201
|
Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis 2019; 132:104589. [PMID: 31454549 DOI: 10.1016/j.nbd.2019.104589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-β, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRβ, αSMA). Amyloid-β expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRβ and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRβ/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.
Collapse
|
202
|
Lee M, Lee HJ, Jeong YJ, Oh SJ, Kang KJ, Han SJ, Nam KR, Lee YJ, Lee KC, Ryu YH, Hyun IY, Choi JY. Age dependency of mGluR5 availability in 5xFAD mice measured by PET. Neurobiol Aging 2019; 84:208-216. [PMID: 31570178 DOI: 10.1016/j.neurobiolaging.2019.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
The major pathologies of Alzheimer's disease (AD) are amyloid plaques and hyperphosphorylated tau. The deposition of amyloid plaques leads to synaptic dysfunction, neuronal cell death, and cognitive impairment. Among the neurotransmitters, glutamate is the most abundant in the mammalian brain and plays an important role in synaptic plasticity. With respect to synaptic transmission, metabotropic glutamate receptor 5 (mGluR5) is highly affected by amyloid pathology. However, the neuropathologic changes in the protein expression of mGluR5 in AD remain unclear. Therefore, to elucidate the alteration in mGluR5 expression with the progression of AD, we performed serial behavioral tests, longitudinal imaging studies, and histopathological immunoassay for both 5xFAD (n = 14) mice and age-matched wild-type mice (n = 14). The 5xFAD mice started showing severe hyperactivity and memory impairment from 7 months of age. In addition, mGluR5 positron emission tomography revealed that while the binding values in the wild-type mice were similar over time, those in 5xFAD mice fluctuated from 5 months of age. Furthermore, the 5xFAD mice presented a 35% decrease in the binding values of their cortical and subcortical areas at 9 months of age compared with those at 3 months of age. Magnetic resonance spectroscopy and histopathological studies showed similar changes. In conclusion, mGluR5 availability changes with age, and mGluR5 positron emission tomography could successfully detect this synaptic change in the 5xFAD mice.
Collapse
Affiliation(s)
- Minkyung Lee
- Department of Nuclear Medicine, Inha University Hospital, Inha University, Incheon, South Korea
| | - Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Ye Ji Jeong
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - In Young Hyun
- Department of Nuclear Medicine, Inha University Hospital, Inha University, Incheon, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| |
Collapse
|
203
|
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener 2019; 14:32. [PMID: 31375134 PMCID: PMC6679484 DOI: 10.1186/s13024-019-0333-5] [Citation(s) in RCA: 1496] [Impact Index Per Article: 299.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer's disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer's disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer's disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer's disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer's disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment.
Collapse
Affiliation(s)
- Michael A DeTure
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
204
|
Complement C3 Is Activated in Human AD Brain and Is Required for Neurodegeneration in Mouse Models of Amyloidosis and Tauopathy. Cell Rep 2019; 28:2111-2123.e6. [DOI: 10.1016/j.celrep.2019.07.060] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/19/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
|
205
|
Myhre CL, Thygesen C, Villadsen B, Vollerup J, Ilkjær L, Krohn KT, Grebing M, Zhao S, Khan AM, Dissing-Olesen L, Jensen MS, Babcock AA, Finsen B. Microglia Express Insulin-Like Growth Factor-1 in the Hippocampus of Aged APP swe/PS1 ΔE9 Transgenic Mice. Front Cell Neurosci 2019; 13:308. [PMID: 31417357 PMCID: PMC6682662 DOI: 10.3389/fncel.2019.00308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/24/2019] [Indexed: 11/14/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a pleiotropic molecule with neurotrophic and immunomodulatory functions. Knowing the capacity of chronically activated microglia to produce IGF-1 may therefore show essential to promote beneficial microglial functions in Alzheimer's disease (AD). Here, we investigated the expression of IGF-1 mRNA and IGF-1 along with the expression of tumor necrosis factor (TNF) mRNA, and the amyloid-β (Aβ) plaque load in the hippocampus of 3- to 24-month-old APPswe/PS1ΔE9 transgenic (Tg) and wild-type (WT) mice. As IGF-1, in particular, is implicated in neurogenesis we also monitored the proliferation of cells in the subgranular zone (sgz) of the dentate gyrus. We found that the Aβ plaque load reached its maximum in aged 21- and 24-month-old APPswe/PS1ΔE9 Tg mice, and that microglial reactivity and hippocampal IGF-1 and TNF mRNA levels were significantly elevated in aged APPswe/PS1ΔE9 Tg mice. The sgz cell proliferation decreased with age, regardless of genotype and increased IGF-1/TNF mRNA levels. Interestingly, IGF-1 mRNA was expressed in subsets of sgz cells, likely neuroblasts, and neurons in both genotypes, regardless of age, as well as in glial-like cells. By double in situ hybridization these were shown to be IGF1 mRNA+ CD11b mRNA+ cells, i.e., IGF-1 mRNA-expressing microglia. Quantification showed a 2-fold increase in the number of microglia and IGF-1 mRNA-expressing microglia in the molecular layer of the dentate gyrus in aged APPswe/PS1ΔE9 Tg mice. Double-immunofluorescence showed that IGF-1 was expressed in a subset of Aβ plaque-associated CD11b+ microglia and in several subsets of neurons. Exposure of primary murine microglia and BV2 cells to Aβ42 did not affect IGF-1 mRNA expression. IGF-1 mRNA levels remained constant in WT mice with aging, unlike TNF mRNA levels which increased with aging. In conclusion, our results suggest that the increased IGF-1 mRNA levels can be ascribed to a larger number of IGF-1 mRNA-expressing microglia in the aged APPswe/PS1ΔE9 Tg mice. The finding that subsets of microglia retain the capacity to express IGF-1 mRNA and IGF-1 in the aged APPswe/PS1ΔE9 Tg mice is encouraging, considering the beneficial therapeutic potential of modulating microglial production of IGF-1 in AD.
Collapse
Affiliation(s)
- Christa Løth Myhre
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Camilla Thygesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte Villadsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jeanette Vollerup
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Laura Ilkjær
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Katrine Tækker Krohn
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Manuela Grebing
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Shuainan Zhao
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Asif Manzoor Khan
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lasse Dissing-Olesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Alicia A. Babcock
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
206
|
Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer's disease brains. Brain Pathol 2019; 30:151-164. [PMID: 31276244 PMCID: PMC6904423 DOI: 10.1111/bpa.12763] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is a widely used target for microglial PET imaging radioligands, but its expression in post-mortem normal and diseased human brain is not well described. We aimed at characterizing the TSPO expression in human control (CTRL) and Alzheimer's disease (AD) brains. Specifically, we sought to: (1) define the cell type(s) expressing TSPO; (2) compare tspo mRNA and TSPO levels between AD and CTRL brains; (3) correlate TSPO levels with quantitative neuropathological measures of reactive glia and AD neuropathological changes; and (4) investigate the effects of the TSPO rs6971 SNP on tspo mRNA and TSPO levels, glial responses and AD neuropathological changes. We performed quantitative immunohistochemistry and Western blot in post-mortem brain samples from CTRL and AD subjects, as well as analysis of publicly available mouse and human brain RNA-Seq datasets. We found that: (1) TSPO is expressed not just in microglia, but also in astrocytes, endothelial cells and vascular smooth muscle cells; (2) there is substantial overlap of tspo mRNA and TSPO levels between AD and CTRL subjects and in TSPO levels between temporal neocortex and white matter in both groups; (3) TSPO cortical burden does not correlate with the burden of activated microglia or reactive astrocytes, Aβ plaques or neurofibrillary tangles, or the cortical thickness; (4) the TSPO rs6971 SNP does not significantly impact tspo mRNA or TSPO levels, the magnitude of glial responses, the cortical thickness, or the burden of AD neuropathological changes. These results could inform ongoing efforts toward the development of reactive glia-specific PET radioligands.
Collapse
Affiliation(s)
- Yaxing Gui
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Department of Neurology, Sir Run Run Shaw Hospital of Zhejiang University, Zhejiang, China
| | - Jordan D Marks
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
207
|
Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ, Edison P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain 2019; 141:2740-2754. [PMID: 30052812 DOI: 10.1093/brain/awy188] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is characterized by the histopathological presence of amyloid-β plaques and tau-containing neurofibrillary tangles. Microglial activation is also a recognized pathological component. The relationship between microglial activation and protein aggregation is still debated. We investigated the relationship between amyloid plaques, tau tangles and activated microglia using PET imaging. Fifty-one subjects (19 healthy controls, 16 mild cognitive impairment and 16 Alzheimer's disease subjects) participated in the study. All subjects had neuropsychometric testing, MRI, amyloid (18F-flutemetamol), and microglial (11C-PBR28) PET. All subjects with mild cognitive impairment and Alzheimer's disease and eight of the controls had tau (18F-AV1451) PET. 11C-PBR28 PET was analysed using Logan graphical analysis with an arterial plasma input function, while 18F-flutemetamol and 18F-AV1451 PET were analysed as target:cerebellar ratios to create parametric standardized uptake value ratio maps. Biological parametric mapping in the Statistical Parametric Mapping platform was used to examine correlations between uptake of tracers at a voxel-level. There were significant widespread clusters of positive correlation between levels of microglial activation and tau aggregation in both the mild cognitive impairment (amyloid-positive and amyloid-negative) and Alzheimer's disease subjects. The correlations were stronger in Alzheimer's disease than in mild cognitive impairment, suggesting that these pathologies increase together as disease progresses. Levels of microglial activation and amyloid deposition were also correlated, although in a different spatial distribution; correlations were stronger in mild cognitive impairment than Alzheimer's subjects, in line with a plateauing of amyloid load with disease progression. Clusters of positive correlations between microglial activation and protein aggregation often targeted similar areas of association cortex, indicating that all three processes are present in specific vulnerable brain areas. For the first time using PET imaging, we show that microglial activation can correlate with both tau aggregation and amyloid deposition. This confirms the complex relationship between these processes. These results suggest that preventative treatment for Alzheimer's disease should target all three processes.
Collapse
Affiliation(s)
- Melanie Dani
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Melanie Wood
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Ruth Mizoguchi
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zhen Fan
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zuzana Walker
- Division of Psychiatry, University College London, UK.,Essex Partnership University NHS Foundation Trust, UK
| | | | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, UK
| | - Maya Biju
- Gether NHS Foundation Trust, Gloucester, UK
| | | | - David J Brooks
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK.,Department of Nuclear Medicine, Aarhus University, Denmark.,Institute of Neuroscience, University of Newcastle upon Tyne, UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| |
Collapse
|
208
|
Vogels T, Murgoci AN, Hromádka T. Intersection of pathological tau and microglia at the synapse. Acta Neuropathol Commun 2019; 7:109. [PMID: 31277708 PMCID: PMC6612163 DOI: 10.1186/s40478-019-0754-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Tauopathies are a heterogenous class of diseases characterized by cellular accumulation of aggregated tau and include diseases such as Alzheimer’s disease (AD), progressive supranuclear palsy and chronic traumatic encephalopathy. Tau pathology is strongly linked to neurodegeneration and clinical symptoms in tauopathy patients. Furthermore, synapse loss is an early pathological event in tauopathies and is the strongest correlate of cognitive decline. Tau pathology is additionally associated with chronic neuroinflammatory processes, such as reactive microglia, astrocytes, and increased levels of pro-inflammatory molecules (e.g. complement proteins, cytokines). Recent studies show that as the principal immune cells of the brain, microglia play a particularly important role in the initiation and progression of tau pathology and associated neurodegeneration. Furthermore, AD risk genes such as Triggering receptor expressed on myeloid cells 2 (TREM2) and Apolipoprotein E (APOE) are enriched in the innate immune system and modulate the neuroinflammatory response of microglia to tau pathology. Microglia can play an active role in synaptic dysfunction by abnormally phagocytosing synaptic compartments of neurons with tau pathology. Furthermore, microglia are involved in synaptic spreading of tau – a process which is thought to underlie the progressive nature of tau pathology propagation through the brain. Spreading of pathological tau is also the predominant target for tau-based immunotherapy. Active tau vaccines, therapeutic tau antibodies and other approaches targeting the immune system are actively explored as treatment options for AD and other tauopathies. This review describes the role of microglia in the pathobiology of tauopathies and the mechanism of action of potential therapeutics targeting the immune system in tauopathies.
Collapse
|
209
|
Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:99-145. [PMID: 31699331 DOI: 10.1016/bs.pmbts.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
210
|
Chen XQ, Mobley WC. Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Front Neurosci 2019; 13:659. [PMID: 31293377 PMCID: PMC6598402 DOI: 10.3389/fnins.2019.00659] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aβ and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
211
|
Luppi M, Hitrec T, Di Cristoforo A, Squarcio F, Stanzani A, Occhinegro A, Chiavetta P, Tupone D, Zamboni G, Amici R, Cerri M. Phosphorylation and Dephosphorylation of Tau Protein During Synthetic Torpor. Front Neuroanat 2019; 13:57. [PMID: 31244617 PMCID: PMC6563845 DOI: 10.3389/fnana.2019.00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Tau protein is of primary importance for many physiological processes in neurons, where it affects the dynamics of the microtubule system. When hyperphosphorylated (PP-Tau), Tau monomers detach from microtubules and tend to aggregate firstly in oligomers, and then in neurofibrillary tangles, as it occurs in a group of neurodegenerative disorders named thauopathies. A hypothermia-related accumulation of PP-Tau, which is quickly reversed after the return to normothermia, has been shown to occur in the brain of hibernators during torpor. Since, recently, in our lab, a hypothermic torpor-like condition (synthetic torpor, ST) was pharmacologically induced in the rat, a non-hibernator, the aim of the present work was to assess whether ST can lead to a reversible PP-Tau accumulation in the rat brain. PP-Tau was immunohistochemically assessed by staining for AT8 (phosphorylated Tau) and Tau-1 (non-phosphorylated Tau) in 19 brain structures, which were chosen mostly due to their involvement in the regulation of autonomic and cognitive functions in relation to behavioral states. During ST, AT8 staining was strongly expressed throughout the brain, while Tau-1 staining was reduced compared to control conditions. During the following recovery period, AT8 staining progressively reduced close to zero after 6 h from ST. However, Tau-1 staining remained low even after 38 h from ST. Thus, overall, these results show that ST induced an accumulation of PP-Tau that was, apparently, only partially reversed to normal during the recovery period. While the accumulation of PP-Tau may only depend on the physicochemical characteristics of the enzymes regulating Tau phosphorylation, the reverse process of dephosphorylation should be actively regulated, also in non-hibernators. In conclusion, in this work a reversible and widespread PP-Tau accumulation has been induced through a procedure that leads a non-hibernator to a degree of reversible hypothermia, which is comparable to that observed in hibernators. Therefore, the physiological mechanism involved in this process can sustain an adaptive neuronal response to extreme conditions, which may however lead to neurodegeneration when particular intensities and durations are exceeded.
Collapse
Affiliation(s)
- Marco Luppi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessia Di Cristoforo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabio Squarcio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Agnese Stanzani
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Giovanni Zamboni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
212
|
Mittal K, Eremenko E, Berner O, Elyahu Y, Strominger I, Apelblat D, Nemirovsky A, Spiegel I, Monsonego A. CD4 T Cells Induce A Subset of MHCII-Expressing Microglia that Attenuates Alzheimer Pathology. iScience 2019; 16:298-311. [PMID: 31203186 PMCID: PMC6581663 DOI: 10.1016/j.isci.2019.05.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
Microglia play a key role in innate immunity in Alzheimer disease (AD), but their role as antigen-presenting cells is as yet unclear. Here we found that amyloid β peptide (Aβ)-specific T helper 1 (Aβ-Th1 cells) T cells polarized to secrete interferon-γ and intracerebroventricularly (ICV) injected to the 5XFAD mouse model of AD induced the differentiation of major histocompatibility complex class II (MHCII)+ microglia with distinct morphology and enhanced plaque clearance capacity than MHCII- microglia. Notably, 5XFAD mice lacking MHCII exhibited an enhanced amyloid pathology in the brain along with exacerbated innate inflammation and reduced phagocytic capacity. Using a bone marrow chimera mouse model, we showed that infiltrating macrophages did not differentiate to MHCII+ cells following ICV injection of Aβ-Th1 cells and did not support T cell-mediated amyloid clearance. Overall, we demonstrate that CD4 T cells induce a P2ry12+ MHCII+ subset of microglia, which play a key role in T cell-mediated effector functions that abrogate AD-like pathology.
Collapse
Affiliation(s)
- Kritika Mittal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omer Berner
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Itai Strominger
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Daniella Apelblat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
213
|
Kreisl WC. Discerning the relationship between microglial activation and Alzheimer's disease. Brain 2019; 140:1825-1828. [PMID: 29177498 DOI: 10.1093/brain/awx151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
214
|
Gefen T, Kim G, Bolbolan K, Geoly A, Ohm D, Oboudiyat C, Shahidehpour R, Rademaker A, Weintraub S, Bigio EH, Mesulam MM, Rogalski E, Geula C. Activated Microglia in Cortical White Matter Across Cognitive Aging Trajectories. Front Aging Neurosci 2019; 11:94. [PMID: 31139072 PMCID: PMC6527736 DOI: 10.3389/fnagi.2019.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/05/2019] [Indexed: 11/29/2022] Open
Abstract
Activation of microglia, the primary mediators of inflammation in the brain, is a major component of gliosis and neuronal loss in a number of age-related neurodegenerative disorders, such as Alzheimer’s disease (AD). The role of activated microglia in white matter, and its relationship with cognitive decline during aging are unknown. The current study evaluated microglia densities in the white matter of postmortem specimens from cognitively normal young adults, cognitively normal older adults, and cognitive “SuperAgers,” a unique group of individuals over age 80 whose memory test scores are at a level equal to or better than scores of 50-to-65-year-olds. Whole hemisphere sections from cognitively normal old, young, and “SuperAgers” were used to quantify densities of human leukocyte antigen-D related (HLA-DR)-positive activated microglia underlying five cortical regions. Statistical findings showed a significant main effect of group on differences in microglia density where cognitively normal old showed highest densities. No difference between SuperAgers and young specimens were detected. In two autopsied SuperAgers with MRI FLAIR scans available, prominent hyperintensities in periventricular regions were observed, and interestingly, examination of corresponding postmortem sections showed only sparse microglia densities. In conclusion, activated microglia appear to respond to age-related pathologic changes in cortical white matter, and this phenomenon is largely spared in SuperAgers. Findings offer insights into the relationship between white matter neuroinflammatory changes and cognitive integrity during aging.
Collapse
Affiliation(s)
- Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Garam Kim
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kabriya Bolbolan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew Geoly
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel Ohm
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Carly Oboudiyat
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ryan Shahidehpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred Rademaker
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
215
|
Chen XQ, Mobley WC. Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses. Front Neurosci 2019; 13:446. [PMID: 31133787 PMCID: PMC6514132 DOI: 10.3389/fnins.2019.00446] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary financial and emotional burdens (Apostolova, 2016). Studies of pathogenesis are essential for defining critical molecular and cellular events and for discovering therapies to prevent or mitigate their effects. Through studies of neuropathology, genetic and cellular, and molecular biology recent decades have provided many important insights. Several hypotheses have been suggested. Documentation in the 1980s of selective loss of cholinergic neurons of the basal forebrain, followed by clinical improvement in those treated with inhibitors of acetylycholinesterase, supported the "cholinergic hypothesis of age-related cognitive dysfunction" (Bartus et al., 1982). A second hypothesis, prompted by the selective loss of cholinergic neurons and the discovery of central nervous system (CNS) neurotrophic factors, including nerve growth factor (NGF), prompted the "deficient neurotrophic hypothesis" (Chen et al., 2018). The most persuasive hypothesis, the amyloid cascade hypothesis first proposed more than 25 years ago (Selkoe and Hardy, 2016), is supported by a wealth of observations. Genetic studies were exceptionally important, pointing to increased dose of the gene for the amyloid precursor protein (APP) in Down syndrome (DS) and a familial AD (FAD) due to duplication of APP and to mutations in APP and in the genes for Presenilin 1 and 2 (PSEN1, 2), which encode the γ-secretase enzyme that processes APP (Dorszewska et al., 2016). The "tau hypothesis" noted the prominence of tau-related pathology and its correlation with dementia (Kametani and Hasegawa, 2018). Recent interest in induction of microglial activation in the AD brain, as well as other manifestations of inflammation, supports the "inflammatory hypothesis" (Mcgeer et al., 2016). We place these findings in the context of the selective, but by no means unique, involvement of BFCNs and their trophic dependence on NGF signaling and speculate as to how pathogenesis in these neurons is initiated, amplified and ultimately results in their dysfunction and death. In so doing we attempt to show how the different hypotheses for AD may interact and reinforce one another. Finally, we address current attempts to prevent and/or treat AD in light of advances in understanding pathogenetic mechanisms and suggest that studies in the DS population may provide unique insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
216
|
Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA. Astrocytic changes with aging and Alzheimer's disease-type pathology in chimpanzees. J Comp Neurol 2019; 527:1179-1195. [PMID: 30578640 PMCID: PMC6401278 DOI: 10.1002/cne.24610] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 01/01/2023]
Abstract
Astrocytes are the main homeostatic cell of the central nervous system. In addition, astrocytes mediate an inflammatory response when reactive to injury or disease known as astrogliosis. Astrogliosis is marked by an increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Some degree of astrogliosis is associated with normal aging and degenerative conditions such as Alzheimer's disease (AD) and other dementing illnesses in humans. The recent observation of pathological markers of AD (amyloid plaques and neurofibrillary tangles) in aged chimpanzee brains provided an opportunity to examine the relationships among aging, AD-type pathology, and astrocyte activation in our closest living relatives. Stereologic methods were used to quantify GFAP-immunoreactive astrocyte density and soma volume in layers I, III, and V of the prefrontal and middle temporal cortex, as well as in hippocampal fields CA1 and CA3. We found that the patterns of astrocyte activation in the aged chimpanzee brain are distinct from humans. GFAP expression does not increase with age in chimpanzees, possibly indicative of lower oxidative stress loads. Similar to humans, chimpanzee layer I astrocytes in the prefrontal cortex are susceptible to AD-like changes. Both prefrontal cortex layer I and hippocampal astrocytes exhibit a high degree of astrogliosis that is positively correlated with accumulation of amyloid beta and tau proteins. However, unlike humans, chimpanzees do not display astrogliosis in other cortical layers. These results demonstrate a unique pattern of cortical aging in chimpanzees and suggest that inflammatory processes may differ between humans and chimpanzees in response to pathology.
Collapse
Affiliation(s)
- Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
217
|
Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol 2019; 137:599-617. [PMID: 30721409 PMCID: PMC6426830 DOI: 10.1007/s00401-018-01957-y] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
Brains of Alzheimer's disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3-ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aβ)-induced microgliosis and Aβ pathology has been unequivocally identified. Aβ aggregates activate NLRP3-ASC inflammasome (Halle et al. in Nat Immunol 9:857-865, 2008) and conversely NLRP3-ASC inflammasome activation exacerbates amyloid pathology in vivo (Heneka et al. in Nature 493:674-678, 2013), including by prion-like ASC-speck cross-seeding (Venegas et al. in Nature 552:355-361, 2017). However, the link between inflammasome activation, as crucial sensor of innate immunity, and Tau remains unexplored. Here, we analyzed whether Tau aggregates acting as prion-like Tau seeds can activate NLRP3-ASC inflammasome. We demonstrate that Tau seeds activate NLRP3-ASC-dependent inflammasome in primary microglia, following microglial uptake and lysosomal sorting of Tau seeds. Next, we analyzed the role of inflammasome activation in prion-like or templated seeding of Tau pathology and found significant inhibition of exogenously seeded Tau pathology by ASC deficiency in Tau transgenic mice. We furthermore demonstrate that chronic intracerebral administration of the NLRP3 inhibitor, MCC950, inhibits exogenously seeded Tau pathology. Finally, ASC deficiency also decreased non-exogenously seeded Tau pathology in Tau transgenic mice. Overall our findings demonstrate that Tau-seeding competent, aggregated Tau activates the ASC inflammasome through the NLRP3-ASC axis, and we demonstrate an exacerbating role of the NLRP3-ASC axis on exogenously and non-exogenously seeded Tau pathology in Tau mice in vivo. The NLRP3-ASC inflammasome, which is an important sensor of innate immunity and intensively explored for its role in health and disease, hence presents as an interesting therapeutic approach to target three crucial pathogenetic processes in AD, including prion-like seeding of Tau pathology, Aβ pathology and neuroinflammation.
Collapse
|
218
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
219
|
Ameen-Ali KE, Simpson JE, Wharton SB, Heath PR, Sharp PS, Brezzo G, Berwick J. The Time Course of Recognition Memory Impairment and Glial Pathology in the hAPP-J20 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2019; 68:609-624. [DOI: 10.3233/jad-181238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kamar E. Ameen-Ali
- Department of Psychology, University of Sheffield, Sheffield, UK
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle-Upon-Tyne, UK
| | - Julie E. Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Stephen B. Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R. Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul S. Sharp
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Gaia Brezzo
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
220
|
Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT. The relationship between the morphological subtypes of microglia and Alzheimer's disease neuropathology. Brain Pathol 2019; 29:726-740. [PMID: 30803086 DOI: 10.1111/bpa.12717] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Microglial associations with both the major Alzheimer's disease (AD) pathognomonic entities, β-amyloid-positive plaques and tau-positive neurofibrillary tangles, have been noted in previous investigations of both human tissue and mouse models. However, the precise nature of their role in the pathogenesis of AD is debated; the major working hypothesis is that pro-inflammatory activities of activated microglia contribute to disease progression. In contrast, others have proposed that microglial dystrophy with a loss of physiological and neuroprotective activities promotes neurodegeneration. This immunohistochemical study sought to gain clarity in this area by quantifying the morphological subtypes of microglia in the mildly-affected primary visual cortex (PVC), the moderately affected superior frontal cortex (SFC) and the severely affected inferior temporal cortex (ITC) of 8 AD cases and 15 age and gender-matched, non-demented controls with ranging AD-type pathology. AD cases had increased β-amyloid and tau levels compared to controls in all regions. Neuronal loss was observed in the SFC and ITC, and was associated with atrophy in the latter. A major feature of the ITC in AD was a decrease in ramified (healthy) microglia with image analysis confirming reductions in arborized area and skeletal complexity. Activated microglia were not associated with AD but were increased in non-demented controls with greater AD-type pathology. Microglial clusters were occasionally associated with β-amyloid- and tau-positive plaques but represented less than 2% of the total microglial population. Dystrophic microglia were not associated with AD, but were inversely correlated with brain pH suggesting that agonal events were responsible for this morphological subtype. Overall these novel findings suggest that there is an early microglial reaction to AD-type pathology but a loss of healthy microglia is the prominent feature in severely affected regions of the AD brain.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Jillian June Kril
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Greg Trevor Sutherland
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
221
|
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology 2019; 27:663-677. [PMID: 30874945 DOI: 10.1007/s10787-019-00580-x] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is of high importance to the neuroscience world, yet the complex pathogenicity is not fully understood. Inflammation is usually observed in AD and could implicate both beneficial or detrimental effects depending on the severity of the disease. During initial AD pathology, microglia and astrocyte activation is beneficial since they are involved in amyloid-beta clearance. However, with the progression of the disease, activated microglia elicit detrimental effects by the overexpression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) bringing forth neurodegeneration in the surrounding brain regions. This results in decline in Aβ clearance by microglia; Aβ accumulation thus increases in the brain resulting in neuroinflammation. Thus, Aβ accumulation is the effect of increased release of pro-inflammatory molecules. Reactive astrocytes acquire gain of toxic function and exhibits neurotoxic effects with loss of neurotrophic functions. Astrocyte dysfunctioning results in increased release of cytokines and inflammatory mediators, neurodegeneration, decreased glutamate uptake, loss of neuronal synapses, and ultimately cognitive deficits in AD. We discuss the role of intracellular signaling pathways in the inflammatory responses produced by astrocytes and microglial activation, including the glycogen synthase kinase-3β, nuclear factor kappa B cascade, mitogen-activated protein kinase pathways and c-Jun N-terminal kinase. In this review, we describe the role of neuroinflammation in the chronicity of AD pathogenesis and an overview of the recent research towards the development of new therapies to treat this disorder.
Collapse
Affiliation(s)
- Darshpreet Kaur
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vivek Sharma
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
222
|
Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: A meta-analysis. Ageing Res Rev 2019; 50:1-8. [PMID: 30610927 DOI: 10.1016/j.arr.2019.01.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Increasingly, evidence from brain imaging supports the role of neuroinflammation in dementia progression. Yet, it is not clear if there are patterns of spatial and temporal susceptibility to neuroinflammatory processes in the brain that may correspond to dementia staging or symptom expression. METHODS We searched literature databases for case-control studies examining levels of translocator protein (TSPO) levels using positron emission tomography, representing neuroinflammation, in regional analyses between healthy controls and mild cognitive impairment (MCI) or Alzheimer's disease (AD) subjects. Standardised mean differences (SMDs) were calculated and results meta-analysed using random-effects models. Quality assessments, sensitivity analysis, subgroup analysis and meta-regressions were also performed. RESULTS Twenty-eight studies comprising 755 (HC = 318, MCI = 168, AD = 269) participants and 37 brain regions were included. Compared to HCs, AD participants had increased TSPO levels throughout the brain (SMD range: 0.43-1.76), especially within fronto-temporal regions. MCI subjects also had increased TSPO levels, mainly within the neocortex, with more modest effects (SMD range: 0.46 - 0.90). Meta-regression analysis identified an inverse association between TSPO levels in the parietal region and Mini-Mental State Examination scores, a proxy for disease severity, in AD subjects (estimate: -0.11, 95% confidence interval: -0.21 to -0.02; P = 0.024). CONCLUSIONS Our findings support the association of increased neuroinflammation during the progression of MCI and AD, relative to HCs.
Collapse
|
223
|
18F-THK5351 PET Imaging in the Behavioral Variant of Frontotemporal Dementia. Dement Neurocogn Disord 2019; 17:163-173. [PMID: 30906406 PMCID: PMC6425882 DOI: 10.12779/dnd.2018.17.4.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Behavioral variant frontotemporal dementia (bvFTD) is a subtype of frontotemporal dementia, which has clinical symptoms of progressive personality and behavioral changes with deterioration of social cognition and executive functions. The pathology of bvFTD is known to be tauopathy or TDP-43 equally. We analyzed the 18F-THK5351 positron emission tomography (PET) scans, which were recently developed tau PET, in patients with clinically-diagnosed bvFTD. Methods Forty-eight participants, including participants with behavioral variant frontotemporal dementia (bvFTD, n=3), Alzheimer's disease (AD, n=21) and normal cognition (NC, n=24) who completed 3T magnetic resonance images, 18F-THK5351 PET scans, and detailed neuropsychological tests were included in the study. Voxel-wise statistical analysis and region of interest (ROI)-based analyses were performed to evaluate the retention of THK in bvFTD patients. Results In the voxel-based and ROI-based analyses, patients with bvFTD showed greater THK retention in the prefrontal, medial frontal, orbitofrontal, anterior cingulate, insula, anterior inferior temporal and striatum regions compared to NC participants. Left-right asymmetry was noted in the bvFTD patients. A patient with extrapyramidal symptoms showed much greater THK retention in the brainstem. Conclusions The distribution of THK retention in the bvFTD patients was mainly in the frontal, insula, anterior temporal, and striatum regions which are known to be the brain regions corresponding to the clinical symptoms of bvFTD. Our study suggests that 18F-THK5351 PET imaging could be a supportive tool for diagnosis of bvFTD.
Collapse
|
224
|
Libard S, Laurell K, Cesarini KG, Alafuzoff I. Progression of Alzheimer's Disease-Related Pathology and Cell Counts in a Patient with Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2019; 61:1451-1462. [PMID: 29376849 DOI: 10.3233/jad-170446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We had an opportunity to assess the change observed in the brain regarding Alzheimer's disease (AD)-related alterations, cell count, and inflammation that took place during a period of 21 months in a subject with a definite diagnosis of AD and idiopathic Normal Pressure Hydrocephalus (iNPH). Four neuronal markers, i.e., synaptophysin, microtubule associated protein 2, non-phosphorylated neurofilament H (SMI32), and embryonic lethal abnormal visual system proteins 3/4 HuC/HuD (HuC/HuD); three microglial markers CD68, Human Leucocytic Antigen DR, ionized calcium-binding adaptor molecule 1, glial fibrillary acidic protein (GFAP); and AD-related markers, hyperphosphorylated τ (HPτ) and amyloid-β (Aβ, Aβ40, Aβ42) were assessed. Morphometrically assessed immunoreactivity of all neuronal and all microglial markers and Aβ42 decreased parallel with an increase in the HPτ in the frontal cortex. The expression of GFAP was stable with time. The first sample was obtained during the therapeutic shunting procedure for iNPH, and the second sample was obtained postmortem. Negligible reactive changes were observed surrounding the shunt channel. In conclusion, in the late stage of AD with time, a neuronal loss, increase in the HPτ, and decrease in Aβ42 and microglia was observed, whereas the expression of GFAP was rather stable. The observations described here suggest that when a brain biopsy has been obtained from an adult subject with iNPH, the assessment of postmortem brain is of major significance.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.,Department of Pathology, Uppsala University Hospital, Sweden
| | - Katarina Laurell
- Department of Pharmacology and Clinical Neuroscience, Östersund, Umeå University, Sweden
| | | | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.,Department of Pathology, Uppsala University Hospital, Sweden
| |
Collapse
|
225
|
Felsky D, Roostaei T, Nho K, Risacher SL, Bradshaw EM, Petyuk V, Schneider JA, Saykin A, Bennett DA, De Jager PL. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nat Commun 2019; 10:409. [PMID: 30679421 PMCID: PMC6345810 DOI: 10.1038/s41467-018-08279-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Microglia, the resident immune cells of the brain, have important roles in brain health. However, little is known about the regulation and consequences of microglial activation in the aging human brain. Here we report that the proportion of morphologically activated microglia (PAM) in postmortem cortical tissue is strongly associated with β-amyloid, tau-related neuropathology, and the rate of cognitive decline. Effect sizes for PAM measures are substantial, comparable to that of APOE ε4, the strongest genetic risk factor for Alzheimer's disease, and mediation models support an upstream role for microglial activation in Alzheimer's disease via accumulation of tau. Further, we identify a common variant (rs2997325) influencing PAM that also affects in vivo microglial activation measured by [11C]-PBR28 PET in an independent cohort. Thus, our analyses begin to uncover pathways regulating resident neuroinflammation and identify overlaps of PAM's genetic architecture with those of Alzheimer's disease and several other traits.
Collapse
Affiliation(s)
- Daniel Felsky
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA, 02141, USA
| | - Tina Roostaei
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Center, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN, 46202, USA
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Center, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN, 46202, USA
| | - Elizabeth M Bradshaw
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Vlad Petyuk
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Julie A Schneider
- Department of Neurology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
| | - Andrew Saykin
- Indiana Alzheimer's Disease Center, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN, 46202, USA
| | - David A Bennett
- Department of Neurology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA, 02141, USA.
| |
Collapse
|
226
|
Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. J Neurovirol 2019; 25:722-733. [PMID: 30671779 DOI: 10.1007/s13365-019-00721-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 01/22/2023]
Abstract
Astrocytes regulate local cerebral blood flow, maintain ion and neurotransmitter homeostasis, provide metabolic support, regulate synaptic activity, and respond to brain injury, insults, and infection. Because of their abundance, extensive connectivity, and multiple roles in the brain, astrocytes are intimately involved in normal functioning of the CNS and their dysregulation can lead to neuronal dysfunction. In normal aging, decreased biological functioning and reduced cognitive abilities are commonly experienced in individuals free of overt neurological disease. Moreover, in several age-related CNS diseases, chronic inflammation and altered metabolism have been reported. Since people with HIV (PWH) are reported to experience rapid aging with chronic inflammation, altered brain metabolism is likely to be exacerbated. In fact, many studies report altered metabolism in astrocytes in diseases such as Alzheimer's, Parkinson's, and HIV. This review will address the roles of astrocyte activation and altered metabolism in normal aging, in age-related CNS disease, and in HIV-associated neurocognitive disorders.
Collapse
|
227
|
Pérez-Nievas BG, Serrano-Pozo A. Editorial: The Role of Glia in Alzheimer's Disease. Front Neurol 2019; 9:1161. [PMID: 30692961 PMCID: PMC6340091 DOI: 10.3389/fneur.2018.01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Beatriz G Pérez-Nievas
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Alberto Serrano-Pozo
- Department of Neurology of the Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
228
|
Palombo F, Tamagnini F, Jeynes JCG, Mattana S, Swift I, Nallala J, Hancock J, Brown JT, Randall AD, Stone N. Detection of Aβ plaque-associated astrogliosis in Alzheimer's disease brain by spectroscopic imaging and immunohistochemistry. Analyst 2019; 143:850-857. [PMID: 29230441 PMCID: PMC5851084 DOI: 10.1039/c7an01747b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Correlative vibrational spectroscopy and immunohistochemistry reveal astroglial processes co-localised with the lipid-rich shell of Aβ plaques.
Recent work using micro-Fourier transform infrared (μFTIR) imaging has revealed that a lipid-rich layer surrounds many plaques in post-mortem Alzheimer's brain. However, the origin of this lipid layer is not known, nor is its role in the pathogenesis of Alzheimer's disease (AD). Here, we studied the biochemistry of plaques in situ using a model of AD. We combined FTIR, Raman and immunofluorescence images, showing that astrocyte processes co-localise with the lipid ring surrounding many plaques. We used μFTIR imaging to rapidly measure chemical signatures of plaques over large fields of view, and selected plaques for higher resolution analysis with Raman microscopy. Raman maps showed similar lipid rings and dense protein cores as in FTIR images, but also revealed cell bodies. We confirmed the presence of plaques using amylo-glo staining, and detected astrocytes using immunohistochemistry, revealing astrocyte co-localisation with lipid rings. This work is important because it correlates biochemical changes surrounding the plaque with the biological process of astrogliosis.
Collapse
Affiliation(s)
- Francesca Palombo
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer's Disease. Trends Mol Med 2019; 25:77-95. [PMID: 30611668 DOI: 10.1016/j.molmed.2018.11.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Astrocytic contributions to Alzheimer's disease (AD) progression were, until recently, largely overlooked. Astrocytes are integral to normal brain function and astrocyte reactivity is an early feature of AD, potentially providing a promising target for preclinical diagnosis and treatment. Several in vivo AD biomarkers already exist, but presently there is a paucity of specific and sensitive in vivo astrocyte biomarkers that can accurately measure preclinical AD. Measuring monoamine oxidase-B with neuroimaging and glial fibrillary acidic protein from bodily fluids are biomarkers that are currently available. Developing novel, more specific, and sensitive astrocyte biomarkers will make it possible to pharmaceutically target chemical pathways that preserve beneficial astrocytic functions in response to AD pathology. This review discusses astrocyte biomarkers in the context of AD.
Collapse
Affiliation(s)
- Stephen F Carter
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Douglas Hospital Research Centre, Montreal, Canada; Montreal Neurological Institute, Montreal, Canada
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil; Website: www.zimmer-lab.org.
| |
Collapse
|
230
|
Westfall S, Iqbal U, Sebastian M, Pasinetti GM. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:147-181. [DOI: 10.1016/bs.pmbts.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
231
|
Tournier BB, Tsartsalis S, Rigaud D, Fossey C, Cailly T, Fabis F, Pham T, Grégoire MC, Kövari E, Moulin-Sallanon M, Savioz A, Millet P. TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer’s disease. Neurobiol Dis 2019; 121:95-105. [DOI: 10.1016/j.nbd.2018.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/03/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022] Open
|
232
|
Bennett RE, Bryant A, Hu M, Robbins AB, Hopp SC, Hyman BT. Partial reduction of microglia does not affect tau pathology in aged mice. J Neuroinflammation 2018; 15:311. [PMID: 30413160 PMCID: PMC6230271 DOI: 10.1186/s12974-018-1348-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Activation of inflammation pathways in the brain occurs in Alzheimer’s disease and may contribute to the accumulation and spread of pathological proteins including tau. The goal of this study was to identify how changes in microglia, a key inflammatory cell type, may contribute to tau protein accumulation and pathology-associated changes in immune and non-immune cell processes such as neuronal degeneration, astrocyte physiology, cytokine expression, and blood vessel morphology. Methods We used PLX3397 (290 mg/kg), a colony-stimulating factor receptor 1 (CSF1R) inhibitor, to reduce the number of microglia in the brains of a tau-overexpressing mouse model. Mice were fed PLX3397 in chow or a control diet for 3 months beginning at 12 months of age and then were subsequently analyzed for changes in blood vessel morphology by in vivo two-photon microscopy and tissues were collected for biochemistry and histology. Results PLX3397 reduced microglial numbers by 30% regardless of genotype compared to control diet-treated mice. No change in tau burden, cortical atrophy, blood vessels, or astrocyte activation was detected. All Tg4510 mice were observed to have an increased in “disease-associated” microglial gene expression, but PLX3397 treatment did not reduce expression of these genes. Surprisingly, PLX3397 treatment resulted in upregulation of CD68 and Tgf1β. Conclusions Manipulating microglial activity may not be an effective strategy to combat tau pathological lesions. Higher doses of PLX3397 may be required or earlier intervention in the disease course. Overall, this indicates a need for a better understanding of specific microglial changes and their relation to the disease process.
Collapse
Affiliation(s)
- Rachel E Bennett
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Annie Bryant
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Miwei Hu
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ashley B Robbins
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sarah C Hopp
- Biggs Institute for Alzheimer's and Neurodegenerative Disease, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA. .,Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA.
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
233
|
Bisht K, Sharma K, Tremblay MÈ. Chronic stress as a risk factor for Alzheimer's disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 2018; 9:9-21. [PMID: 29992181 PMCID: PMC6035903 DOI: 10.1016/j.ynstr.2018.05.003] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Microglia are the predominant immune cells of the central nervous system (CNS) that exert key physiological roles required for maintaining CNS homeostasis, notably in response to chronic stress, as well as mediating synaptic plasticity, learning and memory. The repeated exposure to stress confers a higher risk of developing neurodegenerative diseases including sporadic Alzheimer's disease (AD). While microglia have been causally linked to amyloid beta (Aβ) accumulation, tau pathology, neurodegeneration, and synaptic loss in AD, they were also attributed beneficial roles, notably in the phagocytic elimination of Aβ. In this review, we discuss the interactions between chronic stress and AD pathology, overview the roles played by microglia in AD, especially focusing on chronic stress as an environmental risk factor modulating their function, and present recently-described microglial phenotypes associated with neuroprotection in AD. These microglial phenotypes observed under both chronic stress and AD pathology may provide novel opportunities for the development of better-targeted therapeutic interventions.
Collapse
Key Words
- ABCA7, ATP-binding cassette transporter A7
- AD, Alzheimer's disease
- APOE, Apolipoprotein E
- APP, amyloid precursor protein
- Alzheimer's disease
- Aβ, Amyloid beta
- BDNF, brain derived neurotrophic factor
- CD11b, cluster of differentiation molecule 11B
- CD33, cluster of differentiation 33
- CNS, central nervous system
- CR, complement receptor
- CRF, corticotropin releasing factor
- DAM, disease associated microglia
- DAP12, DNAX-activation protein 12
- Dark microglia
- FAD, Familial Alzheimer's disease
- FCRLS, Fc receptor-like S scavenger receptor
- GR, glucocorticoid receptor
- HPA axis, hypothalamic pituitary adrenocortical axis
- IBA1, ionized calcium-binding adapter molecule 1
- IL, interleukin
- LTP, long-term potentiation
- MGnD, microglia with a neurodegenerative phenotype
- MR, mineralocorticoid receptor
- Microglia
- Microglial phenotypes
- NADPH, nicotinamide adenine dinucleotide phosphate
- NFT, neurofibrillary tangles
- Neurodegeneration
- Neuroinflammation
- PS, presenilin
- ROS, reactive oxygen species
- Stress
- Synaptic remodeling
- TGFβ, transforming growth factor β
- TLR, Toll-like receptors
- TMEM119, transmembrane protein 119
- TNFα, tumor necrosis factor-α
- TREM2, triggering receptor expressed in myeloid cells 2
- TYROBP, TYRO protein tyrosine kinase binding protein
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Kanchan Bisht
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
234
|
Jacobs HIL, Buckley RF. Where do white matter alterations dovetail with the cascade model of Alzheimer's disease? Brain 2018; 141:2830-2833. [PMID: 30535117 DOI: 10.1093/brain/awy243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Heidi I L Jacobs
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Rachel F Buckley
- The Florey Institute and Melbourne School of Psychological Science, The University of Melbourne, Victoria, Australia.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
235
|
Yang EJ, Mahmood U, Kim H, Choi M, Choi Y, Lee JP, Cho JY, Hyun JW, Kim YS, Chang MJ, Kim HS. Phloroglucinol ameliorates cognitive impairments by reducing the amyloid β peptide burden and pro-inflammatory cytokines in the hippocampus of 5XFAD mice. Free Radic Biol Med 2018; 126:221-234. [PMID: 30118828 DOI: 10.1016/j.freeradbiomed.2018.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/29/2023]
Abstract
Among the various causative factors involved in the pathogenesis of Alzheimer's disease (AD), oxidative stress has emerged as an important factor. Phloroglucinol is a polyphenol component of phlorotannin, which is found at sufficient levels in Ecklonia cava (E. cava). Phloroglucinol has been reported to exert antioxidant activities in various tissues. Previously, we reported that the stereotaxic injection of phloroglucinol regulated synaptic plasticity in an AD mouse model. In this study, we aimed to investigate the effects of oral administration of phloroglucinol in AD. The oral administration of phloroglucinol for 2 months attenuated the impairments in cognitive function observed in 6-month-old 5X familial AD (5XFAD) mice, as assessed with the T-maze and Y-maze tests. The administration of phloroglucinol for 2 months in 5XFAD mice caused a reduction in the number of amyloid plaques and in the protein level of BACE1, a major amyloid precursor protein cleavage enzyme, together with γ-secretase. Phloroglucinol also restored the reduction in dendritic spine density and the number of mature spines in the hippocampi of 5XFAD mice. In addition, phloroglucinol-administered 5XFAD mice displayed lower protein levels of GFAP and Iba-1 and mRNA levels of TNF-α and IL-6 compared with vehicle-administered 5XFAD mice. These results demonstrated that phloroglucinol alleviated the neuropathological features and behavioral phenotypes in the 5XFAD mouse model. Taken together, our results suggest that phloroglucinol has therapeutic potential for AD treatment.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Usman Mahmood
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Moonseok Choi
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Yunjung Choi
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Jean-Pyo Lee
- Department of Physiology, Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Joo-Youn Cho
- Department of Clinical Pharmacology & Therapeutics, College of Medicine, Seoul National University and Hospital, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Moon-Jeong Chang
- Department of Foods and Nutrition, College of Natural Science, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hye-Sun Kim
- Department of Pharmacology, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea; Seoul National University Bundang Hospital, Seongnam, Sungnam, Bundang-Gu 13620, Republic of Korea; Neuroscience Research Institute, Seoul National University, College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
236
|
Saito T, Saido TC. Neuroinflammation in mouse models of Alzheimer's disease. ACTA ACUST UNITED AC 2018; 9:211-218. [PMID: 30546389 PMCID: PMC6282739 DOI: 10.1111/cen3.12475] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common type of neurocognitive disorder. Although both amyloid β peptide deposition and neurofibrillary tangle formation in the AD brain have been established as pathological hallmarks of the disease, many other factors contribute in a complex manner to the pathogenesis of AD before clinical symptoms of the disease become apparent. Longitudinal pathophysiological processes cause patients' brains to exist in a state of chronic neuroinflammation, with glial cells acting as key regulators of the neuroinflammatory state. However, the detailed molecular and cellular mechanisms of glial function underlying AD pathogenesis remain elusive. Furthermore, recent studies have shown that peripheral inflammatory conditions affect glial cells in the brain through a process of neuroimmune communication. Such disease complexities make it difficult for the pathogenesis of AD to be understood, and impede the development of effective therapeutic strategies to combat the disease. Relevant AD animal models are thus likely to serve as a key resource to overcome many of these issues. Furthermore, as the pathogenesis of AD might be linked to conditions both within the brain as well as peripherally, it might become necessary for AD to be studied as a whole-body disorder. The present review aimed to summarize insights regarding current AD research, and share perspectives for understanding glial function in the context of the pathogenesis of AD.
Collapse
Affiliation(s)
- Takashi Saito
- RIKEN Center for Brain Science Laboratory for Proteolytic Neuroscience Wako Japan.,Department of Neuroscience and Pathobiology Research Institute of Environmental Medicine Nagoya University Wako Japan
| | - Takaomi C Saido
- RIKEN Center for Brain Science Laboratory for Proteolytic Neuroscience Wako Japan
| |
Collapse
|
237
|
Nirzhor SSR, Khan RI, Neelotpol S. The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy. Biomolecules 2018; 8:biom8030093. [PMID: 30201881 PMCID: PMC6164719 DOI: 10.3390/biom8030093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
Even though Alzheimer's disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.
Collapse
|
238
|
Rakic S, Hung YMA, Smith M, So D, Tayler HM, Varney W, Wild J, Harris S, Holmes C, Love S, Stewart W, Nicoll JAR, Boche D. Systemic infection modifies the neuroinflammatory response in late stage Alzheimer's disease. Acta Neuropathol Commun 2018; 6:88. [PMID: 30193587 PMCID: PMC6127939 DOI: 10.1186/s40478-018-0592-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 02/04/2023] Open
Abstract
Clinical studies indicate that systemic infections accelerate cognitive decline in Alzheimer’s disease. Animal models suggest that this may be due to enhanced pro-inflammatory changes in the brain. We have performed a post-mortem human study to determine whether systemic infection modifies the neuropathology and in particular, neuroinflammation, in the late-stage of the disease. Sections of cerebral cortex and underlying white matter from controls and Alzheimer's patients who died with or without a terminal systemic infection were immunolabelled and quantified for: (i) Αβ and phosphorylated-tau; (ii) the inflammation-related proteins Iba1, CD68, HLA-DR, FcγRs (CD64, CD32a, CD32b, CD16), CHIL3L1, IL4R and CCR2; and (iii) T-cell marker CD3. In Alzheimer's disease, the synaptic proteins synaptophysin and PSD-95 were quantified by ELISA, and the inflammatory proteins and mRNAs by MesoScale Discovery Multiplex Assays and qPCR, respectively. Systemic infection in Alzheimer's disease was associated with decreased CD16 (p = 0.027, grey matter) and CD68 (p = 0.015, white matter); increased CD64 (p = 0.017, white matter) as well as increased protein expression of IL6 (p = 0.047) and decreased IL5 (p = 0.007), IL7 (p = 0.002), IL12/IL23p40 (p = 0.001), IL15 (p = 0.008), IL16 (p < 0.001) and IL17A (p < 0.001). Increased expression of anti-inflammatory genes CHI3L1 (p = 0.012) and IL4R (p = 0.004) were detected in this group. T-cell recruitment to the brain was reduced when systemic infection was present. However, exposure to systemic infection did not modify the pathology. In Alzheimer's disease, CD68 (p = 0.026), CD64 (p = 0.002), CHI3L1 (p = 0.016), IL4R (p = 0.005) and CCR2 (p = 0.010) were increased independently of systemic infection. Our findings suggest that systemic infections modify neuroinflammatory processes in Alzheimer's disease. However, rather than promoting pro-inflammatory changes, as observed in experimental models, they seem to promote an anti-inflammatory, potentially immunosuppressive, environment in the human brain.
Collapse
|
239
|
Son HJ, Oh JS, Roh JH, Seo SW, Oh M, Lee SJ, Oh SJ, Kim JS. Differences in gray and white matter 18F-THK5351 uptake between behavioral-variant frontotemporal dementia and other dementias. Eur J Nucl Med Mol Imaging 2018; 46:357-366. [PMID: 30109402 DOI: 10.1007/s00259-018-4125-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the regional distribution of 18F-THK5351 uptake in gray (GM) and white matter (WM) in patients with behavioral-variant frontotemporal dementia (bvFTD) and compared it with that in patients with Alzheimer's disease (AD) or semantic dementia (SD). METHODS 18F-THK-5351 positron emission tomography (PET), 18F-florbetaben PET, magnetic resonance imaging, and neuropsychological testing were performed in 103 subjects including 30, 24, 9, and 8 patients with mild cognitive impairment, AD, bvFTD, and SD, respectively, and 32 normal subjects. Standardized uptake value ratios (SUVRs) of 18F-THK-5351 PET images were measured from six GM and WM regions using cerebellar GM as reference. GM and WM SUVRs and WM/GM ratios, the relationship between GM SUVR and WM/GM ratio, and correlation between SUVR and cognitive function were compared. RESULTS In AD, both parietal GM (p < 0.001) and WM (p < 0.001) SUVRs were higher than in bvFTD. In AD and SD, the WM/GM ratio decreased as the GM SUVR increased, regardless of lobar region. In AD, memory function correlated with parietal GM (ρ = -0.74, p < 0.001) and WM (ρ = -0.53, p < 0.001) SUVR. In SD, language function correlated with temporal GM SUVR (ρ = -0.69, p = 0.006). The frontal WM SUVR was higher in bvFTD than in AD (p = 0.003) or SD (p = 0.017). The frontal WM/GM ratio was higher in bvFTD than in AD (p < 0.001). In bvFTD, the WM/GM ratio increased more prominently than the GM SUVR only in the frontal lobe (R2 = 0.026). In bvFTD, executive function correlated with frontal WM SUVR (ρ = -0.64, p = 0.014). CONCLUSIONS Frontal WM 18F-THK5351 uptake was higher in bvFTD than in other dementias. The increase in frontal WM uptake was greater than the increase in GM uptake and correlated with executive function. This suggests that frontal lobe WM 18F-THK5351 uptake reflects neuropathological differences between bvFTD and other dementias.
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jee Hoon Roh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
240
|
Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 2018; 120:149-163. [PMID: 30114473 DOI: 10.1016/j.neuint.2018.08.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023]
Abstract
The number of bacterial cells living within the human body is approximately equal to, or greater than, the total number of human cells. This dynamic population of microorganisms, termed the human microbiota, resides mainly within the gastrointestinal tract. It is widely accepted that highly diverse and stable microbiota promote overall human health. Colonization of the gut with maladaptive and pathogenic microbiota, a state also known as dysbiosis, is associated with a variety of peripheral diseases ranging from type 2 diabetes mellitus to cardiovascular and inflammatory bowel disease. More recently, microbial dysbiosis has been associated with a number of brain pathologies, including autism spectrum disorder, Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), suggesting a direct or indirect communication between intestinal bacteria and the central nervous system (CNS). In this review, we illustrate two pathways implicated in the crosstalk between gut microbiota and CNS involving 1) the vagus nerve and 2) transmission of signaling molecules through the circulatory system and across the blood-brain barrier (BBB). We summarize the available evidence of the specific changes in the intestinal microbiota, as well as microorganism-induced modifications to intestinal and BBB permeability, which have been linked to several neurodegenerative disorders including ALS, AD, and PD. Even though each of these diseases arises from unique pathogenetic mechanisms, all are characterized, at least in part, by chronic neuroinflammation. We provide an interpretation for the substantial evidence that healthy intestinal microbiota have the ability to positively regulate the neuroimmune responses in the CNS. Even though the evidence is mainly associative, it has been suggested that bacterial dysbiosis could contribute to an adverse neuroinflammatory state leading to increased risk of neurodegenerative diseases. Thus, developing strategies for regulating and maintaining healthy intestinal microbiota could be a valid approach for lowering individual risk and prevalence of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Deanna Lynn Gibson
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, Canada
| |
Collapse
|
241
|
Fulop T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, Hirokawa K, Pawelec G, Bocti C, Lacombe G, Dupuis G, Frost EH. Can an Infection Hypothesis Explain the Beta Amyloid Hypothesis of Alzheimer's Disease? Front Aging Neurosci 2018; 10:224. [PMID: 30087609 PMCID: PMC6066504 DOI: 10.3389/fnagi.2018.00224] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia. The pathological hallmarks of the disease are extracellular senile plaques composed of beta-amyloid peptide (Aβ) and intracellular neurofibrillary tangles composed of pTau. These findings led to the "beta-amyloid hypothesis" that proposes that Aβ is the major cause of AD. Clinical trials targeting Aβ in the brain have mostly failed, whether they attempted to decrease Aβ production by BACE inhibitors or by antibodies. These failures suggest a need to find new hypotheses to explain AD pathogenesis and generate new targets for intervention to prevent and treat the disease. Many years ago, the "infection hypothesis" was proposed, but received little attention. However, the recent discovery that Aβ is an antimicrobial peptide (AMP) acting against bacteria, fungi, and viruses gives increased credence to an infection hypothesis in the etiology of AD. We and others have shown that microbial infection increases the synthesis of this AMP. Here, we propose that the production of Aβ as an AMP will be beneficial on first microbial challenge but will become progressively detrimental as the infection becomes chronic and reactivates from time to time. Furthermore, we propose that host measures to remove excess Aβ decrease over time due to microglial senescence and microbial biofilm formation. We propose that this biofilm aggregates with Aβ to form the plaques in the brain of AD patients. In this review, we will develop this connection between Infection - Aβ - AD and discuss future possible treatments based on this paradigm.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Karine Bourgade
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelouahed Khalil
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Echarki Zerif
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Singapore Immunology Network, ASTAR, Biopolis, Singapore, Singapore
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Greater Sudbury, ON, Canada
| | - Christian Bocti
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Programme of Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
242
|
Kelly P, Hudry E, Hou SS, Bacskai BJ. In Vivo Two Photon Imaging of Astrocytic Structure and Function in Alzheimer's Disease. Front Aging Neurosci 2018; 10:219. [PMID: 30072889 PMCID: PMC6060286 DOI: 10.3389/fnagi.2018.00219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
The physiological function of the neurovascular unit is critically dependent upon the complex structure and functions of astrocytes for optimal preservation of cerebral homeostasis. While it has been shown that astrocytes exhibit aberrant changes in both structure and function in transgenic murine models of Alzheimer’s disease (AD), it is not fully understood how this altered phenotype contributes to the pathogenesis of AD or whether this alteration predicts a therapeutic target in AD. The mechanisms underlying the spatiotemporal relationship between astrocytes, neurons and the vasculature in their orchestrated regulation of local cerebral flow in active brain regions has not been fully elucidated in brain physiology and in AD. As there is an incredible urgency to identify therapeutic targets that are well-tolerated and efficacious in protecting the brain against the pathological impact of AD, here we use the current body of literature to evaluate the hypothesis that pathological changes in astrocytes are central to the pathogenesis of AD. We also examine the current tools available to assess astrocytic calcium signaling in the living murine brain as it has an important role in the complex interaction between astrocytes, neurons and the vasculature. Furthermore, we discuss the altered function of astrocytes in their interaction with neurons in the preservation of glutamate homeostasis and additionally address the role of astrocytes at the vascular interface and their contribution to functional hyperemia within the living murine brain in health and in AD.
Collapse
Affiliation(s)
- Patricia Kelly
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Eloise Hudry
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Steven S Hou
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Brian J Bacskai
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
243
|
Kim G, Bolbolan K, Gefen T, Weintraub S, Bigio EH, Rogalski E, Mesulam MM, Geula C. Atrophy and microglial distribution in primary progressive aphasia with transactive response DNA-binding protein-43 kDa. Ann Neurol 2018; 83:1096-1104. [PMID: 29665116 PMCID: PMC6105542 DOI: 10.1002/ana.25240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To quantitatively determine the density and distribution of activated microglia across cortical regions and hemispheres in the brains of primary progressive aphasia (PPA) participants with pathological diagnoses of frontotemporal lobar degeneration with transactive response DNA-binding protein-43 (TDP-43) inclusions and to examine the relationships between microglial densities, patterns of focal atrophy, (TDP-43) inclusions, and clinical phenotype. METHODS Activated microglia and TDP-43 inclusions were visualized in whole-hemisphere brain sections using immunohistochemical methods from five participants with PPA-TDP. Unbiased stereology was used to bilaterally quantify human leuckocyte antigen/D related-positive activated microglia and TDP-43 inclusions across five language-related regions. Density and distribution of both markers were compared across cortical regions and hemispheres, and their relationships to patterns of focal atrophy and clinical phenotype were determined. RESULTS Activated microglia displayed asymmetric distribution favoring the language-dominant hemisphere, consistent with greater postmortem and/or in vivo atrophy in that hemisphere, in PPA-TDP. In one participant with no asymmetric atrophy, quantitative distribution of microglia also lacked asymmetry. Patterns of microglial activation also showed variation that favored areas of high atrophy in regions affiliated with language function, demonstrating concordance between patterns of microglial activation, atrophy, and clinical phenotype. TDP-43 also showed higher inclusion densities in areas of high atrophy than in regions with low atrophy, but no clear relationship with microglia density at a regional level. INTERPRETATION The initial activation of microglia is most likely a response to cortical abnormalities in PPA-TDP, which contribute to atrophy. The patterns of microglial activation, TDP-43 inclusion deposition, atrophy, and clinical phenotype suggest that activated microglia may make unique contributions to cortical thinning and TDP-43 inclusion formation. Ann Neurol 2018;83:1096-1104.
Collapse
Affiliation(s)
- Garam Kim
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kabriya Bolbolan
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tamar Gefen
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Emily Rogalski
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marek-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
244
|
Ohm DT, Kim G, Gefen T, Rademaker A, Weintraub S, Bigio EH, Mesulam MM, Rogalski E, Geula C. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia. Neuropathol Appl Neurobiol 2018; 45:216-229. [PMID: 29679378 DOI: 10.1111/nan.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/02/2018] [Indexed: 02/04/2023]
Abstract
AIMS Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy remain unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. METHODS Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one nonatrophied region within the language dominant hemisphere of each PPA case. Nonatrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. RESULTS Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to nonatrophied regions in the language dominant hemisphere (P < 0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (P < 0.05). CONCLUSIONS White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy.
Collapse
Affiliation(s)
- D T Ohm
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G Kim
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - T Gefen
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Rademaker
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - E H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-M Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - E Rogalski
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - C Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
245
|
Majerova P, Garruto RM, Kovac A. Cerebrovascular inflammation is associated with tau pathology in Guam parkinsonism dementia. J Neural Transm (Vienna) 2018; 125:1013-1025. [PMID: 29700607 DOI: 10.1007/s00702-018-1883-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
Parkinsonism-dementia complex of Guam (Guam PDC) is a neurodegenerative disease with parkinsonism and early onset Alzheimer-like dementia. Guam PDC belongs to the family of neurodegenerative disorders, known as tauopathies, which are histopathologically characterized by abnormal deposition of microtubule-associated protein tau. While changes in the blood-brain barrier (BBB) in Alzheimer's disease are increasingly recognized, dysfunction of BBB in Guam PDC has not been extensively studied. In this study, we characterized cerebrovascular changes in the patients with Guam PDC. The brain tissue from ten post-mortem Guam PDC patients and six non-demented controls were assessed for structural and functional changes in BBB. Entorhinal cortex sections were immunostained for the markers of brain endothelial cells (claudin-5, occludin, and collagen IV) and inflammation (VCAM-1, ICAM-1, P-Selectin, and E-Selectin). The ultrastructure of brain capillaries was investigated by confocal microscopy and morphological changes and intensity alterations were evaluated. We found a significant decrease of tight junction proteins and the upregulation of adhesion molecules that correlated with the presence of neurofibrillary tangles. In addition, we showed the presence of CD3+-positive cells in the brain areas affected by pathological lesions. Our findings indicate that pathological lesions in Guam PDC are associated with inflammatory changes of brain capillaries and could mediate transmigration of cells to the brain parenchyma.
Collapse
Affiliation(s)
- Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 84510, Bratislava, Slovak Republic
| | - Ralph M Garruto
- Departments of Anthropology and Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 84510, Bratislava, Slovak Republic.
| |
Collapse
|
246
|
Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB. Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 2018; 43:281-298. [PMID: 27442752 DOI: 10.1111/nan.12338] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes have essential roles in the central nervous system and are also implicated in the pathogenesis of neurodegenerative disease. Forming non-overlapping domains, astrocytes are highly complex cells. Immunohistochemistry to a variety of proteins can be used to study astrocytes in tissue, labelling different cellular components and sub-populations, including glial fibrillary acidic protein, ALDH1L1, CD44, NDRG2 and amino acid transporters, but none of these labels the entire astrocyte population. Increasing heterogeneity is recognized in the astrocyte population, a complexity that is relevant both to their normal function and pathogenic roles. They are involved in neuronal support, as active components of the tripartite synapse and in cell interactions within the neurovascular unit (NVU), where they are essential for blood-brain barrier maintenance and neurovascular coupling. Astrocytes change with age, and their responses may modulate the cellular effects of neurodegenerative pathologies, which alone do not explain all of the variance in statistical models of neurodegenerative dementias. Astrocytes respond to both the neurofibrillary tangles and plaques of Alzheimer's disease, to hyperphosphorylated tau and Aβ, eliciting an effect which may be neuroprotective or deleterious. Not only astrocyte hypertrophy, in the form of gliosis, occurs, but also astrocyte injury and atrophy. Loss of normal astrocyte functions may contribute to reduced support for neurones and dysfunction of the NVU. Understanding how astrocytes contribute to dementia requires an understanding of the underlying heterogeneity of astrocyte populations, and the complexity of their responses to pathology. Enhancing the supportive and neuroprotective components of the astrocyte response has potential translational applications in therapeutic approaches to dementia.
Collapse
Affiliation(s)
- C J Garwood
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - L E Ratcliffe
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - J E Simpson
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P R Heath
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P G Ince
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - S B Wharton
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| |
Collapse
|
247
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
248
|
AD-Related N-Terminal Truncated Tau Is Sufficient to Recapitulate In Vivo the Early Perturbations of Human Neuropathology: Implications for Immunotherapy. Mol Neurobiol 2018; 55:8124-8153. [PMID: 29508283 DOI: 10.1007/s12035-018-0974-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The NH2tau 26-44 aa (i.e., NH2htau) is the minimal biologically active moiety of longer 20-22-kDa NH2-truncated form of human tau-a neurotoxic fragment mapping between 26 and 230 amino acids of full-length protein (htau40)-which is detectable in presynaptic terminals and peripheral CSF from patients suffering from AD and other non-AD neurodegenerative diseases. Nevertheless, whether its exogenous administration in healthy nontransgenic mice is able to elicit a neuropathological phenotype resembling human tauopathies has not been yet investigated. We explored the in vivo effects evoked by subchronic intracerebroventricular (i.c.v.) infusion of NH2htau or its reverse counterpart into two lines of young (2-month-old) wild-type mice (C57BL/6 and B6SJL). Six days after its accumulation into hippocampal parenchyma, significant impairment in memory/learning performance was detected in NH2htau-treated group in association with reduced synaptic connectivity and neuroinflammatory response. Compromised short-term plasticity in paired-pulse facilitation paradigm (PPF) was detected in the CA3/CA1 synapses from NH2htau-impaired animals along with downregulation in calcineurin (CaN)-stimulated pCREB/c-Fos pathway(s). Importantly, these behavioral, synaptotoxic, and neuropathological effects were independent from the genetic background, occurred prior to frank neuronal loss, and were specific because no alterations were detected in the control group infused with its reverse counterpart. Finally, a 2.0-kDa peptide which biochemically and immunologically resembles the injected NH2htau was endogenously detected in vivo, being present in hippocampal synaptosomal preparations from AD subjects. Given that the identification of the neurotoxic tau species is mandatory to develop a more effective tau-based immunological approach, our evidence can have important translational implications for cure of human tauopathies.
Collapse
|
249
|
Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y. Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 44:628-638. [PMID: 29405337 DOI: 10.1111/nan.12475] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
AIMS Glutamate neurotoxicity plays an important role in the pathogenesis of various neurodegenerative disorders. Many studies have demonstrated that glutamate transporter-1 (GLT-1), the dominant astrocytic glutamate transporter, is significantly reduced in the cerebral cortex of patients with Alzheimer's disease (AD), suggesting that glutamate-mediated excitotoxicity might contribute to the pathogenesis of AD. In a previous study, we have demonstrated marked alterations in the expression of the astrocytic water channel protein aquaporin-4 (AQP4) in relation to amyloid β deposition in human AD brains. As a functional complex, GLT-1 and AQP4 in astrocytes may play a neuroprotective role in the progression of AD pathology. However, few studies have examined the correlation between the expression of GLT-1 and that of AQP4 in human AD brain. METHODS Here, using immunohistochemistry with antibodies against GLT-1 and AQP4, we studied the expression levels and distribution patterns of GLT-1 in areas showing various patterns of AQP4 expression in autopsied temporal lobes from eight patients with AD and five controls without neurological disorders. RESULTS GLT-1 staining in the control group was present throughout the neocortex as uniform neuropil staining with co-localized AQP4. The AD group showed a significant reduction in GLT-1 expression, whereas cortical AQP4 immunoreactivity was more intense in the AD group than in the control group. There were two different patterns of GLT-1 and AQP4 expression in the AD group: (i) uneven GLT-1 expression in the neuropil where diffuse but intense AQP4 expression was evident, and (ii) senile plaque-like co-expression of GLT-1 and AQP4. CONCLUSIONS These findings suggest disruption of glutamate/water homoeostasis in the AD brain.
Collapse
Affiliation(s)
- A Hoshi
- Department of Neurology, Fukushima Medical University, Fukushima, Japan.,IMS Shin Katsushika Royal Clinic, Tokyo, Japan
| | - A Tsunoda
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - T Yamamoto
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - M Tada
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - A Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan.,Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
250
|
Coder B, Wang W, Wang L, Wu Z, Zhuge Q, Su DM. Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging. Oncotarget 2018; 8:7116-7137. [PMID: 27738345 PMCID: PMC5351694 DOI: 10.18632/oncotarget.12572] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022] Open
Abstract
The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and “protective autoimmunity” provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the “thymus-inflammaging-neurodegeneration axis”.
Collapse
Affiliation(s)
- Brandon Coder
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Weikan Wang
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang, P. R. China
| | - Liefeng Wang
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Biotechnology, Gannan Medical University, Ganzhou, P. R. China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang, P. R. China
| | - Dong-Ming Su
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|