201
|
Wu Z, Zeng Q, Cao K, Sun Y. Exosomes: small vesicles with big roles in hepatocellular carcinoma. Oncotarget 2018; 7:60687-60697. [PMID: 27463001 PMCID: PMC5312412 DOI: 10.18632/oncotarget.10807] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Despite improvements in the diagnosis and treatment of hepatocellular carcinoma (HCC), the prognosis is still poor. Pioneering work has demonstrated a potential role for tumour cell-derived exosomes (TEXs) in HCC. TEXs can mediate immune responses, antigen presentation and intracellular communication by serving as vehicles for the transfer of proteins, viruses, lipids and RNA between cells. An improved understanding of the roles played by exosomes could lead to a powerful new strategy for preventing and treating HCC. In this review, we summarise current understanding on the topic. The literature points to two faces of TEXs in HCC: 1) They can promote invasion, metastasis, immune evasion and modulation and 2) they can act as diagnostic and prognostic biomarkers, and can be used in anti-cancer drug resistance and immunotherapy in the future.
Collapse
Affiliation(s)
- Zhitong Wu
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, Guigang, Guangxi, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifan Sun
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| |
Collapse
|
202
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
203
|
Denton AE, Roberts EW, Fearon DT. Stromal Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:99-114. [PMID: 30155624 DOI: 10.1007/978-3-319-78127-3_6] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment comprises a mass of heterogeneous cell types, including immune cells, endothelial cells, and fibroblasts, alongside cancer cells. It is increasingly becoming clear that the development of this support niche is critical to the continued uncontrolled growth of the cancer. The tumor microenvironment contributes to the maintenance of cancer stemness and also directly promotes angiogenesis, invasion, metastasis, and chronic inflammation. In this chapter, we describe on the role of fibroblasts, specifically termed cancer-associated fibroblasts (CAFs), in the promotion and maintenance of cancers. CAFs have a multitude of effects on the growth and maintenance of cancer, and here we focus on their roles in modulating immune cells and responses; CAFs both inhibit immune cell access to the tumor microenvironment and inhibit their functions within the tumor. Finally, we describe the potential modulation of CAF function as an adjunct to bolster the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
- Alice E Denton
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK.
| | - Edward W Roberts
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Douglas T Fearon
- Cold Spring Harbor Laboratory, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
204
|
Inflammatory Reprogramming with IDO1 Inhibitors: Turning Immunologically Unresponsive 'Cold' Tumors 'Hot'. Trends Cancer 2017; 4:38-58. [PMID: 29413421 DOI: 10.1016/j.trecan.2017.11.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023]
Abstract
We discuss how small-molecule inhibitors of the tryptophan (Trp) catabolic enzyme indoleamine 2,3-dioxygenase (IDO) represent a vanguard of new immunometabolic adjuvants to safely enhance the efficacy of cancer immunotherapy, radiotherapy, or 'immunogenic' chemotherapy by leveraging responses to tumor neoantigens. IDO inhibitors re-program inflammatory processes to help clear tumors by blunting tumor neovascularization and restoring immunosurveillance. Studies of regulatory and effector pathways illuminate IDO as an inflammatory modifier. Recent work suggests that coordinate targeting of the Trp catabolic enzymes tryptophan 2,3-dioxygenase (TDO) and IDO2 may also safely broaden efficacy. Understanding IDO inhibitors as adjuvants to turn immunologically 'cold' tumors 'hot' can seed new concepts in how to improve the efficacy of cancer therapy while limiting collateral damage.
Collapse
|
205
|
Abstract
The encouraging results in immunotherapy for melanoma also led the way for translational and clinical research about immune-related mechanisms possibly relevant for gastrointestinal tumours. It is in fact now evident that the immune checkpoint modulation and in particular cell-mediated immune-response through programmed cell death-1 (PD-1) and the cytotoxic T-lymphocyte antigen-4 (CTLA4) receptors along with the regulatory T cells activity all have a relevant role in gastrointestinal cancers as well. This review aims to explore the state of the art of immunotherapy for gastrointestinal tumours, deepening recent scientific evidence regarding anti PD-1/PDL-1 and anti CTLA4 monoclonal antibodies, peptide based vaccine, DNA based vaccine, and pulsed dendritic cells, either alone or in combination with other antineoplastic medical therapy and locoregional treatments. Considering the non-negligible toxicity profile deriving from such a treatment approach, predictive biomarkers of response to immunotherapy in gastrointestinal cancer are also urgently needed in order to better select the patients' group with the highest likelihood of benefit.
Collapse
|
206
|
Novikova MV, Khromova NV, Kopnin PB. Components of the Hepatocellular Carcinoma Microenvironment and Their Role in Tumor Progression. BIOCHEMISTRY (MOSCOW) 2017; 82:861-873. [PMID: 28941454 DOI: 10.1134/s0006297917080016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.
Collapse
Affiliation(s)
- M V Novikova
- Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, 115478, Russia.
| | | | | |
Collapse
|
207
|
Barrow AD, Colonna M. Tailoring Natural Killer cell immunotherapy to the tumour microenvironment. Semin Immunol 2017; 31:30-36. [PMID: 28935344 DOI: 10.1016/j.smim.2017.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are cytotoxic and cytokine-secreting cells that can mediate potent anti-tumour activity. Accumulating evidence indicates that NK cell functions are severely compromised within the confines of the tumour microenvironment thus impairing the efficacy and development of NK cell-based therapies. Here we review the various cellular and molecular pathways that tumours have supplanted to evade NK cell surveillance. We highlight novel strategies designed to alleviate or circumvent the immunosuppressive conditions of the tumour microenvironment in order to emancipate NK cell function and stifle the inexorable growth and metastasis of malignant cells.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
208
|
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that recognize tumor cells or stressed cells through 'missing-self' signals, such as altered or absent expression of MHC class I molecules. The function of NK cells is regulated by the activation or inhibition of receptors present on their surface. The activation of NK cells results in cytotoxic activity on target cells through release of toxic granules and inflammatory cytokines. However, NK cells infiltrating tumors have been frequently shown to exhibit a skewed phenotype that includes decreased antitumor activity and enhanced protumor activities, such as angiogenesis and metastasis. In fact, many studies have reported that tumor microenvironments induce a protumor phenotype in NK cells. Here, we review the biological properties of NK cells in the context of tumorigenesis and tumor progression, with a specific focus on the interactions between NK cells and critical tumor microenvironments, such as epithelial-to-mesenchymal transition, matrix metalloproteinases, and tumor-associated chronic inflammation in tumor metastasis.
Collapse
|
209
|
Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, Chouaib S, Thiery J. Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget 2017; 8:19780-19794. [PMID: 28423623 PMCID: PMC5386721 DOI: 10.18632/oncotarget.15540] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a central role in the complex process of tumor-stroma interaction and promote tumor growth. Emerging evidences also suggest that these fibroblasts are involved in the alteration of the anti-tumor immune response by impacting several immune cell populations, especially through their secretion of pro-inflammatory and immunosuppressive factors in the tumor microenvironment. However, the underlying immuno-modulating mechanisms triggered by these fibroblasts are still only partially defined. In this study, we provide evidence that melanoma-associated fibroblasts decrease the susceptibility of melanoma tumor cells to NK-mediated lysis through the secretion of active matrix metalloproteinases. This secretion reduces the expression of the two NKG2D ligands, MICA/B, at the surface of tumor cells and consequently decreases the NKG2D-dependent cytotoxic activity of NK cells against melanoma tumor cells. Together, our data demonstrate that the modification of tumor cell susceptibility to killer cells is an important determinant of the anti-tumor immune response alteration triggered by CAFs.
Collapse
Affiliation(s)
- Linda Ziani
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Thouraya Ben Safta-Saadoun
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Johanne Gourbeix
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Andrea Cavalcanti
- Department of General Surgery, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Robert
- Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France.,INSERM, UMR 981, Villejuif, France.,Dermatology Service, Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Salem Chouaib
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Jerome Thiery
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
210
|
Mesenchymal Stem Cells in Myeloid Malignancies: A Focus on Immune Escaping and Therapeutic Implications. Stem Cells Int 2017; 2017:6720594. [PMID: 28947904 PMCID: PMC5602646 DOI: 10.1155/2017/6720594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023] Open
Abstract
The importance of the bone marrow microenvironment forming the so-called niche in physiologic hemopoiesis is largely known, and recent evidences support the presence of stromal alterations from the molecular to the cytoarchitectural level in hematologic malignancies. Various alterations in cell adhesion, metabolism, cytokine signaling, autophagy, and methylation patterns of tumor-derived mesenchymal stem cells have been demonstrated, contributing to the genesis of a leukemic permissive niche. This niche allows both the ineffective haematopoiesis typical of myelodysplastic syndromes and the differentiation arrest, proliferation advantage, and clone selection which is the hallmark of acute myeloid leukemia. Furthermore, the immune system, both adaptive and innate, encompassing mesenchymal-derived cells, has been shown to take part to the leukemic niche. Here, we critically review the state of art about mesenchymal stem cell role in myelodysplastic syndromes and acute myeloid leukemia, focusing on immune escaping mechanisms as a target for available and future anticancer therapies.
Collapse
|
211
|
申 九, 熊 共, 郑 启, 张 宏, 洪 再. 自然杀伤细胞抑制肝癌肺转移. Shijie Huaren Xiaohua Zazhi 2017; 25:2028-2038. [DOI: 10.11569/wcjd.v25.i22.2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
目的 研究自然杀伤(natural killer, NK)细胞对肝癌的抑制作用, 为临床应用提供实验依据.
方法 从人外周血分离培养及鉴定NK细胞. 在体外, 研究NK细胞抑制肝癌细胞的增殖、迁徙、转移. 在体内, 检测NK细胞在裸鼠肝脏存活情况. 利用人肝癌组织裸鼠肝脏原位移植模型来评估NK细胞在体内对肝癌生长、转移的抑制功能. 通过检测NK细胞活化受体、NKB1、穿孔素和颗粒酶的表达情况来评估白介素(interleukin, IL)-2对NK细胞免疫功能的刺激作用.
结果 采用密度梯度法可以获取较大量的外周血单个核细胞, 且能够从中分离到高活力的NK细胞. NK细胞经IL-2激活后活力增高, 成簇悬浮繁殖、扩增、生长. 在体外, NK细胞可抑制肝癌细胞的增殖、迁移和侵袭. 在体内, NK细胞在裸鼠肝脏可长期存活; NK细胞可明显抑制裸鼠肝癌肺转移. 然而, NK细胞对肝脏肿瘤生长抑制不明显. IL-2可诱导NK细胞免疫相关分子的表达并提高其肿瘤抑制功能.
结论 NK细胞的免疫学功能可被IL-2活化从而抑制肝癌的转移.
Collapse
|
212
|
Abstract
Natural killer cells are important effector lymphocytes of the innate immune system, playing critical roles in antitumor and anti-infection host defense. Tumor progression or chronic infections, however, usually leads to exhaustion of NK cells, thus limiting the antitumor/infection potential of NK cells. In many tumors or chronic infections, multiple mechanisms might contribute to the exhaustion of NK cells, such as dysregulated NK cell receptors signaling, as well as suppressive effects by regulatory cells or soluble factors within the microenvironment. Better understanding of the characteristics, as well as the underlying mechanisms of NK cell exhaustion, not only should increase our understanding of the basic biology of NK cells but also could reveal novel NK cell-based antitumor/infection targets. Here, we provide an overview of our current knowledge on NK cell exhaustion in tumors, and in chronic infections.
Collapse
Affiliation(s)
- Jiacheng Bi
- Shenzhen Laboratory of Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- School of Life Sciences and Medical Center, Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
213
|
Longo V, Gnoni A, Gardini AC, Pisconti S, Licchetta A, Scartozzi M, Memeo R, Palmieri VO, Aprile G, Santini D, Nardulli P, Silvestris N, Brunetti O. Immunotherapeutic approaches for hepatocellular carcinoma. Oncotarget 2017; 8:33897-33910. [PMID: 28420805 PMCID: PMC5464921 DOI: 10.18632/oncotarget.15406] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer with a high mortality rate due to the fact that the diagnosis usually occurs at anadvanced stage. Even in case of curative surgical treatment, recurrence is common. Sorafenib and regorafenib are the only therapeutic agents that have been demonstrated to be effective in advanced HCC, thus novel curative approaches are urgently needed. Recent studies focus on the role of immune system in HCC. In fact, the unique immune response in the liver favors tolerance, which can represent a real challenge for conventional immunotherapy in these patients. Spontaneous immune responses against tumor antigens have been detected, and new immune therapies are under investigation: dendritic cell vaccination, immune-modulator strategy, and immune checkpoint inhibition. In recent years different clinical trials examining the use of immunotherapy to treat HCC have been conducted with initial promising results. This review article will summarize the literature data concerning the potential immunotherapeutic approaches in HCC patients.
Collapse
Affiliation(s)
- Vito Longo
- Medical Oncology Unit, Hospital of Taranto, Taranto, Italy
| | - Antonio Gnoni
- Medical Oncology Unit, Hospital of Gallipoli, Gallipoli, Italy
| | - Andrea Casadei Gardini
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, FC, Italy
| | | | | | - Mario Scartozzi
- Department of Medical Oncology, University of Cagliari, Cagliari, Monserrato, CA, Italy
| | - Riccardo Memeo
- Department of Hepatobiliary Surgery, Ospedale Regionale “F.Miulli”, Strada Pr. Acquaviva - Santeramo, Bari, Italy
| | - Vincenzo Ostilio Palmieri
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, Bari, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo Hospital ULSS 6, Vicenza, Italy
| | - Daniele Santini
- Medical Oncology Unit, University Campus Biomedico, Rome, Italy
| | - Patrizia Nardulli
- Pharmacy Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco, Bari, Italy
| |
Collapse
|
214
|
Kuol N, Stojanovska L, Nurgali K, Apostolopoulos V. The mechanisms tumor cells utilize to evade the host's immune system. Maturitas 2017; 105:8-15. [PMID: 28477990 DOI: 10.1016/j.maturitas.2017.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
The immune system plays an essential role in the tumor progression; not only can it inhibit tumor growth but it can also promote tumor growth by establishing a favorable environment. Tumor cells utilize several strategies to evade the host's immune system, including expression of immunosuppressive molecules such as PD-L1, IDO and siglec-9. In addition, tumor cells not only regulate the recruitment and development of immunosuppressive forces to influence the tumor microenvironment but also shift the phenotype and function of normal immune cells from a possibly anti-tumor state to a pro-tumor state. As a result, tumor cells evade the host's immune system, leading to metastasis and/or recurrent disease.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia.
| |
Collapse
|
215
|
Asghar K, Farooq A, Zulfiqar B, Rashid MU. Indoleamine 2,3-dioxygenase: As a potential prognostic marker and immunotherapeutic target for hepatocellular carcinoma. World J Gastroenterol 2017; 23:2286-2293. [PMID: 28428708 PMCID: PMC5385395 DOI: 10.3748/wjg.v23.i13.2286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Tumor cells induce an immunosuppressive microenvironment which leads towards tumor immune escape. Understanding the intricacy of immunomodulation by tumor cells is essential for immunotherapy. Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme which mediates tumor immune escape in various cancers including hepatocellular carcinoma (HCC). IDO up-regulation in HCC may lead to recruitment of regulatory T-cells into tumor microenvironment and therefore inhibit local immune responses and promote metastasis. HCC associated fibroblasts stimulate natural killer cells dysfunction through prostaglandin E2 and subsequently IDO promotes favorable condition for tumor metastasis. IDO up-regulation induces immunosuppression and may enhance the risk of hepatitis C virus and hepatitis B virus induced HCC. Therefore, IDO inhibitors as adjuvant therapeutic agents may have clinical implications in HCC. This review proposes future prospects of IDO not only as a therapeutic target but also as a prognostic marker for HCC.
Collapse
|
216
|
Tosello-Trampont A, Surette FA, Ewald SE, Hahn YS. Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration. Front Immunol 2017; 8:301. [PMID: 28373874 PMCID: PMC5357635 DOI: 10.3389/fimmu.2017.00301] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
NK cells represent an important first line of defense against viral infection and cancer and are also involved in tissue homeostasis. Studies of NK cell activation in the last decade have revealed that they are able to respond to the inflammatory stimuli evoked by tissue damage and contribute to both progression and resolution of diseases. Exacerbation of the inflammatory response through interactions between immune effector cells facilitates the progression of non-alcoholic fatty liver disease (NAFLD) into steatosis, cirrhosis, and hepatocellular carcinoma (HCC). When hepatic damage is incurred, macrophage activation is crucial for initiating cross talk with neighboring cells present in the liver, including hepatocytes and NK cells, and the importance of this interaction in shaping the immune response in liver disease is increasingly recognized. Inflicted structural damage can be in part regenerated via the process of self-limiting fibrosis, though persistent hepatic damage will lead to chronic fibrosis and loss of tissue organization and function. The cytotoxic activity of NK cells plays an important role in inducing hepatic stellate cell apoptosis and thus curtailing the progression of fibrosis. Alternatively, in some diseases, such as HCC, NK cells may become dysregulated, promoting an immunosuppressive state where tumors are able to escape immune surveillance. This review describes the current understanding of the contributions of NK cells to tissue inflammation and metabolic liver diseases and the ongoing effort to develop therapeutics that target the immunoregulatory function of NK cells.
Collapse
Affiliation(s)
| | - Fionna A Surette
- Beirne B. Carter Center for Immunology Research , Charlottesville, VA , USA
| | - Sarah E Ewald
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, USA; Department of Microbiology, University of Virginia, Charlottesville, VA, USA
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, USA; Department of Microbiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
217
|
Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017. [PMID: 28216578 DOI: 10.3390/ijms18020405.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive-regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
|
218
|
Tahmasebi Birgani M, Carloni V. Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017; 18:ijms18020405. [PMID: 28216578 PMCID: PMC5343939 DOI: 10.3390/ijms18020405] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
Affiliation(s)
- Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 63461, Iran.
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| |
Collapse
|
219
|
Del Zotto G, Marcenaro E, Vacca P, Sivori S, Pende D, Della Chiesa M, Moretta F, Ingegnere T, Mingari MC, Moretta A, Moretta L. Markers and function of human NK cells in normal and pathological conditions. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 92:100-114. [PMID: 28054442 DOI: 10.1002/cyto.b.21508] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cells, the most important effectors of the innate lymphoid cells (ILCs), play a fundamental role in tumor immune-surveillance, defense against viruses and, in general, in innate immune responses. NK cell activation is mediated by several activating receptors and co-receptors able to recognize ligands on virus-infected or tumor cells. To prevent healthy cells from auto-aggression, NK cells are provided with strong inhibitory receptors (KIRs and NKG2A) which recognize HLA class I molecules on target cells and, sensing their level of expression, allow killing of targets underexpressing HLA-class I. In vivo, NK cell-mediated anti-tumor function may be suppressed by tumor or tumor-associated cells via inhibitory soluble factors/cytokines or the engagement of the so called immune-check point molecules (e.g., PD1-PDL1). The study of these immune check-points is now offering new important opportunities for the therapy of cancer. In haemopoietic stem cell transplantation, alloreactive NK cells (i.e., those that express KIRs, which do not recognize HLA class I molecules on patient cells), derived from HSC of haploidentical donors, are able to kill leukemia blasts and patient's DC, thus preventing both tumor relapses and graft-versus-host disease. A clear correlation exists between size of the alloreactive NK cell population and clinical outcome. Thus, in view of the recent major advances in cancer therapy based on immuno-mediated mechanisms, the phenotypic analysis of cells and molecules involved in these mechanisms plays an increasingly major role. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Paola Vacca
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Immunology IRCCS AOU San Martino-IST, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Daniela Pende
- U.O. Immunology IRCCS AOU San Martino-IST, Genova, Italy
| | | | - Francesca Moretta
- Department of Internal Medicine, University of Verona, Verona, Italy.,Ospedale Sacro Cuore Negrar, Verona, Italy
| | - Tiziano Ingegnere
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Immunology IRCCS AOU San Martino-IST, Genova, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
220
|
Puré E, Lo A. Can Targeting Stroma Pave the Way to Enhanced Antitumor Immunity and Immunotherapy of Solid Tumors? Cancer Immunol Res 2016; 4:269-78. [PMID: 27036971 DOI: 10.1158/2326-6066.cir-16-0011] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors are complex organ-like structures. The potential of normal neighboring cells to contribute to the initiation, progression, and metastasis of epithelial-derived carcinomas has long been appreciated. However, the role of host cells has proven complex. Through multiple local and systemic mechanisms, nontransformed host cells can promote transition from a tumor-resistant to tumor-permissive environment, drive neoplastic transformation of epithelial cells, promote tumor growth, progression, and metastasis, but also constrain tumorigenesis. This complexity reflects the spatially and temporally dynamic involvement of multiple cell types and processes, including the development and recruitment of inflammatory, immune, endothelial, and mesenchymal stromal cells, and the remodeling of extracellular matrix. Our mechanistic understanding, as well as our ability to translate advances in our understanding of these mechanisms for therapeutic benefit, is rapidly advancing. Further insights will depend on delineating pathways that mediate the communication networks between inflammatory and immune cells with tumor and mesenchymal stromal cells and extracellular matrix. Here, we discuss the diversity of mesenchymal stromal cell populations and how context can dictate either their promotion or constraint of tumorigenesis. We review evidence for plasticity that allows for reprogramming of stromal cells and how tumor immunogenicity and desmoplasia influence the balance of immune-independent and immune-dependent regulation of tumor growth. The pivotal roles of matrix and mesenchymal stromal cells in modulating inflammation, antitumor immunity, and the efficacy of immune-based therapies are discussed. These concepts have emerged from data obtained from tumors of multiple organs, but we focus mostly on studies of pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Ellen Puré
- University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Albert Lo
- University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
221
|
Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, Kurihara H, Xu J, Cai SH. Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 2016; 7:4122-41. [PMID: 26716641 PMCID: PMC4826194 DOI: 10.18632/oncotarget.6702] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) present in tumor microenvironment acts in a coordinated fashion to either suppress or promote tumor development. However, the molecular mechanisms underlying the effects of TGF-β1 on tumor microenvironment are not well understood. Our clinical data showed a positive association between TGF-β1 expression and cancer-associated fibroblasts (CAFs) in tumor microenvironment of breast cancer patients. Thus we employed starved NIH3T3 fibroblasts in vitro and 4T1 cells mixed with NIH3T3 fibroblasts xenograft model in vivo to simulate nutritional deprivation of tumor microenvironment to explore the effects of TGF-β1. We demonstrated that TGF-β1 protected NIH3T3 fibroblasts from Star-induced growth inhibition, mitochondrial damage and cell apoptosis. Interestingly, TGF-β1 induced the formation of CAFs phenotype in starvation (Star)-treated NIH3T3 fibroblasts and xenografted Balb/c mice, which promoted breast cancer tumor growth. In both models, autophagy agonist rapamycin increased TGF-β1-induced protective effects and formation of CAFs phenotypes, while autophagy inhibitor 3-methyladenine, Atg5 knockdown or TGF-β type I receptor kinase inhibitor LY-2157299 blocked TGF-β1 induced these effects. Taken together, our results indicated that TGF-β/Smad autophagy was involved in TGF-β1-induced protective effects and formation of CAFs phenotype in tumor microenvironment, which may be used as therapy targets in breast cancer.
Collapse
Affiliation(s)
- Fang-Lan Liu
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - En-Pan Mo
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Liu Yang
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Jun Du
- Pharmacy College, Sun Yat-Sen University, Guangzhou 510405, China
| | - Hong-Sheng Wang
- Pharmacy College, Sun Yat-Sen University, Guangzhou 510405, China
| | - Huan Zhang
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | | | - Jun Xu
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Shao-Hui Cai
- Pharmacy College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
222
|
Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene 2016; 36:1090-1101. [DOI: 10.1038/onc.2016.273] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
|
223
|
Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6841-6850. [PMID: 27570421 PMCID: PMC4974583 DOI: 10.3748/wjg.v22.i30.6841] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression.
Collapse
|
224
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
225
|
Mukaida N, Sasaki S. Fibroblasts, an inconspicuous but essential player in colon cancer development and progression. World J Gastroenterol 2016; 22:5301-5316. [PMID: 27340347 PMCID: PMC4910652 DOI: 10.3748/wjg.v22.i23.5301] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 05/21/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironments have a crucial role in cancer initiation and progression, and share many molecular and pathological features with wound healing process. Unless treated, tumors, however, do not heal in contrast to wounds that heal within a limited time framework. Wounds heal in coordination of a myriad of types of cells, particularly endothelial cells, leukocytes, and fibroblasts. Similar sets of cells also contribute to cancer initiation and progression, and as a consequence, anti-cancer treatment strategies have been proposed and tested by targeting endothelial cells and/or leukocytes. Compared with endothelial cells and leukocytes, less attention has been paid to the roles of cancer-associated fibroblasts (CAFs), fibroblasts present in tumor tissues, because their heterogeneity hinders the elucidation on them at cellular and molecular levels. Here, we will discuss the origin of CAFs and their crucial roles in cancer initiation and progression, and the possibility to develop a novel type of anti-cancer treatment by manipulating the migration and functions of CAFs.
Collapse
|
226
|
IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal 2016; 28:1314-1324. [PMID: 27297362 DOI: 10.1016/j.cellsig.2016.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/30/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells.
Collapse
|
227
|
Pietra G, Vitale C, Pende D, Bertaina A, Moretta F, Falco M, Vacca P, Montaldo E, Cantoni C, Mingari MC, Moretta A, Locatelli F, Moretta L. Human natural killer cells: news in the therapy of solid tumors and high-risk leukemias. Cancer Immunol Immunother 2016; 65:465-76. [PMID: 26289090 PMCID: PMC11028670 DOI: 10.1007/s00262-015-1744-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/18/2015] [Indexed: 12/28/2022]
Abstract
It is well established that natural killer (NK) cells play an important role in the immunity against cancer, while the involvement of other recently identified, NK-related innate lymphoid cells is still poorly defined. In the haploidentical hematopoietic stem cell transplantation for the therapy of high-risk leukemias, NK cells have been shown to exert a key role in killing leukemic blasts residual after conditioning. While the clinical results in the cure of leukemias are excellent, the exploitation of NK cells in the therapy of solid tumors is still limited and unsatisfactory. In solid tumors, NK cell function may be inhibited via different mechanisms, occurring primarily at the tumor site. The cellular interactions in the tumor microenvironment involve tumor cells, stromal cells and resident or recruited leukocytes and may favor tumor evasion from the host's defenses. In this context, a number of cytokines, growth factors and enzymes synthesized by tumor cells, stromal cells, suppressive/regulatory myeloid and lymphoid cells may substantially impair the function of different tumor-reactive effector cells, including NK cells. The identification and characterization of such mechanisms may offer clues for the development of new immunotherapeutic strategies to restore effective anti-tumor responses. In order to harness NK cell-based immunotherapies, several approaches have been proposed, including reinforcement of NK cell cytotoxicity by means of specific cytokines, antibodies or drugs. These new tools may improve NK cell function and/or increase tumor susceptibility to NK-mediated killing. Hence, the integration of NK-based immunotherapies with conventional anti-tumor therapies may increase chances of successful cancer treatment.
Collapse
Affiliation(s)
- Gabriella Pietra
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Chiara Vitale
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | | | | | - Francesca Moretta
- Department of Medicine, University of Verona, Verona, Italy
- Ospedale Sacro Cuore, Negrar, Verona, Italy
| | - Michela Falco
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
| | - Paola Vacca
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Elisa Montaldo
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Maria Cristina Mingari
- IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | | |
Collapse
|
228
|
Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW, Zhang Q. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis 2016. [PMID: 26900950 DOI: 10.1038/oncsis.2016.7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although carcinoma-associated fibroblasts (CAFs) in tumor microenvironments have a critical role in immune cell modulation, their effects on the generation of regulatory dendritic cells (DCs) are still unclear. In this study, we initially show that CAFs derived from hepatocellular carcinoma (HCC) tumors facilitate the generation of regulatory DCs, which are characterized by low expression of costimulatory molecules, high suppressive cytokines production and enhanced regulation of immune responses, including T-cell proliferation impairment and promotion of regulatory T-cell (Treg) expansion via indoleamine 2,3-dioxygenase (IDO) upregulation. Our findings also indicate that STAT3 activation in DCs, as mediated by CAF-derived interleukin (IL)-6, is essential to IDO production. Moreover, IDO inhibitor, STAT3 and IL-6 blocking antibodies can reverse this hepatic CAF-DC regulatory function. Therefore, our results provide new insights into the mechanisms by which CAFs induce tumor immune escape as well as a novel cancer immunotherapeutic approach (for example, targeting CAFs, IDO or IL-6).
Collapse
Affiliation(s)
- J-T Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-N Deng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - H-M Yi
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - G-Y Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - B-S Fu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W-J Chen
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-W Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
229
|
Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW, Zhang Q. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis 2016; 5:e198. [PMID: 26900950 PMCID: PMC5154347 DOI: 10.1038/oncsis.2016.7] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 01/13/2016] [Indexed: 12/13/2022] Open
Abstract
Although carcinoma-associated fibroblasts (CAFs) in tumor microenvironments have a critical role in immune cell modulation, their effects on the generation of regulatory dendritic cells (DCs) are still unclear. In this study, we initially show that CAFs derived from hepatocellular carcinoma (HCC) tumors facilitate the generation of regulatory DCs, which are characterized by low expression of costimulatory molecules, high suppressive cytokines production and enhanced regulation of immune responses, including T-cell proliferation impairment and promotion of regulatory T-cell (Treg) expansion via indoleamine 2,3-dioxygenase (IDO) upregulation. Our findings also indicate that STAT3 activation in DCs, as mediated by CAF-derived interleukin (IL)-6, is essential to IDO production. Moreover, IDO inhibitor, STAT3 and IL-6 blocking antibodies can reverse this hepatic CAF-DC regulatory function. Therefore, our results provide new insights into the mechanisms by which CAFs induce tumor immune escape as well as a novel cancer immunotherapeutic approach (for example, targeting CAFs, IDO or IL-6).
Collapse
Affiliation(s)
- J-t Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-n Deng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - H-m Yi
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - G-y Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - B-s Fu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W-j Chen
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-w Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
230
|
Li T, Zhang Q, Jiang Y, Yu J, Hu Y, Mou T, Chen G, Li G. Gastric cancer cells inhibit natural killer cell proliferation and induce apoptosis via prostaglandin E2. Oncoimmunology 2016; 5:e1069936. [PMID: 27057432 PMCID: PMC4801461 DOI: 10.1080/2162402x.2015.1069936] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
Defects in natural killer (NK) cell functions are necessary for tumor immune escape, but their underlying regulatory mechanisms in human cancers remain largely unknown. Here we showed, in detailed studies of NK cells from 235 untreated patients with gastric cancer (GC), the NK cell density in GC tissues could predict improved survival of patients. However, NK cells were significantly decreased in number with advanced-stage GC. A multivariate Cox analysis revealed that the intratumoral NK cell density was an independent prognostic factor for overall survival and disease-free survival in the GC patients. Most of the intratumoral NK cells exhibited a normal phenotype and secreted normal levels of cytokines, but the expression of Ki67 was decreased compared with NK cells from nontumoral regions. Moreover, the levels of intratumoral NK cells were negatively correlated with the intratumoral expression of cyclooxygenase-2. Furthermore, we found that PGE2 derived from GC cells suppressed NK cell proliferation and increased apoptosis in vitro. These data reveal that tumor-derived PGE2 is critical for inducing NK cell dysfunction in GC and demonstrate that an extensive infiltration of NK cells predicts a good prognosis in patients with GC. Our findings suggest that immunosuppressive barriers erected by tumors greatly hamper the antitumor activity of human NK cells, thereby favoring tumor outgrowth and progression.
Collapse
Affiliation(s)
- Tuanjie Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Department of Hepatic Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
231
|
Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM. Natural killer cells inhibit pulmonary metastasis of hepatocellular carcinoma in nude mice. Oncol Lett 2016; 11:2019-2026. [PMID: 26998115 PMCID: PMC4774462 DOI: 10.3892/ol.2016.4170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells have been demonstrated to inhibit tumor growth. However, the role of NK cells in the inhibition of hepatocellular carcinoma metastasis is not well understood. The present study aimed to investigate the roles that NK cells may serve in inhibiting hepatocellular carcinoma metastasis. The role of isolated NK cells in the inhibition, proliferation, migration and invasion of the hepatoma cell line, MHCC97-H, was examined in vitro. Additionally, the survival rate of NK cells labeled with carboxyfluorescein diacetate-succinimidyl ester was assessed in vivo. An orthotopic implantation model was used to evaluate the role of NK cells in suppressing MHCC97-H cells in vivo. The effect of interleukin (IL)-2 stimulation on the tumor-inhibitory role of the NK cells was measured indirectly by analyzing the expression of various NK cell receptors and activated NK cell markers. It was observed that the NK cells inhibited the proliferation, migration and invasion of the MHCC97-H cells in vitro. Furthermore, the NK cells demonstrated long-term survival in the livers of the nude mice, and inhibited lung metastasis of hepatocellular carcinoma in vivo. However, liver tumor growth was not inhibited by the NK cells. IL-2 was identified to enhance the tumor-inhibitory effect of NK cells. The present study concludes that IL-2 may enhance the antitumor activity of the NK cells, and thereby inhibit the metastases of hepatocellular carcinoma in mice.
Collapse
Affiliation(s)
- Zai-Fa Hong
- Department of Hepatobiliary Surgery and Liver Disease Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian 361000, P.R. China; Post Graduate College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Wen-Xiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Ya-Ping Xu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Qin Chi
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Min Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
232
|
Shibata Y, Hara T, Nagano J, Nakamura N, Ohno T, Ninomiya S, Ito H, Tanaka T, Saito K, Seishima M, Shimizu M, Moriwaki H, Tsurumi H. The Role of Indoleamine 2,3-Dioxygenase in Diethylnitrosamine-Induced Liver Carcinogenesis. PLoS One 2016; 11:e0146279. [PMID: 26727596 PMCID: PMC4699706 DOI: 10.1371/journal.pone.0146279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing intracellular enzyme of the L-kynurenine pathway, causes preneoplastic cells and tumor cells to escape the immune system by inducing immune tolerance; this mechanism might be associated with the development and progression of human malignancies. In the present study, we investigated the role of IDO in diethylnitrosamine (DEN)-induced hepatocarcinogenesis by using IDO-knockout (KO) mice. To induce hepatocellular carcinoma (HCC), hepatic adenoma, and preneoplastic hepatocellular lesions termed foci of cellular alteration (FCA), male IDO-wild-type (WT) and IDO-KO mice with a C57BL/6J background received a single intraperitoneal injection of DEN at 2 weeks of age. The mice were sacrificed to evaluate the development of FCA and hepatocellular neoplasms. HCC overexpressed IDO and L-kynurenine compared to surrounding normal tissue in the DEN-treated IDO-WT mice. The number and cell proliferative activity of FCAs, and the incidence and multiplicity of HCC were significantly greater in the IDO-WT than in the IDO-KO mice. The expression levels of the IDO protein, of L-kynurenine, and of IFN-γ, COX-2, TNF-α, and Foxp3 mRNA were also significantly increased in the DEN-induced hepatic tumors that developed in the IDO-WT mice. The mRNA expression levels of CD8, perforin and granzyme B were markedly increased in hepatic tumors developed in IDO-KO mice. Moreover, Foxp3-positive inflammatory cells had infiltrated into the livers of DEN-treated IDO-WT mice, whereas fewer cells had infiltrated into the livers of IDO-KO mice. Induction of IDO and elevation of L-kynurenine might play a critical role in both the early and late phase of liver carcinogenesis. Our findings suggest that inhibition of IDO might offer a promising strategy for the prevention of liver cancer.
Collapse
MESH Headings
- Adenoma/chemically induced
- Adenoma/enzymology
- Adenoma/immunology
- Animals
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Diethylnitrosamine
- Disease Progression
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Gene Expression Regulation, Neoplastic
- Granzymes/biosynthesis
- Granzymes/genetics
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Kynurenine/biosynthesis
- Kynurenine/physiology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/enzymology
- Liver Neoplasms, Experimental/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Pore Forming Cytotoxic Proteins/biosynthesis
- Pore Forming Cytotoxic Proteins/genetics
- Precancerous Conditions/chemically induced
- Precancerous Conditions/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Yuhei Shibata
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takeshi Hara
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junji Nagano
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nobuhiko Nakamura
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiko Ohno
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Soranobu Ninomiya
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Ito
- Departments of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuji Tanaka
- Departments of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kuniaki Saito
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Seishima
- Departments of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahito Shimizu
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hisataka Moriwaki
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hisashi Tsurumi
- First Departments of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| |
Collapse
|
233
|
Disruption of Anti-tumor T Cell Responses by Cancer-Associated Fibroblasts. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-42223-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
234
|
Abstract
Advanced hepatocellular carcinoma (HCC) is a serious therapeutic challenge and targeted therapies only provide a modest benefit in terms of overall survival. Novel approaches are urgently needed for the treatment of this prevalent malignancy. Evidence demonstrating the antigenicity of tumour cells, the discovery that immune checkpoint molecules have an essential role in immune evasion of tumour cells, and the impressive clinical results achieved by blocking these inhibitory receptors, are revolutionizing cancer immunotherapy. Here, we review the data on HCC immunogenicity, the mechanisms for HCC immune subversion and the different immunotherapies that have been tested to treat HCC. Taking into account the multiplicity of hyperadditive immunosuppressive forces acting within the HCC microenvironment, a combinatorial approach is advised. Strategies include combinations of systemic immunomodulation and gene therapy, cell therapy or virotherapy.
Collapse
|
235
|
Hu H, Qiu Y, Guo M, Huang Y, Fang L, Peng Z, Ji W, Xu Y, Shen S, Yan Y, Huang X, Zheng J, Su C. Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget 2015; 6:1079-89. [PMID: 25473902 PMCID: PMC4359218 DOI: 10.18632/oncotarget.2835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022] Open
Abstract
The patient-derived tumor xenograft (PDTX) models can reproduce a similar natural genetic background and similar biological behaviors to tumor cells in patients, which is conducive to the assessment of personalized cancer treatment. In this study, to verify the targeting and effectiveness of the therapeutic strategy using a Survivin promoter-regulated oncolytic adenovirus expressing Hsp70, the PDTX models of hepatocellular carcinoma (HCC) were established in nude mice and the cytokine-induced killer (CIK) cells were intravenously infused into mice to partially reconstruct the mouse immune function. The results demonstrated that, either the immune anti-tumor effect caused by CIK cell infusion or the oncolytic effect generated by oncolytic adenovirus replication was very limited. However, the synergistic tumor inhibitory effect was significantly enhanced after treatments with oncolytic adenovirus expressing Hsp70 combined with CIK cells. Oncolytic adenovirus mediated the specific expression of Hsp70 in cancer tissues allowed the CIK chemotaxis, and induce the infiltration of CD3+ T cells in tumor stroma, thereby exhibiting anti-tumor activity. The anti-tumor effect was more effective for the highly malignant tumor xenografts with highly Survivin expression. This strategy can synergistically activate multiple anti-tumor mechanisms and exert effective anti-tumor activities that have a significant inhibitory effect against the growth of HCC xenografts.
Collapse
Affiliation(s)
- Huanzhang Hu
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Military Area, Fuzhou, China.,Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yinghe Qiu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Minggao Guo
- Department of Surgery, Shanghai Sixth People Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yao Huang
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Zhangxiao Peng
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Weidan Ji
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yang Xu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Shuwen Shen
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuandong Huang
- Department of Oncological Surgery, Second People's Hospital of Huai'an, Jiangsu Province, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Changqing Su
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China.Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
236
|
Zhu B, Lin N, Zhang M, Zhu Y, Cheng H, Chen S, Ling Y, Pan W, Xu R. Activated hepatic stellate cells promote angiogenesis via interleukin-8 in hepatocellular carcinoma. J Transl Med 2015; 13:365. [PMID: 26593962 PMCID: PMC4655083 DOI: 10.1186/s12967-015-0730-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chemokines have been recognized as important modulators of angiogenesis, and they play critical roles in the development and metastasis of hepatocellular carcinoma (HCC), although their origins and latent molecular mechanisms remain elusive. The aim of this study was to investigate how activated hepatic stellate cells (a-HSCs) promote angiogenesis in HCC. METHODS A total of 22 HCC patients were enrolled randomly. We used immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) to analyse the production of interleukin-8 (IL-8) in a-HSCs derived from HCC tissues. The angiogenic effects of IL-8 in vitro and in vivo were assessed by ELISA, real-time quantitative polymerase chain reaction, capillary tube formation assay, and chick embryo chorioallantoic membrane assay. RESULTS The present study showed that IL-8 was enriched predominantly in the tumour stroma of HCC tissues and was mainly derived from a-HSCs, rather than from hepatoma cells, in vivo and in vitro. Angiogenesis was most active at the invading edge, which was close to the a-HSCs. The angiogenic effect was dramatically attenuated by an IL-8 neutralizing antibody both in vitro and in vivo. Moreover, the IL-8 neutralizing antibody down-regulated Ser727-phosphorylated STAT3 levels in hepatoma cells treated with a-HSCs conditioned medium. CONCLUSIONS These findings reveal that a-HSCs within the stroma of HCC contribute to tumour angiogenesis via IL-8.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Hepatobiliary Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Min Zhang
- Department of Infectious Diseases, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| | - Yong Zhu
- Department of Gastrointestinal Surgery, The 4th Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huanhuan Cheng
- Department of Ophthalmology, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Yunbiao Ling
- Department of Hepatobiliary Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Weidong Pan
- Department of Hepatobiliary Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
237
|
Sun C, Sun HY, Xiao WH, Zhang C, Tian ZG. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin 2015; 36:1191-9. [PMID: 26073325 PMCID: PMC4648180 DOI: 10.1038/aps.2015.41] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023]
Abstract
The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment.
Collapse
|
238
|
Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris JH, Noman MZ, Chouaib S. Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Front Immunol 2015; 6:482. [PMID: 26441986 PMCID: PMC4585210 DOI: 10.3389/fimmu.2015.00482] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells, a key component of the innate immunity, are recognized as potent anticancer mediators. Extensive studies have been detailed on how NK cells get activated and recognize cancer cells. In contrast, few studies have been focused on how tumor microenvironment-mediated immunosubversion and immunoselection of tumor-resistant variants may impair NK cell function. Accumulating evidences indicate that several cell subsets (macrophages, myeloid-derived suppressive cells, T regulatory cells, dendritic cells, cancer-associated fibroblasts, and tumor cells), their secreted factors, as well as metabolic components (i.e., hypoxia) have immunosuppressive roles in the tumor microenvironment and are able to condition NK cells to become anergic. In this review, we will describe how NK cells react with different stromal cells in the tumor microenvironment. This will be followed by a discussion on the role of hypoxic stress in the regulation of NK cell functions. The aim of this review is to provide a better understanding of how the tumor microenvironment impairs NK cell functions, thereby limiting the use of NK cell-based therapy, and we will attempt to suggest more efficient tools to establish a more favorable tumor microenvironment to boost NK cell cytotoxicity and control tumor progression.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Linda Ziani
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jerome Thiery
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jean-Henri Bouhris
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France ; Department of Hematology and Bone Marrow Transplantation, Gustave Roussy Campus , Villejuif , France
| | - Muhammad Zaeem Noman
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| |
Collapse
|
239
|
Cantoni C, Grauwet K, Pietra G, Parodi M, Mingari MC, Maria AD, Favoreel H, Vitale M. Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy 2015; 7:861-82. [PMID: 26314197 DOI: 10.2217/imt.15.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although natural killer (NK) cells are endowed with powerful cytolytic activity against cancer cells, their role in different therapies against solid tumors has not yet been fully elucidated. Their interactions with various elements of the tumor microenvironment as well as their possible effects in contributing to and/or limiting oncolytic virotherapy render this potential immunotherapeutic tool still difficult to exploit at the bedside. Here, we will review the current literature with the aim of providing new hints to manage this powerful cell type in future innovative therapies, such as the use of NK cells in combination with new cytokines, specific mAbs (inducing ADCC), Tyr-Kinase inhibitors, immunomodulatory drugs and/or the design of oncolytic viruses aimed at optimizing the effect of NK cells in virotherapy.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Istituto Giannina Gaslini, Genova, Italy
| | - Korneel Grauwet
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Monica Parodi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Andrea De Maria
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Herman Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
240
|
Lu Y, Liu J, Liu Y, Qin Y, Luo Q, Wang Q, Duan H. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. Biochem Biophys Res Commun 2015; 464:541-7. [DOI: 10.1016/j.bbrc.2015.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 12/30/2022]
|
241
|
Shu G, Zhao W, Yue L, Su H, Xiang M. Antitumor immunostimulatory activity of polysaccharides from Salvia chinensis Benth. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:237-247. [PMID: 25858511 DOI: 10.1016/j.jep.2015.03.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia chinensis Benth (S. chinensis) is a traditional herb applied in the treatment of hepatocellular carcinoma (HCC). Polysaccharides abundantly exist in this plant. However, it remains poorly understood if polysaccharides from S. chinensis (PSSC) contribute to its anti-HCC activity. MATERIALS AND METHODS The in vivo anti-HCC activity of PSSC was evaluated in Kunming mice bearing H22 ascitic hepatoma cells. An array of physiological indexes was measured to evaluate toxicological effects on host animals. Subgroups of immune cells were purified by a magnetic-activated cell sorting system and analyzed by flow cytometry. Reverse transcription real-time PCR and immunoblotting were recruited to determine the effects of PSSC on the cellular signaling of different subgroup of immune cells. RESULTS PSSC suppressed in vivo proliferation of H22 cells with undetectable toxic effects on tumor-bearing mice. PSSC alleviated tumor transplantation-induced CD4+ T cell apoptosis and dysregulation of serum cytokine profiles, which elevated cytotoxic activities of natural killer and CD8+ T cells. PSSC reduced serum levels of prostaglandin E2 (PGE2). Injection of exogenous PGE2 completely abrogated the antitumor immunostimulatory activity of PSSC. Cyclic adenosine monophosphate (cAMP) is the second messager of PGE2. In CD4+ T cells, PSSC substantially declined intracellular cAMP. This event elevated protein levels of JAK3, enhancing STAT5 phosphorylation and STAT5-dependent expression of anti-apoptotic genes. Cyclooxygenase-2 is the key enzyme mediating biosynthesis of PGE2. PSSC suppressed the transcription and translation of cyclooxygenase-2 in tumor associated macrophages. CONCLUSION Our data clearly showed antitumor immunostimulatory activity of PSSC against transplanted H22 HCC cells. Suppressing tumor transplantation-induced PGE2 production was implicated in the anti-tumor immunostimulatory activity of PSSC. These works provides novel insights into the traditional application of S. chinensis against HCC and supported considering PSSC as an adjuvant reagent in clinical HCC treatment.
Collapse
Affiliation(s)
- Guangwen Shu
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Wenhao Zhao
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Ling Yue
- Endocrinology department, Wuhan General Hospital of Guangzhou Military Command, Wuhan, PR China
| | - Hanwen Su
- Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Meixian Xiang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|
242
|
Gorchs L, Hellevik T, Bruun JA, Camilio KA, Al-Saad S, Stuge TB, Martinez-Zubiaurre I. Cancer-associated fibroblasts from lung tumors maintain their immunosuppressive abilities after high-dose irradiation. Front Oncol 2015; 5:87. [PMID: 26029659 PMCID: PMC4429237 DOI: 10.3389/fonc.2015.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 01/02/2023] Open
Abstract
Accumulating evidence supports the notion that high-dose (>5 Gy) radiotherapy (RT) regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy) regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study, we have investigated the effects of high-dose radiotherapy (HD-RT) on the immunomodulating functions of cancer-associated fibroblasts (CAFs). Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays, and T-cell cytokine production. Additionally, CAF-secreted immunoregulatory factors were studied by multiplex protein arrays, ELISAs, and by LC-MS/MS proteomics. In all functional assays, we observed a powerful immunosuppressive effect exerted by CAF-conditioned medium on activated T-cells (p > 0.001), and this effect was sustained after a single radiation dose of 18 Gy. Relevant immunosuppressive molecules such as prostaglandin E2, interleukin-6, and -10, or transforming growth factor-β were found in CAF-conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immunosuppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Clinical Medicine, University of Tromsø , Tromsø , Norway
| | - Turid Hellevik
- Department of Oncology and Radiotherapy, University Hospital of Northen Norway , Tromsø , Norway
| | - Jack-Ansgar Bruun
- Department of Medical Biology, University of Tromsø , Tromsø , Norway
| | | | - Samer Al-Saad
- Department of Medical Biology, University of Tromsø , Tromsø , Norway ; Department of Pathology, University Hospital of Northern Norway , Tromsø , Norway
| | - Tor-Brynjar Stuge
- Department of Medical Biology, University of Tromsø , Tromsø , Norway
| | | |
Collapse
|
243
|
Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World J Hepatol 2015; 7:980-992. [PMID: 25954480 PMCID: PMC4419101 DOI: 10.4254/wjh.v7.i7.980] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide with a poor prognosis. Few strategies have been proven efficient in HCC treatment, particularly for those patients not indicated for curative resection or transplantation. Immunotherapy has been developed for decades for cancer control and is attaining more attention as a result of encouraging outcomes of new strategies such as chimeric antigen receptor T cells and immune checkpoint blockade. Right at the front of the new era of immunotherapy, we review the immunotherapy in HCC treatment, from basic research to clinical trials, covering anything from immunomodulators, tumor vaccines and adoptive immunotherapy. The mechanisms, efficacy and safety as well as the approach particulars are unveiled to assist readers to gain a concise but extensive understanding of immunotherapy of HCC.
Collapse
|
244
|
Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 2015; 12:292-302. [PMID: 25308752 PMCID: PMC4654321 DOI: 10.1038/cmi.2014.91] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer mortality and a common poor-prognosis malignancy due to postoperative recurrence and metastasis. There is a significant correlation between chronic hepatitis B virus (HBV) infection and hepatocarcinogenesis. As the first line of host defense against viral infections and tumors, natural killer (NK) cells express a large number of immune recognition receptors (NK receptors (NKRs)) to recognize ligands on hepatocytes, liver sinusoidal endothelial cells, stellate cells and Kupffer cells, which maintain the balance between immune response and immune tolerance of NK cells. Unfortunately, the percentage and absolute number of liver NK cells decrease significantly during the development and progression of HCC. The abnormal expression of NK cell receptors and dysfunction of liver NK cells contribute to the progression of chronic HBV infection and HCC and are significantly associated with poor prognosis for liver cancer. In this review, we focus on the role of NK cell receptors in anti-tumor immune responses in HCC, particularly HBV-related HCC. We discuss specifically how tumor cells evade attack from NK cells and how emerging understanding of NKRs may aid the development of novel treatments for HCC. Novel mono- and combination therapeutic strategies that target the NK cell receptor-ligand system may potentially lead to successful and effective immunotherapy in HCC.Cellular & Molecular Immunology advance online publication, 6 October 2014; doi:10.1038/cmi.2014.91.
Collapse
Affiliation(s)
- Cheng Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
245
|
Gras Navarro A, Björklund AT, Chekenya M. Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol 2015; 6:202. [PMID: 25972872 PMCID: PMC4413815 DOI: 10.3389/fimmu.2015.00202] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.
Collapse
Affiliation(s)
| | - Andreas T Björklund
- Karolinska University Hospital, Hematology Center and Karolinska Institute , Stockholm , Sweden
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen , Bergen , Norway
| |
Collapse
|
246
|
Mancini RJ, Stutts L, Moore T, Esser-Kahn AP. Controlling the origins of inflammation with a photoactive lipopeptide immunopotentiator. Angew Chem Int Ed Engl 2015; 54:5962-5. [PMID: 25800006 DOI: 10.1002/anie.201500416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 11/06/2022]
Abstract
Inflammatory immune responses are mediated by signaling molecules that are both produced by and recognized across highly heterogeneous cell populations. As such, the study of inflammation using traditional immunostimulants is complicated by paracrine and autocrine signaling, which obscures the origin of a propagating response. To address this challenge, we developed a small-molecule probe that can photosensitize immune cells, thus allowing light-mediated inflammation. This probe was used to control the origin of inflammation using light. Following this motif, inflammation was initiated from fibroblasts or dendritic cells. The contributions of fibroblasts and dendritic cells in initiating inflammation in heterogeneous co-culture are reported, thus providing insights into the future development of vaccines and treatment of inflammation.
Collapse
Affiliation(s)
- Rock J Mancini
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, CA 92697 (USA)
| | | | | | | |
Collapse
|
247
|
Mancini RJ, Stutts L, Moore T, Esser-Kahn AP. Controlling the Origins of Inflammation with a Photoactive Lipopeptide Immunopotentiator. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
248
|
Buonaguro L, Tagliamonte M, Petrizzo A, Damiano E, Tornesello ML, Buonaguro FM. Cellular prognostic markers in hepatocellular carcinoma. Future Oncol 2015; 11:1591-1598. [PMID: 26043213 DOI: 10.2217/fon.15.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the five big killers worldwide and is frequently associated with chronic hepatitis B and C virus (HBV and HCV) infections. Tumor microenvironment consists of a complex network of cells and factors that plays a key role in the tumor progression and prognosis. This is true also for HCC. Several studies have shown strikingly strong correlation between HCC clinical prognosis and intratumoral infiltration of cells affecting tumor growth, invasion, angiogenesis and metastasis. None of such cells is yet validated for routine diagnostic and prognostic assessment. The present review aims at providing a state-of-the-art of such studies.
Collapse
|
249
|
Huang L, Xu AM, Liu S, Liu W, Li TJ. Cancer-associated fibroblasts in digestive tumors. World J Gastroenterol 2014; 20:17804-17818. [PMID: 25548479 PMCID: PMC4273131 DOI: 10.3748/wjg.v20.i47.17804] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/22/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
The significant influence of tumor stroma on malignant cells has been extensively investigated in this era of targeted therapy. The tumor microenvironment, as a dynamic system, is orchestrated by various cells including tumor vascular composing cells, inflammatory cells and fibroblasts. As a major and important component in tumor stroma, increasing evidence has shown that spindle-shaped cancer-associated fibroblasts (CAFs) are a significant modifier of cancer evolution, and promote tumorigenesis, tumor invasion and metastasis by stimulating angiogenesis, malignant cell survival, epithelial-mesenchymal transition (EMT) and proliferation via direct cell-to-cell contact or secretion of soluble factors in most digestive solid tumors. CAFs are thought to be activated, characterized by the expression of α-smooth muscle actin, fibroblast activated protein, fibroblast specific protein, vimentin, fibronectin, etc. They are hypothesized to originate from normal or aged fibroblasts, bone marrow-derived mesenchymal cells, or vascular endothelial cells. EMT may also be an important process generating CAFs, and most probably, CAFs may originate from multiple cells. A close link exists between EMT, tumor stem cells, and chemo-resistance of tumor cells, which is largely orchestrated by CAFs. CAFs significantly induce immunosuppression, and may be a prognostic marker in various malignancies. Targeted therapy toward CAFs has displayed promising anticancer efficacy, which further reinforces the necessity to explore the relationship between CAFs and their hosts.
Collapse
|
250
|
Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q, Li Z, Su C. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60. [PMID: 24473833 PMCID: PMC3960197 DOI: 10.18632/oncotarget.1430] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Internal Medicine, No. 117 Hospital of Chinese PLA, Hangzhou 310004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|