for replication early in the cell cycle by loading Mcm(2-7) proteins. As chromatin replicates, Mcm(2-7) are removed, thus preventing the origin from firing again. Here we report the purification of the RLF-B component of the licensing system and show that it corresponds to Cdt1. RLF-B/Cdt1 was inhibited by geminin, a protein that is degraded during late mitosis. Immunodepletion of geminin from metaphase extracts allowed them to assemble licensed replication origins. Inhibition of CDKs in metaphase stimulated origin assembly only after the depletion of geminin. These experiments suggest that geminin-mediated inhibition of RLF-B/Cdt1 is essential for repressing origin assembly late in the cell cycle of higher eukaryotes.
Collapse
Affiliation(s)
- S Tada
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, Dow Street University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
229
|
Lu L, Zhang H, Tower J. Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. Genes Dev 2001; 15:134-46. [PMID: 11157771 PMCID: PMC312611 DOI: 10.1101/gad.822101] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To meet the demand for the rapid synthesis of chorion (eggshell) proteins, Drosophila ovarian follicle cells amplify the chromosomal loci containing the chorion gene clusters up to 60-fold. Amplification occurs by repeated firing of one or more origins located within each gene cluster. Deletion analyses of transgenic constructs derived from the third chromosome cluster have identified a 320-bp amplification control element (ACE3) required for amplification, as well as several stimulatory amplification enhancing regions (AERs). Two-dimensional (2D) gel analyses have identified multiple DNA replication initiation sites (origins) that partially overlap in location with ACE3 and the AERs. To further study sequence requirements for amplification, a vector was used in which transgenic constructs are protected from chromosomal position effects by flanking insulator elements, the suppressor Hairy-wing protein binding site (SHWBS). Using the buffered vector, the 320-bp ACE3 and an 884-bp element designated ori-beta were found to be necessary and sufficient for amplification. Two-dimensional gels revealed that ori-beta was acting as the origin. In contrast, origin activity could not be detected for ACE3. An insulator placed between ACE3 and ori-beta inhibited amplification, indicating that ACE3 activates ori-beta in cis. The results suggest that ACE3 acts as a replicator and support and extend the replicator model for the organization of metazoan chromosomal replicons.
Collapse
Affiliation(s)
- L Lu
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | |
Collapse
|
230
|
Abstract
The packaging of eukaryotic DNA into nucleosomes is a critical regulator of nuclear events. To address the interplay between chromatin and replication initiation, we have assessed the determinants and function of the nucleosomal configuration of S. cerevisiae replication origins. Using in vitro and in vivo assays, we demonstrate that the yeast initiator, the origin recognition complex (ORC), is required to maintain the nucleosomal configuration adjacent to origins. Disruption of the ORC-directed nucleosomal arrangement at an origin interferes with initiation of replication, but does not alter the association of ORC with the origin. Instead, the nucleosomes positioned by ORC are important for prereplicative complex formation. These findings suggest that origin-proximal nucleosomes facilitate replication initiation, and that local chromatin structure affects origin function.
Collapse
Affiliation(s)
- J R Lipford
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
231
|
Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 2000; 290:2309-12. [PMID: 11125146 DOI: 10.1126/science.290.5500.2309] [Citation(s) in RCA: 560] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In all eukaryotic organisms, inappropriate firing of replication origins during the G2 phase of the cell cycle is suppressed by cyclin-dependent kinases. Multicellular eukaryotes contain a second putative inhibitor of re-replication called geminin. Geminin is believed to block binding of the mini-chromosome maintenance (MCM) complex to origins of replication, but the mechanism of this inhibition is unclear. Here we show that geminin interacts tightly with Cdt1, a recently identified replication initiation factor necessary for MCM loading. The inhibition of DNA replication by geminin that is observed in cell-free DNA replication extracts is reversed by the addition of excess Cdt1. In the normal cell cycle, Cdt1 is present only in G1 and S, whereas geminin is present in S and G2 phases of the cell cycle. Together, these results suggest that geminin inhibits inappropriate origin firing by targeting Cdt1.
Collapse
Affiliation(s)
- J A Wohlschlegel
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
232
|
Seki T, Diffley JF. Stepwise assembly of initiation proteins at budding yeast replication origins in vitro. Proc Natl Acad Sci U S A 2000; 97:14115-20. [PMID: 11121019 PMCID: PMC18880 DOI: 10.1073/pnas.97.26.14115] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The initiation of DNA replication in the budding yeast Saccharomyces cerevisiae occurs in two sequential and mutually exclusive steps. Prereplicative complexes (pre-RCs) containing origin recognition complex (ORC), Cdc6p, and the MCM2-7 proteins assemble only under conditions of low cyclin-dependent kinase (Cdk) activity during G(1), whereas origin activation is driven by the increase in Cdk activity at the end of G(1). As a first step toward the reconstitution of this two-step process in vitro, we describe a system in which extracts prepared from G(1)-arrested cells promote sequential assembly of ORC, Cdc6p, and MCM2-7 proteins onto exogenously added origin-containing DNA. This reaction requires an intact ARS consensus sequence and requires ATP for two distinct steps. Extracts from cells arrested in mitosis also can support the binding of ORC but are unable to load either Cdc6p or MCM2-7 proteins. This system should be useful for studying the mechanism and regulation of pre-RC assembly.
Collapse
Affiliation(s)
- T Seki
- Clare Hall Laboratories, Imperial Cancer Research Fund, South Mimms, EN6 3LD, United Kingdom
| | | |
Collapse
|
233
|
Loupart ML, Krause SA, Heck MS. Aberrant replication timing induces defective chromosome condensation in Drosophila ORC2 mutants. Curr Biol 2000; 10:1547-56. [PMID: 11137005 DOI: 10.1016/s0960-9822(00)00844-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The accurate duplication and packaging of the genome is an absolute prerequisite to the segregation of chromosomes in mitosis. To understand the process of cell-cycle chromosome dynamics further, we have performed the first detailed characterization of a mutation affecting mitotic chromosome condensation in a metazoan. Our combined genetic and cytological approaches in Drosophila complement and extend existing work employing yeast genetics and Xenopus in vitro extract systems to characterize higher-order chromosome structure and function. RESULTS Two alleles of the ORC2 gene were found to cause death late in larval development, with defects in cell-cycle progression (delays in S-phase entry and metaphase exit) and chromosome condensation in mitosis. During S-phase progression in wild-type cells, euchromatin replicates early and heterochromatin replicates late. Both alleles disrupted the normal pattern of chromosomal replication, with some euchromatic regions replicating even later than heterochromatin. Mitotic chromosomes were irregularly condensed, with the abnormally late replicating regions of euchromatin exhibiting the greatest problems in mitotic condensation. CONCLUSIONS The results not only reveal novel functions for ORC2 in chromosome architecture in metazoans, they also suggest that the correct timing of DNA replication may be essential for the assembly of chromatin that is fully competent to undergo mitotic condensation.
Collapse
Affiliation(s)
- M L Loupart
- University of Edinburgh, Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
234
|
Izumi M, Yanagi K, Mizuno T, Yokoi M, Kawasaki Y, Moon KY, Hurwitz J, Yatagai F, Hanaoka F. The human homolog of Saccharomyces cerevisiae Mcm10 interacts with replication factors and dissociates from nuclease-resistant nuclear structures in G(2) phase. Nucleic Acids Res 2000; 28:4769-77. [PMID: 11095689 PMCID: PMC115166 DOI: 10.1093/nar/28.23.4769] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2000] [Revised: 10/16/2000] [Accepted: 10/16/2000] [Indexed: 11/14/2022] Open
Abstract
Mcm10 (Dna43), first identified in Saccharomyces cerevisiae, is an essential protein which functions in the initiation of DNA synthesis. Mcm10 is a nuclear protein that is localized to replication origins and mediates the interaction of the Mcm2-7 complex with replication origins. We identified and cloned a human cDNA whose product was structurally homologous to the yeast Mcm10 protein. Human Mcm10 (HsMcm10) is a 98-kDa protein of 874 amino acids which shows 23 and 21% overall similarity to Schizosaccharomyces pombe Cdc23 and S. cerevisiae Mcm10, respectively. The messenger RNA level of HsMcm10 increased at the G(1)/S-boundary when quiescent human NB1-RGB cells were induced to proliferate as is the case of many replication factors. HsMcm10 associated with nuclease-resistant nuclear structures throughout S phase and dissociated from it in G(2) phase. HsMcm10 associated with human Orc2 protein when overexpressed in COS-1 cells. HsMcm10 also interacted with Orc2, Mcm2 and Mcm6 proteins in the yeast two-hybrid system. These results suggest that HsMcm10 may function in DNA replication through the interaction with Orc and Mcm2-7 complexes.
Collapse
Affiliation(s)
- M Izumi
- Division of Radioisotope Technology, Cellular Physiology Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Takisawa H, Mimura S, Kubota Y. Eukaryotic DNA replication: from pre-replication complex to initiation complex. Curr Opin Cell Biol 2000; 12:690-6. [PMID: 11063933 DOI: 10.1016/s0955-0674(00)00153-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A common mechanism has emerged for the control of the initiation of eukaryotic DNA replication. The minichromosome maintenance protein complex (MCM) and Cdc45 have now been recognized as central components of the initiation machinery. In addition, two types of S phase promoting kinases conserved between yeast and humans play critical roles in the initiation reaction. At the onset of S phase, S phase kinases promote the association of Cdc45 with MCM at origins. Upon the formation of the MCM-Cdc45 complex at origins, the duplex DNA is unwound and various replication proteins, including DNA polymerases, are recruited onto unwound DNA. The increasing number of newly identified factors involved in the initiation reaction indicates that the control of initiation requires highly evolved machinery in eukaryotic cells.
Collapse
Affiliation(s)
- H Takisawa
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043, Osaka, Japan.
| | | | | |
Collapse
|
236
|
Kawasaki Y, Hiraga S, Sugino A. Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae. Genes Cells 2000; 5:975-89. [PMID: 11168584 DOI: 10.1046/j.1365-2443.2000.00387.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND MCM10 is essential for the initiation of chromosomal DNA replication in Saccharomyces cerevisiae. Previous work showed that Mcm10p interacts with the Mcm2-7 protein complex that may be functioning as the replication-licensing factor. In addition, Mcm10p is required during origin activation and disassembly of the prereplicative complex, which allows smooth passage of replication forks. RESULTS We show that an mcm10 mutation causes a slow progression of DNA synthesis and a loss of chromosome integrity during the S phase and prevents entry into mitosis, despite apparent completion of chromosomal DNA replication at nonpermissive temperatures. Furthermore, Mcm10p interacts genetically with the origin recognition complex (ORC) and various replication elongation factors, including a subunit of DNA polymerases epsilon and delta. Mcm10p is an abundant protein (approximately 4 x 10(4) copies per haploid cell) that is almost exclusively localized in the chromatin and/or nuclear matrix fractions during all phases of the cell cycle. When it is visualized by the chromosome-spreading method followed by immunostaining, Mcm10p forms punctate foci on chromatin throughout the cell cycle and these foci mostly overlap with those of Orc1p, a component of ORC. CONCLUSIONS These results suggest that Mcm10p, like the Mcm2-7 proteins, is a critical component of the prereplication chromatin and acts together with ORC during the initiation of chromosomal DNA replication; in addition, Mcm10p plays an important role during the elongation of DNA replication.
Collapse
Affiliation(s)
- Y Kawasaki
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
237
|
Méndez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20:8602-12. [PMID: 11046155 PMCID: PMC102165 DOI: 10.1128/mcb.20.22.8602-8612.2000] [Citation(s) in RCA: 764] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence obtained from studies with yeast and Xenopus indicate that the initiation of DNA replication is a multistep process. The origin recognition complex (ORC), Cdc6p, and minichromosome maintenance (MCM) proteins are required for establishing prereplication complexes, upon which initiation is triggered by the activation of cyclin-dependent kinases and the Dbf4p-dependent kinase Cdc7p. The identification of human homologues of these replication proteins allows investigation of S-phase regulation in mammalian cells. Using centrifugal elutriation of several human cell lines, we demonstrate that whereas human Orc2 (hOrc2p) and hMcm proteins are present throughout the cell cycle, hCdc6p levels vary, being very low in early G(1) and accumulating until cells enter mitosis. hCdc6p can be polyubiquitinated in vivo, and it is stabilized by proteasome inhibitors. Similar to the case for hOrc2p, a significant fraction of hCdc6p is present on chromatin throughout the cell cycle, whereas hMcm proteins alternate between soluble and chromatin-bound forms. Loading of hMcm proteins onto chromatin occurs in late mitosis concomitant with the destruction of cyclin B, indicating that the mitotic kinase activity inhibits prereplication complex formation in human cells.
Collapse
Affiliation(s)
- J Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
238
|
Abstract
Xenopus egg extracts initiate replication at specific origin sites within mammalian G1-phase nuclei. Similarly, S-phase extracts from Saccharomyces cerevisiae initiate DNA replication within yeast nuclei at specific yeast origin sequences. Here we show that Xenopus egg extracts can initiate DNA replication within G1-phase yeast nuclei but do not recognize yeast origin sequences. When G1-phase yeast nuclei were introduced into Xenopus egg extract, semiconservative, aphidicolin-sensitive DNA synthesis was induced after a brief lag period and was restricted to a single round of replication. The specificity of initiation within the yeast 2 microm plasmid as well as in the vicinity of the chromosomal origin ARS1 was evaluated by neutral two-dimensional gel electrophoresis of replication intermediates. At both locations, replication was found to initiate outside of the ARS element. Manipulation of both cis- and trans-acting elements in the yeast genome before introduction of nuclei into Xenopus egg extract may provide a system with which to elucidate the requirements for vertebrate origin recognition.
Collapse
Affiliation(s)
- J R Wu
- Shanghai Institute of Biochemistry and Shanghai Research Center of Life Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
239
|
Kimura S, Ishibashi T, Hatanaka M, Sakakibara Y, Hashimoto J, Sakaguchi K. Molecular cloning and characterization of a plant homologue of the origin recognition complex 1 (ORC1). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 158:33-39. [PMID: 10996242 DOI: 10.1016/s0168-9452(00)00297-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
By using the rice EST database, we have isolated a 2.8 kb cDNA, termed Oryza sativa ORC1 (OsORC1), from rice (O. sativa) encoding a protein that shows homology with the eukaryotic ORC1 proteins. Alignment of the OsORC1 protein sequence with the sequence of ORC1 from human and yeasts S. cerevisiae and S. pombe showed a high degree of sequence homology (38.7, 32.9 and 35.0% identity, respectively), particularly around the C-terminal region containing the CDC-NTP domain. Interestingly, the OsORC1 protein had an A+T hook-like motif, which was not present in the human or yeast genes. Genomic analysis indicated that OsORC1 existed as a single copy per genome. OsORC1 transcripts were expressed strongly in root tips and weakly in young leaves containing root apical meristem and marginal meristem, respectively. No expression was detected in the mature leaves. The level of OsORC1 expression was significantly reduced when cell proliferation was temporarily halted by the removal of sucrose from the growth medium. When the growth-halted cells began to re-grow following addition of sucrose to the medium, OsORC1 was again expressed at high levels. These results suggested that OsORC1 is required for cell proliferation. The role of OsORC1 in plant DNA replication will be discussed.
Collapse
Affiliation(s)
- S Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, 278-8510, Chiba-ken, Japan
| | | | | | | | | | | |
Collapse
|
240
|
Lee DG, Makhov AM, Klemm RD, Griffith JD, Bell SP. Regulation of origin recognition complex conformation and ATPase activity: differential effects of single-stranded and double-stranded DNA binding. EMBO J 2000; 19:4774-82. [PMID: 10970868 PMCID: PMC302069 DOI: 10.1093/emboj/19.17.4774] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae origin recognition complex (ORC) is bound to origins of DNA replication throughout the cell cycle and directs the assembly of higher-order protein-DNA complexes during G(1). To examine the fate of ORC when origin DNA is unwound during replication initiation, we determined the effect of single-stranded DNA (ssDNA) on ORC. We show that ORC can bind ssDNA and that ORC bound to ssDNA is distinct from that bound to double-stranded origin DNA. ssDNA stimulated ORC ATPase activity, whereas double-stranded origin DNA inhibited the same activity. Electron microscopy studies revealed two alternative conformations of ORC: an extended conformation stabilized by origin DNA and a bent conformation stabilized by ssDNA. Therefore, ORC appears to exist in two distinct states with respect to its conformation and ATPase activity. Interestingly, the effect of ssDNA on these properties of ORC is correlated with ssDNA length. Since double-stranded origin DNA and ssDNA differentially stabilize these two forms of ORC, we propose that origin unwinding triggers a transition between these alternative states.
Collapse
Affiliation(s)
- D G Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
241
|
Abstract
The MCM proteins are essential replication initiation factors originally identified as proteins required for minichromosome maintenance in Saccharomyces cerevisiae. The best known among them are a family of six structurally related proteins, MCM2-7, which are evolutionally conserved in all eukaryotes. The MCM2-7 proteins form a hexameric complex. This complex is a key component of the prereplication complex that assembles at replication origins during early G1 phase. New evidence suggests that the MCM2-7 proteins may be involved not only in the initiation but also in the elongation of DNA replication. Orchestration of the functional interactions between the MCM2-7 proteins and other components of the prereplication complex by cell cycle-dependent protein kinases results in initiation of DNA synthesis once every cell cycle.
Collapse
Affiliation(s)
- B K Tye
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-2703, USA
| |
Collapse
|
242
|
Feng L, Hu Y, Wang B, Wu L, Jong A. Loss control of Mcm5 interaction with chromatin in cdc6-1 mutated in CDC-NTP motif. DNA Cell Biol 2000; 19:447-57. [PMID: 10945234 DOI: 10.1089/10445490050085933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae Cdc6 plays an essential role in establishing and maintaining the prereplicative complex (pre-RC) by interacting with the origin recognition complex (ORC) and associating with chromatin origins. These interactions are required to load minichromosome maintenance proteins (MCMs) and other initiator proteins onto replication origins. Although the temperature-sensitive cdc6 mutant, cdc6-1, has been widely used for these studies, the molecular mechanism of the cdc6-1 mutation has been unclear. In this study, we have identified a base substitution at Gly260-->Asp, near the CDC-NTP motif. Using a chromatin immunoprecipitation assay (CHIP), we found that cdc6-1 fails to load Mcm5 onto the replication origins. Chromatin fractions were used to study Mcm5 binding in both the wildtype and mutant background. These studies indicated that Cdc6 is also involved in unloading Mcm5 from chromatin. Specifically, the cdc6-1 mutation protein, cdc6(G260D), which failed to load Mcm5 onto replication origins, also failed to unload the Mcm5 protein. Furthermore, the overexpression of wildtype CDC6 accelerated the unloading of Mcm5 from chromatin fractions. In the absence of functional Cdc6, the Mcm5 protein showed nonorigin binding to chromatin with the cell cycle arrested at the G1S phase transition. Our results suggested that the cdc6(G260D) mutant protein fails to assemble an operational replicative complex and that wildtype Cdc6 plays a role in preventing re-replication by controlling the unloading the MCMs from chromatin origins.
Collapse
Affiliation(s)
- L Feng
- Division of Hematology/Oncology, Childrens Hospital Los Angeles, and University of Southern California, School of Medicine, 90027, USA
| | | | | | | | | |
Collapse
|
243
|
Mizushima T, Takahashi N, Stillman B. Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev 2000. [DOI: 10.1101/gad.14.13.1631] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An interaction between the origin recognition complex (ORC) and Cdc6p is the first and a key step in the initiation of chromosomal DNA replication. We describe the assembly of an origin-dependent complex containing ORC and Cdc6p from Saccharomyces cerevisiae. Cdc6p increases the DNA binding specificity of ORC by inhibiting non-specific DNA binding of ORC. Cdc6p induces a concomitant change in the conformation of ORC and mutations in the Cdc6p Walker A and Walker B motifs, or ATP-γ-S inhibited these activities of Cdc6p. These data suggest that Cdc6p modifies ORC function at DNA replication origins. On the basis of these results in yeast, we propose that Cdc6p may be an essential determinant of origin specificity in metazoan species.
Collapse
|
244
|
Geraghty DS, Ding M, Heintz NH, Pederson DS. Premature structural changes at replication origins in a yeast minichromosome maintenance (MCM) mutant. J Biol Chem 2000; 275:18011-21. [PMID: 10751424 DOI: 10.1074/jbc.m909787199] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cdc7p protein kinase in the budding yeast Saccharomyces cerevisiae is thought to help trigger DNA replication by modifying one or more of the factors that assemble at replication origins (ARSs). To investigate events catalyzed by Cdc7p, we compared the structure of replication origins in cells containing conditional mutations in Cdc7p and Cdc8p, a thymidylate kinase that is required for DNA synthesis. High resolution genomic footprinting indicated that the presumptive lagging strand template in ARS1 became highly sensitive to KMnO(4) modification after the CDC7 execution point. These results suggested that Cdc7p triggers DNA unwinding. The transition from late G(1) phase to the CDC7 execution point and from the CDC7 to the CDC8 execution points was accompanied by small but ARS-dependent changes in DNA topology. These results suggested that DNA unwinding before the CDC8 execution point either is highly localized or that the torsional stress associated with initial DNA unwinding is minimized by compensatory protein-DNA structural changes. The ARS DNA structural attributes evident in cells blocked at the CDC8 execution point were also evident in alpha-factor-blocked, G(1) phase cells containing the CDC7 bypass mutant mcm5/cdc46-bob1. This result strongly suggests that the structural changes during the transition from the CDC7 to CDC8 execution points depend on the Cdc7p protein kinase and involve alteration of the minichromosome maintenance protein complex.
Collapse
Affiliation(s)
- D S Geraghty
- Departments of Microbiology and Molecular Genetics and Pathology and the Markey Center for Molecular Genetics, University of Vermont School of Medicine, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
245
|
Abstract
Great insight into the molecular details of cell cycle regulation has been obtained in the past decade. However, most of the progress has been in defining the regulation of the family of cyclin-dependent kinases (CDKs). Recent studies of a myriad of eukaryotic organisms have defined both the regulation and substrates of Cdc7p kinase, which forms a CDK-cyclin-like complex with Dbf4p, is necessary for the initiation of DNA replication and has been conserved in evolution. This kinase is also required for the induction of mutations after DNA damage and for commitment to recombination in the meiotic cell cycle. However, less is known about the role of the kinase in these processes. In a manner similar to CDKs, Cdc7p is activated by a regulatory subunit, Dbf4, the levels of which fluctuate during the cell cycle. One or more subunits of the conserved MCM helicase complex at chromosomal origins of DNA replication are substrates for the kinase during S phase. Phosphorylation of the MCM complex by Cdc7p-Dbf4p might activate DNA replication by unwinding DNA. Therefore, activation of Cdc7p is required for DNA replication. Given that Cdc7p-Dbf4 kinase is overexpressed in many neoplastic cells and tumors, it might be an important early biomarker during cancer progression.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
246
|
Jares P, Blow JJ. Xenopus Cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev 2000. [DOI: 10.1101/gad.14.12.1528] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The assembly and disassembly of protein complexes at replication origins play a crucial role in the regulation of chromosomal DNA replication. The sequential binding of the origin recognition complex (ORC), Cdc6, and the minichromosome maintenance (MCM/P1) proteins produces a licensed replication origin. Before the initiation of replication can occur, each licensed origin must be acted upon by S phase-inducing CDKs and the Cdc7 protein kinase. In the present report we describe the role of Xenopus Cdc7 (XCdc7) in DNA replication using cell-free extracts of Xenopus eggs. We show that XCdc7 binds to chromatin during G1 and S phase. XCdc7 associates with chromatin only once origins have been licensed, but this association does not require the continued presence of XORC or XCdc6 once they have fulfilled their essential role in licensing. Moreover, XCdc7 is required for the subsequent CDK-dependent loading of XCdc45 but is not required for the destabilization of origins that occurs once licensing is complete. Finally, we show that CDK activity is not necessary for XCdc7 to associate with chromatin, induce MCM/P1 phosphorylation, or perform its essential replicative function. From these results we suggest a simple model for the assembly of functional initiation complexes in the Xenopus system.
Collapse
|
247
|
de Stanchina E, Gabellini D, Norio P, Giacca M, Peverali FA, Riva S, Falaschi A, Biamonti G. Selection of homeotic proteins for binding to a human DNA replication origin. J Mol Biol 2000; 299:667-80. [PMID: 10835276 DOI: 10.1006/jmbi.2000.3782] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that a cell cycle-dependent nucleoprotein complex assembles in vivo on a 74 bp sequence within the human DNA replication origin associated to the Lamin B2 gene. Here, we report the identification, using a one-hybrid screen in yeast, of three proteins interacting with the 74 bp sequence. All of them, namely HOXA13, HOXC10 and HOXC13, are orthologues of the Abdominal-B gene of Drosophila melanogaster and are members of the homeogene family of developmental regulators. We describe the complete open reading frame sequence of HOXC10 and HOXC13 along with the structure of the HoxC13 gene. The specificity of binding of these two proteins to the Lamin B2 origin is confirmed by both band-shift and in vitro footprinting assays. In addition, the ability of HOXC10 and HOXC13 to increase the activity of a promoter containing the 74 bp sequence, as assayed by CAT-assay experiments, demonstrates a direct interaction of these homeoproteins with the origin sequence in mammalian cells. We also show that HOXC10 expression is cell-type-dependent and positively correlates with cell proliferation.
Collapse
Affiliation(s)
- E de Stanchina
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Via Abbiategrasso 207, Pavia, 27100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
Proteins that bind and hydrolyze ATP are frequently involved in the early steps of DNA replication. Recent studies of Saccharomyces cerevisiae suggest that two members of the AAA+ ATPase family--the origin recognition complex and Cdc6p--have separable roles for ATP binding and ATP hydrolysis during eukaryotic DNA replication. Intriguingly, the proposed regulation of these eukaryotic replication proteins by ATP has functional similarities to the ATP-dependent control of the DnaA and DnaC initiation factors from Escherichia coli. Comparison of the ATP regulation of these factors suggests that ATP binding and hydrolysis acts as a molecular switch that couples key events during initiation of replication. This switch results in a significant change in protein function.
Collapse
Affiliation(s)
- D G Lee
- Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
249
|
Nougarède R, Della Seta F, Zarzov P, Schwob E. Hierarchy of S-phase-promoting factors: yeast Dbf4-Cdc7 kinase requires prior S-phase cyclin-dependent kinase activation. Mol Cell Biol 2000; 20:3795-806. [PMID: 10805723 PMCID: PMC85702 DOI: 10.1128/mcb.20.11.3795-3806.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In all eukaryotes, the initiation of DNA synthesis requires the formation of prereplicative complexes (pre-RCs) on replication origins, followed by their activation by two S-T protein kinases, an S-phase cyclin-dependent kinase (S-CDK) and a homologue of yeast Dbf4-Cdc7 kinase (Dbf4p-dependent kinase [DDK]). Here, we show that yeast DDK activity is cell cycle regulated, though less tightly than that of the S-CDK Clb5-Cdk1, and peaks during S phase in correlation with Dbf4p levels. Dbf4p is short-lived throughout the cell cycle, but its instability is accentuated during G(1) by the anaphase-promoting complex. Downregulating DDK activity is physiologically important, as joint Cdc7p and Dbf4p overexpression is lethal. Because pre-RC formation is a highly ordered process, we asked whether S-CDK and DDK need also to function in a specific order for the firing of origins. We found that both kinases are activated independently, but we show that DDK can perform its function for DNA replication only after S-CDKs have been activated. Cdc45p, a protein needed for initiation, binds tightly to chromatin only after S-CDK activation (L. Zou and B. Stillman, Science 280:593-596, 1998). We show that Cdc45p is phosphorylated by DDK in vitro, suggesting that it might be one of DDK's critical substrates after S-CDK activation. Linking the origin-bound DDK to the tightly regulated S-CDK in a dependent sequence of events may ensure that DNA replication initiates only at the right time and place.
Collapse
Affiliation(s)
- R Nougarède
- Institute of Molecular Genetics, CNRS UMR 5535 and Université Montpellier II, F-34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
250
|
Natale DA, Li CJ, Sun WH, DePamphilis ML. Selective instability of Orc1 protein accounts for the absence of functional origin recognition complexes during the M-G(1) transition in mammals. EMBO J 2000; 19:2728-38. [PMID: 10835370 PMCID: PMC212765 DOI: 10.1093/emboj/19.11.2728] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the events leading to initiation of DNA replication in mammalian chromosomes, the time when hamster origin recognition complexes (ORCs) became functional was related to the time when Orc1, Orc2 and Mcm3 proteins became stably bound to hamster chromatin. Functional ORCs, defined as those able to initiate DNA replication, were absent during mitosis and early G(1) phase, and reappeared as cells progressed through G(1) phase. Immunoblotting analysis revealed that hamster Orc1 and Orc2 proteins were present in nuclei at equivalent concentrations throughout the cell cycle, but only Orc2 was stably bound to chromatin. Orc1 and Mcm3 were easily eluted from chromatin during mitosis and early G(1) phase, but became stably bound during mid-G(1) phase, concomitant with the appearance of a functional pre-replication complex at a hamster replication origin. Since hamster Orc proteins are closely related to their human and mouse homologs, the unexpected behavior of hamster Orc1 provides a novel mechanism in mammals for delaying assembly of pre-replication complexes until mitosis is complete and a nuclear structure has formed.
Collapse
Affiliation(s)
- D A Natale
- National Institute of Child Health and Human Development, Building 6, Room 3A02, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | |
Collapse
|