201
|
Gao Y, Pan Y, Chi Y, He Y, Chen H, Nemykin VN. A "reactive" turn-on fluorescence probe for hypochlorous acid and its bioimaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:190-196. [PMID: 30103085 DOI: 10.1016/j.saa.2018.07.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 05/12/2023]
Abstract
An aza-BODIPY-CNOH probe attached aldoxime group demonstrated the specific detection for hypochlorous acid by the turn-on red emission signal. NMR and HRMS experiments confirmed that the fluorescence originated from the oxidation degradation of the non-fluorescence, aldoxime-based aza-BODIPY-CNOH probe into the red-fluorescence, nitrile oxide-based aza-BODIPY compound aza-BODIPY-CNO. The aza-BODIPY-CNOH probe showed good biocompatibility and was low toxic to living cells as shown from MTT experiments. Living RAW264.7 cells imaging indicated the aza-BODIPY-CNOH probe had good permeability and either exogenous or endogenous HClO caused the intracellular bright-red fluorescence, showing its potential hypochlorous acid-specific sensing ability in biological systems.
Collapse
Affiliation(s)
- Yunling Gao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China; Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Yong Pan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yu Chi
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanyuan He
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
202
|
Rao RS, Yadagiri B, Sharma GD, Singh SP. Butterfly architecture of NIR Aza-BODIPY small molecules decorated with phenothiazine or phenoxazine. Chem Commun (Camb) 2019; 55:12535-12538. [DOI: 10.1039/c9cc06300e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first report on the highest efficiency NIR absorbing Aza-Bodipy small molecules.
Collapse
Affiliation(s)
- Ravulakollu Srinivasa Rao
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - B. Yadagiri
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | - Surya Prakash Singh
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
203
|
Kumari A, Gupta S. Two-photon excitation and direct emission from S 2 state of U.S. Food and Drug Administration approved near-infrared dye: Application of anti-Kasha's rule for two-photon fluorescence imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800086. [PMID: 30155994 DOI: 10.1002/jbio.201800086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In recent years, two-photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near-infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two-photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two-photon excitation property of ICG to the second excited singlet (S2 ) state in aqueous solution. Furthermore, in this work, we demonstrate the two-photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two-photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well-known "tissue-optical window." This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two-photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging.
Collapse
Affiliation(s)
- Anshu Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
- Metallurgical Engineering and Material Science, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
204
|
Qian M, Zhang L, Wang J. A NIR fluorescent sensor for biothiols based on a dicyanoisophorone derivative with a large Stokes shift and high quantum yield. NEW J CHEM 2019. [DOI: 10.1039/c9nj01643k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Probe N-Bio exhibited rapid response, high sensitivity and strong NIR fluorescence in the detection of biothiols in living cells.
Collapse
Affiliation(s)
- Ming Qian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian
- P. R. China
- School of Bioengineering, Dalian University of Technology
- Dalian
| | - Liuwei Zhang
- School of Bioengineering, Dalian University of Technology
- Dalian
- P. R. China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
- Dalian
- P. R. China
- School of Bioengineering, Dalian University of Technology
- Dalian
| |
Collapse
|
205
|
Giacomazzo GE, Palladino P, Gellini C, Salerno G, Baldoneschi V, Feis A, Scarano S, Minunni M, Richichi B. A straightforward synthesis of phenyl boronic acid (PBA) containing BODIPY dyes: new functional and modular fluorescent tools for the tethering of the glycan domain of antibodies. RSC Adv 2019; 9:30773-30777. [PMID: 35529362 PMCID: PMC9072199 DOI: 10.1039/c9ra07608e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
We report here on the efficient and straightforward synthesis of a series of modular and functional PBA-BODIPY dyes 1–4. They are an outstanding example of the efficient merge of the versatility of the 3,5-dichloro-BODIPY derivatives and the receptor-like ability of the PBA moiety. The potential bioanalytical applicability of these tools was assessed by measuring the binding to glycan chains of antibodies by a Quartz Crystal Microbalance (QCM). PBA-BODIPY dyes as functional and modular fluorescent probes for the tethering of the glycan domain of mAbs.![]()
Collapse
Affiliation(s)
| | | | - Cristina Gellini
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Gianluca Salerno
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | | | - Alessandro Feis
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Simona Scarano
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Maria Minunni
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| |
Collapse
|
206
|
Zhang Q, Li S, Fu C, Xiao Y, Zhang P, Ding C. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity. J Mater Chem B 2019; 7:443-450. [DOI: 10.1039/c8tb02799d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A NIR ratiometric fluorescent probe based on cyanine dye was developed for detecting and intracellular imaging of ALP activity with high sensitivity.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Shasha Li
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Caixia Fu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Yuzhe Xiao
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Peng Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| |
Collapse
|
207
|
Xing Y, Li D, Dong B, Wang X, Wu C, Ding L, Zhou S, Fan J, Song B. Water-soluble and highly emissive near-infrared nano-probes by co-assembly of ionic amphiphiles: towards application in cell imaging. NEW J CHEM 2019. [DOI: 10.1039/c9nj01184f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly emissive near-infrared nano-emitters formed by co-assembly of ionic amphiphiles were applicable in cell imaging.
Collapse
Affiliation(s)
- Yuzhi Xing
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Dahua Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xiaocheng Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Chengfeng Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lan Ding
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Shixin Zhou
- Department of Cell Biology
- School of Basic Medical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Jian Fan
- Jiangsu Key Laboratory For Carbon-Based Functional Materials & Devices Science
- Soochow University
- Suzhou 215123
- China
| | - Bo Song
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
208
|
Li LP. Cisplatin-Loaded Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ChemistrySelect 2018. [DOI: 10.1002/slct.201802542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Ping Li
- Department of Clinical Laboratory; The Third Affiliated Hospital of Nanchang University, Jiangxi; Nanchang 330008 P. R. China
| |
Collapse
|
209
|
Gayton J, Autry SA, Meador W, Parkin SR, Hill GA, Hammer NI, Delcamp JH. Indolizine-Cyanine Dyes: Near Infrared Emissive Cyanine Dyes with Increased Stokes Shifts. J Org Chem 2018; 84:687-697. [DOI: 10.1021/acs.joc.8b02521] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacqueline Gayton
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Shane A. Autry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - William Meador
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Sean R. Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Glake Alton Hill
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
210
|
Hameed S, Chen H, Irfan M, Bajwa SZ, Khan WS, Baig SM, Dai Z. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjug Chem 2018; 30:13-28. [DOI: 10.1021/acs.bioconjchem.8b00812] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hong Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muhammad Irfan
- Department of Medicines, Gujranwala Medical College, Gujranwala 52250, Pakistan
| | - Sadia Zafar Bajwa
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Waheed S Khan
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Shahid Mahmood Baig
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
211
|
Deng F, Zhou H, Chen J, Huang H, Tian J, Wen Y, Huang Q, Liu M, Zhang X, Wei Y. Surface PEGylation and biological imaging of fluorescent Tb3+-doped layered double hydroxides through the photoinduced RAFT polymerization. J Colloid Interface Sci 2018; 532:641-649. [DOI: 10.1016/j.jcis.2018.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023]
|
212
|
Gayton JN, Autry S, Fortenberry RC, Hammer NI, Delcamp JH. Counter Anion Effect on the Photophysical Properties of Emissive Indolizine-Cyanine Dyes in Solution and Solid State. Molecules 2018; 23:E3051. [PMID: 30469460 PMCID: PMC6321477 DOI: 10.3390/molecules23123051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Near-infrared emissive materials with tunable Stokes shifts and solid-state emissions are needed for several active research areas and applications. To aid in addressing this need, a series of indolizine-cyanine compounds varying only the anions based on size, dipole, and hydrophilicity were prepared. The effect of the non-covalently bound anions on the absorption and emission properties of identical π-system indolizine-cyanine compounds were measured in solution and as thin films. Interestingly, the anion choice has a significant influence on the Stokes shift and molar absorptivities of the dyes in solution. In the solid-state, the anion choice was found to have an effect on the formation of aggregate states with higher energy absorptions than the parent monomer compound. The dyes were found to be emissive in the NIR region, with emissions peaking at near 900 nm for specific solvent and anion selections.
Collapse
Affiliation(s)
- Jacqueline N Gayton
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Shane Autry
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Ryan C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
213
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J Phys Chem Lett 2018; 9:6469-6474. [PMID: 30376338 PMCID: PMC6240888 DOI: 10.1021/acs.jpclett.8b02780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report that the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR ( Lenz , M. O. ; Biophys J. 2006 , 91 , 255 - 262 ) and 3-8 times higher than the QuasAr and PROPS voltage sensors ( Kralj , J. ; Science 2011 , 333 , 345 - 348 ; Hochbaum , D. R. ; Nat. Methods 2014 , 11 , 825 - 833 ). The NIR fluorescence strongly depends on the pH in the range of 6-8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13═C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Srividya Ganapathy
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sean Frehan
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
- ELI-Beamlines,
Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Willem J. de Grip
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
- Department
of Biochemistry, Radboud University Medical
Center, Nijmegen 6500 HB, The Netherlands
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
214
|
Basu U, Otto S, Heinze K, Gasser G. Biological Evaluation of the NIR-Emissive Ruby Analogue [Cr(ddpd)2
][BF4
]3
as a Photodynamic Therapy Photosensitizer. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Uttara Basu
- Laboratory for Inorganic Chemical Biology; Chimie ParisTech PSL University; 75005 Paris France
| | - Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesberweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesberweg 10-14 55128 Mainz Germany
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology; Chimie ParisTech PSL University; 75005 Paris France
| |
Collapse
|
215
|
Ruan Z, Yuan P, Li T, Tian Y, Cheng Q, Yan L. Glutathione Triggered Near Infrared Fluorescence Imaging-Guided Chemotherapy by Cyanine Conjugated Polypeptide. ACS Biomater Sci Eng 2018; 4:4208-4218. [DOI: 10.1021/acsbiomaterials.8b00934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Youliang Tian
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Quan Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, China
| |
Collapse
|
216
|
Bisht R, Mele Kavungathodi MF, Nithyanandhan J. Indenoquinaldine-Based Unsymmetrical Squaraine Dyes for Near-Infrared Absorption: Investigating the Steric and Electronic Effects in Dye-Sensitized Solar Cells. Chemistry 2018; 24:16368-16378. [PMID: 30144179 DOI: 10.1002/chem.201803062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/26/2022]
Abstract
A series of near-infrared (NIR)-responsive unsymmetrical squaraine dyes (ISQ1-3) incorporating a fused indenoquinaldine-based donor have been designed and synthesized. C12 alkyl chains were incorporated at the sp3 -hybridized carbon center of the indene unit of the indenoquinaldine in an out-of-plane orientation to control dye aggregation on the surface of titanium dioxide, and indole (ISQ1), benzo[e]indole (ISQ2), and quinoline (ISQ3) moieties were included as the donor component bearing the anchoring carboxy group to extend the absorption in the NIR region and to systematically study the effect of the electronic modification on the performance of dye-sensitized solar cells (DSSC). All the dyes exhibit intense absorption (ϵ≥105 m-1 cm-1 ) in the NIR region, and the dye-adsorbed TiO2 films exhibit broad panchromatic absorption. The incident photon-to-current efficiency (IPCE) spectrum of the ISQ3-based DSSC device displays a panchromatic IPCE response up to 880 nm. Additionally, the ISQ3-sensitized device provides the best efficiency of 4.15 % with a short circuit current density (JSC ) of 10.02 mA cm-2 , open-circuit voltage (VOC ) of 0.58 V, and fill factor (ff) of 72 % in the presence of 10 equivalents of 3α,7α-dihydroxy-5β-cholanic acid (CDCA). Electrochemical impedance spectroscopy analysis showed attenuated charge recombination in the ISQ3-sensitized DSSC, which contributes to its higher value of VOC compared with the other dyes.
Collapse
Affiliation(s)
- Rajesh Bisht
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | | | - Jayaraj Nithyanandhan
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| |
Collapse
|
217
|
Ahmed S, Strand S, Weinmann-Menke J, Urbansky L, Galle PR, Neumann H. Molecular endoscopic imaging in cancer. Dig Endosc 2018; 30:719-729. [PMID: 29846982 DOI: 10.1111/den.13199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Cancer is one of the major causes of death in both the USA and Europe. Molecular imaging is a novel field that is revolutionizing cancer management. It is based on the molecular signature of cells in order to study the human body both in normal and diseased conditions. The emergence of molecular imaging has been driven by the difficulties associated with cancer detection, particularly early-stage premalignant lesions which are often unnoticed as a result of minimal or no structural changes. Endoscopic surveillance is the standard method for early-stage cancer detection. In addition to recent major advancements in endoscopic instruments, significant progress has been achieved in the exploration of highly specific molecular probes and the combination of both will permit significant improvement of patient care. In this review, we provide an outline of the current status of endoscopic imaging and focus on recent applications of molecular imaging in gastrointestinal, hepatic and other cancers in the context of detection, targeted therapy and personalized medicine. As new imaging agents have the potential to broadly expand our cancer diagnostic capability, we will also present an overview of the main types of optical molecular probes with their pros and cons. We conclude by discussing the challenges and future prospects of the field.
Collapse
Affiliation(s)
- Shakil Ahmed
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Susanne Strand
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Lana Urbansky
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Helmut Neumann
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
218
|
Sarcan ET, Silindir-Gunay M, Ozer AY. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int J Pharm 2018; 551:329-338. [DOI: 10.1016/j.ijpharm.2018.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
|
219
|
Borg RE, Rochford J. Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochem Photobiol 2018; 94:1175-1209. [PMID: 29953628 PMCID: PMC6252265 DOI: 10.1111/php.12967] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly growing field which offers high spatial resolution and high contrast for deep-tissue imaging in vivo. PAI is nonionizing and noninvasive and combines the optical resolution of fluorescence imaging with the spatial resolution of ultrasound imaging. In particular, the development of exogenous PA contrast agents has gained significant momentum of late with a vastly expanding complexity of dye materials under investigation ranging from small molecules to macromolecular proteins, polymeric and inorganic nanoparticles. The goal of this review is to survey the current state of the art in molecular photoacoustic contrast agents (MPACs) for applications in biomedical imaging. The fundamental design principles of MPACs are presented and a review of prior reports spanning from early-to-current literature is put forth.
Collapse
Affiliation(s)
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
| |
Collapse
|
220
|
Bardon K, Selfridge S, Adams DS, Minns RA, Pawle R, Adams TC, Takiff L. Synthesis of Water-Soluble Far-Red-Emitting Amphiphilic BODIPY Dyes. ACS OMEGA 2018; 3:13195-13199. [PMID: 30411029 PMCID: PMC6217593 DOI: 10.1021/acsomega.8b01487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/01/2018] [Indexed: 05/26/2023]
Abstract
We report the synthesis of two water-soluble BODIPY dyes with far-red absorption and near-infrared fluorescence following cell membrane insertion. Introduction of dicationic or dianionic groups imparts water solubility and prevents translocation of the dye through the plasma membrane for highly effective labeling. The dicationic form is particularly well localized to the plasma membrane and resists quenching even after >8 min of continuous light exposure. The dyes are almost completely nonemissive in water and other highly polar solvents, but display high-fluorescence yields in chloroform and upon insertion into the extracellular leaflet.
Collapse
Affiliation(s)
- Kevin
M. Bardon
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Scott Selfridge
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Dany S. Adams
- Tufts
University, Tufts Center for
Regenerative & Developmental Biology, 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Richard A. Minns
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Robert Pawle
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Timothy C. Adams
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Larry Takiff
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| |
Collapse
|
221
|
Chan LY, Teo JDW, Tan KSW, Sou K, Kwan WL, Lee CLK. Near Infrared Fluorophore-Tagged Chloroquine in Plasmodium falciparum Diagnostic Imaging. Molecules 2018; 23:molecules23102635. [PMID: 30322183 PMCID: PMC6222297 DOI: 10.3390/molecules23102635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Chloroquine was among the first of several effective drug treatments against malaria until the onset of chloroquine resistance. In light of diminished clinical efficacy of chloroquine as an antimalarial therapeutic, there is potential in efforts to adapt chloroquine for other clinical applications, such as in combination therapies and in diagnostics. In this context, we designed and synthesized a novel asymmetrical squaraine dye coupled with chloroquine (SQR1-CQ). In this study, SQR1-CQ was used to label live Plasmodium falciparum (P. falciparum) parasite cultures of varying sensitivities towards chloroquine. SQR1-CQ positively stained ring, mature trophozoite and schizont stages of both chloroquine⁻sensitive and chloroquine⁻resistant P. falciparum strains. In addition, SQR1-CQ exhibited significantly higher fluorescence, when compared to the commercial chloroquine-BODIPY (borondipyrromethene) conjugate CQ-BODIPY. We also achieved successful SQR1-CQ labelling of P. falciparum directly on thin blood smear preparations. Drug efficacy experiments measuring half-maximal inhibitory concentration (IC50) showed lower concentration of effective inhibition against resistant strain K1 by SQR1-CQ compared to conventional chloroquine. Taken together, the versatile and highly fluorescent labelling capability of SQR1-CQ and promising preliminary IC50 findings makes it a great candidate for further development as diagnostic tool with drug efficacy against chloroquine-resistant P. falciparum.
Collapse
Affiliation(s)
- Li Yan Chan
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| | - Joshua Ding Wei Teo
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Block MD4, Level 3, Singapore 117545, Singapore.
| | - Keitaro Sou
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Wei Lek Kwan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Chi-Lik Ken Lee
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| |
Collapse
|
222
|
Ishii A, Nakata N. Synthesis and Photophysical Property of 1-Chalcogeno-1,3-butadiene Derivatives and the Related Compounds Incorporated in a Dibenzobarrelene Skeleton. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akihiko Ishii
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University
| | | |
Collapse
|
223
|
Dixit S, Awasthi A, Ash S, Singh PK, Agarwal N. Synthesis and photophysical properties of near infra-red absorbing BODIPy derivatives and their nanoaggregates. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
224
|
Mellanby RJ, Scott JI, Mair I, Fernandez A, Saul L, Arlt J, Moral M, Vendrell M. Tricarbocyanine N-triazoles: the scaffold-of-choice for long-term near-infrared imaging of immune cells in vivo. Chem Sci 2018; 9:7261-7270. [PMID: 30288247 PMCID: PMC6148684 DOI: 10.1039/c8sc00900g] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022] Open
Abstract
Herein tricarbocyanine N-triazoles are first described as a rationally-designed near-infrared (NIR) structure overcoming the brightness and photostability limitations of tricarbocyanines for long-term in vivo imaging. The straightforward synthetic approach and the wide availability of alkynes makes this strategy a versatile methodology for the preparation of highly stable N-substituted tricarbocyanines. Furthermore, we validated CIR38M as a non-transferable marker to monitor the fate of therapeutic T cells non-invasively in vivo, showing enhanced performance over conventional NIR fluorophores (i.e. DiR, IR800CW and indocyanine green) as well as compatibility with human cells for translational studies. CIR38M is able to track over time smaller numbers of T cells than current NIR agents, and to visualise antigen-driven accumulation of immune cells at specific sites in vivo. This chemical technology will improve longitudinal imaging studies to assess the efficacy of cell-based immunotherapies in preclinical models and in human samples.
Collapse
Affiliation(s)
- Richard J Mellanby
- Medical Research Council Centre for Inflammation Research , The University of Edinburgh , 47 Little France Crescent , EH16 4TJ Edinburgh , UK .
- Royal (Dick) School of Veterinary Studies , The Roslin Institute , Division of Veterinary Clinical Studies , The University of Edinburgh , Hospital for Small Animals , Easter Bush Veterinary Centre , EH25 9RG Roslin , UK .
| | - Jamie I Scott
- Medical Research Council Centre for Inflammation Research , The University of Edinburgh , 47 Little France Crescent , EH16 4TJ Edinburgh , UK .
| | - Iris Mair
- Medical Research Council Centre for Inflammation Research , The University of Edinburgh , 47 Little France Crescent , EH16 4TJ Edinburgh , UK .
| | - Antonio Fernandez
- Medical Research Council Centre for Inflammation Research , The University of Edinburgh , 47 Little France Crescent , EH16 4TJ Edinburgh , UK .
| | - Louise Saul
- Royal (Dick) School of Veterinary Studies , The Roslin Institute , Division of Veterinary Clinical Studies , The University of Edinburgh , Hospital for Small Animals , Easter Bush Veterinary Centre , EH25 9RG Roslin , UK .
| | - Jochen Arlt
- School of Physics and Astronomy , The University of Edinburgh , James Clerk Maxwell Building, Peter Guthrie Tait Road , EH9 3FD Edinburgh , UK
| | - Monica Moral
- Renewable Energy Research Institute , University of Castilla-La Mancha , 02071 Albacete , Spain
| | - Marc Vendrell
- Medical Research Council Centre for Inflammation Research , The University of Edinburgh , 47 Little France Crescent , EH16 4TJ Edinburgh , UK .
| |
Collapse
|
225
|
Sadowski B, Loebnitz M, Dombrowski DR, Friese DH, Gryko DT. Electron-Rich Dipyrrolonaphthyridinediones: Synthesis and Optical Properties. J Org Chem 2018; 83:11645-11653. [DOI: 10.1021/acs.joc.8b01615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcel Loebnitz
- Heinrich Heine-Universität Düsseldorf, Institut für Theoretische und Computerchemie, Universitätsstraße 1, 40204 Düsseldorf, Germany
| | - Dennis R. Dombrowski
- Heinrich Heine-Universität Düsseldorf, Institut für Theoretische und Computerchemie, Universitätsstraße 1, 40204 Düsseldorf, Germany
| | - Daniel H. Friese
- Heinrich Heine-Universität Düsseldorf, Institut für Theoretische und Computerchemie, Universitätsstraße 1, 40204 Düsseldorf, Germany
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
226
|
Swasey SM, Nicholson HC, Copp SM, Bogdanov P, Gorovits A, Gwinn EG. Adaptation of a visible wavelength fluorescence microplate reader for discovery of near-infrared fluorescent probes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:095111. [PMID: 30278750 DOI: 10.1063/1.5023258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present an inexpensive, generalizable approach for modifying visible wavelength fluorescence microplate readers to detect emission in the near-infrared (NIR) I (650-950 nm) and NIR II (1000-1350 nm) tissue imaging windows. These wavelength ranges are promising for high sensitivity fluorescence-based cell assays and biological imaging, but the inaccessibility of NIR microplate readers is limiting development of the requisite, biocompatible fluorescent probes. Our modifications enable rapid screening of NIR candidate probes, using short pulses of UV light to provide excitation of diverse systems including dye molecules, semiconductor quantum dots, and metal clusters. To confirm the utility of our approach for rapid discovery of new NIR probes, we examine the silver cluster synthesis products formed on 375 candidate DNA strands that were originally designed to produce green-emitting, DNA-stabilized silver clusters. The fast, sensitive system developed here discovered DNA strands that unexpectedly stabilize NIR-emitting silver clusters.
Collapse
Affiliation(s)
- Steven M Swasey
- Department of Chemistry and Biochemistry, UCSB, Santa Barbara, California 93106, USA
| | | | - Stacy M Copp
- Center for Integrated Nanotechnologies, Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA
| | - Petko Bogdanov
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | - Alexander Gorovits
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | | |
Collapse
|
227
|
Zheng Z, Zhang T, Liu H, Chen Y, Kwok RTK, Ma C, Zhang P, Sung HHY, Williams ID, Lam JWY, Wong KS, Tang BZ. Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS NANO 2018; 12:8145-8159. [PMID: 30074773 DOI: 10.1021/acsnano.8b03138] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Far-red and near-infrared (NIR) fluorescent materials possessing the characteristics of strong two-photon absorption and aggregation-induced emission (AIE) as well as specific targeting capability are much-sought-after for bioimaging and therapeutic applications due to their deep penetration depth and high resolution. Herein, a series of dipolar far-red and NIR AIE luminogens with a strong push-pull effect are designed and synthesized. The obtained fluorophores display bright far-red and NIR solid-state fluorescence with a high quantum yield of up to 30%, large Stokes shifts of up to 244 nm, and large two-photon absorption cross-sections of up to 887 GM. A total of three neutral AIEgens show specific lipid droplet (LD)-targeting capability, while the one with cationic and lipophilic characteristics tends to target the mitochondria specifically. All of the molecules demonstrate good biocompatibility, high brightness, and superior photostability. They also serve as efficient two-photon fluorescence-imaging agents for the clear visualization of LDs or mitochondria in living cells and tissues with deep tissue penetration (up to 150 μm) and high contrast. These AIEgens can efficiently generate singlet oxygen upon light irradiation for the photodynamic ablation of cancer cells. All of these intriguing results prove that these far-red and NIR AIEgens are excellent candidates for the two-photon fluorescence imaging of LDs or mitochondria and organelle-targeting photodynamic cancer therapy.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Tianfu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Haixiang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Yuncong Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Chao Ma
- Department of Physics , HKUST , Clear Water Bay, Kowloon , Hong Kong , China
| | - Pengfei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
| | - Kam Sing Wong
- Department of Physics , HKUST , Clear Water Bay, Kowloon , Hong Kong , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing First Road , South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
- NSFC Center for Luminescence from Molecular Aggregates , SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
228
|
Tian Y, Guo R, Yang W. Multifunctional Nanotherapeutics for Photothermal Combination Therapy of Cancer. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ye Tian
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200433 P. R. China
| | - Ranran Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200433 P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200433 P. R. China
| |
Collapse
|
229
|
|
230
|
Li G, Otsuka Y, Matsumiya T, Suzuki T, Li J, Takahashi M, Yamada K. A Straightforward Substitution Strategy to Tune BODIPY Dyes Spanning the Near-Infrared Region via Suzuki⁻Miyaura Cross-Coupling. MATERIALS 2018; 11:ma11081297. [PMID: 30060467 PMCID: PMC6117675 DOI: 10.3390/ma11081297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/05/2023]
Abstract
In this study, a series of new red and near-infrared (NIR) dyes derived from 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) were developed by introducing thiophene and its derivatives to the 3- and 5- positions of the dichloroBODIPY core. For the first time, cyclictriol boronates and N-methyliminodiacetic acid (MIDA) boronate were used as organoboron species to couple with 3,5-dichloroBODIPY via the one-step Suzuki–Miyaura cross-coupling. Six kinds of thieno-expended BODIPY dyes were synthesized in acceptable yields ranging from 31% to 79%. All six dyes showed different absorption and emission wavelengths spanning a wide range (c.a. 600–850 nm) in the red and NIR regions with relatively high quantum yields (19–85%). Cellular imaging of 8-(2,6-dimethylphenyl)-re3,5-di(2-thienyl)-BODIPY (dye 1) was conducted using bovine cumulus cells, and the fluorescence microscopy images indicated that the chromophore efficiently accumulated and was exclusively localized in the cytoplasm, suggesting it could be utilized as a subcellular probe. All six dyes were characterized using 1H-NMR and mass spectrometry.
Collapse
Affiliation(s)
- Guanglei Li
- Division of Materials Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 0860-0810, Japan.
| | - Yu Otsuka
- Division of Materials Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 0860-0810, Japan.
| | - Takuya Matsumiya
- Division of Materials Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 0860-0810, Japan.
| | - Toshiyuki Suzuki
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Jianye Li
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
- Global station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0815, Japan.
| | - Koji Yamada
- Division of Materials Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 0860-0810, Japan.
- Division of Materials Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 0860-0810, Japan.
| |
Collapse
|
231
|
Meng F, Wang J, Ping Q, Yeo Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited. ACS NANO 2018; 12:6458-6468. [PMID: 29920064 PMCID: PMC6105334 DOI: 10.1021/acsnano.8b02881] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescence-based whole-body imaging is widely used in the evaluation of nanoparticles (NPs) in small animals, often combined with quantitative analysis to indicate their spatiotemporal distribution following systemic administration. An underlying assumption is that the fluorescence label represents NPs and the intensity increases with the amount of NPs and/or the labeling dyes accumulated in the region of interest. We prepare DiR-loaded poly(lactic- co-glycolic acid) (PLGA) NPs with different surface layers (polyethylene glycol with and without folate terminus) and compare the distribution of fluorescence signals in a mouse model of folate-receptor-expressing tumors by near-infrared fluorescence whole-body imaging. Unexpectedly, we observe that fluorescence distribution patterns differ far more dramatically with DiR loading than with the surface ligand, reaching opposite conclusions with the same type of NPs (tumor-specific delivery vs predominant liver accumulation). Analysis of DiR-loaded PLGA NPs reveals that fluorescence quenching, dequenching, and signal saturation, which occur with the increasing dye content and local NP concentration, are responsible for the conflicting interpretations. This study highlights the critical need for validating fluorescence labeling of NPs in the quantitative analysis of whole-body imaging. In light of our observation, we make suggestions for future whole-body fluorescence imaging in the in vivo evaluation of NP behaviors.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author: Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| |
Collapse
|
232
|
Oliden-Sánchez A, Sola-Llano R, López-Arbeloa I, Martínez-Martínez V. Enhancement of NIR emission by a tight confinement of a hemicyanine dye within zeolitic MgAPO-5 nanochannels. Photochem Photobiol Sci 2018; 17:917-922. [PMID: 29892736 DOI: 10.1039/c8pp00029h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The encapsulation of a hemicyanine dye, LDS 730, into the 1D nanochannels of MgAPO-5 aluminophosphate by "one-pot" synthesis, based on "in situ" occlusion via a crystallization inclusion method, has led to a hybrid material with emission in the NIR region. The tight fitting between the molecular size of the guest dye and the pore dimensions of the host has enabled a rigid conformation of the LDS 730 dye within the nanochannels. Consequently, fluorescence in the NIR range of the spectra is enhanced with respect to the dye in solution. The synthesis of the hybrid material was optimized through a systematic variation of the gel composition via MW in order to obtain a pure phase.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco, UPV/EHU, Apartado 644, 48080, Bilbao, Spain.
| | | | | | | |
Collapse
|
233
|
Bellinger S, Hatamimoslehabadi M, Borg RE, La J, Catsoulis P, Mithila F, Yelleswarapu C, Rochford J. Characterization of a NIR absorbing thienyl curcumin contrast agent for photoacoustic imaging. Chem Commun (Camb) 2018; 54:6352-6355. [PMID: 29868656 PMCID: PMC6082415 DOI: 10.1039/c8cc03727b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis and characterization of a bis(2-dimethylaminothien-5-yl)curcumin boron difluoride chromophore is presented. Photophysical, electrochemical and computational investigations establish the properties of its absorption in the Vis-NIR spectral range relative to established curcumin dyes. Application of this thienyl curcumin dye as a photoacoustic contrast agent is investigated against the dicarbocyanine Cy5 dye in the 675-735 nm excitation range.
Collapse
Affiliation(s)
- Stephanie Bellinger
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Wang H, Liu G. Advances in luminescent materials with aggregation-induced emission (AIE) properties for biomedical applications. J Mater Chem B 2018; 6:4029-4042. [PMID: 32255148 DOI: 10.1039/c8tb00674a] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescent materials have recently received great attention in biomedical research because of their good optical properties, species diversity and high sensitivity. However, most of the traditional fluorophores suffer from the aggregation-caused quenching (ACQ) effect at high concentration or in the aggregated state, which has greatly limited their biomedical applications. Fluorescent materials with the AIE effect show exactly the opposite effect to the ACQ effect, and have exhibited significant advantages in terms of tunable emission, excellent photostability and biocompatibility. In this review, we summarize current advances of AIE-based materials for biomedical applications. In particular, AIE-active biosensors for detecting biomolecules, such as hydrogen peroxide, hydrogen sulfide, biothiols and enzymes, have been summarized. Moreover, AIE-based materials applied for bioimaging, drug delivery and cancer theranostics have also been described in detail. In the last section, the future prospects and possible challenges in the development of AIE-based materials are discussed briefly.
Collapse
Affiliation(s)
- Haibo Wang
- Textile Institute, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| | | |
Collapse
|
235
|
Woller T, Geerlings P, De Proft F, Champagne B, Alonso M. Aromaticity as a Guiding Concept for Spectroscopic Features and Nonlinear Optical Properties of Porphyrinoids. Molecules 2018; 23:molecules23061333. [PMID: 29865191 PMCID: PMC6100263 DOI: 10.3390/molecules23061333] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
With their versatile molecular topology and aromaticity, porphyrinoid systems combine remarkable chemistry with interesting photophysical properties and nonlinear optical properties. Hence, the field of application of porphyrinoids is very broad ranging from near-infrared dyes to opto-electronic materials. From previous experimental studies, aromaticity emerges as an important concept in determining the photophysical properties and two-photon absorption cross sections of porphyrinoids. Despite a considerable number of studies on porphyrinoids, few investigate the relationship between aromaticity, UV/vis absorption spectra and nonlinear properties. To assess such structure-property relationships, we performed a computational study focusing on a series of Hückel porphyrinoids to: (i) assess their (anti)aromatic character; (ii) determine the fingerprints of aromaticity on the UV/vis spectra; (iii) evaluate the role of aromaticity on the NLO properties. Using an extensive set of aromaticity descriptors based on energetic, magnetic, structural, reactivity and electronic criteria, the aromaticity of [4n+2] π-electron porphyrinoids was evidenced as was the antiaromaticity for [4n] π-electron systems. In agreement with previous studies, the absorption spectra of aromatic systems display more intense B and Q bands in comparison to their antiaromatic homologues. The nature of these absorption bands was analyzed in detail in terms of polarization, intensity, splitting and composition. Finally, quantities such as the average polarizability and its anisotropy were found to be larger in aromatic systems, whereas first and second hyperpolarizability are influenced by the interplay between aromaticity, planarity and molecular symmetry. To conclude, aromaticity dictates the photophysical properties in porphyrinoids, whereas it is not the only factor determining the magnitude of NLO properties.
Collapse
Affiliation(s)
- Tatiana Woller
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Paul Geerlings
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Benoît Champagne
- Laboratoire de Chimie Théorique, Unité de Chimie Physique Théorique et Structurale, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
236
|
Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic Dye Based Nanoparticles for Cancer Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704247. [PMID: 29611290 DOI: 10.1002/smll.201704247] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Phototheranostics, which simultaneously combines photodynamic and/or photothermal therapy with deep-tissue diagnostic imaging, is a promising strategy for the diagnosis and treatment of cancers. Organic dyes with the merits of strong near-infrared absorbance, high photo-to-radical and/or photothermal conversion efficiency, great biocompatibility, ready chemical structure fine-tuning capability, and easy metabolism, have been demonstrated as attractive candidates for clinical phototheranostics. These organic dyes can be further designed and fabricated into nanoparticles (NPs) using various strategies. Compared to free molecules, these NPs can be equipped with multiple synergistic functions and show longer lifetime in blood circulation and passive tumor-targeting property via the enhanced permeability and retention effect. In this article, the recent progress of organic dye-based NPs for cancer phototheranostic applications is summarized, which extends the anticancer arsenal and holds promise for clinical uses in the near future.
Collapse
Affiliation(s)
- Yu Cai
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
237
|
Guo Z, Ma Y, Liu Y, Yan C, Shi P, Tian H, Zhu WH. Photocaged prodrug under NIR light-triggering with dual-channel fluorescence: in vivo real-time tracking for precise drug delivery. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9240-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
238
|
Wang J, Zhou C, Liu W, Zhang J, Zhu X, Liu X, Wang Q, Zhang H. A near-infrared fluorescent probe based on chloroacetate modified naphthofluorescein for selectively detecting cysteine/homocysteine and its application in living cells. Photochem Photobiol Sci 2018; 15:1393-1399. [PMID: 27714261 DOI: 10.1039/c6pp00219f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have prepared a near-infrared (NIR) turn-on fluorescent probe (NFC) based on chloroacetate modified naphthofluorescein for specific detection of cysteine (Cys) and homocysteine (Hcy) over glutathione (GSH) and other amino acids (AAs) with the detection limits of 0.30 μM and 0.42 μM, respectively. The fluorescence intensity of the naphthofluorescein (NF) chromophore is modulated by an internal charge transfer (ICT) process. The probe NFC is readily available and weakly fluorescent, but of observably enhanced fluorescence after reacting with Cys or Hcy. We assumed and then demonstrated that the fluorescence off-on process involves a conjugate nucleophilic substitution/cyclization sequence. Furthermore, the probe has been successfully applied for detecting the total content of Cys and Hcy in human plasma and imaging in living cells with low toxicity.
Collapse
Affiliation(s)
- Jianxi Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Cheng Zhou
- Department of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianjian Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xinyue Zhu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoyan Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Qin Wang
- Department of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
239
|
Roohi H, Alizadeh P. Fine tuning the emission wavelengths of the 7-hydroxy-1-indanone based nano-structure dyes: Near-infrared (NIR) dual emission generation with large stokes shifts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:83-102. [PMID: 29444499 DOI: 10.1016/j.saa.2018.01.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/31/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Near-infrared (NIR) fluorescent dyes have recently gained special attention due to their applications to use as molecular probes for imaging of biological targets and sensitive determination. In this study, photophysical properties of the 7-hydroxy-1-indanone based fluorophors A1, A2, A3, B1, B2 and 3R-B2 (R=CF3, NH2, NO2 and OMe) in the gas and three solution phases were probed using TD-DFT method at PBE0/6-311++G(d,p) and M06-2X/6-311++G(d,p) levels of theory. In addition to structural and photophysical properties as well as ESIPT mechanism of all mentioned molecules, the FC and relaxed potential energy surfaces of B2 and 3R-B2 (R=CF3 and NH2) molecules were explored in gas phase and acetonitrile, cyclohexane and water solvents. It is predicted that the A1, A3 and 3R-B2 chromophores afford normal (615-670nm) and NIR fluorescence emissions (770-940nm; biological window) with the large Stokes shifts of >160 and >300nm, respectively. A good aggrement was found between theoretical and experimental results. In sum, these new types of dyes may render the new approaches for the development of the most efficient NIR fluorescent probes for enhanced image contrast and optimal apparent brightness in biological applications.
Collapse
Affiliation(s)
- Hossein Roohi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Parvaneh Alizadeh
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
240
|
Rosenberg M, Rostgaard KR, Liao Z, Madsen AØ, Martinez KL, Vosch T, Laursen BW. Design, synthesis, and time-gated cell imaging of carbon-bridged triangulenium dyes with long fluorescence lifetime and red emission. Chem Sci 2018; 9:3122-3130. [PMID: 29780456 PMCID: PMC5932597 DOI: 10.1039/c8sc00089a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Time-resolved fluorescence offers many advantages over normal steady-state detection and becomes increasingly important in bioimaging. However, only very few fluorophores with emission in the visible range and fluorescence lifetimes above 5 ns are available. In this work, we prepare a series of new aza/oxa-triangulenium dyes where one of the usual oxa or aza bridges is replaced by an isopropyl bridge. This leads to a significant redshift of fluorescence with only moderate reductions of quantum yields and a unique long fluorescence lifetime. The fluorescence of the isopropyl bridged diazatriangulenium derivative CDATA+ is red-shifted by 50 nm (1400 cm-1) as compared to the oxygen-bridged DAOTA+ chromophore and has intense emission in the red region (600-700 nm) with a quantum yield of 61%, and a fluorescence lifetime of 15.8 ns in apolar solution. When the CDATA+ dye is used as cell stain, high photostability and efficient time-gated cell imaging is demonstrated.
Collapse
Affiliation(s)
- M Rosenberg
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - K R Rostgaard
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - Z Liao
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - A Ø Madsen
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2, DK-2100 , Copenhagen Ø , Denmark
| | - K L Martinez
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - T Vosch
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - B W Laursen
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| |
Collapse
|
241
|
Chen HJ, Chew CY, Chang EH, Tu YW, Wei LY, Wu BH, Chen CH, Yang YT, Huang SC, Chen JK, Chen IC, Tan KT. S-Cis Diene Conformation: A New Bathochromic Shift Strategy for Near-Infrared Fluorescence Switchable Dye and the Imaging Applications. J Am Chem Soc 2018; 140:5224-5234. [DOI: 10.1021/jacs.8b01159] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | - Chien-Hung Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan (ROC)
| | - Ya-Ting Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan (ROC)
| | - Su-Chin Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan (ROC)
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan (ROC)
| | | | | |
Collapse
|
242
|
Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. Hexa-peri-hexabenzo[7]helicene: Homogeneously π-Extended Helicene as a Primary Substructure of Helically Twisted Chiral Graphenes. J Am Chem Soc 2018; 140:4317-4326. [DOI: 10.1021/jacs.7b13412] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yusuke Nakakuki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
243
|
Kubo Y, Tobinaga S, Ueno Y, Aotake T, Yakushiji H, Yamamoto T. Near-infrared-absorbing Photodetectors Based on Naphtho[1,3,2]oxazaborinine-type Dibenzo-BODIPY Dyes. CHEM LETT 2018. [DOI: 10.1246/cl.171061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Shun Tobinaga
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshihide Ueno
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Tatsuya Aotake
- Nippon Kayaku Co., Ltd., 31-12 Shimo 3-Chome, Kita-ku, Tokyo 115-8588, Japan
| | - Hidenori Yakushiji
- Nippon Kayaku Co., Ltd., 31-12 Shimo 3-Chome, Kita-ku, Tokyo 115-8588, Japan
| | - Tatsuya Yamamoto
- Nippon Kayaku Co., Ltd., 31-12 Shimo 3-Chome, Kita-ku, Tokyo 115-8588, Japan
| |
Collapse
|
244
|
Kitada N, Saitoh T, Ikeda Y, Iwano S, Obata R, Niwa H, Hirano T, Miyawaki A, Suzuki K, Nishiyama S, Maki SA. Toward bioluminescence in the near-infrared region: Tuning the emission wavelength of firefly luciferin analogues by allyl substitution. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
245
|
Holler S, Haig B, Donovan MJ, Sobrero M, Miles BA. A monolithic microsphere-fiber probe for spatially resolved Raman spectroscopy: Application to head and neck squamous cell carcinomas. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:034301. [PMID: 29604745 DOI: 10.1063/1.5011771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ability to identify precise cancer margins in vivo during a surgical excision is critical to the well-being of the patient. Decreased operative time has been linked to shorter patient recovery time, and there are risks associated with removing either too much or too little tissue from the surgical site. The more rapidly and accurately a surgeon can identify and excise diseased tissue, the better the prognosis for the patient. To this end, we investigate both malignant and healthy oral cavity tissue using the Raman spectroscopy, with a monolithic microsphere-fiber probe. Our results indicate that this probe has decreased the size of the analyzed area by more than an order of magnitude, as compared to a conventional fiber reflection probe. Scanning the probe across the tissues reveals variations in the Raman spectra that enable us to differentiate between malignant and healthy tissues. Consequently, we anticipate that the high spatial resolution afforded by the probe will permit us to identify tumor margins in detail, thereby optimizing tissue removal and improving patient outcomes.
Collapse
Affiliation(s)
- S Holler
- Department of Physics and Engineering Physics, Fordham University, 441 E. Fordham Road, Bronx, New York 10458, USA
| | - B Haig
- Department of Physics and Engineering Physics, Fordham University, 441 E. Fordham Road, Bronx, New York 10458, USA
| | - M J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, New York 10029, USA
| | - M Sobrero
- Department of Otolaryngology Head and Neck Surgery, Icahn School of Medicine at Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, New York 10029, USA
| | - B A Miles
- Department of Otolaryngology Head and Neck Surgery, Icahn School of Medicine at Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, New York 10029, USA
| |
Collapse
|
246
|
Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim KS, Yetisen AK, Yun SH, Kwon W, Hahn SK. Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29363198 DOI: 10.1002/adma.201701460] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/20/2017] [Indexed: 05/08/2023]
Abstract
The last decade has seen dramatic progress in the principle, design, and fabrication of photonic nanomaterials with various optical properties and functionalities. Light-emitting and light-responsive nanomaterials, such as semiconductor quantum dots, plasmonic metal nanoparticles, organic carbon, and polymeric nanomaterials, offer promising approaches to low-cost and effective diagnostic, therapeutic, and theranostic applications. Reasonable endeavors have begun to translate some of the promising photonic nanomaterials to the clinic. Here, current research on the state-of-the-art and emerging photonic nanomaterials for diverse biomedical applications is reviewed, and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Hyemin Kim
- PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul, 06612, South Korea
| | - Songeun Beack
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myeonghwan Shin
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Taehyung Lee
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yoonsang Park
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ki Su Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Ali K Yetisen
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Seoul, 04310, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
247
|
Mirabello V, Cortezon-Tamarit F, Pascu SI. Oxygen Sensing, Hypoxia Tracing and in Vivo Imaging with Functional Metalloprobes for the Early Detection of Non-communicable Diseases. Front Chem 2018; 6:27. [PMID: 29527524 PMCID: PMC5829448 DOI: 10.3389/fchem.2018.00027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
Hypoxia has been identified as one of the hallmarks of tumor environments and a prognosis factor in many cancers. The development of ideal chemical probes for imaging and sensing of hypoxia remains elusive. Crucial characteristics would include a measurable response to subtle variations of pO2 in living systems and an ability to accumulate only in the areas of interest (e.g., targeting hypoxia tissues) whilst exhibiting kinetic stabilities in vitro and in vivo. A sensitive probe would comprise platforms for applications in imaging and therapy for non-communicable diseases (NCDs) relying on sensitive detection of pO2. Just a handful of probes for the in vivo imaging of hypoxia [mainly using positron emission tomography (PET)] have reached the clinical research stage. Many chemical compounds, whilst presenting promising in vitro results as oxygen-sensing probes, are facing considerable disadvantages regarding their general application in vivo. The mechanisms of action of many hypoxia tracers have not been entirely rationalized, especially in the case of metallo-probes. An insight into the hypoxia selectivity mechanisms can allow an optimization of current imaging probes candidates and this will be explored hereby. The mechanistic understanding of the modes of action of coordination compounds under oxygen concentration gradients in living cells allows an expansion of the scope of compounds toward in vivo applications which, in turn, would help translate these into clinical applications. We summarize hereby some of the recent research efforts made toward the discovery of new oxygen sensing molecules having a metal-ligand core. We discuss their applications in vitro and/or in vivo, with an appreciation of a plethora of molecular imaging techniques (mainly reliant on nuclear medicine techniques) currently applied in the detection and tracing of hypoxia in the preclinical and clinical setups. The design of imaging/sensing probe for early-stage diagnosis would longer term avoid invasive procedures providing platforms for therapy monitoring in a variety of NCDs and, particularly, in cancers.
Collapse
|
248
|
Butkevich AN, Ta H, Ratz M, Stoldt S, Jakobs S, Belov VN, Hell SW. Two-Color 810 nm STED Nanoscopy of Living Cells with Endogenous SNAP-Tagged Fusion Proteins. ACS Chem Biol 2018; 13:475-480. [PMID: 28933823 DOI: 10.1021/acschembio.7b00616] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 810 nm STED nanoscopy setup and an appropriate combination of two fluorescent dyes (Si-rhodamine 680SiR and carbopyronine 610CP) have been developed for near-IR live-cell super-resolution imaging. Vimentin endogenously tagged using the CRISPR/Cas9 approach with the SNAP tag, together with a noncovalent tubulin label, provided reliable and cell-to-cell reproducible dual-color confocal and STED imaging of the cytoskeleton in living cells.
Collapse
Affiliation(s)
- Alexey N. Butkevich
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Haisen Ta
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Ratz
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Stoldt
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Department
of Neurology, University of Göttingen Medical Faculty, Robert-Koch-Str.
40, 37075 Göttingen, Germany
| | - Vladimir N. Belov
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
249
|
Mendoza G, Ortiz de Solorzano I, Pintre I, Garcia-Salinas S, Sebastian V, Andreu V, Gimeno M, Arruebo M. Near infrared dye-labelled polymeric micro- and nanomaterials: in vivo imaging and evaluation of their local persistence. NANOSCALE 2018; 10:2970-2982. [PMID: 29372230 DOI: 10.1039/c7nr07345c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of micro- and nanomaterials as carriers of therapeutic molecules can enhance the efficiency of treatments while avoiding side effects thanks to the development of controlled drug delivery systems. The binding of a dye to a drug or to a drug carrier has opened up a wide range of possibilities for an effective in vivo optical tracing of drug biodistribution by using non-invasive real-time technologies prior to their potential use as therapeutic vectors. Here, we describe the fluorescent tagging of polymeric micro- and nanomaterials based on poly(lactic-co-glycolic) acid and on the thermoresponsive poly(N-isopropylacrylamide) with the fluorescent probe IR-820 which was chemically modified for its covalent coupling to the materials. The chemical modification of the dye and the polymers yielded micro- and nanoparticulated labelled materials to be potentially used as drug depots of different therapeutic molecules. In vitro biological studies revealed their reduced cytotoxicity. A spatiotemporal in vivo micro- and nanoparticle tracking allowed the evaluation of the biodistribution of materials showing their local persistence and high biocompatibility after pathological studies. These results underline the suitability of these materials for the local, sustained, not harmful and/or on-demand drug delivery and the remarkable importance of evaluating the biodistribution of materials and tissue persistence for their use as local drug depots.
Collapse
Affiliation(s)
- Gracia Mendoza
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Bui AT, Roux A, Grichine A, Duperray A, Andraud C, Maury O. Twisted Charge-Transfer Antennae for Ultra-Bright Terbium(III) and Dysprosium(III) Bioprobes. Chemistry 2018; 24:3408-3412. [DOI: 10.1002/chem.201705933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Anh Thy Bui
- Univ Lyon, ENS de Lyon, CNRS UMR 5182; Université Claude Bernard Lyon 1, Laboratoire de Chimie; 69342 Lyon France
| | - Amandine Roux
- Univ Lyon, ENS de Lyon, CNRS UMR 5182; Université Claude Bernard Lyon 1, Laboratoire de Chimie; 69342 Lyon France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309; Université. Grenoble Alpes; 38000 Grenoble France
| | - Alain Duperray
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309; Université. Grenoble Alpes; 38000 Grenoble France
| | - Chantal Andraud
- Univ Lyon, ENS de Lyon, CNRS UMR 5182; Université Claude Bernard Lyon 1, Laboratoire de Chimie; 69342 Lyon France
| | - Olivier Maury
- Univ Lyon, ENS de Lyon, CNRS UMR 5182; Université Claude Bernard Lyon 1, Laboratoire de Chimie; 69342 Lyon France
| |
Collapse
|