201
|
Tuncer E, Calçada RR, Zingg D, Varum S, Cheng P, Freiberger SN, Deng CX, Kleiter I, Levesque MP, Dummer R, Sommer L. SMAD signaling promotes melanoma metastasis independently of phenotype switching. J Clin Invest 2019; 129:2702-2716. [PMID: 31039140 DOI: 10.1172/jci94295] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of metastatic melanoma is thought to require the dynamic shifting of neoplastic cells between proliferative and invasive phenotypes. Contrary to this conventional "phenotype switching" model, we now show that disease progression can involve malignant melanoma cells simultaneously displaying proliferative and invasive properties. Using a genetic mouse model of melanoma in combination with in vitro analyses of melanoma cell lines, we found that conditional deletion of the downstream signaling molecule Smad4, which abrogates all canonical TGF-β signaling, indeed inhibits both tumor growth and metastasis. Conditional deletion of the inhibitory signaling factor Smad7, however, generated cells that are both highly invasive and proliferative, indicating that invasiveness is compatible with a high proliferation rate. In fact, conditional Smad7 deletion led to sustained melanoma growth and at the same time promoted massive metastasis formation, a result consistent with data indicating that low SMAD7 levels in patient tumors are associated with a poor survival. Our findings reveal that modulation of SMAD7 levels can overcome the need for phenotype switching during tumor progression and may thus represent a novel therapeutic target in metastatic disease.
Collapse
Affiliation(s)
- Eylul Tuncer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Raquel R Calçada
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Daniel Zingg
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Sandra Varum
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ingo Kleiter
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany and Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
202
|
Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:395-412. [PMID: 29414248 DOI: 10.1146/annurev-pathol-020117-043854] [Citation(s) in RCA: 928] [Impact Index Per Article: 154.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis is the major cause of cancer-related deaths; therefore, the prevention and treatment of metastasis are fundamental to improving clinical outcomes. Epithelial mesenchymal transition (EMT), an evolutionarily conserved developmental program, has been implicated in carcinogenesis and confers metastatic properties upon cancer cells by enhancing mobility, invasion, and resistance to apoptotic stimuli. Furthermore, EMT-derived tumor cells acquire stem cell properties and exhibit marked therapeutic resistance. Given these attributes, the complex biological process of EMT has been heralded as a key hallmark of carcinogenesis, and targeting EMT pathways constitutes an attractive strategy for cancer treatment. However, demonstrating the necessity of EMT for metastasis in vivo has been technically challenging, and recent efforts to demonstrate a functional contribution of EMT to metastasis have yielded unexpected results. Therefore, determining the functional role of EMT in metastasis remains an area of active investigation. Studies using improved lineage tracing systems, dynamic in vivo imaging, and clinically relevant in vivo models have the potential to uncover the direct link between EMT and metastasis. This review focuses primarily on recent advances in and emerging concepts of the biology of EMT in metastasis in vivo and discusses future directions in the context of novel diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Vivek Mittal
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, and Neuberger Berman Foundation Lung Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
203
|
Oh K, Cho S, Yoon H, Lee J, Ahn S, Hong S. High prevalence of
BRAF
V600E mutations in Korean patients with ameloblastoma: Clinicopathological significance and correlation with epithelial‐mesenchymal transition. J Oral Pathol Med 2019; 48:413-420. [DOI: 10.1111/jop.12851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Kyu‐Young Oh
- Department of Oral Pathology School of Dentistry and Dental Research Institute Seoul National University Seoul Korea
- Shinan‐gun Public Health Center Shinan‐gun Jeollanam‐do Korea
| | - Sung‐Dae Cho
- Department of Oral Pathology School of Dentistry and Dental Research Institute Seoul National University Seoul Korea
| | - Hye‐Jung Yoon
- Department of Oral Pathology School of Dentistry and Dental Research Institute Seoul National University Seoul Korea
| | - Jae‐Il Lee
- Department of Oral Pathology School of Dentistry and Dental Research Institute Seoul National University Seoul Korea
| | - Sun‐Ha Ahn
- Department of Oral Hygiene Kyungbuk College Yeongju Korea
| | - Seong‐Doo Hong
- Department of Oral Pathology School of Dentistry and Dental Research Institute Seoul National University Seoul Korea
| |
Collapse
|
204
|
Yalim‐Camci I, Balcik‐Ercin P, Cetin M, Odabas G, Tokay N, Sayan AE, Yagci T. ETS1 is coexpressed with ZEB2 and mediates ZEB2‐induced epithelial‐mesenchymal transition in human tumors. Mol Carcinog 2019; 58:1068-1081. [DOI: 10.1002/mc.22994] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Irem Yalim‐Camci
- Department of Molecular Biology and Genetics, Laboratory of Molecular OncologyGebze Technical UniversityGebze/Kocaeli Turkey
| | - Pelin Balcik‐Ercin
- Department of Molecular Biology and Genetics, Laboratory of Molecular OncologyGebze Technical UniversityGebze/Kocaeli Turkey
| | - Metin Cetin
- Department of Molecular Biology and Genetics, Laboratory of Molecular OncologyGebze Technical UniversityGebze/Kocaeli Turkey
| | - Gorkem Odabas
- Department of Molecular Biology and Genetics, Laboratory of Molecular OncologyGebze Technical UniversityGebze/Kocaeli Turkey
| | - Nurettin Tokay
- Department of Molecular Biology and Genetics, Laboratory of Molecular OncologyGebze Technical UniversityGebze/Kocaeli Turkey
| | - A. Emre Sayan
- Cancer Sciences Unit and Cancer Research UK CentreUniversity of Southampton, Southampton General HospitalSouthampton UK
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Laboratory of Molecular OncologyGebze Technical UniversityGebze/Kocaeli Turkey
| |
Collapse
|
205
|
Yang W, Meng L, Chen K, Tian C, Peng B, Zhong L, Zhang C, Yang X, Zou J, Yang S, Li L. Preclinical pharmacodynamic evaluation of a new Src/FOSL1 inhibitor, LY-1816, in pancreatic ductal adenocarcinoma. Cancer Sci 2019; 110:1408-1419. [PMID: 30618127 PMCID: PMC6447837 DOI: 10.1111/cas.13929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/10/2018] [Accepted: 12/25/2018] [Indexed: 02/05/2023] Open
Abstract
Despite tremendous efforts, the clinical prognosis of pancreatic ductal adenocarcinoma (PDAC) remains disappointing. There is an urgent need to develop more effective treatment strategies to improve the prognosis of patients with PDAC. In this study, we evaluate the anti‐PDAC effects of LY‐1816, a new multikinase inhibitor developed by us. In in vitro assays, LY‐1816 showed significant inhibitory effects on the proliferation, migration, and invasion of human PDAC cells, and induced PDAC cell apoptosis. Western blot analysis revealed that LY‐1816 markedly suppressed the Src signaling, and downregulated the expression of FOSL1; FOSL1 is an oncogene vulnerability in KRAS‐driven pancreatic cancer. In in vivo models of PDAC xenografts (Aspc‐1 and Bxpc‐3), LY‐1816 showed more potent antitumor activity than dasatinib and gemcitabine. Moreover, mice treated with LY‐1816 showed a much more significant survival advantage in a metastatic model of PDAC compared with those treated with vehicle, dasatinib, or gemcitabine. These results provide effective support for the subsequent clinical evaluation of LY‐1816 in the treatment of PDAC.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Drug-Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lingwei Meng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chenyu Tian
- Key Laboratory of Drug-Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bing Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chunhui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linli Li
- Key Laboratory of Drug-Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
206
|
Faião-Flores F, Smalley KSM. Get with the Program! Stemness and Reprogramming in Melanoma Metastasis. J Invest Dermatol 2019; 138:10-13. [PMID: 29273143 DOI: 10.1016/j.jid.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/05/2023]
Abstract
Cancer cells are highly plastic and adopt multiple phenotypic states that contribute to tumor progression. Heppt et al. demonstrate that the homeodomain transcription factor Msh homeobox 1 reprograms melanoma cells to a precursor state associated with melanoma progression and increased liver metastasis. Identification of this new role for Msh homeobox 1 may facilitate the development of new therapies that limit melanoma dissemination.
Collapse
Affiliation(s)
- Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.
| |
Collapse
|
207
|
Webster JD, Pham TH, Wu X, Hughes NW, Li Z, Totpal K, Lee HJ, Calses PC, Chaurushiya MS, Stawiski EW, Modrusan Z, Chang MT, Tran C, Lee WP, Chalasani S, Hung J, Sharma N, Chan S, Hotzel K, Talevich E, Shain A, Xu M, Lill J, Dixit VM, Bastian BC, Dey A. The tumor suppressor BAP1 cooperates with BRAFV600E to promote tumor formation in cutaneous melanoma. Pigment Cell Melanoma Res 2019; 32:269-279. [PMID: 30156010 DOI: 10.1111/pcmr.12735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAFV600E ) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1-null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild-type counterparts. Molecularly, Bap1-null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1-null tumors are completely responsive to BRAF- and MEK-targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.
Collapse
Affiliation(s)
- Joshua D Webster
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Trang H Pham
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., South San Francisco, California
| | - Nicolas W Hughes
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Zhongwu Li
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Klara Totpal
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Philamer C Calses
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Mira S Chaurushiya
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California
| | - Eric W Stawiski
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California
| | - Matthew T Chang
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California
| | - Christopher Tran
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., South San Francisco, California
| | - Sreedevi Chalasani
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Jeffrey Hung
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Neeraj Sharma
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Sara Chan
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Kathy Hotzel
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Eric Talevich
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alan Shain
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Mengshu Xu
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Jennie Lill
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, California
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California
| | - Boris C Bastian
- Departments of Dermatology and Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
208
|
Yang Y, Dong K, Shao S. The effect of Helicobacter pylori on the expression of FRA-1 in gastric epithelial cells and its mechanism. Microb Pathog 2019; 129:257-265. [PMID: 30807813 DOI: 10.1016/j.micpath.2019.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Gastric cancer is a major global health threat and is often related with Helicobacter pylori (H. pylori) infection. FRA-1 is a subunit of the activator protein-1 transcription factor complex, which played a central role in cell proliferation and migration. It has also been implicated in stomach inflammation and malignancy. The present study aimed to clarify the relationship between H. pylori infection and production of FRA-1 in controlling cell proliferation and migration and its molecular mechanisms. Cell proliferation was measured by colony formation assay. Cell migration was monitored by transwell migration assay. Gastric mucosal epithelial cells were treated with FRA-1-specific siRNA with or without H. pylori infection in vitro, and RNA and proteins were extracted. The expression of FRA-1 and indicators in cells was determined by RT-PCR and western blot analysis. β-Catenin and TGF-β activities were then assessed by western blotting and immunofluorescence. The expression of FRA-1 increased after H. pylori infection. Additional analysis identified that knockdown of FRA-1 attenuated the H. pylori-induced proliferative activity and migration of gastric cancer cells. Furthermore, upregulation of FRA-1 by H. pylori led to increase in Wnt/β-Catenin levels and TGF-β dependent signaling events. These results demonstrate that the upregulation of FRA-1 in H. pylori-infected gastric epithelial cells plays a key role in the carcinogenic process.
Collapse
Affiliation(s)
- Yang Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | - Ke Dong
- College of Natural Sciences, Kyonggi University, South Korea.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
209
|
Franceschi T, Durieux E, Morel AP, de Saint Hilaire P, Ray-Coquard I, Puisieux A, Devouassoux-Shisheboran M. Role of epithelial–mesenchymal transition factors in the histogenesis of uterine carcinomas. Virchows Arch 2019; 475:85-94. [DOI: 10.1007/s00428-019-02532-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
|
210
|
Feng S, Cai X, Li Y, Jian X, Zhang L, Li B. Tripartite motif-containing 14 (TRIM14) promotes epithelial-mesenchymal transition via ZEB2 in glioblastoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:57. [PMID: 30728039 PMCID: PMC6364431 DOI: 10.1186/s13046-019-1070-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several members of the tripartite motif-containing (TRIM) protein family have been reported to serve as vital regulators of tumorigenesis. Recent studies have demonstrated an oncogenic role of TRIM 14 in multiple human cancers; however, the importance of this protein in glioblastoma remains to be elucidated. METHODS The expression levels of TRIM14 were analyzed in a series of database and were examined in a variety of glioblastoma cell lines. Two independent TRIM14 shRNA were transfected into LN229 and U251 cells, and the effect of TRIM14 depletion was confirmed. Transwell assay and wound healing assay assay were carried out to assess the effect of TRIM14 depletion on glioblastoma cell invasion and migration. Western blotting was performed to screen the downstream gene of TRIM14. The stability analysis and Ubiquitylation assays and Orthotopic xenograft studies were also performed to investigate the role of TRIM14 and the relationship with downstream gene. Human glioblastoma tissues were obtained and immunohistochemical staining were carried out to confirm the clinical significance of TRIM14. RESULTS In this study, we showed that TRIM14 was upregulated in human glioblastoma specimens and cell lines, and correlated with glioblastoma progression and shorter patient survival times. Functional experiments showed that decreased TRIM14 expression reduced glioblastoma cell invasion and migration. Furthermore, we identified that zinc finger E-box binding homeobox 2 (ZEB2), a transcription factor involved in epithelial-mesenchymal transition, is a downstream target of TRIM14. Further investigation revealed that TRIM14 inactivation significantly facilitated ZEB2 ubiquitination and proteasomal degradation, which led to aggressive invasion and migration. Our findings provide insight into the specific biological role of TRIM14 in tumor invasion. CONCLUSIONS Our findings provide insight into the specific biological role of TRIM14 in tumor invasion, and suggest that targeting the TRIM14/ZEB2 axis might be a novel therapeutic approach for blocking glioblastoma.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaomin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoguang Jian
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Linxin Zhang
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin Li
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
211
|
ERK2 regulates epithelial-to-mesenchymal plasticity through DOCK10-dependent Rac1/FoxO1 activation. Proc Natl Acad Sci U S A 2019; 116:2967-2976. [PMID: 30728292 DOI: 10.1073/pnas.1811923116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ERK is a key coordinator of the epithelial-to-mesenchymal transition (EMT) in that a variety of EMT-inducing factors activate signaling pathways that converge on ERK to regulate EMT transcription programs. However, the mechanisms by which ERK controls the EMT program are not well understood. Through an analysis of the global changes of gene expression mediated by ERK2, we identified the transcription factor FoxO1 as a potential mediator of ERK2-induced EMT, and thus we investigated the mechanism by which ERK2 regulates FoxO1. Additionally, our analysis revealed that ERK2 induced the expression of Dock10, a Rac1/Cdc42 GEF, during EMT. We demonstrate that the activation of the Rac1/JNK signaling axis downstream of Dock10 leads to an increase in FoxO1 expression and EMT. Taken together, our study uncovers mechanisms by which epithelial cells acquire less proliferative but more migratory mesenchymal properties and reveals potential therapeutic targets for cancers evolving into a metastatic disease state.
Collapse
|
212
|
Deng W, Fernandez A, McLaughlin SL, Klinke DJ. WNT1-inducible signaling pathway protein 1 (WISP1/CCN4) stimulates melanoma invasion and metastasis by promoting the epithelial-mesenchymal transition. J Biol Chem 2019; 294:5261-5280. [PMID: 30723155 DOI: 10.1074/jbc.ra118.006122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/26/2019] [Indexed: 01/03/2023] Open
Abstract
Besides intrinsic changes, malignant cells also release soluble signals that reshape their microenvironment. Among these signals is WNT1-inducible signaling pathway protein 1 (WISP1), a secreted matricellular protein whose expression is elevated in several cancers, including melanoma, and is associated with reduced survival of patients diagnosed with primary melanoma. Here, we found that WISP1 knockout increases cell proliferation and represses wound healing, migration, and invasion of mouse and human melanoma cells in multiple in vitro assays. Metastasis assays revealed that WISP1 knockout represses tumor metastasis of B16F10 and YUMM1.7 melanoma cells in both C57BL/6Ncrl and NOD-scid IL2Rγnull (NSG) mice. WT B16F10 cells having an invasion phenotype in a transwell assay possessed a gene expression signature similar to that observed in the epithelial-mesenchymal transition (EMT), including E-cadherin repression and fibronectin and N-cadherin induction. Upon WISP1 knockout, expression of these EMT signature genes went in the opposite direction in both mouse and human cell lines, and EMT-associated gene expression was restored upon exposure to media containing WISP1 or to recombinant WISP1 protein. In vivo, Wisp1 knockout-associated metastasis repression was reversed by the reintroduction of either WISP1 or snail family transcriptional repressor 1 (SNAI1). Experiments testing EMT gene activation and inhibition with recombinant WISP1 or kinase inhibitors in B16F10 and YUMM1.7 cells suggested that WISP1 activates AKT Ser/Thr kinase and that MEK/ERK signaling pathways shift melanoma cells from proliferation to invasion. Our results indicate that WISP1 present within the tumor microenvironment stimulates melanoma invasion and metastasis by promoting an EMT-like process.
Collapse
Affiliation(s)
- Wentao Deng
- From the Department of Microbiology, Immunology, and Cell Biology.,the West Virginia University Cancer Institute
| | - Audry Fernandez
- From the Department of Microbiology, Immunology, and Cell Biology.,the West Virginia University Cancer Institute
| | - Sarah L McLaughlin
- the West Virginia University Cancer Institute.,the Animal Models and Imaging Facility, and
| | - David J Klinke
- From the Department of Microbiology, Immunology, and Cell Biology, .,the West Virginia University Cancer Institute.,the Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26505
| |
Collapse
|
213
|
Smith AG, Macleod KF. Autophagy, cancer stem cells and drug resistance. J Pathol 2019; 247:708-718. [PMID: 30570140 DOI: 10.1002/path.5222] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Autophagy is a cellular survival mechanism that is induced by cancer therapy, among other stresses, and frequently contributes to cancer cell survival during long periods of dormancy and the eventual outgrowth of metastatic disease. Autophagy degrades large cellular structures that, once broken down, contribute to cellular survival through the recycling of their constituent metabolites. However, the extent to which this fuel function of autophagy is key to its role in promoting stemness, dormancy and drug resistance remains to be determined. Other roles for autophagy in determining cell fate more directly through targeted degradation of key transcription factors, such as p53 and FoxO3A, or by enforcing a reversible quiescent growth arrest, are discussed in this review. This review also highlights the need to parse out the roles of different forms of selective autophagy in stemness, CD44 expression and dormancy that, for example, are increasingly being attributed explicitly to mitophagy. The clinical relevance of this work and how an increased understanding of functions of autophagy in stemness, dormancy and drug resistance could be manipulated for increased therapeutic benefit, including eliminating minimal residual disease and preventing metastasis, are discussed. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexandra G Smith
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, USA.,The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Multi-disciplinary Training Grant in Cancer Research, University of Chicago, Chicago, IL, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, USA.,The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Multi-disciplinary Training Grant in Cancer Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
214
|
Perotti V, Baldassari P, Molla A, Nicolini G, Bersani I, Grazia G, Benigni F, Maurichi A, Santinami M, Anichini A, Mortarini R. An actionable axis linking NFATc2 to EZH2 controls the EMT-like program of melanoma cells. Oncogene 2019; 38:4384-4396. [PMID: 30710146 PMCID: PMC6756060 DOI: 10.1038/s41388-019-0729-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
Discovery of new actionable targets and functional networks in melanoma is an urgent need as only a fraction of metastatic patients achieves durable clinical benefit by targeted therapy or immunotherapy approaches. Here we show that NFATc2 expression is associated with an EMT-like transcriptional program and with an invasive melanoma phenotype, as shown by analysis of melanoma cell lines at the mRNA and protein levels, interrogation of the TCGA melanoma dataset and characterization of melanoma lesions by immunohistochemistry. Gene silencing or pharmacological inhibition of NFATc2 downregulated EMT-related genes and AXL, and suppressed c-Myc, FOXM1, and EZH2. Targeting of c-Myc suppressed FOXM1 and EZH2, while targeting of FOXM1 suppressed EZH2. Inhibition of c-Myc, or FOXM1, or EZH2 downregulated EMT-related gene expression, upregulated MITF and suppressed migratory and invasive activity of neoplastic cells. Stable silencing of NFATc2 impaired melanoma cell proliferation in vitro and tumor growth in vivo in SCID mice. In NFATc2+ EZH2+ melanoma cell lines pharmacological co-targeting of NFATc2 and EZH2 exerted strong anti-proliferative and pro-apoptotic activity, irrespective of BRAF or NRAS mutations and of BRAF inhibitor resistance. These results provide preclinical evidence for a role of NFATc2 in shaping the EMT-like melanoma phenotype and reveal a targetable vulnerability associated with NFATc2 and EZH2 expression in melanoma cells belonging to different mutational subsets.
Collapse
Affiliation(s)
- Valentina Perotti
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Paola Baldassari
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Alessandra Molla
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | | | - Ilaria Bersani
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Giulia Grazia
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Fabio Benigni
- HuMabs Biomed, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Roberta Mortarini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy.
| |
Collapse
|
215
|
Cirsiliol Suppressed Epithelial to Mesenchymal Transition in B16F10 Malignant Melanoma Cells through Alteration of the PI3K/Akt/NF-κB Signaling Pathway. Int J Mol Sci 2019; 20:ijms20030608. [PMID: 30708951 PMCID: PMC6386903 DOI: 10.3390/ijms20030608] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is a highly aggressive form of skin cancer which has a propensity for metastasis. Epithelial mesenchymal transition (EMT) plays a primordial role in the progression of metastatic disease. Metastatic melanoma is resistant to conventional therapies. Hence, researchers have been exploring alternative approaches, including the utility of bioactive phytochemicals to manage metastatic disease. In the present study, we investigated the potential of cirsiliol, a flavonoid isolated from Centaurea jacea L., in modulating the aggressive behavior of B16F10 metastatic melanoma cells, including EMT, and associated molecular mechanisms of action. Cirsiliol was found to be effective in restraining the colony formation and migration of fibronectin-induced B16F10 metastatic melanoma cells. Cirsiliol inhibited the activity and expression of matrix metalloproteinase-9 (MMP-9). Cirsiliol also suppressed the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (also known as Akt)/nuclear factor-κB (NF-κB) signaling pathway which, in turn, caused upregulation of E-cadherin and downregulation of N-cadherin, Snail and Twist. Based on these results, cirsiliol may be considered a promising compound against EMT in the therapeutic management of malignant melanoma.
Collapse
|
216
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
217
|
Multilayered Heterogeneity of Glioblastoma Stem Cells: Biological and Clinical Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:1-21. [DOI: 10.1007/978-3-030-14366-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
218
|
Abstract
The Zinc Finger E-box binding homeobox (ZEB1/TCF8 or DeltaEF1) is at the forefront of transcription factors involved in controlling epithelial-to-mesenchymal transitions (EMT). Essentially, EMT allows for the reorganization of epithelial cells to become migratory cells with a mesenchymal phenotype. In addition to ZEB1 being involved in embryonic development, ZEB1 has also been linked to processes involving micro-RNAs, long non-coding RNAs and stem cells. In recent years there has been an accumulation of evidence with regard to ZEB1 in various cancers. Although increased ZEB1 expression has largely been associated with EMT, cancer invasion, and tumorigenicity, there have been some episodic reports that have gone against the traditional reporting of the role of ZEB1. Indicating that the function of ZEB1 and the mechanisms by which ZEB1 facilitates its activities is more complex than was once appreciated. This complexity is further exacerbated by the notion that ZEB1 can act not only as a transcriptional repressor but a transcriptional activator as well. This review seeks to shed light on the complexity of ZEB1 with respect to cancer.
Collapse
Affiliation(s)
- Mecca Madany
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tom Thomas
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Lincoln A Edwards
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
219
|
Löffek S. Transforming of the Tumor Microenvironment: Implications for TGF- β Inhibition in the Context of Immune-Checkpoint Therapy. JOURNAL OF ONCOLOGY 2018; 2018:9732939. [PMID: 30631358 PMCID: PMC6304495 DOI: 10.1155/2018/9732939] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Significant breakthroughs have been achieved in the fields of oncogenic signaling inhibition and particularly immune-checkpoint blockade has triggered substantial enthusiasm during the last decade. Antibody-mediated blockade of negative immune-checkpoint molecules (e.g., PD-1/PD-L1, CTLA-4) has been shown to achieve profound responses in several of solid cancers. Unfortunately, these responses only occur in a subset of patients or, after initial therapy response, these tumors eventually relapse. Thus, elucidating the determinants of intrinsic or therapy-induced resistance is the key to improve outcomes and developing new treatment strategies. Several cytokines and growth factors are involved in the tight regulation of either antitumor immunity or immunosuppressive tumor-promoting inflammation within the tumor microenvironment (TME), of which transforming growth factor beta (TGF-β) is of particular importance. This review will therefore summarize the recent progress that has been made in the understanding of how TGF-β blockade may have the capacity to enhance efficacy of immune-checkpoint therapy which presents a rational strategy to sustain the antitumor inflammatory response to improve response rates in tumor patients. Finally, I will conclude with a comprehensive summary of clinical trials in which TGF-β blockade revealed therapeutic benefit for patients by counteracting tumor relapses.
Collapse
Affiliation(s)
- Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, and the German Cancer Consortium (DKTK), 45147 Essen, Germany
| |
Collapse
|
220
|
Injury and stress responses of adult neural crest-derived cells. Dev Biol 2018; 444 Suppl 1:S356-S365. [DOI: 10.1016/j.ydbio.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
221
|
Kasemeier-Kulesa JC, Kulesa PM. The convergent roles of CD271/p75 in neural crest-derived melanoma plasticity. Dev Biol 2018; 444 Suppl 1:S352-S355. [PMID: 29660313 PMCID: PMC6186201 DOI: 10.1016/j.ydbio.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
The embryonic microenvironment is an important source of signals that promote multipotent cells to adopt a specific fate and direct cells along distinct migratory pathways. Yet, the ability of the embryonic microenvironment to retain multipotent progenitors or reprogram de-differentiated cells is less clear. Mistakes in cell differentiation or migration often result in developmental defects and tumorigenesis, including aggressive cancers that share many characteristics with embryonic progenitor cells. This is a striking feature of the vertebrate neural crest, a multipotent and highly migratory cell population first identified by His (1868) with the potential to metamorphose into aggressive melanoma cancer. In this perspective, we address the roles of CD271/p75 in tumor initiation, phenotype switching and reprogramming of metastatic melanoma and discuss the convergence of these roles in melanoma plasticity.
Collapse
Affiliation(s)
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
222
|
Wang H, Zhang YG, Ma J, Li JC, Zhang J, Yu YQ. Invasiveness-triggered state transition in malignant melanoma cells. J Cell Physiol 2018; 234:5354-5361. [PMID: 30478974 DOI: 10.1002/jcp.27405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/21/2018] [Indexed: 11/05/2022]
Abstract
Cancer cells are considered to have high morphological heterogeneity in human melanoma tissue. Here, we report that epithelial cancer cells are dominant in different development stages of human melanoma tissues. The cellular and molecular mechanisms that maintain melanoma cells in the epithelial state are further investigated in the A2058 cell line. We find that micropore (8 µm) transwell invasion, but not superficial migration in the scratch assay, can induce remarkable morphological changes between epithelial and mesenchymal melanoma cells within 4 days. The morphological switch is associated with dynamic changes of epithelial-mesenchymal transition (EMT) hallmarks E-cadherin and vimentin. Further immunoflurencent staining and co-immunoprecipitation assay showed the uncoupling of the M3 muscarinic acetylcholine receptor (mAChR) and the p75 neurotrophin receptor (p75NTR) in epithelial melanoma cells. Specific knockdown of M3 mAChR by small interfering RNA (siRNA) significantly abrogates the transition of spindle-shaped mesenchymal cells to epithelial cells. Collectively, we report a cellular model of invasiveness-triggered state transition (ITST) in which melanoma cell invasion can induce morphological changes between epithelial and mesenchymal cells. ITST is one of the biological basis for maintaining metastatic melanoma cells in the epithelial state. Furthermore, M3 mAChR receptor-mediated ITST provides a novel therapeutic strategy to inhibit the development of malignant melanoma.
Collapse
Affiliation(s)
- Huan Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan-Guo Zhang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun-Chang Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
223
|
Fürst K, Steder M, Logotheti S, Angerilli A, Spitschak A, Marquardt S, Schumacher T, Engelmann D, Herchenröder O, Rupp RAW, Pützer BM. DNp73-induced degradation of tyrosinase links depigmentation with EMT-driven melanoma progression. Cancer Lett 2018; 442:299-309. [PMID: 30445206 DOI: 10.1016/j.canlet.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 11/26/2022]
Abstract
Melanoma is an aggressive cancer with poor prognosis, requiring personalized management of advanced stages and establishment of molecular markers. Melanomas derive from melanocytes, which specifically express tyrosinase, the rate-limiting enzyme of melanin-synthesis. We demonstrate that melanomas with high levels of DNp73, a cancer-specific variant of the p53 family member p73 and driver of melanoma progression show, in contrast to their less-aggressive low-DNp73 counterparts, hypopigmentation in vivo. Mechanistically, reduced melanin-synthesis is mediated by a DNp73-activated IGF1R/PI3K/AKT axis leading to tyrosinase ER-arrest and proteasomal degradation. Tyrosinase loss triggers reactivation of the EMT signaling cascade, a mesenchymal-like cell phenotype and increased invasiveness. DNp73-induced depigmentation, Slug increase and changes in cell motility are recapitulated in neural crest-derived melanophores of Xenopus embryos, underscoring a previously unnoticed physiological role of tyrosinase as EMT inhibitor. This data provides a mechanism of hypopigmentation accompanying cancer progression, which can be exploited in precision diagnosis of patients with melanoma-associated hypopigmentation (MAH), currently seen as a favorable prognostic factor. The DNp73/IGF1R/Slug signature in colorless lesions might aid to clinically discriminate between patients with MAH-associated metastatic disease and those, where MAH is indeed a sign of regression.
Collapse
Affiliation(s)
- Katharina Fürst
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Marc Steder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Alessandro Angerilli
- Biomedical Center Munich, Molecular Biology, Ludwig-Maximilians-University Munich, 82152, Planegg Martinsried, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Toni Schumacher
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Ralph A W Rupp
- Biomedical Center Munich, Molecular Biology, Ludwig-Maximilians-University Munich, 82152, Planegg Martinsried, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.
| |
Collapse
|
224
|
Tulchinsky E, Demidov O, Kriajevska M, Barlev NA, Imyanitov E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:29-39. [PMID: 30419315 DOI: 10.1016/j.bbcan.2018.10.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/07/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial mesenchymal transition (EMT) is a reversible developmental genetic programme of transdifferentiation of polarised epithelial cells to mesenchymal cells. In cancer, EMT is an important factor of tumour cell plasticity and has received increasing attention for its role in the resistance to conventional and targeted therapies. In this paper we provide an overview of EMT in human malignancies, and discuss contribution of EMT to the development of the resistance to Epidermal Growth Factor Receptor (EGFR)-targeted therapies in non-small cell lung cancer (NSCLC). Patients with the tumours bearing specific mutations in EGFR have a good clinical response to selective EGFR inhibitors, but the resistance inevitably develops. Several mechanisms responsible for the resistance include secondary mutations in the EGFR gene, genetic or non-mutational activation of alternative survival pathways, transdifferentiation of NSCLC to the small cell lung cancer histotype, or formation of resistant tumours with mesenchymal characteristics. Mechanistically, application of an EGFR inhibitor does not kill all cancer cells; some cells survive the exposure to a drug, and undergo genetic evolution towards resistance. Here, we present a theory that these quiescent or slow-proliferating drug-tolerant cell populations, or so-called "persisters", are generated via EMT pathways. We review the EMT-activated mechanisms of cell survival in NSCLC, which include activation of ABC transporters and EMT-associated receptor tyrosine kinase AXL, immune evasion, and epigenetic reprogramming. We propose that therapeutic inhibition of these pathways would eliminate pools of persister cells and prevent or delay cancer recurrence when applied in combination with the agents targeting EGFR.
Collapse
Affiliation(s)
- Eugene Tulchinsky
- Leicester Cancer Research Centre, Leicester University, UK; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia.
| | - Oleg Demidov
- Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | | - Nickolai A Barlev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia; Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | |
Collapse
|
225
|
Sreekumar R, Harris S, Moutasim K, DeMateos R, Patel A, Emo K, White S, Yagci T, Tulchinsky E, Thomas G, Primrose JN, Sayan AE, Mirnezami AH. Assessment of Nuclear ZEB2 as a Biomarker for Colorectal Cancer Outcome and TNM Risk Stratification. JAMA Netw Open 2018; 1:e183115. [PMID: 30646224 PMCID: PMC6324431 DOI: 10.1001/jamanetworkopen.2018.3115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE At present, patients with colorectal cancer (CRC) are risk stratified using TNM histologic features. More recently, an association between a mesenchymal phenotype and a high risk of disease recurrence and micrometastases has been recognized. OBJECTIVE To investigate the association of the epithelial to mesenchymal transition (EMT)-inducing transcription factor ZEB2 (zinc finger E box-binding homeobox 2), survival outcomes, and the efficacy of ZEB2 as a biomarker when added as refinement to TNM staging after curative intent surgery for CRC. DESIGN, SETTING, AND PARTICIPANTS ZEB2 expression was assessed using a previously validated scoring system as part of a prospective, observational, masked diagnostic study from January 1, 2008, to December 31, 2013. Data were prospectively collected and analyzed for association with oncologic outcomes from January 1, 2017, to December 31, 2018. An initial test cohort from an academic university medical center of 126 consecutive patients with CRC and, subsequently, an independent validation cohort of 210 patients were examined. ZEB2 positivity was scored by 2 independent, masked pathologists. External validity was tested using an open access gene expression portal. Nomograms were developed with or without ZEB2. MAIN OUTCOMES AND MEASURES Systemic and local recurrence of CRC. RESULTS The test cohort consisted of 126 consecutive patients (mean [SD] age, 72.7 [11.7] years; 61 [48.4%] male) and the validation cohort of 210 patients (mean [SD] age, 72.0 [10.6] years; 111 [52.9%] male). A total of 52 tumors (41.3%) in the test cohort and 104 (49.5%) in the validation cohort were scored nuclear ZEB2 positive. Survival analysis by the log-rank test found that ZEB2 expression was associated with a significant reduction in overall survival and disease-free survival in both cohorts. Cox proportional hazards regression analysis highlighted ZEB2 as an independent biomarker of shorter overall survival and disease-free survival. Analysis of node-negative disease (n = 222) identified ZEB2 as an independent biomarker of early recurrence and reduced survival. External validation confirmed these findings. Addition of ZEB2 expression to nomograms composed of conventional TNM risk factors improved the ability to identify patients at high risk of recurrence demonstrated by the improvement in concordance index in both test (0.73 to 0.77) and validation (0.82 to 0.87) cohorts. CONCLUSIONS AND RELEVANCE The findings suggest that expression of ZEB2 is associated with poor oncologic outcome and distant recurrence. The study also found that the addition of ZEB2 to existing TNM classification improved the ability to stratify patients for risk of recurrence. The results of this study suggest that addition of ZEB2 expression status to the TNM staging system improves the ability to stratify patients at high risk of recurrence.
Collapse
Affiliation(s)
- Rahul Sreekumar
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Surgery, Southampton University Hospital National Health Service Trust, Southampton, United Kingdom
| | - Scott Harris
- Medical Statistics and Mathematics Department, University of Southampton, Southampton, United Kingdom
| | - Karwan Moutasim
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ricardo DeMateos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ashish Patel
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Katherine Emo
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sophie White
- Department of Surgery, Southampton University Hospital National Health Service Trust, Southampton, United Kingdom
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Turkey
| | - Eugene Tulchinsky
- Department of Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | - Gareth Thomas
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John N. Primrose
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Surgery, Southampton University Hospital National Health Service Trust, Southampton, United Kingdom
| | - A. Emre Sayan
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alex H. Mirnezami
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Surgery, Southampton University Hospital National Health Service Trust, Southampton, United Kingdom
| |
Collapse
|
226
|
Tripathi R, Liu Z, Plattner R. EnABLing Tumor Growth and Progression: Recent progress in unraveling the functions of ABL kinases in solid tumor cells. CURRENT PHARMACOLOGY REPORTS 2018; 4:367-379. [PMID: 30746323 PMCID: PMC6368175 DOI: 10.1007/s40495-018-0149-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize our current knowledge regarding how ABL family kinases are activated in solid tumors and impact on solid tumor development/progression, with a focus on recent advances in the field. RECENT FINDINGS Although ABL kinases are known drivers of human leukemia, emerging data also implicates the kinases in a large number of solid tumor types where they promote diverse processes such as proliferation, survival, cytoskeletal reorganization, cellular polarity, EMT (epithelial-mesenchymal-transition), metabolic reprogramming, migration, invasion and metastasis via unique signaling pathways. ABL1 and ABL2 appear to have overlapping but also unique roles in driving these processes. In some tumor types, the kinases may act to integrate pro- and anti-proliferative and -invasive signals, and also may serve as a switch during EMT/MET (mesenchymal-epithelial) transitions. CONCLUSIONS Most data indicate that targeting ABL kinases may be effective for reducing tumor growth and preventing metastasis; however, ABL kinases also may have a tumor suppressive role in some tumor types and in some cellular contexts. Understanding the functions of ABL kinases in solid tumors is critical for developing successful clinical trials aimed at targeting ABL kinases for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rakshamani Tripathi
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, Kentucky 40536
| | - Zulong Liu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, Kentucky 40536
| | - Rina Plattner
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
227
|
Hutchinson PE, Halsall JA, Popovici S, Papadogeorgakis E, Osborne JE, Powley IR, Dasari D, Saldanha G, Pringle JH. Compromised vitamin D receptor signalling in malignant melanoma is associated with tumour progression and mitogen-activated protein kinase activity. Melanoma Res 2018; 28:410-422. [PMID: 30004989 DOI: 10.1097/cmr.0000000000000475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aims of this study were to investigate, in cutaneous malignant melanoma (MM), the integrity of nuclear vitamin D receptor (VDR) signalling, as implied by VDR subcellular location; to investigate the relationship between VDR and tumour progression and the inhibitory effect on VDR by mitogen-activated protein kinase (MAPK) overactivity. Archived tissue from 34 benign melanocytic naevi, 149 MMs and 44 matched metastases were stained by immunohistochemistry for VDR and a subset of primary MMs were stained for phosphorylated-extracellular signal-regulated kinase as a marker of MAPK activity. MM cell lines were investigated to show the subcellular location of VDR and cell viability in response to ligand±MAPK inhibitor. Benign melanocytic naevi showed mainly a strong nuclear VDR staining in contrast to MM where decreased nuclear and emergent cytoplasmic VDRs were associated with malignant progression in terms of dermal invasion and metastasis. MMs that retained exclusive nuclear VDR at the tumour base did not metastasize, a potentially important prognostic indicator. Decreased nuclear VDR correlated with increased cytoplasmic staining, suggesting the failure of nuclear entry as a primary cause of defective VDR signalling in MM. The histological subset analysis and MM cell line studies confirmed the inhibitory effect of MAPK activity on VDR signalling, but the pattern of VDR subcellular localization suggested failure of VDR nuclear entry as a primary effect of MAPK activity rather than direct inhibition of VDR-regulated transcription. Furthermore, high MAPK activity in tumours expressing cytoplasmic VDR was associated with worsened prognosis.
Collapse
Affiliation(s)
- Peter E Hutchinson
- Department of Dermatology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - John A Halsall
- Leicester Cancer Research Centre, University of Leicester
| | | | | | - Joy E Osborne
- Department of Dermatology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Ian R Powley
- Leicester Cancer Research Centre, University of Leicester
| | - Deepthi Dasari
- Leicester Cancer Research Centre, University of Leicester
| | | | | |
Collapse
|
228
|
Wu H, Larribère L, Sun Q, Novak D, Sachindra S, Granados K, Umansky V, Utikal J. Loss of neural crest-associated gene FOXD1 impairs melanoma invasion and migration via RAC1B downregulation. Int J Cancer 2018; 143:2962-2972. [PMID: 30110134 DOI: 10.1002/ijc.31799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/04/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
Recent studies suggest that malignant melanoma heterogeneity includes subpopulations of cells with features of multipotent neural crest (NC) cells. Zebrafish and mouse models have shown that reactivation of neural crest-specific pathways during transformation determines the invasiveness of melanoma cells. In our study, we show that the neural crest-associated transcription factor FOXD1 plays a key role in the invasion and the migration capacities of metastatic melanomas both in vivo and in vitro. Gene expression profiling analysis identified both an upregulation of FOXD1 in NC and melanoma cells, as well as a downregulation of several genes related to cell invasion in FOXD1 knockdown cells, including MMP9 and RAC1B. Furthermore, we demonstrate that knockdown of RAC1B a tumor-specific isoform of RAC1, significantly impaired melanoma cell migration and invasion and could abrogate enhanced invasiveness induced by FOXD1 overexpression. We conclude that FOXD1 may influence invasion and migration via indirect regulation of MMP9 and RAC1B alternative splicing in melanoma cells.
Collapse
Affiliation(s)
- Huizi Wu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Qian Sun
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Sachindra Sachindra
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
229
|
Lysosomal acid ceramidase ASAH1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene 2018; 38:1282-1295. [PMID: 30254208 DOI: 10.1038/s41388-018-0500-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/25/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023]
Abstract
Phenotypic plasticity and subsequent generation of intratumoral heterogeneity underly key traits in malignant melanoma such as drug resistance and metastasis. Melanoma plasticity promotes a switch between proliferative and invasive phenotypes characterized by different transcriptional programs of which MITF is a critical regulator. Here, we show that the acid ceramidase ASAH1, which controls sphingolipid metabolism, acted as a rheostat of the phenotypic switch in melanoma cells. Low ASAH1 expression was associated with an invasive behavior mediated by activation of the integrin alphavbeta5-FAK signaling cascade. In line with that, human melanoma biopsies revealed heterogeneous staining of ASAH1 and low ASAH1 expression at the melanoma invasive front. We also identified ASAH1 as a new target of MITF, thereby involving MITF in the regulation of sphingolipid metabolism. Together, our findings provide new cues to the mechanisms underlying the phenotypic plasticity of melanoma cells and identify new anti-metastatic targets.
Collapse
|
230
|
Wicklein D, Otto B, Suling A, Elies E, Lüers G, Lange T, Feldhaus S, Maar H, Schröder-Schwarz J, Brunner G, Wagener C, Schumacher U. CEACAM1 promotes melanoma metastasis and is involved in the regulation of the EMT associated gene network in melanoma cells. Sci Rep 2018; 8:11893. [PMID: 30089785 PMCID: PMC6082866 DOI: 10.1038/s41598-018-30338-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
We investigated the functional role of CEACAM1 in a spontaneous metastasis xenograft model of human melanoma in scid mice using BRAF wildtype MeWo cells with and without RNAi mediated knockdown of CEACAM1. Tumors from the xenograft model were subjected to whole genome expression analysis and metastasis was quantified histologically. Results and identified markers were verified using tissue samples of over 100 melanoma patients. Knockdown of CEACAM1 prolonged the animals' survival by significantly reducing subcutaneous growth of MeWo tumors and spontaneous lung metastasis. Microarray analysis revealed a strong influence of CEACAM1 knockdown on the network of EMT associated genes in the xenograft tumors (e.g. downregulation of BRAF, FOSL1, NRAS and TWIST). IGFBP7 and Latexin (highest up- and downregulated expression in microarray analysis) were found to be associated with longer and shorter survival, respectively, of melanoma patients. High FOSL1 and altered TWIST1 expression were found to be correlated with shortened survival in the cohort of melanoma patients. After a stepwise selection procedure combining above markers, multivariate analysis revealed IGFBP7, Latexin and altered TWIST to be prognostic markers for death. CEACAM1 could be a target for melanoma therapy as an alternative to (or in combination with) immune checkpoint and BRAF inhibitors.
Collapse
Affiliation(s)
- Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Benjamin Otto
- Eppendorf AG, Hamburg, Germany
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Suling
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Elies
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Lüers
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Brunner
- Department of Cancer Research, Fachklinik Hornheide, Münster, Germany
- NeraCare GmbH, Bönen, Germany
| | - Christoph Wagener
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
231
|
Han Y, Li X, Ma C, Ji X, Li T, Zheng X, Zhang J, Yan J, Zhang D, Bai J. Seed targeting with tiny anti-miR-1297 inhibits EMT in melanoma cells. J Drug Target 2018; 27:75-81. [PMID: 29873263 DOI: 10.1080/1061186x.2018.1481412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that have tissue- and cell-specific expression. They have the ability to regulate the malignant proliferation and transformation of tumour cells. The research focussed on the expression and role of miR-1297 in melanoma. We firstly found that miR-1297 is up-regulated in melanoma tissues and cell lines. Functionally, phosphatase and tension homology deleted on chromsome ten gene (PTEN) was used as a potential target for miR-1297 and detected using Western blotting and immunohistochemistry (IHC). We then used chemical synthesis of anti-miR1297 to explore the influence on melanoma cells and examined the effects on A375 cell proliferation using MTT and western blotting methods. The results showed that anti-miR-1297 transfected A375 cells could inhibit the growth. Furthermore, transfection with anti-miR-1297 reduced PTEN protein expression and partially restrained A375 cells proliferation, migration and reversed Epithelial-Mesenchymal Transition (EMT) progression. In conclusion, we tentatively put forward that miR-1297 might be the key oncomiR in melanoma, and seed-targeted anti-miR-1297 might serve as a new tactic for miR-1297-based therapies.
Collapse
Affiliation(s)
- Y Han
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - X Li
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - C Ma
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - X Ji
- b Department of Basic Medicine , Henan University , Kaifeng , China
| | - T Li
- b Department of Basic Medicine , Henan University , Kaifeng , China
| | - X Zheng
- c Hospital Infection Control Office , First Affiliated Hospital of Henan University , Kaifeng , China
| | - J Zhang
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - J Yan
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - D Zhang
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - J Bai
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| |
Collapse
|
232
|
RAC1-GTP promotes epithelial-mesenchymal transition and invasion of colorectal cancer by activation of STAT3. J Transl Med 2018; 98:989-998. [PMID: 29884911 DOI: 10.1038/s41374-018-0071-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in initiating tumor invasion and metastasis of colorectal cancer (CRC), although the underlying mechanisms remain to be clarified. Herein, we demonstrate that the active form of Rac family small GTPase 1 (RAC1-GTP) is overexpressed in CRCs and promotes the EMT-mediated invasion of CRC cells through activation of the signal transducers and activators of transcription 3 (STAT3) pathway. Increased expression of RAC1-GTP in CRC tissues was positively correlated with the TNM stages of CRCs and indicated poor prognosis of CRC patients. Targeting RAC1-GTP activity by its specific inhibitor NSC23766 markedly suppressed the migration and invasion of CRC cells. Mechanistically, RAC1-GTP directly interacted with STAT3 to promote STAT3 phosphorylation, thus promoted EMT of CRC cells. Enforced expression of constitutively activated STAT3 (STAT3-C) abrogated the suppressive effect of RAC1-GTP disruption on the migration and invasion of CRC cells. Importantly, NSC23766 disrupted EMT in CRC cells and significantly diminished growth of CRC xenografts. Taken together, our data indicate that RAC1-GTP is an important player in EMT-mediated tumor invasion and a potential therapeutic target for CRCs.
Collapse
|
233
|
Balcik-Ercin P, Cetin M, Yalim-Camci I, Odabas G, Tokay N, Sayan AE, Yagci T. Genome-wide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors. Cell Oncol (Dordr) 2018; 41:379-393. [PMID: 29516288 DOI: 10.1007/s13402-018-0375-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND ZEB2 is a transcriptional repressor that regulates epithelial-to-mesenchymal transition (EMT) through binding to bipartite E-box motifs in gene regulatory regions. Despite the abundant presence of E-boxes within the human genome and the multiplicity of pathophysiological processes regulated during ZEB2-induced EMT, only a small fraction of ZEB2 targets has been identified so far. Hence, we explored genome-wide ZEB2 binding by chromatin immunoprecipitation-sequencing (ChIP-seq) under endogenous ZEB2 expression conditions. METHODS For ChIP-Seq we used an anti-ZEB2 monoclonal antibody, clone 6E5, in SNU398 hepatocellular carcinoma cells exhibiting a high endogenous ZEB2 expression. The ChIP-Seq targets were validated using ChIP-qPCR, whereas ZEB2-dependent expression of target genes was assessed by RT-qPCR and Western blotting in shRNA-mediated ZEB2 silenced SNU398 cells and doxycycline-induced ZEB2 overexpressing colorectal carcinoma DLD1 cells. Changes in target gene expression were also assessed using primary human tumor cDNA arrays in conjunction with RT-qPCR. Additional differential expression and correlation analyses were performed using expO and Human Protein Atlas datasets. RESULTS Over 500 ChIP-Seq positive genes were annotated, and intervals related to these genes were found to include the ZEB2 binding motif CACCTG according to TOMTOM motif analysis in the MEME Suite database. Assessment of ZEB2-dependent expression of target genes in ZEB2-silenced SNU398 cells and ZEB2-induced DLD1 cells revealed that the GALNT3 gene serves as a ZEB2 target with the highest, but inversely correlated, expression level. Remarkably, GALNT3 also exhibited the highest enrichment in the ChIP-qPCR validation assays. Through the analyses of primary tumor cDNA arrays and expO datasets a significant differential expression and a significant inverse correlation between ZEB2 and GALNT3 expression were detected in most of the tumors. We also explored ZEB2 and GALNT3 protein expression using the Human Protein Atlas dataset and, again, observed an inverse correlation in all analyzed tumor types, except malignant melanoma. In contrast to a generally negative or weak ZEB2 expression, we found that most tumor tissues exhibited a strong or moderate GALNT3 expression. CONCLUSIONS Our observation that ZEB2 negatively regulates a GalNAc-transferase (GALNT3) that is involved in O-glycosylation adds another layer of complexity to the role of ZEB2 in cancer progression and metastasis. Proteins glycosylated by GALNT3 may be exploited as novel diagnostics and/or therapeutic targets.
Collapse
Affiliation(s)
- Pelin Balcik-Ercin
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Metin Cetin
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Irem Yalim-Camci
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Gorkem Odabas
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Nurettin Tokay
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - A Emre Sayan
- Faculty of Medicine, Cancer Sciences, University of Southampton, Somers Building, Tremona Road, Southampton, SO16 6YD, UK
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey.
| |
Collapse
|
234
|
Fornabaio G, Barnhill RL, Lugassy C, Bentolila LA, Cassoux N, Roman-Roman S, Alsafadi S, Del Bene F. Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model. Sci Rep 2018; 8:10448. [PMID: 29992995 PMCID: PMC6041265 DOI: 10.1038/s41598-018-28515-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/21/2018] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive cancer with a propensity for distant metastasis to various organs. In contrast, melanoma arising in pigmented uveal layers of the eye metastasizes mostly in the liver. The mechanisms of these metastases, which are ultimately resistant to therapy, are still unclear. Metastasis via intravascular dissemination of tumour cells is widely accepted as a central paradigm. However, we have previously described an alternative mode of tumour dissemination, extravascular migratory metastasis, based on clinical and experimental data. This mechanism is characterised by the interaction of cancer cells with the abluminal vascular surface, which defines angiotropism. Here, we employed our 3D co-culture approach to monitor cutaneous and uveal human melanoma cells dynamics in presence of vascular tubules. Using time-lapse microscopy, we evaluated angiotropism, the migration of tumour cells along vascular tubules and the morphological changes occurring during these processes. Cutaneous and uveal melanoma cells were injected in zebrafish embryos in order to develop xenografts. Employing in vivo imaging coupled with 3D reconstruction, we monitored the interactions between cancer cells and the external surface of zebrafish vessels. Overall, our results indicate that cutaneous and uveal melanoma cells spread similarly along the abluminal vascular surfaces, in vitro and in vivo.
Collapse
Affiliation(s)
- Giulia Fornabaio
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR315, F-75005, Paris, France
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France
- Sorbonne Universités, UPMC University Paris 6, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Raymond L Barnhill
- Institut Curie, PSL Research University, Department of Pathology, F-75005, Paris, France
- Faculty of Medicine, University of Paris René Descartes, F-75006, Paris, France
| | - Claire Lugassy
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France
| | - Laurent A Bentolila
- California NanoSystems Institute, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Nathalie Cassoux
- Faculty of Medicine, University of Paris René Descartes, F-75006, Paris, France
- Institut Curie, PSL Research University, Department of Ophthalmology, F-75005, Paris, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR315, F-75005, Paris, France.
- Institut Curie, PSL Research University, Department of Translational Research, F-75005, Paris, France.
| |
Collapse
|
235
|
Mitotic polarization of transcription factors during asymmetric division establishes fate of forming cancer cells. Nat Commun 2018; 9:2424. [PMID: 29930325 PMCID: PMC6013470 DOI: 10.1038/s41467-018-04663-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
A model of K-Ras-initiated lung cancer was used to follow the transition of precancerous adenoma to adenocarcinoma. In hypoxic, Tgf-β1-rich interiors of adenomas, we show that adenoma cells divide asymmetrically to produce cancer-generating cells highlighted by epithelial mesenchymal transition and a CD44/Zeb1 loop. In these cells, Zeb1 represses the Smad inhibitor Zeb2/Sip1, causing Pten loss and launching Tgf-β1 signaling that drives nuclear translocation of Yap1. Surprisingly, the nuclear polarization of transcription factors during mitosis establishes parent and daughter fates prior to cytokinesis in sequential asymmetric divisions that generate cancer cells from precancerous lesions. Mutation or knockdown of Zeb1 in the lung blocked the production of CD44hi, Zeb1hi cancer-generating cells from adenoma cells. A CD44/Zeb1 loop then initiates two-step transition of precancerous cells to cancer cells via a stable intermediate population of cancer-generating cells. We show these initial cancer-generating cells are independent of cancer stem cells generated in tumors by p53-regulated reprogramming of existing cancer cells. Transition from premalignant lesion to cancer cell highlights tumor initiation. Here, the authors use a model of K-Ras-initiated lung cancer to document two successive asymmetric divisions, each driven by mitotic polarization of key transcription factors, which lead to generation of initial cancer cells.
Collapse
|
236
|
Brown CY, Dayan S, Wong SW, Kaczmarek A, Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ, Barry SC. FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1. Oncotarget 2018; 9:27708-27727. [PMID: 29963231 PMCID: PMC6021232 DOI: 10.18632/oncotarget.25523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.
Collapse
Affiliation(s)
- Cheryl Y. Brown
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Sonia Dayan
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Soon Wei Wong
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Adrian Kaczmarek
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christopher M. Hope
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
| | - Stephen M. Pederson
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Victoria Arnet
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Gregory J. Goodall
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Darryl Russell
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Timothy J. Sadlon
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Simon C. Barry
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| |
Collapse
|
237
|
Wang Y, Luo Y, Guan W, Zhao H. Role of miR-23a/Zeb1 negative feedback loop in regulating epithelial-mesenchymal transition and tumorigenicity of intraocular tumors. Oncol Lett 2018; 16:2462-2470. [PMID: 30013638 PMCID: PMC6036585 DOI: 10.3892/ol.2018.8940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Role of the two-way negative feedback regulation channel formed by miR-23a and Zeb1 in epithelial-mesenchymal transition (EMT), tumorigenic ability, and migration and metastasis capacity of the intraocular malignant tumor cells was investigated. Molecular biological methods such as real time-quantitative PCR (RT-qPCR), immunoblotting method, and immunofluorescence were used to detect the expression levels of mRNA and protein in the Zeb1 factor in OCM-1, WERI-RB1, and Y79 cells before and after miR-23a transfection. Transwell cells were used to detect the in vitro membrane permeation and migration ability in OCM-1, WERI-RB1, and Y79 cells (non-transfection group, blank control transfection group, mimic transfection group, inhibitor transfection group). The results revealed that the relative expression of miR-23a in the cells in the miR-23a mimic transfection group increased significantly compared with that in the control group (p<0.05). There were significant differences in the relative expression of mRNA between the mimic transfection and control group (p<0.05). RT-qPCR detection showed that the relative expression of mRNA of the epithelial-labeled factor E-cadherin increased significantly in the miR-23a mimics group (p<0.05). Expression of the protein E-cadherin increased while the expression of the mesenchyme-labeled proteins of vimentin and N-cadherin decreased in the mimics group. Zeb1 has a negative feedback effect on miR-23a. They can form a negative feedback loop. The results showed that miR-23a and Zeb1 form a bidirectional inhibitory negative feedback loop, which plays an important role in regulating EMT. In conclusion, the significant changes in the mesenchymal phenotype of the stable strains with Zeb1 overexpressed in the OCM-1 cells cannot be completely explained with the changes in cytoskeleton caused by EMT.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Yunna Luo
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Wenying Guan
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Haixia Zhao
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| |
Collapse
|
238
|
Sinnberg T, Niessner H, Levesque MP, Dettweiler C, Garbe C, Busch C. Embryonic bone morphogenetic protein and nodal induce invasion in melanocytes and melanoma cells. Biol Open 2018; 7:bio.032656. [PMID: 29716947 PMCID: PMC6031345 DOI: 10.1242/bio.032656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress in melanoma therapy via inhibition of activated oncogenes or immune stimulation, most stage IV melanoma patients still have limited survival times. Existing therapeutic approaches eventually fail to prevent further invasion and metastasis, which is driven by a morphological process termed epithelial-mesenchymal transition (EMT). We previously demonstrated that inhibition of EMT in melanoma cells via antagonizing the bone morphogenetic protein (BMP)-pathway abrogated EMT and neural crest migration of melanoma cells in chick embryos. Here, we show that BMP-2 is highly expressed in invasive melanoma cells and is elevated in the serum of stage IV melanoma patients compared to stage IB-IIC patients and healthy controls. Highly BMP-2-expressing melanoma cells display enhanced invasion in the rhombencephalon of the chick embryo. In addition to driving neural crest migration in the zebrafish embryo, the agonists BMP-2, BMP-7 and nodal induce EMT/invasion in radial growth phase melanoma cells and in human melanocytes in skin reconstructs. Blocking either BMP or nodal signaling by antagonists (noggin, lefty), or the Alk4/5/7-receptor inhibitor SB431542, decreases EMT and invasion of melanoma cells in human epidermal skin reconstructs. Together, our data suggest that inhibition of EMT-inducing pathways in melanoma might be a therapeutic approach to attenuate melanoma cell invasiveness. Summary: We show that bone morphogenetic protein and nodal drive epithelial-mesenchymal transition (EMT) and invasiveness in melanoma cells, induce EMT and a melanoma-like invasive phenotype in melanocytes.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Heike Niessner
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Mitchell P Levesque
- Department of Dermatology, UniversitaetsSpital Zuerich, Gloriastrasse 31, 8091 Zuerich, Switzerland
| | - Christoph Dettweiler
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Claus Garbe
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| | - Christian Busch
- Section of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Liebermeisterstrasse 25, 72076 Tuebingen, Germany
| |
Collapse
|
239
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, Kolesnikova M, Jowdy P, Polechetti A, Mahpour A, Ross J, Wawrzyniak JA, Yun DH, Paragh G, Kozlova NI, Berman AE, Wang J, Liu S, Nemeth MJ, Nikiforov MA. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1. Cell Rep 2018; 20:2820-2832. [PMID: 28930679 DOI: 10.1016/j.celrep.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas) or repress (in melanoma) transcription of the N-cadherin gene (CDH2). We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amin Mahpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason Ross
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
240
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
241
|
Cutaneous Melanoma-A Long Road from Experimental Models to Clinical Outcome: A Review. Int J Mol Sci 2018; 19:ijms19061566. [PMID: 29795011 PMCID: PMC6032347 DOI: 10.3390/ijms19061566] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a complex disorder characterized by an elevated degree of heterogeneity, features that place it among the most aggressive types of cancer. Although significant progress was recorded in both the understanding of melanoma biology and genetics, and in therapeutic approaches, this malignancy still represents a major problem worldwide due to its high incidence and the lack of a curative treatment for advanced stages. This review offers a survey of the most recent information available regarding the melanoma epidemiology, etiology, and genetic profile. Also discussed was the topic of cutaneous melanoma murine models outlining the role of these models in understanding the molecular pathways involved in melanoma initiation, progression, and metastasis.
Collapse
|
242
|
Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, Wong DJL, Atefi M, Shirazi R, Wang X, Braas D, Grasso CS, Palaskas N, Ribas A, Graeber TG. Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell 2018; 33:890-904.e5. [PMID: 29657129 PMCID: PMC5953834 DOI: 10.1016/j.ccell.2018.03.017] [Citation(s) in RCA: 563] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/01/2017] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Malignant transformation can result in melanoma cells that resemble different stages of their embryonic development. Our gene expression analysis of human melanoma cell lines and patient tumors revealed that melanoma follows a two-dimensional differentiation trajectory that can be subclassified into four progressive subtypes. This differentiation model is associated with subtype-specific sensitivity to iron-dependent oxidative stress and cell death known as ferroptosis. Receptor tyrosine kinase-mediated resistance to mitogen-activated protein kinase targeted therapies and activation of the inflammatory signaling associated with immune therapy involves transitions along this differentiation trajectory, which lead to increased sensitivity to ferroptosis. Therefore, ferroptosis-inducing drugs present an orthogonal therapeutic approach to target the differentiation plasticity of melanoma cells to increase the efficacy of targeted and immune therapies.
Collapse
Affiliation(s)
- Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Lidia Robert
- Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kim Paraiso
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Carlos Galvan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Katherine M Sheu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Johnson Lay
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; UCLA Metabolomics Center, Los Angeles, CA 90095, USA
| | | | - Mohammad Atefi
- Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Roksana Shirazi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Department of Medicine Statistics Core, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; UCLA Metabolomics Center, Los Angeles, CA 90095, USA
| | | | - Nicolaos Palaskas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Department of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Surgery, Division of Surgical-Oncology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; UCLA Metabolomics Center, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
243
|
Feng Y, Liu J, Guo W, Guan Y, Xu H, Guo Q, Song X, Yi F, Liu T, Zhang W, Dong X, Cao LL, O'Rourke BP, Cao L. Atg7 inhibits Warburg effect by suppressing PKM2 phosphorylation resulting reduced epithelial-mesenchymal transition. Int J Biol Sci 2018; 14:775-783. [PMID: 29910687 PMCID: PMC6001680 DOI: 10.7150/ijbs.26077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/16/2018] [Indexed: 12/26/2022] Open
Abstract
Metabolic reprogramming is a distinct hallmark in tumorigenesis. Autophagy can rewire cell metabolism by regulating intracellular homeostasis. Warburg effect is a specific energy metabolic process that allows tumor cells to metabolize glucose via glycolysis into lactate even in the presence of oxygen. Although both autophagy and Warburg effect are involved in the stress response to energy crisis in tumor cells, their molecular relationship has remained largely elusive. We found that Atg7, a key molecule involved in autophagy, inhibits the Warburg effect. Mechanistically, Atg7 binds PKM2 and prevents its Tyr-105 phosphorylation by FGFR1. Furthermore, the hyperphosphorylation of PKM2 and its induced Warburg effect due to Atg7 deficiency promote epithelial-mesenchymal transition (EMT). Conversely, overexpression of Atg7 inhibits PKM2 phosphorylation and the Warburg effect, thereby inhibiting EMT of tumor cells. Our work reveals a molecular link between Atg7 and the Warburg effect, which may provide insight into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Yanling Feng
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Wendong Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Yi Guan
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ting Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Wenyu Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiang Dong
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Longyue L. Cao
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Brian P. O'Rourke
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
244
|
Huang YX, Song H, Tao Y, Shao XB, Zeng XS, Xu XL, Qi JL, Sun JF. Ovostatin 2 knockdown significantly inhibits the growth, migration, and tumorigenicity of cutaneous malignant melanoma cells. PLoS One 2018; 13:e0195610. [PMID: 29684087 PMCID: PMC5912766 DOI: 10.1371/journal.pone.0195610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We previously identified ovostatin 2 (OVOS2) as a new candidate gene for cutaneous malignant melanoma (CMM) in a Chinese population. In this study, we aimed to investigate the exact role of OVOS2 in cell proliferation, invasion, and tumorigenesis of melanoma A375 cells. METHODS The downregulation of OVOS2 expression was performed using lentiviral vectors with specific shRNA. The effects of OVOS2 expression on cell proliferation, cell cycle, cell migration, cell invasion, and potential of tumorigenesis were further investigated. RESULTS The downregulation of OVOS2 significantly suppressed the proliferation of A375 cells and led to a G2/M phase block. The transwell cell migration assay showed that the reduced expression of OVOS2 also significantly inhibited the transmigration of A375 cells. The western blot results showed downregulated expression of p-FAK, p-AKT, and p-ERK. This was accompanied by the upregulated epithelial phenotypes E-cadherin and β-catenin, and downregulated expression of mesenchymal phenotype N-cadherin after OVOS2 knockdown. The transplantation tumor experiment in BALB/C nude mouse showed that after an observation period of 32 days, the growth speed and weight of the transplanted tumors were significantly suppressed in the BALB/c nude mice subcutaneously injected with OVOS2 knocked-down A375 cells. CONCLUSION The inhibition of OVOS2 had significant suppressive effects on the proliferation, motility, and migration capabilities of A375 cells, suggesting a crucial promotive role of OVOS2 in the pathogenesis and progression of CMM. The involved mechanisms are at least partly associated with the overactivation of FAK/MAPK/ERK and FAK/PI3K/AKT signals.
Collapse
Affiliation(s)
- Ying-Xue Huang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Hao Song
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Yue Tao
- Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China
| | - Xue-Bao Shao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Xue-Si Zeng
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Xiu-Lian Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Jian-Fang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| |
Collapse
|
245
|
Living on the Edge: Diagnosing Sarcomatoid Melanoma Using Histopathologic Cues at the Edge of a Dedifferentiated Tumor: A Report of 2 Cases and Review of the Literature. Am J Dermatopathol 2018; 39:593-598. [PMID: 27655123 DOI: 10.1097/dad.0000000000000716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sarcomatoid melanoma is a rare type of melanoma lacking typical histologic features of melanoma and often lacks expression of S100 protein and melanocyte-specific markers. Given the rarity of this entity, its clinicopathologic findings are not well defined. We report 2 cases of sarcomatoid melanoma received in consultation: a 65-year-old woman with a right breast mass and a 62-year-old man with a left plantar heel mass. Both lesions were ulcerated, pedunculated, highly cellular proliferations of atypical spindle cells arranged as fascicles and/or sheets. The tumor cells of the breast mass expressed CD10 and vimentin diffusely but S100 protein only focally. The tumor cells of the heel mass lacked expression of melanocytic markers altogether, except for weak, very focal S100 protein expression. At the junctional edge of the breast mass and in the ulcer base of the heel mass, focal precursor melanoma was present and exhibited melanocytic differentiation. We report these cases to emphasize the importance of meticulous histologic inspection at the lesion's edge and/or ulcer base to correctly identify the conventional precursor melanoma in these rare lesions to ensure appropriate diagnosis and subsequent clinical management as treatment options may be significantly different from those offered for sarcomas.
Collapse
|
246
|
Vitiello M, Tuccoli A, D'Aurizio R, Sarti S, Giannecchini L, Lubrano S, Marranci A, Evangelista M, Peppicelli S, Ippolito C, Barravecchia I, Guzzolino E, Montagnani V, Gowen M, Mercoledi E, Mercatanti A, Comelli L, Gurrieri S, Wu LW, Ope O, Flaherty K, Boland GM, Hammond MR, Kwong L, Chiariello M, Stecca B, Zhang G, Salvetti A, Angeloni D, Pitto L, Calorini L, Chiorino G, Pellegrini M, Herlyn M, Osman I, Poliseno L. Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget 2018; 8:25395-25417. [PMID: 28445987 PMCID: PMC5421939 DOI: 10.18632/oncotarget.15915] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Despite increasing amounts of experimental evidence depicting the involvement of non-coding RNAs in cancer, the study of BRAFV600E-regulated genes has thus far focused mainly on protein-coding ones. Here, we identify and study the microRNAs that BRAFV600E regulates through the ERK pathway. By performing small RNA sequencing on A375 melanoma cells and a vemurafenib-resistant clone that was taken as negative control, we discover miR-204 and miR-211 as the miRNAs most induced by vemurafenib. We also demonstrate that, although belonging to the same family, these two miRNAs have distinctive features. miR-204 is under the control of STAT3 and its expression is induced in amelanotic melanoma cells, where it acts as an effector of vemurafenib's anti-motility activity by targeting AP1S2. Conversely, miR-211, a known transcriptional target of MITF, is induced in melanotic melanoma cells, where it targets EDEM1 and consequently impairs the degradation of TYROSINASE (TYR) through the ER-associated degradation (ERAD) pathway. In doing so, miR-211 serves as an effector of vemurafenib's pro-pigmentation activity. We also show that such an increase in pigmentation in turn represents an adaptive response that needs to be overcome using appropriate inhibitors in order to increase the efficacy of vemurafenib. In summary, we unveil the distinct and context-dependent activities exerted by miR-204 family members in melanoma cells. Our work challenges the widely accepted “same miRNA family = same function” rule and provides a rationale for a novel treatment strategy for melanotic melanomas that is based on the combination of ERK pathway inhibitors with pigmentation inhibitors.
Collapse
Affiliation(s)
- Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy.,Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | - Andrea Tuccoli
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy
| | - Romina D'Aurizio
- Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy
| | - Samanta Sarti
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy.,University of Siena, Italy
| | - Laura Giannecchini
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy
| | - Simone Lubrano
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy.,University of Siena, Italy
| | - Andrea Marranci
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy.,University of Siena, Italy
| | | | - Silvia Peppicelli
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Italy
| | - Chiara Ippolito
- Unit of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | | | - Valentina Montagnani
- Tumor Cell Biology Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUC, Firenze, Italy
| | | | - Elisa Mercoledi
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy
| | | | - Laura Comelli
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | - Salvatore Gurrieri
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy
| | | | | | | | | | | | | | - Mario Chiariello
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.,Signal Transduction Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUS, Siena, Italy
| | - Barbara Stecca
- Tumor Cell Biology Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUC, Firenze, Italy
| | - Gao Zhang
- The Wistar Institute, Philadelphia, PA, USA
| | - Alessandra Salvetti
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Letizia Pitto
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | - Lido Calorini
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Italy
| | | | - Marco Pellegrini
- Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy
| | | | | | - Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (ITT), AOUP, Pisa, Italy.,Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| |
Collapse
|
247
|
Vlčková K, Vachtenheim J, Réda J, Horák P, Ondrušová L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med 2018; 22:2240-2251. [PMID: 29369499 PMCID: PMC5867098 DOI: 10.1111/jcmm.13506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma arises from neural crest-derived melanocytes which reside mostly in the skin in an adult organism. Epithelial-mesenchymal transition (EMT) is a tumorigenic programme through which cells acquire mesenchymal, more pro-oncogenic phenotype. The reversible phenotype switching is an event still not completely understood in melanoma. The EMT features and increased invasiveness are associated with lower levels of the pivotal lineage identity maintaining and melanoma-specific transcription factor MITF (microphthalmia-associated transcription factor), whereas increased proliferation is linked to higher MITF levels. However, the precise role of MITF in phenotype switching is still loosely characterized. To exclude the changes occurring upstream of MITF during MITF regulation in vivo, we employed a model whereby MITF expression was inducibly regulated by shRNA in melanoma cell lines. We found that the decrease in MITF caused only moderate attenuation of proliferation of the whole cell line population. Proliferation was decreased in five of 15 isolated clones, in three of them profoundly. Reduction in MITF levels alone did not generally produce EMT-like characteristics. The stem cell marker levels also did not change appreciably, only a sharp increase in SOX2 accompanied MITF down-regulation. Oppositely, the downstream differentiation markers and the MITF transcriptional targets melastatin and tyrosinase were profoundly decreased, as well as the downstream target livin. Surprisingly, after the MITF decline, invasiveness was not appreciably affected, independently of proliferation. The results suggest that low levels of MITF may still maintain relatively high proliferation and might reflect, rather than cause, the EMT-like changes occurring in melanoma.
Collapse
Affiliation(s)
- Kateřina Vlčková
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jiri Réda
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Pavel Horák
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Lubica Ondrušová
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
248
|
Ohanna M, Cerezo M, Nottet N, Bille K, Didier R, Beranger G, Mograbi B, Rocchi S, Yvan-Charvet L, Ballotti R, Bertolotto C. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes Dev 2018; 32:448-461. [PMID: 29567766 PMCID: PMC5900716 DOI: 10.1101/gad.305854.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
In BRAFV600E melanoma cells, a global metabolomic analysis discloses a decrease in nicotinamide adenine dinucleotide (NAD+) levels upon PLX4032 treatment that is conveyed by a STAT5 inhibition and a transcriptional regulation of the nicotinamide phosphoribosyltransferase (NAMPT) gene. NAMPT inhibition decreases melanoma cell proliferation both in vitro and in vivo, while forced NAMPT expression renders melanoma cells resistant to PLX4032. NAMPT expression induces transcriptomic and epigenetic reshufflings that steer melanoma cells toward an invasive phenotype associated with resistance to targeted therapies and immunotherapies. Therefore, NAMPT, the key enzyme in the NAD+ salvage pathway, appears as a rational target in targeted therapy-resistant melanoma cells and a key player in phenotypic plasticity of melanoma cells.
Collapse
Affiliation(s)
- Mickaël Ohanna
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Mickaël Cerezo
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Nicolas Nottet
- Université Nice Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Karine Bille
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Robin Didier
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Guillaume Beranger
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Baharia Mograbi
- U1081, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Equipe Labellisée ARC, Université Nice Côte d'Azur, UMR7284, Centre National de la Recherche Scientifique (CNRS), 06107 Nice, France
| | - Stéphane Rocchi
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Laurent Yvan-Charvet
- U1065, INSERM, Team ATIP-Avenir, Université Nice Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| |
Collapse
|
249
|
Barutello G, Rolih V, Arigoni M, Tarone L, Conti L, Quaglino E, Buracco P, Cavallo F, Riccardo F. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs' Revolution for Immunotherapy. Int J Mol Sci 2018. [PMID: 29534457 PMCID: PMC5877660 DOI: 10.3390/ijms19030799] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Buracco
- Department of Veterinary Science, University of Torino, 10095 Grugliasco, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
250
|
Tripathi R, Fiore LS, Richards DL, Yang Y, Liu J, Wang C, Plattner R. Abl and Arg mediate cysteine cathepsin secretion to facilitate melanoma invasion and metastasis. Sci Signal 2018; 11:11/518/eaao0422. [PMID: 29463776 DOI: 10.1126/scisignal.aao0422] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of melanoma is increasing, particularly in young women, and the disease remains incurable for many because of its aggressive, metastatic nature and its high rate of resistance to conventional, targeted, and immunological agents. Cathepsins are proteases that are critical for melanoma progression and therapeutic resistance. Intracellular cathepsins cleave or degrade proteins that restrict cancer progression, whereas extracellular cathepsins directly cleave the extracellular matrix and activate proinvasive proteases in the tumor microenvironment. Cathepsin secretion is markedly increased in cancer cells. We investigated the signaling pathways leading to increased cathepsin secretion in melanoma cells. We found that the nonreceptor tyrosine kinases Abl and Arg (Abl/Arg) promoted the secretion of cathepsin B and cathepsin L by activating transcription factors (namely, Ets1, Sp1, and NF-κB/p65) that have key roles in the epithelial-mesenchymal transition (EMT), invasion, and therapeutic resistance. In some melanoma cell lines, Abl/Arg promoted the Ets1/p65-induced secretion of cathepsin B and cathepsin L in a kinase-independent manner, whereas in other melanoma lines, Abl/Arg promoted the kinase-dependent, Sp1/Ets1/p65-mediated induction of cathepsin L secretion and the Sp1/p65-mediated induction of cathepsin B secretion. As an indication of clinical relevance, the abundance of mRNAs encoding Abl/Arg, Sp1, Ets1, and cathepsins was positively correlated in primary melanomas, and Abl/Arg-driven invasion in culture and metastasis in vivo required cathepsin secretion. These data suggest that drugs targeting Abl kinases, many of which are FDA-approved, might inhibit cathepsin secretion in some melanomas and potentially other aggressive cancers harboring activated Abl kinases.
Collapse
Affiliation(s)
- Rakshamani Tripathi
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Leann S Fiore
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Dana L Richards
- Department of Pathology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Yuchen Yang
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA
| | - Jinpeng Liu
- Department of Biostatistics and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Rina Plattner
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|