201
|
Sung MM, Byrne NJ, Robertson IM, Kim TT, Samokhvalov V, Levasseur J, Soltys CL, Fung D, Tyreman N, Denou E, Jones KE, Seubert JM, Schertzer JD, Dyck JRB. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure. Am J Physiol Heart Circ Physiol 2017; 312:H842-H853. [PMID: 28159807 DOI: 10.1152/ajpheart.00455.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/18/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
Abstract
We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg-1·day-1) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients.NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms.
Collapse
Affiliation(s)
- Miranda M Sung
- Faculty of Medicine and Dentistry, Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nikole J Byrne
- Faculty of Medicine and Dentistry, Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ian M Robertson
- Faculty of Medicine and Dentistry, Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ty T Kim
- Faculty of Medicine and Dentistry, Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Victor Samokhvalov
- Faculty of Pharmacy & Pharmaceutical Sciences, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Levasseur
- Alberta Heart Failure Etiology and Analysis Research Team, Alberta Heritage Foundation for Medical Research Interdisciplinary Team Grant, Edmonton, Alberta, Canada
| | - Carrie-Lynn Soltys
- Faculty of Medicine and Dentistry, Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David Fung
- Faculty of Medicine and Dentistry, Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Neil Tyreman
- Department of Physical Education, University of Alberta, Edmonton, Alberta, Canada; and
| | - Emmanuel Denou
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Kelvin E Jones
- Department of Physical Education, University of Alberta, Edmonton, Alberta, Canada; and
| | - John M Seubert
- Faculty of Pharmacy & Pharmaceutical Sciences, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jason R B Dyck
- Faculty of Medicine and Dentistry, Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; .,Alberta Heart Failure Etiology and Analysis Research Team, Alberta Heritage Foundation for Medical Research Interdisciplinary Team Grant, Edmonton, Alberta, Canada
| |
Collapse
|
202
|
Akinwumi BC, Raj P, Lee DI, Acosta C, Yu L, Thomas SM, Nagabhushanam K, Majeed M, Davies NM, Netticadan T, Anderson HD. Disparate Effects of Stilbenoid Polyphenols on Hypertrophic Cardiomyocytes In Vitro vs. in the Spontaneously Hypertensive Heart Failure Rat. Molecules 2017; 22:molecules22020204. [PMID: 28157155 PMCID: PMC6155878 DOI: 10.3390/molecules22020204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
Stilbenoids are bioactive polyphenols, and resveratrol (trans-3,5,4′-trihydroxystilbene) is a representative stilbenoid that reportedly exerts cardioprotective actions. As resveratrol exhibits low oral bioavailability, we turned our attention to other stilbenoid compounds with a history of medicinal use and/or improved bioavailability. We determined the effects of gnetol (trans-3,5,2′,6′-tetrahydroxystilbene) and pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene) on cardiac hypertrophy. In vitro, gnetol and pterostilbene prevented endothelin-1-induced indicators of cardiomyocyte hypertrophy including cell enlargement and protein synthesis. Gnetol and pterostilbene stimulated AMP-activated protein kinase (AMPK), and inhibition of AMPK, using compound C or shRNA knockdown, abolished these anti-hypertrophic effects. In contrast, resveratrol, gnetol, nor pterostilbene reduced blood pressure or hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat. In fact, AMPK levels were similar between Sprague-Dawley and SHHF rats whether treated by stilbenoids or not. These data suggest that the anti-hypertrophic actions of resveratrol (and other stilbenoids?) do not extend to the SHHF rat, which models heart failure superimposed on hypertension. Notably, SHHF rat hearts exhibited prolonged isovolumic relaxation time (an indicator of diastolic dysfunction), and this was improved by stilbenoid treatment. In conclusion, stilbenoid-based treatment as a viable strategy to prevent pathological cardiac hypertrophy, a major risk factor for heart failure, may be context-dependent and requires further study.
Collapse
Affiliation(s)
- Bolanle C Akinwumi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
- Agriculture and Agri-Food Canada, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Danielle I Lee
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Crystal Acosta
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Liping Yu
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Agriculture and Agri-Food Canada, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Samuel M Thomas
- Sami Labs Ltd., Peenya Industrial Area, Bangalore 560058, India.
| | | | - Muhammed Majeed
- Sami Labs Ltd., Peenya Industrial Area, Bangalore 560058, India.
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ 08520, USA.
| | - Neal M Davies
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35, Medical Sciences Building, Edmonton, AL T6G 2H7, Canada.
| | - Thomas Netticadan
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
- Agriculture and Agri-Food Canada, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Hope D Anderson
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
203
|
Abstract
Our current therapeutic drugs for Alzheimer's disease are predominantly derived from the alkaloid class of plant phytochemicals. These drugs, such as galantamine and rivastigmine, attenuate the decline in the cholinergic system but, as the alkaloids occupy the most dangerous end of the phytochemical spectrum (indeed they function as feeding deterrents and poisons to other organisms within the plant itself), they are often associated with unpleasant side effects. In addition, these cholinesterase inhibiting alkaloids target only one system in a disorder, which is typified by multifactorial deficits. The present paper will look at the more benign terpene (such as Ginkgo biloba, Ginseng, Melissa officinalis (lemon balm) and Salvia lavandulaefolia (sage)) and phenolic (such as resveratrol) phytochemicals; arguing that they offer a safer alternative and that, as well as demonstrating efficacy in cholinesterase inhibition, these phytochemicals are able to target other salient systems such as cerebral blood flow, free radical scavenging, anti-inflammation, inhibition of amyloid-β neurotoxicity, glucoregulation and interaction with other neurotransmitters (such as γ-aminobutyric acid) and signalling pathways (e.g. via kinase enzymes).
Collapse
|
204
|
Guthrie AR, Chow HS, Martinez JA. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacol Res Perspect 2017; 5:e00294. [PMID: 28596842 PMCID: PMC5461649 DOI: 10.1002/prp2.294] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 12/29/2022] Open
Abstract
Resveratrol is a polyphenol found in grape skins and peanuts that has demonstrated many health benefits including protection against aging, cardiovascular and metabolic disease, neurological decline, and cancer. The anticancer properties of resveratrol have been attributed to a variety of mechanisms, including its general inhibition of phase I metabolism and induction of phase II metabolism. The effects of resveratrol on these enzymes, however, are still unclear, as in vitro evidence often contrasts with animal studies and clinical trials. Reasons for these variances could include the low bioavailability of resveratrol and the effects of resveratrol metabolites. Due to resveratrol's interactions with drug-metabolizing enzymes and drug transporters, individuals concurrently taking pharmacological doses of resveratrol with other supplements or medications could potentially experience nutrient-drug interactions. This review summarizes the known effects of resveratrol and its main metabolites on drug metabolism in order to help characterize which populations might benefit from resveratrol for the prevention of cancer, as well as those that may need to avoid supplementation due to potential drug interactions.
Collapse
Affiliation(s)
- Ariane R. Guthrie
- Department of Nutritional SciencesUniversity of ArizonaTucsonArizona
| | | | - Jessica A. Martinez
- Department of Nutritional SciencesUniversity of ArizonaTucsonArizona
- University of Arizona Cancer CenterTucsonArizona
| |
Collapse
|
205
|
Bonechi C, Lamponi S, Donati A, Tamasi G, Consumi M, Leone G, Rossi C, Magnani A. Effect of resveratrol on platelet aggregation by fibrinogen protection. Biophys Chem 2017; 222:41-48. [PMID: 28095333 DOI: 10.1016/j.bpc.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 11/28/2022]
Abstract
The effect of resveratrol (RSV) in inhibiting platelet adhesion and aggregation, as well as fibrinogen (FBG) conformational changes promoted by epinephrine (EP), were studied, by using complementary experimental techniques. NMR and IR spectroscopies were used to investigate possible protective effects by RSV towards FBG, in presence of EP. The protective effect of RSV towards FBG was highlighted by spin nuclear relaxation experiments that were interpreted for determining the thermodynamic equilibrium constants of FBG-EP interaction, and by infrared measurements, that showed EP-induced conformational changes of FBG. The ability of RSV in inhibiting platelet adhesion and aggregation promoted by EP was evaluated by scanning electron microscopy (SEM), measuring the platelet adhesion and aggregation degree, in comparison to data obtained for platelet aggregation in platelet rich plasma (PRP). The experimental combined approach pointed out that RSV is able to protect both FBG and platelets from the denaturant and aggregating action of EP at stress level concentration.
Collapse
Affiliation(s)
- Claudia Bonechi
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; CSGI-Research Center for Colloids and Nanoscience, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Stefania Lamponi
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; INSTM-National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy
| | - Alessandro Donati
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; CSGI-Research Center for Colloids and Nanoscience, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Gabriella Tamasi
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; CSGI-Research Center for Colloids and Nanoscience, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Consumi
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; INSTM-National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gemma Leone
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; INSTM-National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy
| | - Claudio Rossi
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; CSGI-Research Center for Colloids and Nanoscience, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Agnese Magnani
- Department of Biotechnologies, Chemistry, and Pharmacy, Via Aldo Moro 2, 53100 Siena, Italy; INSTM-National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
206
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death in both men and women and has largely been attributed to genetic makeup and lifestyle factors. However, genetic regulation does not fully explain the pathophysiology. Recently, epigenetic regulation, the regulation of the genetic code by modifications that affect the transcription and translation of target genes, has been shown to be important. Silent information regulator-2 proteins or sirtuins are an epigenetic regulator family of class III histone deacetylases (HDACs), unique in their dependency on coenzyme NAD+, that are postulated to mediate the beneficial effects of calorie restriction, thus promoting longevity by reducing the incidence of chronic diseases such as cancer, diabetes, and CVD. Emerging evidence shows that SIRT1 is ubiquitously expressed throughout the body. Resveratrol, a plant polyphenol, has cardioprotective effects and its mechanism of action is attributed to regulation of SIRT1. Incoproation of resveratrol into the diet may be a powerful therapeutic option for the prevention and treatment of CVD.
Collapse
|
207
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
208
|
Abstract
PURPOSE OF REVIEW In 1954 Harman proposed the free radical theory of aging, and in 1972 he suggested that mitochondria are both the source and the victim of toxic free radicals. Interestingly, hypertension is an age-associated disease and clinical data show that by age 70, 70% of the population has hypertension and this is accompanied by oxidative stress. Antioxidant therapy, however, is not currently available and common antioxidants such as ascorbate and vitamin E are ineffective in preventing hypertension. The present review focuses on the molecular mechanisms of mitochondrial oxidative stress and the therapeutic potential of targeting mitochondria in hypertension. RECENT FINDINGS Over the past several years, we have shown that the mitochondria become dysfunctional in hypertension and have defined a novel role of mitochondrial superoxide radicals in this disease. We have shown that genetic manipulation of mitochondrial antioxidant enzyme superoxide dismutase affects blood pressure, and have developed mitochondria-targeted therapies such as mitochondrial superoxide dismutase mimetics that effectively lower blood pressure. However, the specific mechanism of mitochondrial oxidative stress in hypertension remains unclear. Recent animal and clinical studies have demonstrated several hormonal, metabolic, inflammatory, and environmental pathways contributing to mitochondrial dysfunction and oxidative stress. SUMMARY Nutritional supplements, calorie restriction, and life style change are the most effective preventive strategies to improve mitochondrial function and reduce mitochondrial oxidative stress. Aging associated mitochondrial dysfunction, however, reduces the efficacy of these strategies. Therefore, we propose that new classes of mitochondria-targeted antioxidants can provide a high therapeutic potential to improve endothelial function and reduce hypertension.
Collapse
|
209
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
210
|
Szkudelska K, Deniziak M, Roś P, Gwóźdź K, Szkudelski T. Resveratrol alleviates ethanol-induced hormonal and metabolic disturbances in the rat. Physiol Res 2016; 66:135-145. [PMID: 27782737 DOI: 10.33549/physiolres.933335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenol found in different plant species and having numerous health-promoting properties in animals and humans. However, its protective action against deleterious effects of ethanol is poorly elucidated. In the present study, the influence of resveratrol (10 mg/kg/day) on some hormones and metabolic parameters was determined in rats ingesting 10 % ethanol solution for two weeks. Blood levels of insulin, glucagon and adiponectin were affected by ethanol, however, resveratrol partially ameliorated these changes. Moreover, in ethanol drinking rats, liver lipid accumulation was increased, whereas resveratrol was capable of reducing liver lipid content, probably due to decrease in fatty acid synthesis. Resveratrol decreased also blood levels of triglycerides and free fatty acids and reduced gamma-glutamyl transferase activity in animals ingesting ethanol. These results show that resveratrol, already at low dose, alleviates hormonal and metabolic changes induced by ethanol in the rat and may be useful in preventing and treating some consequences of alcohol consumption.
Collapse
Affiliation(s)
- K Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland.
| | | | | | | | | |
Collapse
|
211
|
Koentges C, Bode C, Bugger H. SIRT3 in Cardiac Physiology and Disease. Front Cardiovasc Med 2016; 3:38. [PMID: 27790619 PMCID: PMC5061741 DOI: 10.3389/fcvm.2016.00038] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Functional defects in mitochondrial biology causally contribute to various human diseases, including cardiovascular disease. Impairment in oxidative phosphorylation, mitochondrial oxidative stress, and increased opening of the mitochondrial permeability transition pore add to the underlying mechanisms of heart failure or myocardial ischemia–reperfusion (IR) injury. Recent evidence demonstrated that the mitochondrial NAD+-dependent deacetylase sirtuin 3 (SIRT3) may regulate these mitochondrial functions by reversible protein lysine deacetylation. Loss of function studies demonstrated a role of impaired SIRT3 activity in the pathogenesis of myocardial IR injury as well as in the development of cardiac hypertrophy and the transition into heart failure. Gain of function studies and treatment approaches increasing mitochondrial NAD+ availability that ameliorate these cardiac pathologies have led to the proposal that activation of SIRT3 may represent a promising therapeutic strategy to improve mitochondrial derangements in various cardiac pathologies. In the current review, we will present and discuss the available literature on the role of SIRT3 in cardiac physiology and disease.
Collapse
Affiliation(s)
- Christoph Koentges
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| | - Christoph Bode
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| | - Heiko Bugger
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| |
Collapse
|
212
|
Weiskirchen S, Weiskirchen R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv Nutr 2016; 7:706-18. [PMID: 27422505 PMCID: PMC4942868 DOI: 10.3945/an.115.011627] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a naturally occurring stilbene endowed with multiple health-promoting effects. It is produced by certain plants including several dietary sources such as grapes, apples, raspberries, blueberries, plums, peanuts, and products derived therefrom (e.g., wine). Resveratrol can be isolated and purified from these biological sources or synthesized in a few steps with an overall high yield. This compound and its glucoside, the trans-polydatin piceid, have received worldwide attention for their beneficial effects on cardiovascular, inflammatory, neurodegenerative, metabolic, and age-related diseases. These health-promoting effects are particularly attractive given the prevalence of resveratrol-based nutraceuticals and the paradoxical epidemiologic observation that wine consumption is inversely correlated to the incidence of coronary heart disease. However, the notion of resveratrol as a "magic bullet" was recently challenged by clinical trials showing that this polyphenol does not have a substantial influence on health status and mortality risk. In the present review, we discuss the proposed therapeutic attributes and the mode of molecular actions of resveratrol. We also cover recent pharmacologic efforts to improve the poor bioavailability of resveratrol and influence the transition between body systems in humans. We conclude with some thoughts about future research directions that might be meaningful for resolving controversies surrounding resveratrol.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Rheinisch-Westfaelische Technische Hochschule University Hospital Aachen, Aachen, Germany
| |
Collapse
|
213
|
Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 2016; 174:1633-1646. [PMID: 27058985 DOI: 10.1111/bph.13492] [Citation(s) in RCA: 406] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 01/04/2023] Open
Abstract
The antioxidant effects of resveratrol (3,5,4'-trihydroxy-trans-stilbene) contribute substantially to the health benefits of this compound. Resveratrol has been shown to be a scavenger of a number of free radicals. However, the direct scavenging activities of resveratrol are relatively poor. The antioxidant properties of resveratrol in vivo are more likely to be attributable to its effect as a gene regulator. Resveratrol inhibits NADPH oxidase-mediated production of ROS by down-regulating the expression and activity of the oxidase. This polyphenolic compound reduces mitochondrial superoxide generation by stimulating mitochondria biogenesis. Resveratrol prevents superoxide production from uncoupled endothelial nitric oxide synthase by up-regulating the tetrahydrobiopterin-synthesizing enzyme GTP cyclohydrolase I. In addition, resveratrol increases the expression of various antioxidant enzymes. Some of the gene-regulating effects of resveratrol are mediated by the histone/protein deacetylase sirtuin 1 or by the nuclear factor-E2-related factor-2. In this review article, we have also summarized the cardiovascular effects of resveratrol observed in clinical trials. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- 2nd Medical Department, Cardiology and Angiology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
214
|
Bonnefont-Rousselot D. Resveratrol and Cardiovascular Diseases. Nutrients 2016; 8:nu8050250. [PMID: 27144581 PMCID: PMC4882663 DOI: 10.3390/nu8050250] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
The increased incidence of cardiovascular diseases (CVDs) has stimulated research for substances that could improve cardiovascular health. Among them, resveratrol (RES), a polyphenolic compound notably present in grapes and red wine, has been involved in the “French paradox”. RES is known for its antioxidant and anti-inflammatory properties and for its ability to upregulate endothelial NO synthase (eNOS). RES was able to scavenge •OH/O2•− and peroxyl radicals, which can limit the lipid peroxidation processes. Moreover, in bovine aortic endothelial cells (BAEC) under glucose-induced oxidative stress, RES restored the activity of dimethylargininedimethylaminohydrolase (DDAH), an enzyme that degrades an endogenous inhibitor of eNOS named asymmetric dimethylarginine (ADMA). Thus, RES could improve •NO availability and decrease the endothelial dysfunction observed in diabetes. Preclinical studies have made it possible to identify molecular targets (SIRT-1, AMPK, Nrf2, NFκB…); however, there are limited human clinical trials, and difficulties in the interpretation of results arise from the use of high-dose RES supplements in research studies, whereas low RES concentrations are present in red wine. The discussions on potential beneficial effects of RES in CVDs (atherosclerosis, hypertension, stroke, myocardial infarction, heart failure) should compare the results of preclinical studies with those of clinical trials.
Collapse
Affiliation(s)
- Dominique Bonnefont-Rousselot
- Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris 75006, France.
- Department of Metabolic Biochemistry, Pitié-Salpêtrière-Charles Foix Hospital (AP-HP), Paris 75013, France.
- Inserm UMR_S 1166 ICAN, UPMC, La Pitié Hospital, Paris 75013, France.
| |
Collapse
|
215
|
Wang G, Zhang M, Zhong Q, Lei Z, Wu H, Lai F. Protective effects of resveratrol against hypoxanthine-xanthine oxidase-induced toxicity on human erythrocytes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
216
|
Zhang MJ, Zhou Y, Chen L, Wang X, Long CY, Pi Y, Gao CY, Li JC, Zhang LL. SIRT1 improves VSMC functions in atherosclerosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:11-5. [PMID: 27080738 DOI: 10.1016/j.pbiomolbio.2016.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
Despite advancements in diagnosis and treatment of cardiovascular diseases (CVDs), the morbidity and mortality of CVDs are still rising. Atherosclerosis is a chronic inflammatory disease contributing to multiple CVDs. Considering the complexity and severity of atherosclerosis, it is apparent that exploring the mechanisms of atherosclerotic formation and seeking new therapies for patients with atherosclerosis are required to overcome the heavy burden of CVDs on the quality and length of life of the global population. Vascular smooth muscle cells (VSMCs) play a dominant role in functional and structural changes of the arterial walls in response to atherogenic factors. Therefore, improvement of VSMC functions will slow down the development of atherosclerosis to a large extent. Given its protective performances on regulation of cholesterol metabolism and inflammatory responses, SIRT1 has long been known as an anti-atherosclerosis factor. In this review, we focus on the effects of SIRT1 on VSMC functions and thereby the development of atherosclerosis.
Collapse
Affiliation(s)
- Ming-Jie Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yi Zhou
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Lei Chen
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Xu Wang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chun-Yan Long
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yan Pi
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chang-Yue Gao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Jing-Cheng Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Li-Li Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| |
Collapse
|
217
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
218
|
Revised structure of trans-resveratrol: Implications for its proposed antioxidant mechanism. Bioorg Med Chem Lett 2016; 26:1416-8. [DOI: 10.1016/j.bmcl.2016.01.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 11/23/2022]
|
219
|
Zhang MJ, Zhou Y, Chen L, Wang X, Pi Y, Long CY, Sun MJ, Chen X, Gao CY, Li JC, Zhang LL. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells. Histochem Cell Biol 2016; 146:33-43. [DOI: 10.1007/s00418-016-1408-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 11/24/2022]
|
220
|
Gordish KL, Beierwaltes WH. Chronic resveratrol reverses a mild angiotensin II-induced pressor effect in a rat model. Integr Blood Press Control 2016; 9:23-31. [PMID: 26869812 PMCID: PMC4734803 DOI: 10.2147/ibpc.s96092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Resveratrol is reported to reduce blood pressure in animal models of hypertension, but the mechanisms are unknown. We have shown that resveratrol infusion increases sodium excretion. We hypothesized that chronic ingestion of resveratrol would reduce angiotensin II (Ang II)-induced increases in blood pressure by decreasing oxidative stress and by also decreasing sodium reabsorption through a nitric oxide-dependent mechanism. We infused rats with vehicle or 80 μg Ang II/d over 4 weeks. Vehicle or Ang II-infused rats were individually housed, pair fed, and placed on a diet of normal chow or normal chow plus 146 mg resveratrol/d. Groups included 1) control, 2) resveratrol-fed, 3) Ang II-treated, and 4) Ang II plus resveratrol. Systolic blood pressure was measured by tail cuff. During the 4th week, rats were placed in metabolic caging for urine collection. NO2/NO3 and 8-isoprostane excretion were measured. Ang II increased systolic blood pressure in the 1st week by +14±5 mmHg (P<0.05) in Group 3 and +10±3 mmHg (P<0.05) in Group 4, respectively. Blood pressure was unchanged in Groups 1 and 2. After 4 weeks, blood pressure remained elevated in Group 3 rats with Ang II (+9±3 mmHg, P<0.05), but in Group 4, blood pressure was no longer elevated (+2±2 mmHg). We found no significant differences between the groups in sodium excretion or cumulative sodium balance (18.49±0.12, 17.75±0.16, 17.97±0.17, 18.46±0.18 μEq Na+/7 d in Groups 1-4, respectively). Urinary excretion of NO2/NO3 in the four groups was 1) 1631±207 μmol/24 h, 2) 1045±236 μmol/24 h, 3) 1490±161 μmol/24 h, and 4) 609±17 μmol/24 h. 8-Isoprostane excretion was 1) 63.85±19.39 nmol/24 h, 2) 73.57±22.02 nmol/24 h, 3) 100.69±37.62 nmol/24 h, and 4) 103.00±38.88 nmol/24 h. We conclude that chronic resveratrol supplementation does not blunt Ang II-increased blood pressure, and while resveratrol has mild depressor effects, these do not seem to be due to natriuresis or enhanced renal nitric oxide synthesis.
Collapse
Affiliation(s)
- Kevin L Gordish
- Department of Physiology, Wayne State School of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - William H Beierwaltes
- Department of Physiology, Wayne State School of Medicine, Henry Ford Hospital, Detroit, MI, USA
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
221
|
Oyenihi OR, Oyenihi AB, Adeyanju AA, Oguntibeju OO. Antidiabetic Effects of Resveratrol: The Way Forward in Its Clinical Utility. J Diabetes Res 2016; 2016:9737483. [PMID: 28050570 PMCID: PMC5165160 DOI: 10.1155/2016/9737483] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Despite recent advances in the understanding and management of diabetes mellitus, the prevalence of the disease is increasing unabatedly with resulting disabling and life-reducing consequences to the global human population. The limitations and side effects associated with current antidiabetic therapies have necessitated the search for novel therapeutic agents. Due to the multipathogenicity of diabetes mellitus, plant-derived compounds with proven multiple pharmacological actions have been postulated to "hold the key" in the search for an affordable, efficacious, and safer therapeutic agent in the treatment of the disease and associated complications. Resveratrol, a phytoalexin present in few plant species, has demonstrated beneficial antidiabetic effects in animals and humans through diverse mechanisms and multiple molecular targets. However, despite the enthusiasm and widespread successes achieved with the use of resveratrol in animal models of diabetes mellitus, there are extremely limited clinical data to confirm the antidiabetic qualities of resveratrol. This review presents an update on the mechanisms of action and protection of resveratrol in diabetes mellitus, highlights challenges in its clinical utility, and suggests the way forward in translating the promising preclinical data to a possible antidiabetic drug in the near future.
Collapse
Affiliation(s)
- Omolola R. Oyenihi
- Department of Biochemistry, Bowen University, Iwo, Nigeria
- *Omolola R. Oyenihi:
| | - Ayodeji B. Oyenihi
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, University Road, Durban 4000, South Africa
| | | | - Oluwafemi O. Oguntibeju
- Nutrition and Chronic Disease Research Unit, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
222
|
Torres-Pérez M, Tellez-Ballesteros RI, Ortiz-López L, Ichwan M, Vega-Rivera NM, Castro-García M, Gómez-Sánchez A, Kempermann G, Ramirez-Rodriguez GB. Resveratrol Enhances Neuroplastic Changes, Including Hippocampal Neurogenesis, and Memory in Balb/C Mice at Six Months of Age. PLoS One 2015; 10:e0145687. [PMID: 26695764 PMCID: PMC4690610 DOI: 10.1371/journal.pone.0145687] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/06/2015] [Indexed: 01/29/2023] Open
Abstract
Resveratrol (RVTL) is a flavonoid found in red wine and has been publicized heavily as an anti-aging compound. Indeed, basic research confirms that although there is much hype in the promotion of RVTL, flavonoids such as RVTL have a wide range of biological effects. We here investigated the effects of RVTL treatment on hippocampal plasticity and memory performance in female Balb/C mice, a strain with low baseline levels of adult neurogenesis. Two weeks of treatment with RVTL (40 mg/kg) induced the production of new neurons in vivo by increasing cell survival and possibly precursor cell proliferation. In addition, RVTL decreased the number of apoptotic cells. The number of doublecortin (DCX)-expressing intermediate cells was increased. RVTL stimulated neuronal differentiation in vitro without effects on proliferation. In the dentate gyrus, RVTL promoted the formation and maturation of spines on granule cell dendrites. RVTL also improved performance in the step down passive avoidance test. The RVTL-treated mice showed increase in the levels of two key signaling proteins, phospho-Akt and phospho-PKC, suggesting the involvement of these signaling pathways. Our results support the vision that flavonoids such as resveratrol deserve further examination as plasticity-inducing compounds in the context of successful cognitive aging.
Collapse
Affiliation(s)
- Mario Torres-Pérez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Ruth Ivonne Tellez-Ballesteros
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Muhammad Ichwan
- CRTD - Center for Regenerative Therapies Dresden, Tatzberg 47–79, 01307, Dresden, Germany
- Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Jalan Dr. Mansur 5, Medan, Indonesia
| | - Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Mario Castro-García
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Gerd Kempermann
- CRTD - Center for Regenerative Therapies Dresden, Tatzberg 47–79, 01307, Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Dresden, Tatzberg 47–49, 01307, Dresden, Germany
- * E-mail: (GK); (GBRR)
| | - Gerardo Bernabe Ramirez-Rodriguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
- * E-mail: (GK); (GBRR)
| |
Collapse
|
223
|
The anti-adhesive and anti-aggregatory effects of phenolics from Trifolium species in vitro. Mol Cell Biochem 2015; 412:155-64. [PMID: 26686341 PMCID: PMC4718934 DOI: 10.1007/s11010-015-2620-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022]
Abstract
The present in vitro study includes a comparative evaluation of anti-platelet (anti-thrombotic) properties of plant phenolics, isolated from nine different clover (Trifolium) species. The analysis covered phenolic fractions isolated from T. alexandrinum L., T. fragiferum L., T. hybridum L., T. incarnatum L., T. pallidum Waldst et Kit., T. resupinatum L. var. majus Boiss, T. resupinatum L. var. resupinatum, T. scabrum L., and T. pratense L. (red clover). The inhibitory effects of plant preparations (1–50 µg/ml) on hemostatic functions of blood platelets were assessed by measurements of thrombin- or ADP-induced platelet adhesion to fibrinogen, platelet aggregation in platelet-rich plasma (activated with ADP or collagen), and by the determination of PF-4 secretion from platelet α-granules. The influence of T. phenolics on arachidonic cascade in blood platelets was also determined. T. resupinatum var. majus, T. resupinatum var. resupinatum, and T. scabrum had the strongest anti-platelet effects. These preparations displayed the most evident anti-adhesive and anti-aggregatory effects in response to all of the used agonists: thrombin (0.2 U/ml), ADP (10 µM), and collagen (2 µg/ml), and their inhibitory properties were also confirmed by an analysis of PF-4 secretion. T. scabrum and some of other examined clover species possess significantly higher concentrations of both isoflavones and other bioactive phenolics, when compared to red clover. The obtained results suggest that these clovers contain substances with potent anti-platelet properties.
Collapse
|
224
|
Liu MH, Lin XL, Li J, He J, Tan TP, Wu SJ, Yu S, Chen L, Liu J, Tian W, Chen YD, Fu HY, Yuan C, Zhang Y. Resveratrol induces apoptosis through modulation of the Akt/FoxO3a/Bim pathway in HepG2 cells. Mol Med Rep 2015; 13:1689-94. [PMID: 26709007 DOI: 10.3892/mmr.2015.4695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 11/10/2015] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is a polyphenolic compound found in wine, which is mainly produced by the grapevine and exerts chemopreventive effects against hepatocellular carcinoma. However, the underlying molecular mechanisms have remained to be fully elucidated. The present study assessed whether resveratrol-induced apoptosis was mediated via the activation of the forkhead box O3a (FoxO3a) transcription factor. It was demonstrated that resveratrol treatment induced apoptosis in HepG2 cells, and that this pro-apoptotic effect was accompanied with increases in the expression of apoptotic protein Bim. Following resveratrol treatment, Akt-mediated phosphorylation of FoxO3a was observed to be diminished in HepG2 cells. Furthermore, resveratrol enhanced the nuclear levels of FoxO3a and mediated neuronal death via Bim. The present study demonstrated that resveratrol induced apoptosis in HepG2 cells through activation of the transcription factor FoxO3a and increasing the expression of Bim protein.
Collapse
Affiliation(s)
- Mi-Hua Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Long Lin
- Department of Pathology, The Third People's Hospital of Huizhou Affiliated to Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| | - Jian Li
- Department of Ultrasonic Diagnosis, BoAi Hospital of Zhongshan, Zhongshan, Guangdong 528403, P.R. China
| | - Jun He
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian-Ping Tan
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shao-Jian Wu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shan Yu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li Chen
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Tian
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yu-Dan Chen
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong-Yun Fu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cong Yuan
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Yuan Zhang
- Department of Pathology, Mawangdui Hospital, Changsha, Hunan 410016, P.R. China
| |
Collapse
|
225
|
Shah A, Reyes LM, Morton JS, Fung D, Schneider J, Davidge ST. Effect of resveratrol on metabolic and cardiovascular function in male and female adult offspring exposed to prenatal hypoxia and a high-fat diet. J Physiol 2015; 594:1465-82. [PMID: 26467260 DOI: 10.1113/jp271133] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
Prenatal hypoxia, a common outcome of pregnancy complications, predisposes offspring to the development of metabolic and cardiovascular disorders in later life. We have previously observed that resveratrol improved cardiovascular and metabolic health in adult male rat offspring exposed to prenatal hypoxia and a postnatal high-fat (HF) diet; however, the effects of resveratrol in female rat offspring are not known. Our aim was to identify the mechanism(s) by which resveratrol may prevent metabolic and cardiac dysfunction in both male and female rat offspring exposed to prenatal hypoxia and a postnatal HF diet. Offspring that experienced normoxia or hypoxia in utero were fed a HF diet or a HF diet supplemented with resveratrol for 9 weeks following weaning. Body composition, metabolic function, in vivo cardiac function and ex vivo cardiac susceptibility to ischaemia-reperfusion (I/R) injury were assessed at 12 weeks of age. Prenatal hypoxia impaired metabolic function in male, but not female, rat offspring fed a HF diet and this was improved by resveratrol supplementation. Prenatal hypoxia also led to reduced recovery from cardiac I/R injury in male, and to a lesser extent in female, rat offspring fed a HF diet. Indices of cardiac oxidative stress after I/R were enhanced in both male and female rat offspring exposed to prenatal hypoxia. Resveratrol improved cardiac recovery from I/R injury and attenuated superoxide levels in both male and female rat offspring. In conclusion, prenatal hypoxia impaired metabolic and cardiac function in a sex-specific manner. Resveratrol supplementation may improve metabolic and cardiovascular health in adult male and female rat offspring exposed to prenatal hypoxia.
Collapse
Affiliation(s)
- Amin Shah
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Laura M Reyes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David Fung
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Jillian Schneider
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
226
|
Phytochemical Compounds and Protection from Cardiovascular Diseases: A State of the Art. BIOMED RESEARCH INTERNATIONAL 2015; 2015:918069. [PMID: 26504846 PMCID: PMC4609427 DOI: 10.1155/2015/918069] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/14/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases represent a worldwide relevant socioeconomical problem. Cardiovascular disease prevention relies also on lifestyle changes, including dietary habits. The cardioprotective effects of several foods and dietary supplements in both animal models and in humans have been explored. It was found that beneficial effects are mainly dependent on antioxidant and anti-inflammatory properties, also involving modulation of mitochondrial function. Resveratrol is one of the most studied phytochemical compounds and it is provided with several benefits in cardiovascular diseases as well as in other pathological conditions (such as cancer). Other relevant compounds are Brassica oleracea, curcumin, and berberine, and they all exert beneficial effects in several diseases. In the attempt to provide a comprehensive reference tool for both researchers and clinicians, we summarized in the present paper the existing literature on both preclinical and clinical cardioprotective effects of each mentioned phytochemical. We structured the discussion of each compound by analyzing, first, its cellular molecular targets of action, subsequently focusing on results from applications in both ex vivo and in vivo models, finally discussing the relevance of the compound in the context of human diseases.
Collapse
|
227
|
Kjaer TN, Ornstrup MJ, Poulsen MM, Jørgensen JOL, Hougaard DM, Cohen AS, Neghabat S, Richelsen B, Pedersen SB. Resveratrol reduces the levels of circulating androgen precursors but has no effect on, testosterone, dihydrotestosterone, PSA levels or prostate volume. A 4-month randomised trial in middle-aged men. Prostate 2015; 75:1255-63. [PMID: 25939591 DOI: 10.1002/pros.23006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Resveratrol is a naturally occurring polyphenol with purported inhibitory effects on prostate growth and cancer development. A number of studies have demonstrated that resveratrol reduces prostate growth in animal models and reduces prostate cell growth in vitro. Based on these pre-clinical findings, interest in resveratrol is increasing in relation to the management of benign prostate hyperplasia (BPH) and prostate cancer. So far, no human trials have evaluated the effects of resveratrol on circulating androgens, prostate size, or biochemical markers of prostate size. METHODS In a randomized placebo controlled clinical study using two doses of resveratrol (150 mg or 1,000 mg resveratrol daily) for 4 months, we evaluated the effects on prostate size, prostate specific antigen (PSA) and sex steroid hormones in 66 middle-aged men suffering from the metabolic syndrome(MetS). RESULTS At baseline, prostate size and PSA were positively correlated (R = 0.34, P < 0.007) as was prostate size and age (R = 0.37, P < 0.003). Prostate size did not correlate with testosterone, free testosterone, dihydrotestosterone (DHT), or any other androgen precursor at baseline. The highest dose of resveratrol lowered the serum level of androstenedione 24% (P = 0.052), dehydroepiandrosterone (DHEA) 41% (P < 0.01), and dehydroepiandrosterone-sulphate (DHEAS) 50% (p<0.001), compared to the control group. However, prostate size and levels of PSA, testosterone, free testosterone and DHT remained unchanged. CONCLUSION In this population of middle-aged men suffering from MetS, high dose resveratrol (1,000 mg daily) administration for 4 months significantly lowered serum levels of the androgen precursors androstenedione, DHEA and DHEAS, whereas prostate size and circulating levels of PSA, testosterone, free testosterone, and dihydrotestosterone were unaffected. The present study suggests that resveratrol does not affect prostate volume in healthy middle-aged men as measured by PSA levels and CT acquired prostate volumes. Consequently, we find no support for the use of resveratrol in the treatment of benign prostate hyperplasia.
Collapse
Affiliation(s)
- Thomas Nordstrøm Kjaer
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Marie Juul Ornstrup
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Morten Møller Poulsen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - David Michael Hougaard
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
| | - Arieh Sierra Cohen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
| | - Shadman Neghabat
- Department of Radiology, Aarhus University Hospital, Aarhus C, Denmark
| | - Bjørn Richelsen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
228
|
Raj P, Zieroth S, Netticadan T. An overview of the efficacy of resveratrol in the management of ischemic heart disease. Ann N Y Acad Sci 2015; 1348:55-67. [PMID: 26227659 DOI: 10.1111/nyas.12828] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
Abstract
Ischemic heart disease is a leading cause of cardiac dysfunction and subsequent morbidity and mortality around the world. New therapies are required to complement or enhance the existing treatment regimen for the management of ischemic heart disease-related clinical complications. In this regard, compounds derived from natural sources have recently gained attention for their cardioprotective properties. In particular, the potential of food-derived compounds that exhibit medicinal properties (termed nutraceuticals) appears promising, an example being the plant polyphenol resveratrol. In the past two decades, many preclinical and a few pilot clinical studies have shown that resveratrol is beneficial in protecting against cardiovascular disease. In this short review, we will discuss current evidence on the efficacy of resveratrol in preventing or reversing deleterious effects on the heart in the setting of ischemic heart disease.
Collapse
Affiliation(s)
- Pema Raj
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Shelley Zieroth
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada.,Agriculture and Agri-Food Canada, Winnipeg, Canada
| |
Collapse
|
229
|
Abstract
Resveratrol is a bioactive polyphenol, found in grapes, red wine, and peanuts, and has recently garnered much media and scientific attention for its diverse beneficial health effects as a nutritional supplement or nutraceutical. Of particular interest are the well-documented cardioprotective effects of resveratrol that are mediated by diverse mechanisms, including its antioxidant and vascular effects. However, it is now becoming clear that resveratrol may also exhibit direct effects on cardiac function and rhythm through modulation of signaling pathways that regulate cardiac remodeling and ion channel activity that controls cardiac excitability. Resveratrol may therefore possess antiarrhythmic properties that contribute to the cardiovascular benefits of resveratrol. Atrial fibrillation (AF) is the most common cardiac arrhythmia, although current therapies are suboptimal. Our laboratory has been studying resveratrol's effects on cardiac ion channels and remodeling pathways, and we initiated a drug development program aimed at generating novel resveratrol derivatives with improved efficacy against AF when compared to currently available therapeutics. This review therefore focuses on the effects of resveratrol and new derivatives on a variety of cardiac ion channels and molecular pathways that contribute to the development and maintenance of atrial fibrillation.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Peter E Light
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
230
|
Abstract
Despite existing therapies, patients with heart failure have a very poor quality of life and a high 1-year mortality rate. Given the impact of this syndrome on health outcomes, research is being directed toward identifying novel strategies to treat heart failure symptoms as well as to prolong survival. One molecule that has been tested in animal models for this purpose is resveratrol. Resveratrol is a naturally occurring polyphenol found in several plants, and administration of resveratrol has been shown to prevent and/or slow the progression of heart failure in animal models of heart failure induced by myocardial infarction, pressure overload, myocarditis, and chemotherapy-induced cardiotoxicity. In addition, some animal studies have shown that resveratrol improves cardiac function and survival when administered as a treatment for established heart failure. Furthermore, as heart failure induces alterations in skeletal muscle and vasculature that also contribute to certain heart failure symptoms, such as fatigue and exercise intolerance, it has also been shown that resveratrol acts on these peripheral tissues to improve skeletal muscle and endothelial/vascular function. Therefore, if these animal studies translate to humans, resveratrol may prove to be a novel therapy for the treatment of heart failure.
Collapse
Affiliation(s)
- Miranda M Sung
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
231
|
Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and Atherosclerosis. Arch Med Res 2015; 46:408-26. [DOI: 10.1016/j.arcmed.2015.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
|
232
|
Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci 2015; 1348:150-60. [PMID: 26099945 DOI: 10.1111/nyas.12798] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The grape antioxidant resveratrol has been a topic of intense research for the past three decades. Resveratrol and other grape ingredients, as well as whole-grape products, have shown considerable promise in health promotion and disease management. Phytochemically, whole grape represents a natural combination of resveratrol and other phytonutrients, as it contains several catechins, anthocyanins, polyphenols, and flavonols. Thus, whole grape products or specific combinations of grape constituents provide us with the possibility of synergistic interactions leading to improved efficacy. Recent research has suggested that whole-grape products may help in maintaining heart health and protect against aging, aging-associated diseases, neurodegeneration, and some cancers. On the basis of available recent literature, the grape fruit or whole-grape products seem to be safer choices for better health and disease prevention. However, for advanced disease conditions, individual grape ingredients (such as resveratrol) or combinations of multiple ingredients, together with existing therapies, appear to be better approaches. Further clinical studies are needed to understand the benefits of grapes and their products in the prevention and management of specific diseases.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
233
|
Gluvic Z, Sudar E, Tica J, Jovanovic A, Zafirovic S, Tomasevic R, Isenovic ER. Effects of levothyroxine replacement therapy on parameters of metabolic syndrome and atherosclerosis in hypothyroid patients: a prospective pilot study. Int J Endocrinol 2015; 2015:147070. [PMID: 25821465 PMCID: PMC4363579 DOI: 10.1155/2015/147070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate the effect of levothyroxine (LT4) replacement therapy during three months on some parameters of metabolic syndrome and atherosclerosis in patients with increased thyroid-stimulating hormone (TSH) level. This study included a group of 30 female patients with TSH level >4 mIU/L and 15 matched healthy controls. Intima media complex thickness (IMCT) and peak systolic flow velocity (PSFV) of superficial femoral artery were determined by Color Doppler scan. In hypothyroid subjects, BMI, SBP, DBP, and TSH were significantly increased versus controls and decreased after LT4 administration. FT4 was significantly lower in hypothyroid subjects compared with controls and significantly higher by treatment. TC, Tg, HDL-C, and LDL-C were similar to controls at baseline but TC and LDL-C were significantly decreased by LH4 treatment. IMCT was significantly increased versus controls at baseline and significantly reduced by treatment. PSFV was similar to controls at baseline and significantly decreased on treatment. In this study, we have demonstrated the effects of LT4 replacement therapy during three months of treatment on correction of risk factors of metabolic syndrome and atherosclerosis.
Collapse
Affiliation(s)
- Zoran Gluvic
- Zemun Clinical Hospital, Vukova 9, 11080 Belgrade, Serbia
| | - Emina Sudar
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, P.O. Box 522, Mike Petrovica Alasa 12-14, 11001 Belgrade, Serbia
- *Emina Sudar:
| | - Jelena Tica
- Zemun Clinical Hospital, Vukova 9, 11080 Belgrade, Serbia
| | - Aleksandra Jovanovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, P.O. Box 522, Mike Petrovica Alasa 12-14, 11001 Belgrade, Serbia
| | - Sonja Zafirovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, P.O. Box 522, Mike Petrovica Alasa 12-14, 11001 Belgrade, Serbia
| | | | - Esma R. Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, P.O. Box 522, Mike Petrovica Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
234
|
Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:1145-54. [PMID: 25445538 DOI: 10.1016/j.bbadis.2014.10.013] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a serious disease affecting about 5% of people worldwide. Diabetes is characterized by hyperglycemia and impairment in insulin secretion and/or action. Moreover, diabetes is associated with metabolic abnormalities and serious complications. Resveratrol is a natural, biologically active polyphenol present in different plant species and known to have numerous health-promoting effects in both animals and humans. Anti-diabetic action of resveratrol has been extensively studied in animal models and in diabetic humans. In animals with experimental diabetes, resveratrol has been demonstrated to induce beneficial effects that ameliorate diabetes. Resveratrol, among others, improves glucose homeostasis, decreases insulin resistance, protects pancreatic β-cells, improves insulin secretion and ameliorates metabolic disorders. Effects induced by resveratrol are strongly related to the capability of this compound to increase expression/activity of AMPK and SIRT1 in various tissues of diabetic subjects. Moreover, anti-oxidant and anti-inflammatory effects of resveratrol were shown to be also involved in its action in diabetic animals. Preliminary clinical trials show that resveratrol is also effective in type 2 diabetic patients. Resveratrol may, among others, improve glycemic control and decrease insulin resistance. These results show that resveratrol holds great potential to treat diabetes and would be useful to support conventional therapy. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clincial findigns to improved patient outcomes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| |
Collapse
|