201
|
Shi M, Song W, Han T, Chang B, Li G, Jin J, Zhang Y. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells. Acta Biomater 2017; 54:175-185. [PMID: 28315494 DOI: 10.1016/j.actbio.2017.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 12/20/2022]
Abstract
The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. STATEMENT OF SIGNIFICANCE Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction.
Collapse
Affiliation(s)
- Mengqi Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Tianxiao Han
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing 100050, PR China
| | - Bei Chang
- PLA Rocket Force General Hospital, Beijing 100088, PR China
| | - Guangwen Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Jianfeng Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
202
|
Abstract
Bone diseases/injuries have been driving an urgent quest for bone substitutes for bone regeneration. Nanoscaled materials with bone-mimicking characteristics may create suitable microenvironments to guide effective bone regeneration. In this review, the natural hierarchical architecture of bone and its regeneration mechanisms are elucidated. Recent progress in the development of nanomaterials which can promote bone regeneration through bone-healing mimicry (e.g., compositional, nanocrystal formation, structural, and growth factor-related mimicking) is summarized. The nanoeffects of nanomaterials on the regulation of bone-related biological functions are highlighted. How to prepare nanomaterials with combinative bone-biomimicry features according to the bone healing process is prospected in order to achieve rapid bone regeneration in situ.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | |
Collapse
|
203
|
Matos AO, Ricomini-Filho AP, Beline T, Ogawa ES, Costa-Oliveira BE, de Almeida AB, Nociti Junior FH, Rangel EC, da Cruz NC, Sukotjo C, Mathew MT, Barão VA. Three-species biofilm model onto plasma-treated titanium implant surface. Colloids Surf B Biointerfaces 2017; 152:354-366. [DOI: 10.1016/j.colsurfb.2017.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
|
204
|
Jang TS, Jung HD, Kim S, Moon BS, Baek J, Park C, Song J, Kim HE. Multiscale porous titanium surfaces via a two-step etching process for improved mechanical and biological performance. Biomed Mater 2017; 12:025008. [DOI: 10.1088/1748-605x/aa5d74] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
205
|
van Hengel IAJ, Riool M, Fratila-Apachitei LE, Witte-Bouma J, Farrell E, Zadpoor AA, Zaat SAJ, Apachitei I. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials 2017. [PMID: 28622569 DOI: 10.1016/j.biomaterials.2017.02.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Implant-associated infection and limited longevity are two major challenges that orthopedic devices need to simultaneously address. Additively manufactured porous implants have recently shown tremendous promise in improving bone regeneration and osseointegration, but, as any conventional implant, are threatened by infection. In this study, we therefore used rational design and additive manufacturing in the form of selective laser melting (SLM) to fabricate porous titanium implants with interconnected pores, resulting in a 3.75 times larger surface area than corresponding solid implants. The SLM implants were biofunctionalized by embedding silver nanoparticles in an oxide surface layer grown using plasma electrolytic oxidation (PEO) in Ca/P-based electrolytes. The PEO layer of the SLM implants released silver ions for at least 28 days. X-ray diffraction analysis detected hydroxyapatite on the SLM PEO implants but not on the corresponding solid implants. In vitro and ex vivo assays showed strong antimicrobial activity of these novel SLM PEO silver-releasing implants, without any signs of cytotoxicity. The rationally designed SLM porous implants outperformed solid implants with similar dimensions undergoing the same biofunctionalization treatment. This included four times larger amount of released silver ions, two times larger zone of inhibition, and one additional order of magnitude of reduction in numbers of CFU in an ex vivo mouse infection model.
Collapse
Affiliation(s)
- Ingmar A J van Hengel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Additive Manufacturing Lab, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Additive Manufacturing Lab, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Centre, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Centre, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Additive Manufacturing Lab, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Iulian Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Additive Manufacturing Lab, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
206
|
Moussa M, Banakh O, Wehrle-Haller B, Fontana P, Scherrer S, Cattani M, Wiskott A, Durual S. TiN x O y coatings facilitate the initial adhesion of osteoblasts to create a suitable environment for their proliferation and the recruitment of endothelial cells. ACTA ACUST UNITED AC 2017; 12:025001. [PMID: 28244429 DOI: 10.1088/1748-605x/aa57a7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Titanium-nitride-oxide coatings (TiN x O y ) improve osseointegration of endosseous implants. The exact mechanisms by which these effects are mediated are poorly understood except for an increase of osteoblast proliferation while a high degree of differentiation is maintained. One hypothesis holds that TiN x O y facilitates the initial spreading and adhesion of the osteoblasts. The aim of this work was to investigate the molecular mechanisms of osteoblast adhesion on TiN x O y as compared to microrough titanium SLA. A global view of the osseointegrative process, that is, taking into account other cell groups, especially endothelial cells, is also presented. To this aim, gene expression and focal adhesion analysis, cocultures and wound assays were performed early after seeding, from 6 h to 3 days. We demonstrated that TiN x O y coatings enhance osteoblast adhesion and spreading when compared to the standard microrough titanium. The integrin β1, either in association with α1 or with α2 plays a central role in these mechanisms. TiN x O y coatings optimize the process of osseointegration by acting at several levels, especially by upregulating osteoblast adhesion and proliferation, but also by supporting neovascularization and the development of a suitable inflammatory environment.
Collapse
Affiliation(s)
- M Moussa
- Division of fixed prosthodontics and biomaterials, University clinics of dental medicine, University of Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
208
|
Liang J, Xu S, Shen M, Cheng B, Li Y, Liu X, Qin D, Bellare A, Kong L. Osteogenic activity of titanium surfaces with hierarchical micro-/nano-structures obtained by hydrofluoric acid treatment. Int J Nanomedicine 2017; 12:1317-1328. [PMID: 28243092 PMCID: PMC5317262 DOI: 10.2147/ijn.s123930] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An easier method for constructing the hierarchical micro-/nano-structures on the surface of dental implants in the clinic is needed. In this study, three different titanium surfaces with microscale grooves (width 0.5–1, 1–1.5, and 1.5–2 μm) and nanoscale nanoparticles (diameter 20–30, 30–50, and 50–100 nm, respectively) were obtained by treatment with different concentrations of hydrofluoric acid (HF) and at different etching times (1%, 3 min; 0.5%, 12 min; and 1.5%, 12 min, respectively; denoted as groups HF1, HF2, and HF3). The biological response to the three different titanium surfaces was evaluated by in vitro human bone marrow-derived mesenchymal stem cell (hBMMSC) experiments and in vivo animal experiments. The results showed that cell adhesion, proliferation, alkaline phosphatase activity, and mineralization of hBMMSCs were increased in the HF3 group. After the different surface implants were inserted into the distal femurs of 40 rats, the bone–implant contact in groups HF1, HF2, and HF3 was 33.17%±2.2%, 33.82%±3.42%, and 41.04%±3.08%, respectively. Moreover, the maximal pullout force in groups HF1, HF2, and HF3 was 57.92±2.88, 57.83±4.09, and 67.44±6.14 N, respectively. The results showed that group HF3 with large micron grooves (1.5–2.0 μm) and large nanoparticles (50–100 nm) showed the best bio-functionality for the hBMMSC response and osseointegration in animal experiments compared with other groups.
Collapse
Affiliation(s)
- Jianfei Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an
| | - Shanshan Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an
| | - Mingming Shen
- Department of Stomatology, Xinhua Hospital of Beijing, Beijing
| | - Bingkun Cheng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Second Hospital of Hebei Medical University, Shijiazhuang
| | - Yongfeng Li
- Department of Stomatology, Chinese PLA 532 Hospital, Huangshan, People's Republic of China
| | - Xiangwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an
| | - Dongze Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an
| | - Anuj Bellare
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an
| |
Collapse
|
209
|
Maino BG, Di Blasio A, Spadoni D, Ravanetti F, Galli C, Cacchioli A, Katsaros C, Gandolfini M. The integration of orthodontic miniscrews under mechanical loading: a pre-clinical study in rabbit. Eur J Orthod 2017; 39:519-527. [DOI: 10.1093/ejo/cjw069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
210
|
Altmann B, Rabel K, Kohal RJ, Proksch S, Tomakidi P, Adolfsson E, Bernsmann F, Palmero P, Fürderer T, Steinberg T. Cellular transcriptional response to zirconia-based implant materials. Dent Mater 2017; 33:241-255. [PMID: 28087075 DOI: 10.1016/j.dental.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To adequately address clinically important issues such as osseointegration and soft tissue integration, we screened for the direct biological cell response by culturing human osteoblasts and gingival fibroblasts on novel zirconia-based dental implant biomaterials and subjecting them to transcriptional analysis. METHODS Biomaterials used for osteoblasts involved micro-roughened surfaces made of a new type of ceria-stabilized zirconia composite with two different topographies, zirconium dioxide, and yttria-stabilized zirconia (control). For fibroblasts smooth ceria- and yttria-stabilized zirconia surface were used. The expression of 90 issue-relevant genes was determined on mRNA transcription level by real-time PCR Array technology after growth periods of 1 and 7 days. RESULTS Generally, modulation of gene transcription exhibited a dual dependence, first by time and second by the biomaterial, whereas biomaterial-triggered changes were predominantly caused by the biomaterials' chemistry rather than surface topography. Per se, modulated genes assigned to regenerative tissue processes such as fracture healing and wound healing and in detail included colony stimulating factors (CSF2 and CSF3), growth factors, which regulate bone matrix properties (e.g. BMP3 and TGFB1), osteogenic BMPs (BMP2/4/6/7) and transcription factors (RUNX2 and SP7), matrix collagens and osteocalcin, laminins as well as integrin ß1 and MMP-2. SIGNIFICANCE With respect to the biomaterials under study, the screening showed that a new zirconia-based composite stabilized with ceria may be promising to provide clinically desired periodontal tissue integration. Moreover, by detecting biomarkers modulated in a time- and/or biomaterial-dependent manner, we identified candidate genes for the targeted analysis of cell-implant bioresponse during biomaterial research and development.
Collapse
Affiliation(s)
- Brigitte Altmann
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Kerstin Rabel
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Ralf J Kohal
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | | | - Falk Bernsmann
- NTTF Coatings GmbH, Maarweg 30, 53619 Rheinbreitbach, Germany
| | - Paola Palmero
- Department of Applied Science and Technology, INSTM R.U. PoliTO, LINCE Lab., Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Tobias Fürderer
- MOESCHTER GROUP Holding GmbH & Co. KG, Hesslingsweg 65-67, 44309 Dortmund, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
211
|
Migita S, Araki K. Effect of nanometer scale surface roughness of titanium for osteoblast function. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.1.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
212
|
Cheng A, Cohen DJ, Boyan BD, Schwartz Z. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro. Calcif Tissue Int 2016; 99:625-637. [PMID: 27501817 DOI: 10.1007/s00223-016-0184-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.
Collapse
Affiliation(s)
- Alice Cheng
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA, 30313, USA
- Department of Biomedical Engineering, Peking University, Peking University Hospital Building A503, Haidian District, Beijing, 100871, China
| | - David J Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA, 30313, USA.
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| |
Collapse
|
213
|
Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion. PLoS One 2016; 11:e0165296. [PMID: 27824875 PMCID: PMC5100918 DOI: 10.1371/journal.pone.0165296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.
Collapse
|
214
|
Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Clin Orthop Relat Res 2016; 474:2373-2383. [PMID: 27154533 PMCID: PMC5052186 DOI: 10.1007/s11999-016-4833-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. QUESTIONS/PURPOSES (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? METHODS PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. RESULTS Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease in ductility compared with PEEK-IM and demonstrated fatigue strength > 38 MPa at one million cycles. All PEEK-SP groups also supported greater proliferation and cell-mediated mineralization compared with smooth PEEK and Ti6Al4V. CONCLUSIONS The PEEK-SP formulations evaluated in this study maintained favorable mechanical properties that merit further investigation into their use in load-bearing orthopaedic applications and supported greater in vitro osteogenic differentiation compared with smooth PEEK and Ti6Al4V. These results are independent of pore sizes ranging 200 µm to 508 µm. CLINICAL RELEVANCE PEEK-SP may provide enhanced osseointegration compared with current implants while maintaining the structural integrity to be considered for several load-bearing orthopaedic applications such as spinal fusion or soft tissue repair.
Collapse
|
215
|
Huang Q, Elkhooly TA, Liu X, Zhang R, Yang X, Shen Z, Feng Q. SaOS-2 cell response to macro-porous boron-incorporated TiO 2 coating prepared by micro-arc oxidation on titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:195-204. [DOI: 10.1016/j.msec.2016.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 01/13/2023]
|
216
|
Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold: A Biomechanical Comparison With PEEK and Allograft. Spine (Phila Pa 1976) 2016; 41:E1146-E1150. [PMID: 27135643 DOI: 10.1097/brs.0000000000001672] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This was a biomechanical push-out testing study using a porcine model. OBJECTIVE The purpose was to evaluate the strength of implant-bone interface of a porous titanium scaffold by comparing it to polyetheretherketone (PEEK) and allograft. SUMMARY OF BACKGROUND DATA Osseointegration is important for achieving maximal stability of spinal fusion implants and it is desirable to achieve as quickly as possible. Common PEEK interbody fusion implants appear to have limited osseointegration potential because of the formation of fibrous tissue along the implant-bone interface. Porous, three-dimensional titanium materials may be an option to enhance osseointegration. METHODS Using the skulls of two swine, in the region of the os frontale, 16 identical holes (4 mm diameter) were drilled to 10 mm depth in each skull. Porous titanium, PEEK, and allograft pins were press fit into the holes. After 5 weeks, animals were euthanized and the skull sections with the implants were cut into sections with each pin centered within a section. Push-out testing was performed using an MTS machine with a push rate of 6 mm/min. Load-deformation curves were used to compute the extrinsic material properties of the bone samples. Maximum force (N) and shear strength (MPa) were extracted from the output to record the bonding strength between the implant and surrounding bone. When calculating shear strength, maximum force was normalized by the actual implant surface area in contact with surrounding bone. RESULTS Mean push-out shear strength was significantly greater in the porous titanium scaffold group than in the PEEK or allograft groups (10.2 vs. 1.5 vs. 3.1 MPa, respectively; P < 0.05). CONCLUSION The push-out strength was significantly greater for the implants with porous titanium coating compared with the PEEK or allograft. These results suggest that the material has promise for facilitating osseointegration for implants, including interbody devices for spinal fusion. LEVEL OF EVIDENCE N/A.
Collapse
|
217
|
Lee EM, Smith K, Gall K, Boyan BD, Schwartz Z. Change in surface roughness by dynamic shape-memory acrylate networks enhances osteoblast differentiation. Biomaterials 2016; 110:34-44. [PMID: 27710831 DOI: 10.1016/j.biomaterials.2016.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/11/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022]
Abstract
Microscale surface roughness has been shown to enhance osseointegration of titanium implants through increased osteoblast differentiation while osteoblast proliferation remains greater on smooth titanium. Taking advantage of these phenomena, we developed a shape memory (meth)acrylate copolymer with thermomechanical properties that created a time-dependent dynamic surface change from smooth to rough under in vitro cell culture conditions and evaluated the effect of the shape recovery on osteoblast response. Rough topographies were created using soft lithography techniques to mimic those found on clinically-used Ti surfaces (machined smooth; acid-etched; grit-blasted). The surface roughness was then reduced to smooth via compression and shown to fully recover within 24 h in culture conditions. When grown under static conditions, osteoblast number, alkaline phosphatase specific activity (ALP), and osteoprotegerin (OPG) and vascular endothelial growth factor (VEGF) production were unaffected by polymer surface roughness, but osteocalcin (OCN) was increased on the grit-blasted polymer mimic. Under dynamic conditions, DNA was reduced but OCN and OPG were increased on the compressed grit-blasted polymer at 3 days compared to static surfaces. The present study indicates that responses to polymer surface are sensitive to time-dependent changes in topography. The use of a shape memory polymer with dynamic surface roughness may improve osseointegration.
Collapse
Affiliation(s)
- Erin M Lee
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ken Gall
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology, Atlanta, GA, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
218
|
Tang E, Khan I, Andreana S, Arany PR. Laser-activated transforming growth factor-β1 induces human β-defensin 2: implications for laser therapies for periodontitis and peri-implantitis. J Periodontal Res 2016; 52:360-367. [PMID: 27396269 DOI: 10.1111/jre.12399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is increasing popularity of high-power lasers for surgical debridement and antimicrobial therapy in the management of peri-implantitis and periodontal therapy. Removal of the noxious foci would naturally promote tissue healing directly. However, there are also anecdotal reports of better healing around routine high-power laser procedures. The precise mechanisms mediating these effects remain to be fully elucidated. This work examines these low-dose laser bystander effects on oral human epithelial and fibroblasts, particularly focusing on the role of human β-defensin 2 (HBD-2 or DEFB4A), a potent factor capable of antimicrobial effects and promoting wound healing. MATERIAL AND METHODS Laser treatments were performed using a near-infrared laser (810 nm diode) at low doses. Normal human oral keratinocytes and fibroblast cells were used and HBD-2 mRNA and protein expression was assessed with real time polymerase chain reaction, western blotting and immunostaining. Role of transforming growth factor (TGF)-β1 signaling in this process was dissected using pathway-specific small molecule inhibitors. RESULTS We observed laser treatments robustly induced HBD-2 expression in an oral fibroblast cell line compared to a keratinocyte cell line. Low-dose laser treatments results in activation of the TGF-β1 pathway that mediated HBD-2 expression. The two arms of TGF-β1 signaling, Smad and non-Smad are involved in laser-mediated HBD-2 expression. CONCLUSIONS Laser-activated TGF-β1 signaling and induced expression of HBD-2, both of which are individually capable of promoting healing in tissues adjacent to high-power surgical laser applications. Moreover, the use of low-dose laser therapy itself can provide additional therapeutic benefits for effective clinical management of periodontal or peri-implant disease.
Collapse
Affiliation(s)
- E Tang
- Cell Regulation and Control Unit, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - I Khan
- Cell Regulation and Control Unit, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - S Andreana
- Restorative and Implant Dentistry, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - P R Arany
- Cell Regulation and Control Unit, NIDCR, National Institutes of Health, Bethesda, MD, USA.,Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
219
|
Marques IDS, Alfaro MF, Cruz NCD, Mesquita MF, Takoudis C, Sukotjo C, Mathew MT, Barão VAR. Tribocorrosion behavior of biofunctional titanium oxide films produced by micro-arc oxidation: Synergism and mechanisms. J Mech Behav Biomed Mater 2016; 60:8-21. [DOI: 10.1016/j.jmbbm.2015.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022]
|
220
|
Lotz EM, Olivares-Navarrete R, Hyzy SL, Berner S, Schwartz Z, Boyan BD. Comparable responses of osteoblast lineage cells to microstructured hydrophilic titanium-zirconium and microstructured hydrophilic titanium. Clin Oral Implants Res 2016; 28:e51-e59. [DOI: 10.1111/clr.12855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Ethan M. Lotz
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | - Sharon L. Hyzy
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | | | - Zvi Schwartz
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
- Department of Periodontics; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
- Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology; Atlanta GA USA
| |
Collapse
|
221
|
Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers. J Mech Behav Biomed Mater 2016; 59:459-473. [DOI: 10.1016/j.jmbbm.2016.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/16/2022]
|
222
|
Yuan B, Chen Y, Lin H, Song Y, Yang X, Tang H, Xie E, Hsu T, Yang X, Zhu X, Zhang K, Zhang X. Processing and Properties of Bioactive Surface-Porous PEKK. ACS Biomater Sci Eng 2016; 2:977-986. [PMID: 33429506 DOI: 10.1021/acsbiomaterials.6b00103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Yuan
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Yangmei Chen
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Hai Lin
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Yueming Song
- Department
of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, China 610041
| | - Xi Yang
- Department
of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, China 610041
| | - Hai Tang
- Department
of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, China 100050
| | - En Xie
- Department
of Spine Surgery, Hong-Hui Hospital, Xi’an Jiaotong University, College of Medicine, No. 555 Youyi East Road, Xi’an China 710054
| | - Tim Hsu
- Polymics Ltd., 2215 High Tech
Road, State College, Pennsylvania 16803, United States
| | - Xiao Yang
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Xiangdong Zhu
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Kai Zhang
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| | - Xingdong Zhang
- National
Engineering Research Center for Biomaterials, Sichuan University, Biomaterials Building, No. 29 Wangjiang Road, Chengdu, China 610064
| |
Collapse
|
223
|
Hyzy SL, Cheng A, Cohen DJ, Yatzkaier G, Whitehead AJ, Clohessy RM, Gittens RA, Boyan BD, Schwartz Z. Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti-6Al-4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. J Biomed Mater Res A 2016; 104:2086-98. [PMID: 27086616 DOI: 10.1002/jbm.a.35739] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to compare the biological effects in vivo of hierarchical surface roughness on laser sintered titanium-aluminum-vanadium (Ti-6Al-4V) implants to those of conventionally machined implants on osteoblast response in vitro and osseointegration. Laser sintered disks were fabricated to have micro-/nano-roughness and wettability. Control disks were computer numerical control (CNC) milled and then polished to be smooth (CNC-M). Laser sintered disks were polished smooth (LST-M), grit blasted (LST-B), or blasted and acid etched (LST-BE). LST-BE implants or implants manufactured by CNC milling and grit blasted (CNC-B) were implanted in the femurs of male New Zealand white rabbits. Most osteoblast differentiation markers and local factors were enhanced on rough LST-B and LST-BE surfaces in comparison to smooth CNC-M or LST-M surfaces for MG63 and normal human osteoblast cells. To determine if LST-BE implants were osteogenic in vivo, we compared them to implant surfaces used clinically. LST-BE implants had a unique surface with combined micro-/nano-roughness and higher wettability than conventional CNC-B implants. Histomorphometric analysis demonstrated a significant improvement in cortical bone-implant contact of LST-BE implants compared to CNC-B implants after 3 and 6 weeks. However, mechanical testing revealed no differences between implant pullout forces at those time points. LST surfaces enhanced osteoblast differentiation and production of local factors in vitro and improved the osseointegration process in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2086-2098, 2016.
Collapse
Affiliation(s)
- Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Alice Cheng
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - David J Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | | | - Alexander J Whitehead
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan M Clohessy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Rolando A Gittens
- Center for Biodiversity and Drug Discovery, Institute for Advanced Scientific Research and High Technology Services (INDICASAT AIP), Panama City, Panama
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.,University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
224
|
Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:183-9. [DOI: 10.1016/j.msec.2016.01.051] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/22/2022]
|
225
|
Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater 2016; 36:310-22. [PMID: 26965394 DOI: 10.1016/j.actbio.2016.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3μg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. STATEMENT OF SIGNIFICANCE The presentation of growth factors from material surfaces currently presents significant challenges in academia, clinics and industry. Applying osteoinductive factors to different types of implants, made of metals or polymers, may improve bone repair in difficult situations. Here, we show the effects of an osteoinductive coating made of polyelectrolyte multilayer films on two widely used materials, titanium TA6V alloys and PEEK implants, which were implanted in the rabbit femoral condyle. We show that a too high dose of BMP-2 delivered from the screw surface has a negative short-term effect on bone regeneration in close vicinity of the screw surface. In contrast, bone formation was increased at early times in the empty spaces around the screw. These results highlight the need for future dose-dependence studies on bone formation in response to osteoinductive coatings.
Collapse
|
226
|
Cheng A, Humayun A, Boyan BD, Schwartz Z. Enhanced Osteoblast Response to Porosity and Resolution of Additively Manufactured Ti-6Al-4V Constructs with Trabeculae-Inspired Porosity. 3D PRINTING AND ADDITIVE MANUFACTURING 2016; 3:10-21. [PMID: 28804735 PMCID: PMC4981154 DOI: 10.1089/3dp.2015.0038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The addition of porosity to the traditionally used solid titanium metal implants has been suggested to more closely mimic the natural mechanical properties of bone and increase osseointegration in dental and orthopedic implants. The objective of this study was to evaluate cellular response to three-dimensional (3D) porous Ti-6Al-4V constructs fabricated by additive manufacturing using laser sintering with low porosity (LP), medium porosity (MP), and high porosity (HP) with low resolution (LR) and high resolution (HR) based on a computed tomography scan of human trabecular bone. After surface processing, construct porosity ranged from 41.0% to 76.1%, but all possessed micro-/nanoscale surface roughness and similar surface chemistry containing mostly Ti, O, and C. Biological responses (osteoblast differentiation, maturation, and local factor production) by MG63 osteoblast-like cells and normal human osteoblasts favored 3D than two-dimensional (2D) solid constructs. First, MG63 cells were used to assess differences in cell response to 2D compared to LR and HR porous 3D constructs. MG63 cells were sensitive to porosity resolution and exhibited increased osteocalcin (OCN), vascular endothelial growth factor (VEGF), osteoprotegerin (OPG), and bone morphogenetic protein 2 (BMP2) on HR 3D constructs than on 2D and LR 3D constructs. MG63 cells also exhibited porosity-dependent responses on HR constructs, with up to a 6.9-fold increase in factor production on LP-HR and MP-HR constructs than on HP-HR constructs. NHOsts were then used to validate biological response on HR constructs. NHOsts exhibited decreased DNA content and alkaline phosphatase activity and up to a 2.9-fold increase in OCN, OPG, VEGF, BMP2, and BMP4 on 3D HR constructs than on 2D controls. These results indicate that osteoblasts prefer a 3D architecture than a 2D surface and that osteoblasts are sensitive to the resolution of trabecular detail and porosity parameters of laser-sintered 3D Ti-6Al-4V constructs.
Collapse
Affiliation(s)
- Alice Cheng
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Department of Biomedical Engineering, Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Aiza Humayun
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
227
|
Huang Q, Liu X, Elkhooly TA, Zhang R, Yang X, Shen Z, Feng Q. Preparation and characterization of TiO 2 /silicate hierarchical coating on titanium surface for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:308-316. [DOI: 10.1016/j.msec.2015.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/20/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
228
|
Huang L, Luo Z, Hu Y, Shen X, Li M, Li L, Zhang Y, Yang W, Liu P, Cai K. Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants. J Biomed Mater Res A 2016; 104:1437-51. [PMID: 26822259 DOI: 10.1002/jbm.a.35667] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Huang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Zhong Luo
- School of Life Science; Chongqing University; Chongqing 400044 People's Republic of China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Menghuan Li
- School of Life Science; Chongqing University; Chongqing 400044 People's Republic of China
| | - Liqi Li
- Department of Orthopedics; Xinqiao Hospital, Third Military Medical University; Xinqiao Street Chongqing 400037 People's Republic of China
| | - Yuan Zhang
- Department of Orthopedics; Xinqiao Hospital, Third Military Medical University; Xinqiao Street Chongqing 400037 People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| |
Collapse
|
229
|
Cohen DJ, Cheng A, Kahn A, Aviram M, Whitehead AJ, Hyzy SL, Clohessy RM, Boyan BD, Schwartz Z. Novel Osteogenic Ti-6Al-4V Device For Restoration Of Dental Function In Patients With Large Bone Deficiencies: Design, Development And Implementation. Sci Rep 2016; 6:20493. [PMID: 26854193 PMCID: PMC4745084 DOI: 10.1038/srep20493] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022] Open
Abstract
Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants.
Collapse
Affiliation(s)
- D. J. Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - A. Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, U.S.A
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - A. Kahn
- Department of Oral and Maxillofacial Surgery, Tel Aviv University, Tel Aviv, Israel
| | - M. Aviram
- Tipul Behiuch Private Clinic, Tel Aviv, Israel
| | - A. J. Whitehead
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - S. L. Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - R. M. Clohessy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - B. D. Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, U.S.A
| | - Z. Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, U.S.A
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, U.S.A
| |
Collapse
|
230
|
Kienle A, Graf N, Wilke HJ. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? Spine J 2016; 16:235-42. [PMID: 26409208 DOI: 10.1016/j.spinee.2015.09.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/15/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT A large number of interbody fusion cages are made of polyetheretherketone (PEEK). To improve bone on-growth, some are coated with a thin layer of titanium. This coating may fail when subjected to shear loading. PURPOSE The purpose of this testing was to investigate whether impaction of titanium-coated PEEK cages into the disc space can result in wear or delamination of the coating, and whether titanium cages with subtractive surface etching (no coating) are less susceptible to such failure. STUDY DESIGN/SETTING A biomechanical study was carried out to simulate the impaction process in clinical practice and to evaluate if wear or delamination may result from impaction. MATERIALS AND METHODS Two groups of posterior lumbar interbody fusion cages with a similar geometry were tested: n=6 titanium-coated PEEK and n=6 surface-etched titanium cages. The cages were impacted into the space in between two vertebral body substitutes (polyurethane foam blocks). The two vertebral body substitutes were fixed in a device, through which a standardized axial preload of 390 N was applied. The anterior tip of the cage was positioned at the posterior border of the space between the two vertebral body substitutes. The cages were then inserted using a drop weight with a mass representative of a surgical hammer. The drop weight impacted the insertion instrument at a maximum speed of about 2.6 m/s, which is in the range of the impaction speed in vivo. This was repeated until the cages were fully inserted. The wear particles were captured and analyzed according to the pertinent standards. RESULTS The surface-etched titanium cages did not show any signs of wear debris or surface damage. In contrast, the titanium-coated PEEK cages resulted in detached wear particles of different sizes (1-191 µm). Over 50% of these particles had a size <10 µm. In median, on 26% of the implants' teeth, the coating was abraded. Full delamination was not observed. CONCLUSIONS In contrast to the surface-etched implants, the titanium-coated PEEK implants lost some coating material. This was visible to the naked eye. More than half of all particles were of a size range that allows phagocytosis. This study shows that titanium-coated implants are susceptible to impaction-related wear debris.
Collapse
Affiliation(s)
- Annette Kienle
- SpineServ GmbH & Co. KG, Soeflinger Strasse 100, Ulm D-89077, Germany.
| | - Nicolas Graf
- SpineServ GmbH & Co. KG, Soeflinger Strasse 100, Ulm D-89077, Germany
| | - Hans-Joachim Wilke
- Institute for Orthopedic Research and Biomechanics, Helmholtzstr. 14, Ulm D-89081, Germany
| |
Collapse
|
231
|
Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration. Biointerphases 2015; 10:041002. [DOI: 10.1116/1.4932579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
232
|
Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:45-53. [PMID: 26706505 DOI: 10.1016/j.msec.2015.11.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
Abstract
Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway.
Collapse
|
233
|
Marques IDSV, Barão VAR, da Cruz NC, Yuan JCC, Mesquita MF, Ricomini-Filho AP, Sukotjo C, Mathew MT. Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application. CORROSION SCIENCE 2015; 100:133-146. [PMID: 26834277 PMCID: PMC4730887 DOI: 10.1016/j.corsci.2015.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompability properties with better responses for corrosion and barrier properties, due to the presence of rutile crystalline structure. PEO may be a promising surface treatment option to improve the electrochemical behavior of dental implants mitigating treatment failures.
Collapse
Affiliation(s)
- Isabella da Silva Vieira Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo, Brazil, 13414-903
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo, Brazil, 13414-903
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo, Brazil, 18087-180
| | - Judy Chia-Chun Yuan
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, Illinois, USA, 60612
| | - Marcelo Ferraz Mesquita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo, Brazil, 13414-903
| | - Antonio Pedro Ricomini-Filho
- Department of Physiological Science, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo, Brazil, 13414-903
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, Illinois, USA, 60612
| | - Mathew T. Mathew
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison, Chicago, Illinois, USA, 60612
| |
Collapse
|
234
|
Huang Q, Liu X, Elkhooly TA, Zhang R, Shen Z, Feng Q. A novel titania/calcium silicate hydrate hierarchical coating on titanium. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
235
|
Baran ET, Pirraco RP, Cerqueira MT, Marques AP, Retolaza A, Merino S, Neves NM, Reis RL. Depth (Z-axis) control of cell morphologies on micropatterned surfaces. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515580354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, cell responses on micropatterned films that were changing in groove–ridge widths and pattern depth were investigated to compare the degree of size effects from X–Y and Z planes. Poly(caprolactone) films with five different groove–ridge sizes and three pattern depths were prepared by hot embossing technique. In general, the morphologies of osteoblast cell were not changed noticeably by the size changes in groove–ridges with the same depth size. However, cell morphologies were changed significantly when pattern depths were increased from 1.35 to 4.95 µm. Also, the cell morphology change between different groove–ridges was significant when the pattern depth was small (1.35 µm), and these effects were diminished or masked when the pattern depth was increased to 4.95 µm. Linear regression analysis further clarifies that unit size changes in depth may affect cell length and orientation rates 2.4 and 4 times, respectively, in comparison to rates obtained from X–Y planes.
Collapse
Affiliation(s)
- Erkan T Baran
- 3B’s Research Group—Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Guimarães, Portugal
| | - Rogerio P Pirraco
- 3B’s Research Group—Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B’s Research Group—Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Guimarães, Portugal
| | - Alaxandre P Marques
- 3B’s Research Group—Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Guimarães, Portugal
| | - Aritz Retolaza
- Micro and Nanofabrication Unit, IK4-Tekniker, Eibar, Spain
- CIC microGUNE, Arrasate-Mondragón, Spain
| | - Santos Merino
- Micro and Nanofabrication Unit, IK4-Tekniker, Eibar, Spain
- CIC microGUNE, Arrasate-Mondragón, Spain
| | - Nuno M Neves
- 3B’s Research Group—Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group—Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Guimarães, Portugal
| |
Collapse
|
236
|
Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine (Phila Pa 1976) 2015; 40:399-404. [PMID: 25584952 PMCID: PMC4363266 DOI: 10.1097/brs.0000000000000778] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. OBJECTIVE The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). SUMMARY OF BACKGROUND DATA Histologically, implants fabricated from PEEK have a fibrous connective tissue surface interface whereas Ti-alloy implants demonstrate close approximation with surrounding bone. Ti-alloy surfaces with complex micron/submicron scale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation whereas PEEK favors fibrous tissue formation. METHODS Human mesenchymal stem cells were cultured on tissue culture polystyrene, PEEK, smooth TiAlV, or macro-/micro-/nano-textured rough TiAlV (mmnTiAlV) disks. Osteoblastic differentiation and secreted inflammatory interleukins were assessed after 7 days. Fold changes in mRNAs for inflammation, necrosis, DNA damage, or apoptosis with respect to tissue culture polystyrene were measured by low-density polymerase chain reaction array. Data were analyzed by analysis of variance, followed by Bonferroni's correction of Student's t-test. RESULTS Cells on PEEK upregulated mRNAs for chemokine ligand-2, interleukin (IL) 1β, IL6, IL8, and tumor necrosis factor. Cells grown on the mmnTiAlV had an 8-fold reduction in mRNAs for toll-like receptor-4. Cells grown on mmnTiAlV had reduced levels of proinflammatory interleukins. Cells on PEEK had higher mRNAs for factors strongly associated with cell death/apoptosis, whereas cells on mmnTiAlV exhibited reduced cytokine factor levels. All results were significant (P < 0.05). CONCLUSION These results suggest that fibrous tissue around PEEK implants may be due to several factors: reduced osteoblastic differentiation of progenitor cells and production of an inflammatory environment that favors cell death via apoptosis and necrosis. Ti alloy surfaces with complex macro/micro/nanoscale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation. LEVEL OF EVIDENCE N/A.
Collapse
|
237
|
Deng Y, Liu X, Xu A, Wang L, Luo Z, Zheng Y, Deng F, Wei J, Tang Z, Wei S. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine 2015; 10:1425-47. [PMID: 25733834 PMCID: PMC4337592 DOI: 10.2147/ijn.s75557] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK–nanohydroxyapatite ternary composites (PEEK/n-HA/CF) with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation) and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment/proliferation and promotes the production of alkaline phosphatase (ALP) activity and calcium nodule formation compared with the other groups. More importantly, the PEEK/n-HA/CF implant with appropriate surface roughness exhibits remarkably enhanced bioactivity and osseointegration in vivo in the animal experiment. These findings will provide critical guidance for the design of CFRPEEK-based implants with optimal roughness to regulate cellular behaviors, and to enhance biocompability and osseointegration. Meanwhile, the PEEK/n-HA/CF ternary composite with optimal surface roughness might hold great potential as bioactive biomaterial for bone grafting and tissue engineering applications.
Collapse
Affiliation(s)
- Yi Deng
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China ; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Anxiu Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Beijing, People's Republic of China
| | - Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zuyuan Luo
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Yunfei Zheng
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Beijing, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhihui Tang
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Shicheng Wei
- 2nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China ; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China ; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Beijing, People's Republic of China
| |
Collapse
|
238
|
Evans NT, Torstrick FB, Lee CSD, Dupont KM, Safranski DL, Chang WA, Macedo AE, Lin ASP, Boothby JM, Whittingslow DC, Carson RA, Guldberg RE, Gall K. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater 2015; 13:159-67. [PMID: 25463499 DOI: 10.1016/j.actbio.2014.11.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/26/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022]
Abstract
Despite its widespread clinical use in load-bearing orthopedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface-porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer was 399.6±63.3 μm thick and possessed a mean pore size of 279.9±31.6 μm, strut spacing of 186.8±55.5 μm, porosity of 67.3±3.1% and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection-molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection-molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via microcomputed tomography and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopedic applications.
Collapse
Affiliation(s)
- Nathan T Evans
- School of Materials Science and Engineering, 771 Ferst Drive, J. Erskine Love Building, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - F Brennan Torstrick
- George W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, 315 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Kenneth M Dupont
- MedShape, Inc., 1575 Northside Drive, NW, Suite 440, Atlanta, GA 30318, USA
| | - David L Safranski
- MedShape, Inc., 1575 Northside Drive, NW, Suite 440, Atlanta, GA 30318, USA
| | - W Allen Chang
- Vertera, Inc., 311 Ferst Drive NW Suite L1328, Atlanta, GA 30332, USA
| | - Annie E Macedo
- Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Drive, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Angela S P Lin
- George W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, 315 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jennifer M Boothby
- Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Drive, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Daniel C Whittingslow
- Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Drive, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Robert A Carson
- George W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, 315 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ken Gall
- School of Materials Science and Engineering, 771 Ferst Drive, J. Erskine Love Building, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, 315 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
239
|
Ma T, Ge XY, Jia SN, Jiang X, Zhang Y, Lin Y. The influence of titanium surfaces treated by alkalis on macrophage and osteoblast-like cell adhesion and gene expression in vitro. RSC Adv 2015. [DOI: 10.1039/c5ra10701f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The effect of alkali-treated titanium surfaces on inflammation-related gene expression of macrophages and alkaline phosphatase activity of osteoblast-like cells.
Collapse
Affiliation(s)
- Ting Ma
- Department of Oral Implantology
- Peking University
- School of Stomatology
- Beijing 100081
- P.R. China
| | - Xi-Yuan Ge
- Central Laboratory
- Peking University School and Hospital of Stomatology
- Beijing 100081
- China
| | - Sheng-Nan Jia
- Department of Oral Implantology
- Peking University
- School of Stomatology
- Beijing 100081
- P.R. China
| | - Xi Jiang
- Department of Oral Implantology
- Peking University
- School of Stomatology
- Beijing 100081
- P.R. China
| | - Yu Zhang
- Department of Oral Implantology
- Peking University
- School of Stomatology
- Beijing 100081
- P.R. China
| | - Ye Lin
- Department of Oral Implantology
- Peking University
- School of Stomatology
- Beijing 100081
- P.R. China
| |
Collapse
|
240
|
Shibata Y, Tanimoto Y. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. J Prosthodont Res 2015; 59:20-33. [DOI: 10.1016/j.jpor.2014.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/05/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
241
|
Kato E, Yamada M, Sakurai K. Retrospective clinical outcome of nanopolymorphic crystalline hydroxyapatite-coated and anodic oxidized titanium implants for 10 years. J Prosthodont Res 2014; 59:62-70. [PMID: 25481487 DOI: 10.1016/j.jpor.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Nanopolymorphic crystalline Hydroxyapatite (HA)-coated implants were different in surface property from conventional HA-coated implants subjected to previous clinical studies. The purposes of the present study were to retrospectively evaluate 10-years clinical outcome of the HA-coated implants (HA implants) with a comparison to the same system implants with anodic oxidized titanium surface (Ti implants). METHODS Cumulative survival rate (CSR) of HA or Ti implants placed in 183 patients (55±12.4 years old) over two decades was calculated with life table analysis. Differences in CSR at each interval year, sex, age, frequency of number of implant placement according to implant location and diameter were compared between both types of implants. RESULTS Total 455 HA implants and 255 Ti implants were included. CSR at upper molar site was consistently higher in HA implants than Ti implants until 8 years after placement. The values after 10 years was 89.9% or 77.7% in HA or Ti implants, respectively. There were no significant differences in overall CSR at any interval year. HA implants were more distributed at upper molar site but less at lower molar site than Ti implants. Diameter of HA implants tended to be wider than Ti implants. CONCLUSIONS Under limitation of this retrospective study, the nanopolymorphic crystalline HA-coated implants were more survived at upper molar site than anodic oxidized implants until 8 years after placement. This clinical outcome might attribute to differences in topographical and physicochemical characteristics between both types of implants.
Collapse
Affiliation(s)
- Eiji Kato
- Department of Removable Prosthodontics & Gerodontology, Tokyo Dental College, Tokyo, Japan; Implant and Tissue Engineering Dental Network-Tokyo, Tokyo, Japan
| | - Masahiro Yamada
- Department of Removable Prosthodontics & Gerodontology, Tokyo Dental College, Tokyo, Japan.
| | - Kaoru Sakurai
- Department of Removable Prosthodontics & Gerodontology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
242
|
Uskoković V, Desai TA. Does translational symmetry matter on the micro scale? Fibroblastic and osteoblastic interactions with the topographically distinct poly(ε-caprolactone)/hydroxyapatite thin films. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13209-20. [PMID: 25014232 PMCID: PMC4134142 DOI: 10.1021/am503043t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/11/2014] [Indexed: 05/23/2023]
Abstract
Material composition and topography of the cell-contacting material interface are important considerations in the design of biomaterials at the nano and micro scales. This study is one of the first to have assessed the osteoblastic response to micropatterned polymer-ceramic composite surfaces. In particular, the effect of topographic variations of composite poly(ε-caprolactone)/hydroxyapatite (PCL/HAp) films on viability, proliferation, migration and osteogenesis of fibroblastic and osteoblastic MC3T3-E1 cells was evaluated. To that end, three different micropatterned PCL/HAp films were compared: flat and textured, the latter of which included films comprising periodically arranged and randomly distributed oval topographic features 10 μm in diameter, 20 μm in separation and 10 μm in height, comparable to the dimensions of MC3T3-E1 cells. PCL/HAp films were fabricated by the combination of a bottom-up, soft chemical synthesis of the ceramic, nanoparticulate phase and a top-down, photolithographic technique for imprinting fine, microscale features on them. X-ray diffraction analysis indicated an isotropic orientation of both the polymeric chains and HAp crystallites in the composite samples. Biocompatibility tests indicated no significant decrease in their viability when grown on PCL/HAp films. Fibroblast proliferation and migration onto PCL/HAp films proceeded slower than on the control borosilicate glass, with the flat composite film fostering more cell migration activity than the films containing topographic features. The gene expression of seven analyzed osteogenic markers, including procollagen type I, osteocalcin, osteopontin, alkaline phosphatase, and the transcription factors Runx2 and TGFβ-1, was, however, consistently upregulated in cells grown on PCL/HAp films comprising periodically ordered topographic features, suggesting that the higher levels of symmetry of the topographic ordering impose a moderate mechanochemical stress on the adherent cells and thus promote a more favorable osteogenic response. The obtained results suggest that topography can be a more important determinant of the cell/surface interaction than the surface chemistry and/or stiffness as well as that the regularity of the distribution of topographic features can be a more important variable than the topographic features per se.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and
Nanotechnology Laboratory, Department of Bioengineering
and Therapeutic Sciences, University of
California, San Francisco, San
Francisco, California 94158-2330, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University
of Illinois, Chicago, Illinois 60607-7052, United States
| | - Tejal A. Desai
- Therapeutic Micro and
Nanotechnology Laboratory, Department of Bioengineering
and Therapeutic Sciences, University of
California, San Francisco, San
Francisco, California 94158-2330, United States
| |
Collapse
|
243
|
Ceylan H, Kocabey S, Unal Gulsuner H, Balcik OS, Guler MO, Tekinay AB. Bone-Like Mineral Nucleating Peptide Nanofibers Induce Differentiation of Human Mesenchymal Stem Cells into Mature Osteoblasts. Biomacromolecules 2014; 15:2407-18. [DOI: 10.1021/bm500248r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hakan Ceylan
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Samet Kocabey
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Hilal Unal Gulsuner
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Ozlem S. Balcik
- Department
of Hematology, School of Medicine Hospital, Turgut Ozal University, Ankara, 06510, Turkey
| | - Mustafa O. Guler
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Ayse B. Tekinay
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|