201
|
Affiliation(s)
- J Stubbe
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
202
|
Alcaín FJ, Löw H. Ceruloplasmin releases pH-induced inhibition of cell proliferation stimulated by growth factors. Redox Rep 1997; 3:287-93. [PMID: 9754327 DOI: 10.1080/13510002.1997.11747125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Swiss 3T3 fibroblasts can be weakly stimulated to grow by bombesin, epidermal growth factor or ceruloplasmin when cells are maintained in Dulbecco's Modified Essential Medium (DMEM), the pH of which is 7.75. Addition of insulin synergizes with the other mitogens. However, only ceruloplasmin promotes DNA synthesis in Minimum Essential Medium (MEM). The pH in this medium is 7.0. All the other growth factors synergize with the ceruloplasmin effects, but such synergism is not evident with insulin. If the pH in MEM is increased to 7.25 or 7.75 by supplementation with HEPES or NaHCO3, respectively, the results are similar to those found in DMEM. Since the oxidation of iron is increased at alkaline pH, the reoxidation of iron at the cell surface may facilitate growth at alkaline pH. We propose that iron reoxidation is limiting for cell growth and that part of the ceruloplasmin effect is mediated by its action as a terminal oxidase for ferrous iron on the cell surface. Observations consistent with this explanation include: 1) combinations of insulin with bombesin or epidermal growth factors do not promote cell proliferation at pH 7.0; 2) fetal calf serum, which has ferroxidase activity, and ceruloplasmin plus or minus other growth factors stimulate cell proliferation at pH 7.0; and 3) alkaline pH also restores the mitogenic effect of growth factors.
Collapse
Affiliation(s)
- F J Alcaín
- Departamento de Biología Celular, Universidad de Córdoba, Spain. bc1altef/@uco.es
| | | |
Collapse
|
203
|
Fearnhead HO, McCurrach ME, O'Neill J, Zhang K, Lowe SW, Lazebnik YA. Oncogene-dependent apoptosis in extracts from drug-resistant cells. Genes Dev 1997; 11:1266-76. [PMID: 9171371 DOI: 10.1101/gad.11.10.1266] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many genotoxic agents kill tumor cells by inducing apoptosis; hence, mutations that suppress apoptosis produce resistance to chemotherapy. Although directly activating the apoptotic machinery may bypass these mutations, how to achieve this activation in cancer cells selectively is not clear. In this study, we show that the drug-resistant 293 cell line is unable to activate components of the apoptotic machinery-the ICE-like proteases (caspases)-following treatment with an anticancer drug. Remarkably, extracts from untreated cells spontaneously activate caspases and induce apoptosis in a cell-free system, indicating that drug-resistant cells have not only the apoptotic machinery but also its activator. Comparing extracts from cells with defined genetic differences, we show that this activator is generated by the adenovirus E1A oncogene and is absent from normal cells. We provide preliminary characterization of this oncogene generated activity (OGA) and show that partially purified OGA activates caspases when added to extracts from untransformed cells. We suggest that agents that link OGA to caspases in cells would kill tumor cells otherwise resistant to conventional cancer therapy. As this killing relies on an activity generated by an oncogene, the effect of these agents should be selective for transformed cells.
Collapse
|
204
|
Romanova D, Vachalkova A, Szekeres T, Elford HL, Novotny L. The new inhibitors of ribonucleotide reductase--comparison of some physico-chemical properties. J Pharm Biomed Anal 1997; 15:951-6. [PMID: 9160261 DOI: 10.1016/s0731-7085(96)01937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amidox (AX), didox (DX) and trimidox (TX), compounds synthetized as new ribonucleotide reductase inhibitors, have been investigated by ultraviolet (UV) spectrophotometry, polarography and high performance liquid chromatography (HPLC). The experiments have been performed at various pH values. The changes in UV absorption of the compounds studied were recorded and it was demonstrated that these changes are related to the pH and to structural features of the investigated molecules. From the compounds included in our series of experiments, only amidox and trimidox are reduced during polarographic experiments in Britton-Robinson buffer. The reduction of both compounds proceeded in two one-electron steps in acidic pH. One two-electron diffuse irreversible wave was observed at basic pH. The values of the half-wave potential became more negative in accordance with the increasing pH. HPLC assay also showed changes in the retention of compounds investigated, particularly when the pH of the mobile phase was close to the dissociation constant of the particular drug. The changes of physico-chemical properties detected by the all used methods are related to different chemical structures (the most significant changes were observed in alkaline pH).
Collapse
Affiliation(s)
- D Romanova
- Cancer Research Institute Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
205
|
Jeong JK, Huang Q, Lau SS, Monks TJ. The response of renal tubular epithelial cells to physiologically and chemically induced growth arrest. J Biol Chem 1997; 272:7511-8. [PMID: 9054455 DOI: 10.1074/jbc.272.11.7511] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cells respond to a variety of stresses by activating the transcription of a battery of "acute phase" or "stress response" genes. The nature of this response is tailored to the nature of the stress. The extent to which physiologically and pathophysiologically induced growth arrest share common genomic responses is unclear. We therefore compared the effects of a physiologically induced (serum and nutrient depletion) and a chemically induced (2-Br-bis-(GSyl)HQ and 2-Br-6-(GSyl)HQ) stress in renal tubular epithelial cells (LLC-PK1). The response to physiological stress, induced by serum depletion, involves growth arrest characterized by an inhibition of DNA synthesis that occurs in the absence of a decrease in histone mRNA or an increase in gadd153 mRNA, one of the growth arrest and DNA damage inducible genes. In contrast, the chemical-induced stress involves growth arrest accompanied by a decrease in histone mRNA, particularly core histone H2B and H2A mRNA, and the induction of gadd153. Chemical-induced changes in histone mRNA inversely correlate to changes in the expression of a stress gene, hsp70, whose expression is dependent upon the maintenance of appropriate nucleosomal structure.
Collapse
Affiliation(s)
- J K Jeong
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
206
|
Davey S, Nass ML, Ferrer JV, Sidik K, Eisenberger A, Mitchell DL, Freyer GA. The fission yeast UVDR DNA repair pathway is inducible. Nucleic Acids Res 1997; 25:1002-8. [PMID: 9023111 PMCID: PMC146545 DOI: 10.1093/nar/25.5.1002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In addition to nucleotide excision repair (NER), the fission yeast Schizosaccharomyces pombe possesses a UV damage endonuclease (UVDE) for the excision of cyclobutane pyrimidine dimers and 6-4 pyrimidine pyrimidones. We have previously described UVDE as part of an alternative excision repair pathway, UVDR, for UV damage repair. The existence of two excision repair processes has long been postulated to exist in S.pombe, as NER-deficient mutants are still proficient in the excision of UV photoproducts. UVDE recognizes the phosphodiester bond immediately 5'of the UV photoproducts as the initiating event in this process. We show here that UVDE activity is inducible at both the level of uve1+ mRNA and UVDE enzyme activity. Further, we show that UVDE activity is regulated by the product of the rad12 gene.
Collapse
Affiliation(s)
- S Davey
- Cancer Research Laboratories, Queen's University, Kingston, Canada K7L 3N6
| | | | | | | | | | | | | |
Collapse
|
207
|
Affiliation(s)
- A G Paulovich
- Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
208
|
Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:581-6. [PMID: 9012827 PMCID: PMC19556 DOI: 10.1073/pnas.94.2.581] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1996] [Accepted: 11/01/1996] [Indexed: 02/03/2023] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, DNA damage or ribonucleotide depletion causes the transcriptional induction of an array of genes with known or putative roles in DNA repair. The ATM-like kinase, Mec1, and the serine/threonine protein kinases, Rad53 and Dun1, are required for this transcriptional response. In this paper, we provide evidence suggesting that another kinase, Hrr25, is also involved in the transcriptional response to DNA damage through its interaction with the transcription factor, Swi6. The Swi6 protein interacts with Swi4 to form the SBF complex and with Mbp1 to form the MBF complex. SBF and MBF are required for the G1-specific expression of G1 cyclins and genes required for S-phase. We show that Swi6 associates with and is phosphorylated by Hrr25 in vitro. We find that swi4, swi6, and hrr25 mutants, but not mbp1 mutants, are sensitive to hydroxyurea and the DNA-damaging agent methyl methane-sulfonate and are defective in the transcriptional induction of a subset of DNA damage-inducible genes. Both the sensitivity of swi6 mutants to methyl methanesulfonate and hydroxyurea and the transcriptional defect of hrr25 mutants are rescued by overexpression of SWI4, implicating the SBF complex in the Hrr25/Swi6-dependent response to DNA damage.
Collapse
Affiliation(s)
- Y Ho
- Department of Molecular and Medical Genetics, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
209
|
Oliver FJ, Collins MK, López-Rivas A. dNTP pools imbalance as a signal to initiate apoptosis. EXPERIENTIA 1996; 52:995-1000. [PMID: 8917730 DOI: 10.1007/bf01920108] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fidelity in DNA synthesis and repair is largely dependent on a balanced supply of deoxynucleotide triphosphate (dNTP) pools. Results from different groups have shown that alterations in dNTP supply result in DNA fragmentation and cell death with characteristics of apoptosis. We have recently shown that in apoptosis driven by deprivation of interleukin-3 (IL-3) in a murine hemopoietic cell line, there is a rapid imbalance in the availability of dNTP that precedes DNA fragmentation. In these cells, dNTP pool balance is closely coupled to the function of the salvage pathway of dNTP synthesis. Apoptosis, induced by treatment of these cells with drugs that inhibit the de novo dNTP synthesis, is prevented when dNTP precursors are supplied through the salvage pathway. IL-3 regulates thymidine kinase activity, suggesting that alterations in dNTP metabolism after IL-3 deprivation could be a relevant event in the commitment of hemopoietic cells to apoptosis.
Collapse
Affiliation(s)
- F J Oliver
- Instituto de Parasitología y Biomedicina, C.S.I.C., Granada, Spain
| | | | | |
Collapse
|
210
|
Navas TA, Sanchez Y, Elledge SJ. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 1996; 10:2632-43. [PMID: 8895664 DOI: 10.1101/gad.10.20.2632] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In response to DNA damage and replication blocks, yeast cells arrest at distinct points in the cell cycle and induce the transcription of genes whose products facilitate DNA repair. Examination of the inducibility of RNR3 in response to UV damage has revealed that the various checkpoint genes can be arranged in a pathway consistent with their requirement to arrest cells at different stages of the cell cycle. While RAD9, RAD24, and MEC3 are required to activate the DNA damage checkpoint when cells are in G1 or G2, POL2 is required to sense UV damage and replication blocks when cells are in S phase. The phosphorylation of the essential central transducer, Rad53p, is dependent on POL2 and RAD9 in response to UV damage, indicating that RAD53 functions downstream of both these genes. Mutants defective for both pathways are severely deficient in Rad53p phosphorylation and RNR3 induction and are significantly more sensitive to DNA damage and replication blocks than single mutants alone. These results show that POL2 and RAD9 function in parallel branches for sensing and transducing the UV DNA damage signal. Each of these pathways subsequently activates the central transducers Mec1p/Esr1p/Sad3p and Rad53p/Mec2p/Sad1p, which are required for both cell-cycle arrest and transcriptional responses.
Collapse
Affiliation(s)
- T A Navas
- Verna and Mars McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
211
|
Harris P, Kersey PJ, McInerny CJ, Fantes PA. Cell cycle, DNA damage and heat shock regulate suc22+ expression in fission yeast. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:284-91. [PMID: 8842148 DOI: 10.1007/bf02173774] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The suc22+ gene of Schizosaccharomyces pombe encodes the small subunit of ribonucleotide reductase. Two transcripts that hybridise to suc22+ have previously been described: a constitutive transcript of 1.5 kb, and a transcript of approximately 1.9 kb that is induced when DNA replication is blocked by hydroxyurea. In this paper we show that both transcripts derive from the suc22+ gene, are polyadenylated, and have transcription initiation sites separated by approximately 550 nucleotides. The absence of translation initiation codons and predicted intron splice sites within this 550 nucleotide region suggests strongly that both transcripts encode the same protein. Under normal growth conditions, the larger suc22+ transcript is present at a very low level. This low level expression is periodic during the cell cycle, showing a pattern similar to that of other genes under regulation by MCB elements with a maximum in G1/S phase. Consistent with this, there are MCB elements upstream of the initiation site of the transcript. This pattern of expression contrasts with the continuous expression, at a much higher level, of the smaller suc22+ transcript. The larger suc22+ transcript is induced by exposure of cells to 4-nitroquinoline oxide (4-NQO),a UV-mimetic agent that causes DNA damage. The transcriptional response to 4-NQO is observed in cells previously arrested in G2 by a cdc2ts mutation, demonstrating that induction can occur outside S phase. We show that the rad1+ gene, part of the mitotic checkpoint, is required for induction of the large transcript. Exposure of cells to heat shock also induces the suc22+ large transcript: a consensus heat shock element has been identified upstream of the large transcript start site.
Collapse
Affiliation(s)
- P Harris
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | |
Collapse
|
212
|
Oliver FJ, Collins MK, López-Rivas A. Regulation of the salvage pathway of deoxynucleotides synthesis in apoptosis induced by growth factor deprivation. Biochem J 1996; 316 ( Pt 2):421-5. [PMID: 8687383 PMCID: PMC1217367 DOI: 10.1042/bj3160421] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here we describe changes in dNTP metabolism that precede DNA fragmentation in a model of apoptosis driven by deprivation of the cytokine interleukin 3 (IL-3). In haemopoietic BAF3 cells, IL-3 withdrawal leads to a rapid decrease in the size of dATP, dTTP and dGTP pools without affecting dCTP levels. This imbalance in dNTP pools precedes DNA fragmentation and is accompanied by down-regulation of enzymes controlling the de novo and salvage pathways of dNTP synthesis, ribonucleotide reductase and thymidine kinase (TK) respectively. Readdition of IL-3 results in a rapid, protein synthesis-independent restoration of normal dNTP pools, enhanced TK activity and increased precursor incorporation through the salvage pathway. Up-regulation of TK activity after IL-3 readdition is prevented by the protein kinase C (PKC) inhibitor staurosporin, but not by tyrosine kinase inhibitors. Furthermore activation of PKC by phorbol esters mimics the stimulatory effect of IL-3 on TK activity, suggesting that PKC might be involved in regulating this effect. These results indicate that regulation by IL-3 of the salvage pathway of dNTP synthesis plays a role in the maintenance of cellular dNTP pool balance and suggests that alterations in dNTP metabolism after IL-3 deprivation could be a relevant event in the commitment of haemopoietic cells to apoptosis.
Collapse
Affiliation(s)
- F J Oliver
- Instituto de Parasitología y Biomedicina, C.S.I.C., Granada, Spain
| | | | | |
Collapse
|
213
|
Wolter R, Siede W, Brendel M. Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:162-8. [PMID: 8628215 DOI: 10.1007/bf02174175] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The interstrand cross-link repair gene SNM1 of Saccharomyces cerevisiae was examined for regulation in response to DNA-damaging agents. Induction of SNM1-lacZ fusions was detected in response to nitrogen mustard, cis-platinum (II) diamine dichloride, UV light, and 8-methoxypsoralen + UVA, but not after heat-shock treatment or incubation with 2-dimethylaminoethylchloride, methylmethane sulfonate or 4-nitroquinoline-N-oxide. The promoter of SNM1 contains a 15 bp motif, which shows homology to the DRE2 box of the RAD2 promoter. Similar motifs have been found in promoter regions of other damage-inducible DNA repair genes. Deletion of this motif results in loss of inducibility of SNM1. Also, a putative negative upstream regulation sequence was found to be responsible for repression of constitutive transcription of SNM1. Surprisingly, no inducibility of SNM1 was found after treatment with DNA-damaging agents in strains without an intact DUN1 gene, while regulation seems unchanged in sad1 mutants.
Collapse
Affiliation(s)
- R Wolter
- Institut für Mikrobiologie, Abt. Biologie für Mediziner, J.W. Goethe-Universität, Frankfurt am Main, FRG
| | | | | |
Collapse
|
214
|
Affiliation(s)
- I A Clark
- Division of Biochemistry and Molecular Biology, School of Life Sciences, Australian National University, Canberra
| | | |
Collapse
|
215
|
Endo-Ichikawa Y, Kohno H, Tokunaga R, Taketani S. Induction in the gene RNR3 in Saccharomyces cerevisiae upon exposure to different agents related to carcinogenesis. Biochem Pharmacol 1995; 50:1695-9. [PMID: 7503773 DOI: 10.1016/0006-2952(95)02071-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The induction of the gene RNR3 was investigated in yeast Saccharomyces cerevisiae using RNR31 lacZ fusion. Gene induction was monitored by measuring beta-galactosidase activity. Various drugs that cause DNA damage effectively induced RNR3 expression; alkylating agents (cisplatin, mitomycin C and N-methyl-N'-nitro-N-nitrosoguanidine), a radical producer (bleomycin), and an intercalator (actinomycin D) induced RNR3. When yeast expressing rat CYP1A1 was exposed to 2-aminofluorene, a concentration-dependent induction of RNR3 was observed. Aflatoxin B1 also induced the expression of RNR3 in the same yeast strain concomitant with inhibition of cell growth. In control yeast, no induction of RNR3 was observed upon exposure to 2-aminofluorene or aflatoxin B1. Exposure to 2-acetylaminofluorene or benzo[a]pyrene did not lead to induction of RNR3 in yeast expressing CYP1A1. These results indicate that DNA damage by chemicals related to carcinogenesis induces RNR3, and that activation of these procarcinogens was required for DNA damage-dependent induction of RNR3.
Collapse
Affiliation(s)
- Y Endo-Ichikawa
- Department of Public Health, Kansai Medical University, Osaka, Japan
| | | | | | | |
Collapse
|
216
|
Lecrenier N, Foury F. Overexpression of the RNR1 gene rescues Saccharomyces cerevisiae mutants in the mitochondrial DNA polymerase-encoding MIP1 gene. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:1-7. [PMID: 8552025 DOI: 10.1007/bf00290229] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A multicopy suppressor gene which rescues the temperature-sensitive growth defect of Saccharomyces cerevisiae mutants in the mitochondrial DNA (mtDNA) polymerase-encoding MIP1 gene has been isolated and identified as the RNR1 gene. This gene, whose transcript is cell cycle-regulated and mainly expressed at the G1 to S phase transition, encodes the large subunit of ribonucleotide reductase. This enzyme catalyses a limiting step in the production of deoxynucleotides needed for DNA synthesis. The presence of a high copy number of the RNR1 gene also decreases the accumulation of rho- mutants observed in diploids that harbour a single copy of the MIP1 gene. In cell cycle-synchronised cells, the presence of a high copy number of RNR1 does not modify its cell cycle transcription regulation and increases its transcript level by a factor of 10 throughout the cell cycle. Our results show that an increased supply of dNTPs in mitochondria can stimulate the mtDNA polymerase activity and indicate that the dNTP concentration may be rate limiting for the replication of mtDNA.
Collapse
Affiliation(s)
- N Lecrenier
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
217
|
Abstract
Paracetamol blocks DNA replication by inhibiting deoxyribonucleotide (dNTP) synthesis and may therefore also interfere with DNA repair. In the present work various mammalian cell types were treated with genotoxic agents and allowed to repair in the presence or absence of paracetamol. Alkaline elution was used to assay DNA single-strand breaks plus alkali-labile sites (= SSBs). Resting human mononuclear blood cells (MNC) exposed to 4-nitroquinoline N-oxide (NQO, 3 microM) plus 0.3 mM paracetamol contained twice as many DNA SSBs compared to MNC exposed to NQO alone, and the level of SSBs decreased more slowly during repair in the presence of paracetamol. Deoxyribonucleosides reversed the effects of paracetamol. SSBs induced by MMS or X-rays (2.6 Gy) were not increased by paracetamol. Resting and growth-stimulated MNC, HL-60 cells, rat hepatocytes and human fibroblasts exposed to UV-C (3-12 J/m2) showed varying levels of transient SSBs formed during repair but these were consistently higher in the presence of paracetamol (0.3-1 mM). In rat testicular cells SSBs were induced by NQO and the levels were further increased in the presence of paracetamol, whereas after UV almost no SSBs were detected during repair. The cell-type specific levels of transient SSBs after UV did not correlate with the rate of incision of DNA lesions, measured as the rate of SSB accumulation in the presence of repair inhibitors Ara C plus hydroxyurea. Transient SSBs were present in resting MNC for at least 24 h after UV and paracetamol increased these breaks 4-fold however the overall rate of removal of excisable photodamage during repair did not appear to be reduced by the presence of paracetamol. The present data indicate that paracetamol interferes with nucleotide excision repair in several mammalian cell types. This constitutes a mechanism by which paracetamol may contribute to genotoxicity in humans.
Collapse
Affiliation(s)
- G Brunborg
- Department of Environmental Medicine, National Institute of Public Health, Oslo, Norway
| | | | | |
Collapse
|
218
|
Rannug U, Holme JA, Hongslo JK, Srám R. International Commission for Protection against Environmental Mutagens and Carcinogens. An evaluation of the genetic toxicity of paracetamol. Mutat Res 1995; 327:179-200. [PMID: 7870087 DOI: 10.1016/0027-5107(94)00184-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the last years, several reports have indicated genotoxic effects of paracetamol, a widely used non-prescription analgesic and antipyretic drug. Thus, a careful evaluation of a possible genotoxic effect related to paracetamol use is warranted. Studies in vitro and in vivo indicate that the reactive metabolite of paracetamol can bind irreversibly to DNA and cause DNA strand breaks. Paracetamol inhibits both replicative DNA synthesis and DNA repair synthesis in vitro and in experimental animals. Paracetamol does not cause gene mutations, either in bacteria or in mammalian cells. On the other hand, a co-mutagenic effect of paracetamol has been reported. Furthermore, paracetamol increases the frequency of chromosomal damage in mammalian cell lines, isolated human lymphocytes and experimental animals. Two independent studies have shown an increase in chromosomal damage in lymphocytes of human volunteers after intake of therapeutic doses of paracetamol, whereas a third study was negative. Paracetamol-induced chromosomal damage appears to be caused by an inhibition of ribonucleotide reductase. This indicates that a threshold level for the paracetamol-induced chromosomal damage may exist. Genotoxic effects of paracetamol have, however, been demonstrated both in vitro and in vivo at or near therapeutic concentrations. The data indicate that the use of paracetamol may contribute to an increase in the total burden of genotoxic damage in man. Thus, there may be a need to evaluate the therapeutic benefit of paracetamol, taking into consideration not only its potential to induce acute and chronic organ damage, but also genotoxic effects.
Collapse
Affiliation(s)
- U Rannug
- Department of Genetic and Cellular Toxicology, Stockholm University, Sweden
| | | | | | | |
Collapse
|
219
|
Philipps G, Clément B, Gigot C. Molecular characterization and cell cycle-regulated expression of a cDNA clone from Arabidopsis thaliana homologous to the small subunit of ribonucleotide reductase. FEBS Lett 1995; 358:67-70. [PMID: 7821432 DOI: 10.1016/0014-5793(94)01397-j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cDNA clone isolated from an Arabidopsis thaliana cell suspension library showed highly significant homology to the small subunit of ribonucleotide reductase (R2) from different species. The 340 amino acid-long deduced putative protein contains all the residues that are important for the enzyme activity and structure. In A. thaliana this enzyme is encoded by a single-copy gene. In synchronized tobacco BY2 cells the corresponding mRNAs specifically accumulate during the S phase of the cell cycle.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Molecular Sequence Data
- Plants, Toxic
- RNA, Messenger/biosynthesis
- RNA, Plant/biosynthesis
- Ribonucleotide Reductases/genetics
- S Phase/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Nicotiana/genetics
Collapse
Affiliation(s)
- G Philipps
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
220
|
Averbeck D, Averbeck S. Induction of the genes RAD54 and RNR2 by various DNA damaging agents in Saccharomyces cerevisiae. Mutat Res 1994; 315:123-38. [PMID: 7520995 DOI: 10.1016/0921-8777(94)90013-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relationship between the induction of the genes RAD54 and RNR2 and the induction and repair of specific DNA lesions was studied in the yeast Saccharomyces cerevisiae using Rad54-lacZ and RNR2-lacZ fusion strains. Gene induction was followed by measuring beta-galactosidase activity. At comparable levels of furocoumarin-DNA photoadducts, RAD54 was more effectively induced by bifunctional than by monofunctional furocoumarins indicating that mixtures of monoadducts (MA) and interstrand cross-links (CL) provide a stronger inducing signal than MA. RNR2 induction kinetics were measured in relation to cell growth and survival responses after treatment with the furocoumarins 8-methoxypsoralen (8-MOP), 5-methoxypsoralen (5-MOP), 3-carbethoxypsoralen (3-CPs), 7-methyl-pyrido[3,4-c]psoralen (MePyPs) and 4,4',6-trimethylangelicin (TMA), benzo[a]pyrene (B(a)P and 1,6-dioxapyrene (1,6-DP) plus UVA, 254 nm UV radiation and cobalt-60 gamma-radiation. Induction of RNR2 took place during the DNA repair period before resumption of cell growth and clearly increased with increasing equitoxic dose levels. Treatments with furocoumarin plus 365 nm radiation (UVA) and 254 nm (UV) radiation were effective inducers whereas gene induction was relatively weak after gamma-radiation and absent after the induction of oxidative damage by B(a)P and 1,6-DP and UVA. The results suggest that it is the specific processing of different DNA lesions that determines the potency of the induction signal. Apparently, DNA lesions such as CL, and probably also closely located MA or pyrimidine dimers in opposite DNA strands involving the formation of double-strand breaks as repair intermediates, are most effective inducers.
Collapse
Affiliation(s)
- D Averbeck
- Institut Curie-Section de Biologie, URA 1292 CNRS, 26, Paris, France
| | | |
Collapse
|
221
|
Muller E. Deoxyribonucleotides are maintained at normal levels in a yeast thioredoxin mutant defective in DNA synthesis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51107-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
222
|
Abstract
Ribonucleotide reductase is the only enzyme that catalyses de novo formation of deoxyribonucleotides and is thus a key enzyme in DNA synthesis. The radical-based reaction involves five cysteins. Two redox-active cysteines are located at adjacent antiparallel strands in a new type of ten-stranded alpha/beta-barrel, and two others at the carboxyl end in a flexible arm. The fifth cysteine, in a loop in the centre of the barrel, is positioned to initiate the radical reaction.
Collapse
Affiliation(s)
- U Uhlin
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala
| | | |
Collapse
|
223
|
Jordan A, Gibert I, Barbé J. Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase. J Bacteriol 1994; 176:3420-7. [PMID: 8195103 PMCID: PMC205520 DOI: 10.1128/jb.176.11.3420-3427.1994] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A plasmid library of Salmonella typhimurium was used to complement a temperature-sensitive nrdA mutant of Escherichia coli. Complementation was obtained with two different classes of plasmids, one carrying the E. coli nrdAB-like genes and the second containing an operon encoding a new bacterial ribonucleotide reductase. Plasmids harboring these new reductase genes also enable obligately anaerobic nrdB::Mud1 E. coli mutants to grow in the presence of oxygen. This operon consists of two open reading frames, which have been designated nrdE (2,145 bp) and nrdF (969 bp). The deduced amino acid sequences of the nrdE and nrdF products include the catalytically important residues conserved in ribonucleotide reductase enzymes of class I and show 25 and 28% overall identity with the R1 and R2 protein, respectively, of the aerobic ribonucleoside diphosphate reductase of E. coli. The 3' end of the sequenced 4.9-kb fragment corresponds to the upstream region of the previously published proU operon of both S. typhimurium and E. coli, indicating that the nrdEF genes are at 57 min on the chromosomal maps of these two bacterial species. Analysis of the nrdEF and proU sequences demonstrates that transcription of the nrdEF genes is in the clockwise direction on the S. typhimurium and E. coli maps.
Collapse
Affiliation(s)
- A Jordan
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellatera, Spain
| | | | | |
Collapse
|
224
|
Boviatsis EJ, Chase M, Wei MX, Tamiya T, Hurford RK, Kowall NW, Tepper RI, Breakefield XO, Chiocca EA. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors. Hum Gene Ther 1994; 5:183-91. [PMID: 8186298 DOI: 10.1089/hum.1994.5.2-183] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Three vectors derived from retrovirus, herpes simplex virus type 1 (HSV), and adenovirus were compared in cultured rat 9L gliosarcoma cells for gene transfer efficiency and in a 9L rat brain tumor model for histologic pattern and distribution of foreign gene delivery, as well as for associated tumor necrosis and inflammation. At a multiplicity of infection of 1, in vitro transfer of a foreign gene (lacZ from Escherichia coli) into cells was more efficient with either the replication-defective retrovirus vector or the replication-conditional thymidine kinase (TK)-deficient HSV vector than with the replication-defective adenovirus vector. In vivo, stereotactic injections of each vector into rat brain tumors revealed three main histopathologic findings: (i) retrovirus and HSV vector-mediated gene transfer was relatively selective for cells within the tumor, whereas adenovirus vector-mediated gene transfer occurred into several types of endogenous neural cells, as well as into cells within the tumor; (ii) gene transfer to multiple infiltrating tumor deposits without apparent gene transfer to intervening normal brain tissue occurred uniquely in one animal inoculated with the HSV vector, and (iii) extensive necrosis and selective inflammation in the tumor were evident with the HSV vector, whereas there was minimal evidence of tumor necrosis and inflammation with either the retrovirus or adenovirus vectors.
Collapse
Affiliation(s)
- E J Boviatsis
- Department of Surgery, Massachusetts General Hospital-East, Charlestown 02129
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Harder J. Ribonucleotide reductases and their occurrence in microorganisms: a link to the RNA/DNA transition. FEMS Microbiol Rev 1993; 12:273-92. [PMID: 8268003 DOI: 10.1111/j.1574-6976.1993.tb00023.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The evolution of a deoxyribonucleotide synthesizing ribonucleotide reductase might have initiated the transition from the ancient RNA world into the prevailing DNA world. At least five classes of ribonucleotide reductases have evolved. The ancient enzyme has not been identified. A reconstruction of the first ribonucleotide reductase requires knowledge of contemporary enzymes and of microbial evolution. Experimental work on the former focuses on few organisms, whereas the latter is now well understood on the basis of ribosomal RNA sequences. Deoxyribonucleotide formation has not been investigated in many evolutionary important microorganisms. This review covers our knowledge on deoxyribonucleotide synthesis in microorganisms and the distribution of ribonucleotide reductases in nature. Ecological constraints on enzyme evolution and knowledge deficiencies emerge from complete coverage of the phylogenetic groups.
Collapse
Affiliation(s)
- J Harder
- Max-Planck-Institut for Marine Microbiology, Bremen, FRG
| |
Collapse
|
226
|
Abstract
In eukaryotic organisms, genes involved in DNA replication are often subject to some form of cell cycle control. In the yeast Saccharomyces cerevisiae, most of the DNA replication genes that have been characterized to date are regulated at the transcriptional level during G1 to S phase transition. A cis-acting element termed the MluI cell cycle box (or MCB) conveys this pattern of regulation and is common among more than 20 genes involved in DNA synthesis and repair. Recent findings indicate that the MCB element is well conserved among fungi and may play a role in controlling entry into the cell division cycle. It is evident from studies in higher systems, however, that transcriptional regulation is not the only form of control that governs the cell-cycle-dependent expression of DNA replication genes. Moreover, it is unclear why this general pattern of regulation exists for so many of these genes in various eukaryotic systems. This review summarizes recent studies of the MCB element in yeast and briefly discusses the purpose of regulating DNA replication genes in the eukaryotic cell cycle.
Collapse
Affiliation(s)
- E M McIntosh
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
227
|
Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol 1993. [PMID: 8474449 DOI: 10.1128/mcb.13.5.2899] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.
Collapse
|
228
|
Jackson AL, Pahl PM, Harrison K, Rosamond J, Sclafani RA. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol 1993; 13:2899-908. [PMID: 8474449 PMCID: PMC359683 DOI: 10.1128/mcb.13.5.2899-2908.1993] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.
Collapse
Affiliation(s)
- A L Jackson
- Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|
229
|
Howell M, Roseman N, Slabaugh M, Mathews C. Vaccinia virus ribonucleotide reductase. Correlation between deoxyribonucleotide supply and demand. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53159-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|