201
|
Retzke T, Thoma M, Hansson BS, Knaden M. Potencies of effector genes in silencing odor-guided behavior in Drosophila melanogaster. ACTA ACUST UNITED AC 2017; 220:1812-1819. [PMID: 28235908 DOI: 10.1242/jeb.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/20/2017] [Indexed: 11/20/2022]
Abstract
The genetic toolbox in Drosophila melanogaster offers a multitude of different effector constructs to silence neurons and neuron populations. In this study, we investigated the potencies of several effector genes - when expressed in olfactory sensory neurons (OSNs) - to abolish odor-guided behavior in three different bioassays. We found that two of the tested effectors (tetanus toxin and Kir2.1) are capable of mimicking the Orco mutant phenotype in all of our behavioral paradigms. In both cases, the effectiveness depended on effector expression levels, as full suppression of odor-guided behavior was observed only in flies homozygous for both Gal4-driver and UAS-effector constructs. Interestingly, the impact of the effector genes differed between chemotactic assays (i.e. the fly has to follow an odor gradient to localize the odor source) and anemotactic assays (i.e. the fly has to walk upwind after detecting an attractive odorant). In conclusion, our results underline the importance of performing appropriate control experiments when exploiting the D. melanogaster genetic toolbox, and demonstrate that some odor-guided behaviors are more resistant to genetic perturbations than others.
Collapse
Affiliation(s)
- Tom Retzke
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Straße 8, Jena 07745, Germany
| | - Michael Thoma
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Straße 8, Jena 07745, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Straße 8, Jena 07745, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Straße 8, Jena 07745, Germany
| |
Collapse
|
202
|
Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones. Sci Rep 2017; 7:41105. [PMID: 28117454 PMCID: PMC5259778 DOI: 10.1038/srep41105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication.
Collapse
|
203
|
Sun X, Zeng FF, Yan MJ, Zhang A, Lu ZX, Wang MQ. Interactions of two odorant-binding proteins influence insect chemoreception. INSECT MOLECULAR BIOLOGY 2016; 25:712-723. [PMID: 27503414 DOI: 10.1111/imb.12256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is well known that the odorant-binding proteins (OBPs) play crucial roles in insect olfactory detection. To explore if interactions of OBPs affect olfactory coding in the rice leaffolder Cnaphalocrocis medinalis ligand-binding experiments, molecular docking, RNA interference and electrophysiological recording were performed. The binding activity of two C. medinalis OBPs (CmedOBPs) to rice plant volatiles showed wide flexibility depending on the structure of ligands and interactions of CmedOBPs involved. The binding sites of CmedOBP2 and CmedOBP3 to rice plant volatiles were well predicted by three-dimensional structure modelling and molecular docking experiments. In addition, the interactions of these two CmedOBPs in the perception of rice volatiles were demonstrated by RNA interference experiments. When a single double-stranded RNA (dsRNA)-CmedOBP2 was injected, the expression of CmedOBP2 was significantly reduced and the expression of CmedOBP3 was significantly increased, and vice versa. When both dsRNA-CmedOBP2 and 3 were injected together, greater reduction of electroantennogram responses to rice plant volatiles was induced than that seen with individual injection of either dsRNA-CmedOBP2 or dsRNA-CmedOBP3. These results clearly indicate that the interactions of CmedOBP2 and CmedOBP3 have significant effects on C. medinalis during the detection of host plant volatiles.
Collapse
Affiliation(s)
- X Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Invasive Ecology, College of Life Sciences, Henan University, Kaifeng, Henan, China
| | - F-F Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - M-J Yan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - A Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, BARC-West, USDA-ARS, Beltsville, MD, USA
| | - Z-X Lu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - M-Q Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
204
|
You Y, Smith DP, Lv M, Zhang L. A broadly tuned odorant receptor in neurons of trichoid sensilla in locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:66-72. [PMID: 27815144 PMCID: PMC5697761 DOI: 10.1016/j.ibmb.2016.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. Odorant receptors (ORs) on the membrane of chemosensory neurons are believed to be key molecules in sensing exogenous chemical cues. ORs in different species of insects are diverse and should tune a species to its own specific semiochemicals relevant to their survival. The orthopteran insect, locust (Locusta migratoria), is a model hemimetabolous insect. There is very limited knowledge on the functions of locust ORs although many locust OR genes have been identified in genomic sequencing experiments. In this paper, a locust OR, LmigOR3 was localized to neurons housed in trichoid sensilla by in situ hybridization. LmigOR3 was expressed as a transgene in Drosophila trichoid olfactory neurons (aT1) lacking the endogenous receptor Or67d and the olfactory tuning curve and dose-response curves were established for this locust receptor. The results show that LmigOR3 sensitizes neurons to ketones, esters and heterocyclic compounds, indicating that LmigOR3 is a broadly tuned receptor. LmigOR3 is the first odorant receptor from Orthoptera that has been functionally analyzed in the Drosophila aT1 system. This work demonstrates the utility of the Drosophila aT1 system for functional analysis of locust odorant receptors and suggests that LmigOR3 may be involved in detecting food odorants, or perhaps locust body volatiles that may help us to develop new control methods for locusts.
Collapse
Affiliation(s)
- Yinwei You
- Department of Entomology, China Agricultural University, Beijing 100193, PR China; Bio-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Dean P Smith
- Departments of Pharmacology and Neuroscience, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Mingyue Lv
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
205
|
Martin F, Alcorta E. Measuring activity in olfactory receptor neurons in Drosophila: Focus on spike amplitude. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:23-41. [PMID: 27614176 DOI: 10.1016/j.jinsphys.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Olfactory responses at the receptor level have been thoroughly described in Drosophila melanogaster by electrophysiological methods. Single sensilla recordings (SSRs) measure neuronal activity in intact individuals in response to odors. For sensilla that contain more than one olfactory receptor neuron (ORN), their different spontaneous spike amplitudes can distinguish each signal under resting conditions. However, activity is mainly described by spike frequency. Some reports on ORN response dynamics studied two components in the olfactory responses of ORNs: a fast component that is reflected by the spike frequency and a slow component that is observed in the LFP (local field potential, the single sensillum counterpart of the electroantennogram, EAG). However, no apparent correlation was found between the two elements. In this report, we show that odorant stimulation produces two different effects in the fast component, affecting spike frequency and spike amplitude. Spike amplitude clearly diminishes at the beginning of a response, but it recovers more slowly than spike frequency after stimulus cessation, suggesting that ORNs return to resting conditions long after they recover a normal spontaneous spike frequency. Moreover, spike amplitude recovery follows the same kinetics as the slow voltage component measured by the LFP, suggesting that both measures are connected. These results were obtained in ab2 and ab3 sensilla in response to two odors at different concentrations. Both spike amplitude and LFP kinetics depend on odorant, concentration and neuron, suggesting that like the EAG they may reflect olfactory information.
Collapse
Affiliation(s)
- Fernando Martin
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Esther Alcorta
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
206
|
Klinner CF, König C, Missbach C, Werckenthin A, Daly KC, Bisch-Knaden S, Stengl M, Hansson BS, Große-Wilde E. Functional Olfactory Sensory Neurons Housed in Olfactory Sensilla on the Ovipositor of the Hawkmoth Manduca sexta. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
207
|
Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. eLife 2016; 5. [PMID: 27845621 PMCID: PMC5127637 DOI: 10.7554/elife.20242] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/14/2016] [Indexed: 01/03/2023] Open
Abstract
Odorant binding proteins (Obps) are remarkable in their number, diversity, and abundance, yet their role in olfactory coding remains unclear. They are widely believed to be required for transporting hydrophobic odorants through an aqueous lymph to odorant receptors. We construct a map of the Drosophila antenna, in which the abundant Obps are mapped to olfactory sensilla with defined functions. The results lay a foundation for an incisive analysis of Obp function. The map identifies a sensillum type that contains a single abundant Obp, Obp28a. Surprisingly, deletion of the sole abundant Obp in these sensilla does not reduce the magnitude of their olfactory responses. The results suggest that this Obp is not required for odorant transport and that this sensillum does not require an abundant Obp. The results further suggest a novel role for this Obp in buffering changes in the odor environment, perhaps providing a molecular form of gain control. DOI:http://dx.doi.org/10.7554/eLife.20242.001 Insects use their sense of smell to find mates, to find food and – in the case of insects that transmit diseases such as malaria and Zika – to find us. If we can understand how insect scent detection works at the molecular and cellular level, we may be able to devise new ways of manipulating the insects’ sense of smell and prevent them from finding us. Insects contain a family of proteins called odorant binding proteins that are intriguing in several ways. They are numerous (there are 52 kinds in the fruit fly Drosophila), they are diverse and some are made in remarkably large amounts in the antennae. Fine hair-like structures known as olfactory sensilla protrude from the surface of the antennae. Odorant binding proteins are widely believed to carry odorant molecules through the fluid inside the sensilla to olfactory neurons, which then send signals that trigger the insect’s response to the scent. Larter et al. have now mapped the most abundant odorant binding proteins to the various olfactory sensilla of Drosophila. This revealed that a type of sensillum known as ab8 contained only one abundant odorant binding protein, called Obp28a. Unexpectedly, Larter et al. found that ab8 sensilla that are deprived of this protein respond strongly to odorant molecules. This result suggests that Obp28a is not required to transport odorants to the neurons in ab8; indeed, it appears that these neurons do not require an abundant odorant binding protein in order to respond to a scent. Instead, Obp28a helps to moderate the effects of sudden changes in the level of an odorant in the environment, so that concentrated odors do not trigger too large a response from the olfactory neurons. The details of the role that Obp28a plays in olfactory sensilla remain to be investigated in future studies, and the map created by Larter et al. also lays a foundation for studying the roles of other odorant binding proteins. The discovery that Obp28a is not needed to transport odorant molecules also raises questions about how insects are able to detect smells. Many odorant molecules repel water, so how do these molecules travel through the fluid in the sensilla if odorant binding proteins are not needed to transport them? DOI:http://dx.doi.org/10.7554/eLife.20242.002
Collapse
Affiliation(s)
- Nikki K Larter
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| |
Collapse
|
208
|
Nolte A, Gawalek P, Koerte S, Wei H, Schumann R, Werckenthin A, Krieger J, Stengl M. No Evidence for Ionotropic Pheromone Transduction in the Hawkmoth Manduca sexta. PLoS One 2016; 11:e0166060. [PMID: 27829053 PMCID: PMC5102459 DOI: 10.1371/journal.pone.0166060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/21/2016] [Indexed: 01/10/2023] Open
Abstract
Insect odorant receptors (ORs) are 7-transmembrane receptors with inverse membrane topology. They associate with the conserved ion channel Orco. As chaperon, Orco maintains ORs in cilia and, as pacemaker channel, Orco controls spontaneous activity in olfactory receptor neurons. Odorant binding to ORs opens OR-Orco receptor ion channel complexes in heterologous expression systems. It is unknown, whether this also occurs in vivo. As an alternative to this ionotropic transduction, experimental evidence is accumulating for metabotropic odor transduction, implicating that insect ORs couple to G-proteins. Resulting second messengers gate various ion channels. They generate the sensillum potential that elicits phasic-tonic action potentials (APs) followed by late, long-lasting pheromone responses. Because it is still unclear how and when Orco opens after odor-OR-binding, we used tip recordings to examine in vivo the effects of the Orco antagonist OLC15 and the amilorides MIA and HMA on bombykal transduction in the hawkmoth Manduca sexta. In contrast to OLC15 both amilorides decreased the pheromone-dependent sensillum potential amplitude and the frequency of the phasic AP response. Instead, OLC15 decreased spontaneous activity, increased latencies of phasic-, and decreased frequencies of late, long-lasting pheromone responses Zeitgebertime-dependently. Our results suggest no involvement for Orco in the primary transduction events, in contrast to amiloride-sensitive channels. Instead of an odor-gated ionotropic receptor, Orco rather acts as a voltage- and apparently second messenger-gated pacemaker channel controlling the membrane potential and hence threshold and kinetics of the pheromone response.
Collapse
Affiliation(s)
- Andreas Nolte
- Department of Animal Physiology, FB 10 Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Petra Gawalek
- Department of Animal Physiology, FB 10 Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Sarah Koerte
- Department of Animal Physiology, FB 10 Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - HongYing Wei
- Department of Animal Physiology, FB 10 Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Robin Schumann
- Department of Animal Physiology, FB 10 Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Achim Werckenthin
- Department of Animal Physiology, FB 10 Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06108, Halle (Saale), Germany
| | - Monika Stengl
- Department of Animal Physiology, FB 10 Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
- * E-mail:
| |
Collapse
|
209
|
A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons. Nat Protoc 2016; 11:2389-2400. [PMID: 27809317 DOI: 10.1038/nprot.2016.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Monitoring neuronal responses to defined sensory stimuli is a powerful and widely used approach for understanding sensory coding in the nervous system. However, providing precise, stereotypic and reproducible cues while concomitantly recording neuronal activity remains technically challenging. Here we describe the fabrication and use of a microfluidics system that allows precise temporally restricted stimulation of Drosophila chemosensory neurons with an array of different chemical cues. The system can easily be combined with genetically encoded calcium sensors, and it can measure neuronal activity at single-cell resolution in larval sense organs and in the proboscis or leg of the adult fly. We describe the design of the master mold, the production of the microfluidic chip and live imaging using the calcium sensor GCaMP, expressed in distinct types of Drosophila chemosensory neurons. Fabrication of the master mold and microfluidic chips requires basic skills in photolithography and takes ∼2 weeks; the same devices can be used repeatedly over several months. Flies can be prepared for measurements in minutes and imaged for up to 1 h.
Collapse
|
210
|
Zhao H, Du Y, Gao P, Wang S, Pan J, Jiang Y. Antennal Transcriptome and Differential Expression Analysis of Five Chemosensory Gene Families from the Asian Honeybee Apis cerana cerana. PLoS One 2016; 11:e0165374. [PMID: 27776190 PMCID: PMC5077084 DOI: 10.1371/journal.pone.0165374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
Chemosensory genes play a central role in sensing chemical signals and guiding insect behavior. The Chinese honeybee, Apis cerana cerana, is one of the most important insect species in China in terms of resource production, and providing high-quality products for human consumption, and also serves as an important pollinator. Communication and foraging behavior of worker bees is likely linked to a complex chemosensory system. Here, we used transcriptome sequencing on adult A. c. cerana workers of different ages to identify the major chemosensory gene families and the differentially expressed genes(DEGs), and to investigate their expression profiles. A total of 109 candidate chemosensory genes in five gene families were identified from the antennal transcriptome assemblies, including 17 OBPs, 6 CSPs, 74 ORs, 10 IRs, and 2SNMPs, in which nineteen DEGs were screened and their expression values at different developmental stages were determined in silico. No chemosensory transcript was specific to a certain developmental period. Thirteen DEGs were upregulated and 6were downregulated. We created extensive expression profiles in six major body tissues using qRT-PCR and found that most DEGs were exclusively or primarily expressed in antennae. Others were abundantly expressed in the other tissues, such as head, thorax, abdomen, legs, and wings. Interestingly, when a DEG was highly expressed in the thorax, it also had a high level of expression in legs, but showed a lowlevel in antennae. This study explored five chemoreceptor superfamily genes using RNA-Seq coupled with extensive expression profiling of DEGs. Our results provide new insights into the molecular mechanism of odorant detection in the Asian honeybee and also serve as an extensive novel resource for comparing and investigating olfactory functionality in hymenopterans.
Collapse
Affiliation(s)
- Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yali Du
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shujie Wang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianfang Pan
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- * E-mail:
| |
Collapse
|
211
|
Bachtiar LR, Unsworth CP, Newcomb RD. "Super e-noses": Multi-layer perceptron classification of volatile odorants from the firing rates of cross-species olfactory receptor arrays. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:954-7. [PMID: 25570118 DOI: 10.1109/embc.2014.6943750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Current electronic noses, or e-noses, that employ insect odorant receptors (Ors) as their sensory front end are potentially limited by the fact that the Ors come from a single species. In addition, a realistic e-nose also demands low numbers of Ors at its sensory front end due to the difficulties of receptor/sensor integration and functionalisation. In this work, we report the first investigations of a `Super E-Nose' that incorporates Ors from both the model organism Drosophila melanogaster fruit fly (DmOr) and the mosquito, Anopheles gambiae (AgOr). Furthermore, we report how an Artificial Neural Network (ANN), in the form of a hybrid double hidden layer Multi-Layer Perceptron (MLP), can be used to determine the optimal Ors that provide the best prediction performance in the classification of unknown odorants into their respective chemical class. Our findings demonstrate how 3-Or arrays consisting of DmOr only, AgOr only, or cross-species DmOr-AgOr combinations correctly classified all unknown odorants of the validation set. In addition, we report that all 3-Or combinations perform equally well as the complete 74 DmOr-AgOr array. Thus, the results of this work support further investigation into cross-species `Super E-noses' coupled with hybrid MLPs for the classification of unknown odorants.
Collapse
|
212
|
Wu Z, Lin J, Zhang H, Zeng X. BdorOBP83a-2 Mediates Responses of the Oriental Fruit Fly to Semiochemicals. Front Physiol 2016; 7:452. [PMID: 27761116 PMCID: PMC5050210 DOI: 10.3389/fphys.2016.00452] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), is one of the most destructive pests throughout tropical and subtropical regions in Asia. This insect displays remarkable changes during different developmental phases in olfactory behavior between sexually immature and mated adults. The olfactory behavioral changes provide clues to examine physiological and molecular bases of olfactory perception in this insect. We comparatively analyzed behavioral and neuronal responses of B. dorsalis adults to attractant semiochemicals, and the expression profiles of antenna chemosensory genes. We found that some odorant-binding proteins (OBPs) were upregulated in mated adults in association with their behavioral and neuronal responses. Ligand-binding assays further showed that one of OBP83a orthologs, BdorOBP83a-2, binds with high affinity to attractant semiochemicals. Functional analyses confirmed that the reduction in BdorOBP83a-2 transcript abundance led to a decrease in neuronal and behavioral responses to selected attractants. This study suggests that BdorOBP83a-2 mediates behavioral responses to attractant semiochemicals and could be a potential efficient target for pest control.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, College of Natural Resources and Environment, South China Agricultural UniversityGuangzhou, China
| | - Jintian Lin
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and EngineeringGuangzhou, China
| | - He Zhang
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and EngineeringGuangzhou, China
| | - Xinnian Zeng
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, College of Natural Resources and Environment, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
213
|
Riabinina O, Task D, Marr E, Lin CC, Alford R, O'Brochta DA, Potter CJ. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat Commun 2016; 7:13010. [PMID: 27694947 PMCID: PMC5063964 DOI: 10.1038/ncomms13010] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 02/01/2023] Open
Abstract
Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes.
Collapse
Affiliation(s)
- Olena Riabinina
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Elizabeth Marr
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Robert Alford
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - David A O'Brochta
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| |
Collapse
|
214
|
Wang B, Liu Y, He K, Wang G. Comparison of research methods for functional characterization of insect olfactory receptors. Sci Rep 2016; 6:32806. [PMID: 27633402 PMCID: PMC5025650 DOI: 10.1038/srep32806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Insect olfactory receptors (ORs) in the peripheral olfactory system play an important role detecting elements of information from the environment. At present, various approaches are used for deorphanizing of ORs in insect. In this study, we compared methods for functional analysis of ORs in vitro and in vivo taking the candidate pheromone receptor OR13 of Helicoverpa assulta (HassOR13) as the object of our experiments. We found that the natural system was more sensitive than those utilizing transgenic Drosophila. The two-electrode voltage-clamp recording is more suitable for functional screening of large numbers of ORs, while the in vivo transgenic Drosophila system could prove more accurate to further validate the function of a specific OR. We also found that, among the different solvents used to dissolve pheromones and odorants, hexane offered good reproducibility and high sensitivity. Finally, the function of ORs was indirectly confirmed in transgenic Drosophila, showing that odor-activation of ORs-expressing olfactory receptor neurons (ORNs) can mediate behavioral choices. In summary, our results compare advantages and drawbacks of different approaches, thus helping in the choice of the method most suitable, in each specific situation, for deorphanizing insect ORs.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
215
|
Pitts S, Pelser E, Meeks J, Smith D. Odorant Responses and Courtship Behaviors Influenced by at4 Neurons in Drosophila. PLoS One 2016; 11:e0162761. [PMID: 27617442 PMCID: PMC5019410 DOI: 10.1371/journal.pone.0162761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
In insects, pheromones function as triggers to elicit complex behavior programs, such as courtship and mating behavior. In most species, the neurons tuned to pheromones are localized in a specific subset of olfactory sensilla located on the antenna called trichoid sensilla. In Drosophila there are two classes of trichoid sensilla, at1 sensilla that contain the dendrites of a single neuron that is specifically tuned to the male-specific pheromone 11-cis vaccenyl acetate (cVA), and at4 sensilla that contain three neurons with relatively poorly defined chemical specificity and function. Using a combination of odorant receptor mutant analysis, single sensillum electrophysiology and optogenetics, we have examined the chemical tuning and behavioral consequences of the three at4 olfactory neuron classes. Our results indicate that one class, Or65abc neurons, are unresponsive to cVA pheromone, and function to inhibit courtship behaviors in response to an unknown ligand, while the other two neuron classes, Or88a and Or47b neurons, are sensitive to a diverse array of fly and non-fly odors, and activation of these neurons has little direct impact on courtship behaviors.
Collapse
Affiliation(s)
- Svetlana Pitts
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390–9111, United States of America
| | - Elizabeth Pelser
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390–9111, United States of America
| | - Julian Meeks
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390–9111, United States of America
| | - Dean Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390–9111, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390–9111, United States of America
- * E-mail:
| |
Collapse
|
216
|
Getahun MN, Thoma M, Lavista-Llanos S, Keesey I, Fandino RA, Knaden M, Wicher D, Olsson SB, Hansson BS. Intracellular regulation of the insect chemoreceptor complex impacts odour localization in flying insects. ACTA ACUST UNITED AC 2016; 219:3428-3438. [PMID: 27591307 DOI: 10.1242/jeb.143396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
Abstract
Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight. Using Drosophila, we found expression and increased activity of the intracellular signalling protein PKC in antennal sensilla following odour stimulation. Odour stimulation also enhanced phosphorylation of the OR co-receptor Orco in vitro, while site-directed mutation of Orco or mutations in PKC subtypes reduced the sensitivity and dynamic range of OR-expressing neurons in vivo, but not IR-expressing neurons. We ultimately show that these mutations reduce competence for odour localization of flies in flight. We conclude that intracellular regulation of OR sensitivity is necessary for efficient odour localization, which suggests a mechanistic advantage for the evolution of the OR complex in flying insects.
Collapse
Affiliation(s)
- Merid N Getahun
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Michael Thoma
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Sofia Lavista-Llanos
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Ian Keesey
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Richard A Fandino
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Shannon B Olsson
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| |
Collapse
|
217
|
Hickner PV, Rivaldi CL, Johnson CM, Siddappaji M, Raster GJ, Syed Z. The making of a pest: Insights from the evolution of chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii. BMC Genomics 2016; 17:648. [PMID: 27530109 PMCID: PMC4988008 DOI: 10.1186/s12864-016-2983-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/29/2016] [Indexed: 01/07/2023] Open
Abstract
Background Drosophila suzukii differs from other melanogaster group members in their proclivity for laying eggs in fresh fruit rather than in fermenting fruits. Olfaction and gustation play a critical role during insect niche formation, and these senses are largely mediated by two important receptor families: olfactory and gustatory receptors (Ors and Grs). Earlier work from our laboratory has revealed how the olfactory landscape of D. suzukii is dominated by volatiles derived from its unique niche. Signaling and reception evolve in synchrony, since the interaction of ligands and receptors together mediate the chemosensory behavior. Here, we manually annotated the Ors and Grs in D. suzukii and two close relatives, D. biarmipes and D. takahashii, and compared these repertoires to those in other melanogaster group drosophilids to identify candidate chemoreceptors associated with D. suzukii’s unusual niche utilization. Results Our comprehensive annotations of the chemosensory genomes in three species, and comparative analysis with other melanogaster group members provide insights into the evolution of chemosensation in the pestiferous D. suzukii. We annotated a total of 71 Or genes in D. suzukii, with nine of those being pseudogenes (12.7 %). Alternative splicing of two genes brings the total to 62 genes encoding 66 Ors. Duplications of Or23a and Or67a expanded D. suzukii’s Or repertoire, while pseudogenization of Or74a, Or85a, and Or98b reduced the number of functional Ors to roughly the same as other annotated species in the melanogaster group. Seventy-one intact Gr genes and three pseudogenes were annotated in D. suzukii. Alternative splicing in three genes brings the total number of Grs to 81. We identified signatures of positive selection in two Ors and three Grs at nodes leading to D. suzukii, while three copies in the largest expanded Or lineage, Or67a, also showed signs of positive selection at the external nodes. Conclusion Our analysis of D. suzukii’s chemoreceptor repertoires in the context of nine melanogaster group drosophilids, including two of its closest relatives (D. biarmipes and D. takahashii), revealed several candidate receptors associated with the adaptation of D. suzukii to its unique ecological niche. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2983-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul V Hickner
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Chissa L Rivaldi
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cole M Johnson
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madhura Siddappaji
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gregory J Raster
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zainulabeuddin Syed
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
218
|
A Female-Biased Odorant Receptor from Apolygus lucorum (Meyer-Dür) Tuned to Some Plant Odors. Int J Mol Sci 2016; 17:ijms17081165. [PMID: 27483241 PMCID: PMC5000588 DOI: 10.3390/ijms17081165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022] Open
Abstract
Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is a serious pest of cotton, jujube, grape and many other crops around the world. Understanding how olfactory information directs this insect to its host plants may provide environment-friendly approaches to the control of its population in agriculture. In our study, we cloned an odorant receptor gene, AlucOR46, that was specifically expressed in antennae and female-biased. Functional expression of AlucOR46 in Xenopus oocytes showed that it is tuned to six plant volatiles (S)-(−)-Limonene, (R)-(+)-Limonene, (E)-2-Hexenal, (E)-3-Hexenol, 1-Heptanol and (1R)-(−)-Myrtenol. Electroantennogram (EAG) recordings revealed that all six compounds could elicit electrophysiological responses from the antennae of A. lucorum, higher in females. Our results are in agreement with previous reports showing that (E)-2-Hexenal could attract female A. lucorum in behavior experiments. These results suggest that AlucOR46 might play an important role in locating the host plants of A. lucorum and therefore represents a suitable target for green pest control.
Collapse
|
219
|
Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae. eNeuro 2016; 3:eN-NWR-0152-15. [PMID: 27351023 PMCID: PMC4913217 DOI: 10.1523/eneuro.0152-15.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
Olfaction presents the ultimate challenge to molecular recognition as thousands of molecules have to be recognized by far fewer olfactory receptors. We have presented evidence that Drosophila readily distinguish odorants based on their molecular vibrations using a battery of behavioral assays suggesting engagement of a molecular vibration-sensing component. Here we interrogate electrophysiologically the antennae of four Drosophilids and demonstrate conserved differential response amplitudes to aldehydes, alcohols, ketones, nitriles, and their deuterated isotopologues. Certain deuterated odorants evoked larger electroantennogram (EAG) amplitudes, while the response to the normal odorant was elevated in others. Significantly, benzonitrile isotopologues were not distinguishable as predicted. This suggests that isotopologue-specific EAG amplitudes result from differential activation of specific olfactory receptors. In support of this, odorants with as few as two deuteria evoke distinct EAG amplitudes from their normal isotopologues, and this is independent of the size of the deuterated molecule. Importantly, we find no evidence that these isotopologue-specific amplitudes depend on perireceptor mechanisms or other pertinent physical property of the deuterated odorants. Rather, our results strongly suggest that Drosophilid olfactory receptors are activated by molecular vibrations differentiating similarly sized and shaped odorants in vivo, yielding sufficient differential information to drive behavioral choices.
Collapse
|
220
|
Hormonal Modulation of Pheromone Detection Enhances Male Courtship Success. Neuron 2016; 90:1272-1285. [PMID: 27263969 DOI: 10.1016/j.neuron.2016.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 03/08/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022]
Abstract
During the lifespans of most animals, reproductive maturity and mating activity are highly coordinated. In Drosophila melanogaster, for instance, male fertility increases with age, and older males are known to have a copulation advantage over young ones. The molecular and neural basis of this age-related disparity in mating behavior is unknown. Here, we show that the Or47b odorant receptor is required for the copulation advantage of older males. Notably, the sensitivity of Or47b neurons to a stimulatory pheromone, palmitoleic acid, is low in young males but high in older ones, which accounts for older males' higher courtship intensity. Mechanistically, this age-related sensitization of Or47b neurons requires a reproductive hormone, juvenile hormone, as well as its binding protein Methoprene-tolerant in Or47b neurons. Together, our study identifies a direct neural substrate for juvenile hormone that permits coordination of courtship activity with reproductive maturity to maximize male reproductive fitness.
Collapse
|
221
|
Abstract
I have reanalyzed the data presented by Hallem and Carlson [Hallem EA, Carlson JR (2006) Cell 125(1):143-160] and shown that the combinatorial odor code supplied by the fruit fly antenna is a very simple one in which nearly all odors produce, statistically, the same neuronal response; i.e., the probability distribution of sensory neuron firing rates across the population of odorant sensory neurons is an exponential for nearly all odors and odor mixtures, with the mean rate dependent on the odor concentration. Between odors, then, the response differs according to which sensory neurons are firing at what individual rates and with what mean population rate, but not in the probability distribution of firing rates. This conclusion is independent of adjustable parameters, and holds both for monomolecular odors and complex mixtures. Because the circuitry in the antennal lobe constrains the mean firing rate to be the same for all odors and concentrations, the odor code is what is known as maximum entropy.
Collapse
|
222
|
Martini JWR, Schlather M, Schütz S. A Model for Carrier-Mediated Biological Signal Transduction Based on Equilibrium Ligand Binding Theory. Bull Math Biol 2016; 78:1039-57. [PMID: 27230608 DOI: 10.1007/s11538-016-0173-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Different variants of a mathematical model for carrier-mediated signal transduction are introduced with focus on the odor dose-electrophysiological response curve of insect olfaction. The latter offers a unique opportunity to observe experimentally the effect of an alteration in the carrier molecule composition on the signal molecule-dependent response curve. Our work highlights the role of involved carrier molecules, which have largely been ignored in mathematical models for response curves in the past. The resulting model explains how the involvement of more than one carrier molecule in signal molecule transport can cause dose-response curves as observed in experiments, without the need of more than one receptor per neuron. In particular, the model has the following features: (1) An extended sensitivity range of neuronal response is implemented by a system consisting of only one receptor but several carrier molecules with different affinities for the signal molecule. (2) Given that the sensitivity range is extended by the involvement of different carrier molecules, the model implies that a strong difference in the expression levels of the carrier molecules is absolutely essential for wide range responses. (3) Complex changes in dose-response curves which can be observed when the expression levels of carrier molecules are altered experimentally can be explained by interactions between different carrier molecules. The principles we demonstrate here for electrophysiological responses can also be applied to any other carrier-mediated biological signal transduction process. The presented concept provides a framework for modeling and statistical analysis of signal transduction processes if sufficient information on the underlying biology is available.
Collapse
Affiliation(s)
- Johannes W R Martini
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Göttingen, Germany.
| | - Martin Schlather
- Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik, Universität Mannhein, Mannheim, Germany
| | - Stefan Schütz
- Büsgen-Institut, Abteilung Forstzoologie und Waldschutz, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
223
|
Odorant receptors of Drosophila are sensitive to the molecular volume of odorants. Sci Rep 2016; 6:25103. [PMID: 27112241 PMCID: PMC4844992 DOI: 10.1038/srep25103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
Which properties of a molecule define its odor? This is a basic yet unanswered question regarding the olfactory system. The olfactory system of Drosophila has a repertoire of approximately 60 odorant receptors. Molecules bind to odorant receptors with different affinities and activate them with different efficacies, thus providing a combinatorial code that identifies odorants. We hypothesized that the binding affinity of an odorant-receptor pair is affected by their relative sizes. The maximum affinity can be attained when the molecular volume of an odorant matches the volume of the binding pocket. The affinity drops to zero when the sizes are too different, thus obscuring the effects of other molecular properties. We developed a mathematical formulation of this hypothesis and verified it using Drosophila data. We also predicted the volume and structural flexibility of the binding site of each odorant receptor; these features significantly differ between odorant receptors. The differences in the volumes and structural flexibilities of different odorant receptor binding sites may explain the difference in the scents of similar molecules with different sizes.
Collapse
|
224
|
Derby CD, Kozma MT, Senatore A, Schmidt M. Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: A Comparative Review. Chem Senses 2016; 41:381-98. [PMID: 27107425 DOI: 10.1093/chemse/bjw057] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes our present knowledge of chemoreceptor proteins in crustaceans, using a comparative perspective to review these molecules in crustaceans relative to other metazoan models of chemoreception including mammals, insects, nematodes, and molluscs. Evolution has resulted in unique expansions of specific gene families and repurposing of them for chemosensation in various clades, including crustaceans. A major class of chemoreceptor proteins across crustaceans is the Ionotropic Receptors, which diversified from ionotropic glutamate receptors in ancient protostomes but which are not present in deuterostomes. Representatives of another major class of chemoreceptor proteins-the Grl/GR/OR family of ionotropic 7-transmembrane receptors-are diversified in insects but to date have been reported in only one crustacean species, Daphnia pulex So far, canonic 7-transmembrane G-protein coupled receptors, the principal chemoreceptors in vertebrates and reported in a few protostome clades, have not been identified in crustaceans. More types of chemoreceptors are known throughout the metazoans and might well be expected to be discovered in crustaceans. Our review also provides a comparative coverage of perireceptor events in crustacean chemoreception, including molecules involved in stimulus acquisition, stimulus delivery, and stimulus removal, though much less is known about these events in crustaceans, particularly at the molecular level.
Collapse
Affiliation(s)
| | | | - Adriano Senatore
- Present address: Biology Department, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
225
|
Wu Z, Bin S, He H, Wang Z, Li M, Lin J. Differential Expression Analysis of Chemoreception Genes in the Striped Flea Beetle Phyllotreta striolata Using a Transcriptomic Approach. PLoS One 2016; 11:e0153067. [PMID: 27064483 PMCID: PMC4827873 DOI: 10.1371/journal.pone.0153067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/23/2016] [Indexed: 11/20/2022] Open
Abstract
Olfactory transduction is a process by which olfactory sensory neurons (OSNs) transform odor information into neuronal electrical signals. This process begins with the binding of odor molecules to receptor proteins on olfactory receptor neuron (ORN) dendrites. The major molecular components involved in olfaction include odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant-degrading enzymes (ODEs). More importantly, as potential molecular targets, chemosensory proteins are used to identify novel attractants or repellants for environmental-friendly pest management. In this study we analyzed the transcriptome of the flea beetle, Phyllotreta striolata (Coleoptera, Chrysomelidae), a serious pest of Brassicaceae crops, to better understand the molecular mechanisms of olfactory recognition in this pest. The analysis of transcriptomes from the antennae and terminal abdomens of specimens of both sexes identified transcripts from several key molecular components of chemoreception including 73 ORs, 36 GRs, 49 IRs, 2 SNMPs, 32 OBPs, 8 CSPs, and four candidate odorant degrading enzymes (ODEs): 143 cytochrome P450s (CYPs), 68 esterases (ESTs), 27 glutathione S-transferases (GSTs) and 8 UDP-glycosyltransferases (UGTs). Bioinformatic analyses indicated that a large number of chemosensory genes were up-regulated in the antennae. This was consistent with a potential role in olfaction. To validate the differential abundance analyses, the expression of 19 genes encoding various ORs, CSPs, and OBPs was assessed via qRT-PCR between non-chemosensory tissue and antennae. Consistent with the bioinformatic analyses, transcripts for all of the genes in the qRT-PCR subset were elevated in antennae. These findings provide the first insights into the molecular basis of chemoreception in the striped flea beetle.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Shuying Bin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Hualiang He
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Zhengbing Wang
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Mei Li
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Jintian Lin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
- * E-mail:
| |
Collapse
|
226
|
Yavuz A, Jagge C, Slone J, Amrein H. A genetic tool kit for cellular and behavioral analyses of insect sugar receptors. Fly (Austin) 2016; 8:189-96. [PMID: 25984594 DOI: 10.1080/19336934.2015.1050569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly's major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca(2+) imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.
Collapse
Affiliation(s)
- Ahmet Yavuz
- a Department of Cellular and Molecular Medicine ; Texas A&M Health Science Center ; College Station , TX USA
| | | | | | | |
Collapse
|
227
|
Gonzalez F, Witzgall P, Walker WB. Protocol for Heterologous Expression of Insect Odourant Receptors in Drosophila. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
228
|
Zhang R, Gao G, Chen H. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles. Sci Rep 2016; 6:23136. [PMID: 26979566 PMCID: PMC4793246 DOI: 10.1038/srep23136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/29/2016] [Indexed: 11/09/2022] Open
Abstract
In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanqun Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
229
|
Ye Z, Liu F, Liu N. Olfactory Responses of Southern House Mosquito, Culex quinquefasciatus, to Human Odorants. Chem Senses 2016; 41:441-7. [PMID: 26969630 DOI: 10.1093/chemse/bjv089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mosquito control is essential to protect humans from mosquito-borne diseases. The host recognition between mosquitoes and humans is achieved by the mosquito olfactory system. Antennal sensilla, which house olfactory receptor neurons, are responsible for detecting chemical cues from hosts. To deepen our understanding of the mechanisms involved in the host seeking behavior of mosquitoes, we conducted an electrophysiological study to investigate the response profile of each type of antennal sensilla to human odorants using single sensillum recording. In this study, more than 100 human odorants have been applied as stimuli to 5 morphological types of sensilla, long sharp trichoid (LST), short sharp trichoid (SST), short blunt trichoid I (SBTI), short blunt trichoid II (SBTII), and grooved peg (GP). Different types of sensilla present distinctive response profiles to the human odorants tested. In particular, SST, SBTI, and SBTII sensilla responded to more than 1 category of human odorants, while GP and LST were narrowly tuned to amines and methyl nonanoate, respectively. The dose-dependent patterns and odorant-specific/chemical structure-specific temporal dynamics of SBTI and SBTII antennal sensilla to human odorants had been further detected. Taken together, our study provides the new information on the olfactory physiology of Culex quinquefasciatus (Diptera: Culicidae) to human odorants, leading to a better understanding of mosquito-host recognition and being important for future development of new reagents in the mosquito control.
Collapse
Affiliation(s)
- Zi Ye
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA
| | - Feng Liu
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA
| |
Collapse
|
230
|
Münch D, Galizia CG. DoOR 2.0--Comprehensive Mapping of Drosophila melanogaster Odorant Responses. Sci Rep 2016; 6:21841. [PMID: 26912260 PMCID: PMC4766438 DOI: 10.1038/srep21841] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022] Open
Abstract
Odors elicit complex patterns of activated olfactory sensory neurons. Knowing the complete olfactome, i.e. the responses in all sensory neurons for all relevant odorants, is desirable to understand olfactory coding. The DoOR project combines all available Drosophila odorant response data into a single consensus response matrix. Since its first release many studies were published: receptors were deorphanized and several response profiles were expanded. In this study, we add unpublished data to the odor-response profiles for four odorant receptors (Or10a, Or42b, Or47b, Or56a). We deorphanize Or69a, showing a broad response spectrum with the best ligands including 3-hydroxyhexanoate, alpha-terpineol, 3-octanol and linalool. We include all of these datasets into DoOR, provide a comprehensive update of both code and data, and new tools for data analyses and visualizations. The DoOR project has a web interface for quick queries (http://neuro.uni.kn/DoOR), and a downloadable, open source toolbox written in R, including all processed and original datasets. DoOR now gives reliable odorant-responses for nearly all Drosophila olfactory responding units, listing 693 odorants, for a total of 7381 data points.
Collapse
Affiliation(s)
- Daniel Münch
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
231
|
Delventhal R, Carlson JR. Bitter taste receptors confer diverse functions to neurons. eLife 2016; 5. [PMID: 26880560 PMCID: PMC4764594 DOI: 10.7554/elife.11181] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/13/2015] [Indexed: 11/17/2022] Open
Abstract
Bitter compounds elicit an aversive response. In Drosophila, bitter-sensitive taste neurons coexpress many members of the Gr family of taste receptors. However, the molecular logic of bitter signaling is unknown. We used an in vivo expression approach to analyze the logic of bitter taste signaling. Ectopic or overexpression of bitter Grs increased endogenous responses or conferred novel responses. Surprisingly, expression of Grs also suppressed many endogenous bitter responses. Conversely, deletion of an endogenous Gr led to novel responses. Expression of individual Grs conferred strikingly different effects in different neurons. The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation. The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers. DOI:http://dx.doi.org/10.7554/eLife.11181.001 Insects and other animals use their sense of taste to tell if their food is safe to eat. Plant toxins, for example, often have a bitter flavor that animals can detect and avoid. Fruit flies have many bitter-sensitive nerve cells, but it is not known how the receptors on these nerve cells signal the detection of bitter-flavored compounds. Delventhal and Carlson have now used fruit flies to investigate how taste receptors of the so-called Gustatory receptor family detect bitter flavors. The experimental approach involved genetically modifying four different types of nerve cells that sense bitter compounds so that they produced higher levels of particular taste receptors than normal. Then, the flies were exposed to a range of bitter compounds while the electrical activity of each cell was measured. The analysis involved about 600 combinations of receptors, nerve cells and compounds. In some bitter-sensing nerve cells, increasing the number of taste receptors increased the cell’s responsiveness to bitter compounds. However, in other nerve cells, similar modifications suppressed an existing response or resulted in a new response. Delventhal and Carlson propose that these results suggest the specific response of a bitter-sensing nerve cell depends on the interactions between its different taste receptors. Furthermore, the ability of receptors to compete, inhibit or activate each other in different ways could have implications for evolution. For example, such flexible interactions might allow a taste system to evolve new, enhanced or diminished responses to new food sources and tastes in a changing environment. It now remains to be investigated how such receptor interactions take place at a molecular level. DOI:http://dx.doi.org/10.7554/eLife.11181.002
Collapse
Affiliation(s)
- Rebecca Delventhal
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
232
|
Zhao Y, Wang F, Zhang X, Zhang S, Guo S, Zhu G, Liu Q, Li M. Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea. PLoS One 2016; 11:e0148159. [PMID: 26841106 PMCID: PMC4739689 DOI: 10.1371/journal.pone.0148159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/13/2016] [Indexed: 12/03/2022] Open
Abstract
Chouioia cunea Yang is an endoparasitic wasp that attacks pupae of Hyphantria cunea (Drury), an invasive moth species that severely damages forests in China. Chemosensory systems of insects are used to detect volatile chemical odors such as female sex pheromones and host plant volatiles. The antennae of parasite wasps are important for host detection and other sensory-mediated behaviors. We identified and documented differential expression profiles of chemoreception genes in C. cunea antennae. A total of 25 OBPs, 80 ORs, 10 IRs, 11 CSP, 1 SNMPs, and 17 GRs were annotated from adult male and female C. cunea antennal transcriptomes. The expression profiles of 25 OBPs, 16 ORs, and 17 GRs, 5 CSP, 5 IRs and 1 SNMP were determined by RT-PCR and RT-qPCR for the antenna, head, thorax, and abdomen of male and female C. cunea. A total of 8 OBPs, 14 ORs, and 8 GRs, 1 CSP, 4 IRs and 1 SNMPs were exclusively or primarily expressed in female antennae. These female antennal-specific or dominant expression profiles may assist in locating suitable host and oviposition sites. These genes will provide useful targets for advanced study of their biological functions.
Collapse
Affiliation(s)
- Yanni Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Fengzhu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Xinyue Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Suhua Zhang
- Natural Enemy Breeding Center of Luohe Central South Forestry, 462000, Henan, China
| | - Shilong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Gengping Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Min Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
- * E-mail:
| |
Collapse
|
233
|
Distinct signaling of Drosophila chemoreceptors in olfactory sensory neurons. Proc Natl Acad Sci U S A 2016; 113:E902-11. [PMID: 26831094 DOI: 10.1073/pnas.1518329113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, olfactory sensory neurons (OSNs) rely primarily on two types of chemoreceptors, odorant receptors (Ors) and ionotropic receptors (Irs), to convert odor stimuli into neural activity. The cellular signaling of these receptors in their native OSNs remains unclear because of the difficulty of obtaining intracellular recordings from Drosophila OSNs. Here, we developed an antennal preparation that enabled the first recordings (to our knowledge) from targeted Drosophila OSNs through a patch-clamp technique. We found that brief odor pulses triggered graded inward receptor currents with distinct response kinetics and current-voltage relationships between Or- and Ir-driven responses. When stimulated with long-step odors, the receptor current of Ir-expressing OSNs did not adapt. In contrast, Or-expressing OSNs showed a strong Ca(2+)-dependent adaptation. The adaptation-induced changes in odor sensitivity obeyed the Weber-Fechner relation; however, surprisingly, the incremental sensitivity was reduced at low odor backgrounds but increased at high odor backgrounds. Our model for odor adaptation revealed two opposing effects of adaptation, desensitization and prevention of saturation, in dynamically adjusting odor sensitivity and extending the sensory operating range.
Collapse
|
234
|
Boyle SM, McInally S, Tharadra S, Ray A. Short-term memory trace mediated by termination kinetics of olfactory receptor. Sci Rep 2016; 6:19863. [PMID: 26830661 PMCID: PMC4735300 DOI: 10.1038/srep19863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
Odorants activate receptors in the peripheral olfactory neurons, which sends information to higher brain centers where behavioral valence is determined. Movement and airflow continuously change what odor plumes an animal encounters and little is known about the effect one plume has on the detection of another. Using the simple Drosophila melanogaster larval model to study this relationship we identify an unexpected phenomenon: response to an attractant can be selectively blocked by previous exposure to some odorants that activates the same receptor. At a mechanistic level, we find that exposure to this type of odorant causes prolonged tonic responses from a receptor (Or42b), which can block subsequent detection of a strong activator of that same receptor. We identify naturally occurring odorants with prolonged tonic responses for other odorant receptors (Ors) as well, suggesting that termination-kinetics is a factor for olfactory coding mechanisms. This mechanism has implications for odor-coding in any system and for designing applications to modify odor-driven behaviors.
Collapse
Affiliation(s)
- Sean Michael Boyle
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, California, CA 92521
| | - Shane McInally
- Department of Entomology, University of California, Riverside, California, CA 92521
| | - Sana Tharadra
- Department of Entomology, University of California, Riverside, California, CA 92521
| | - Anandasankar Ray
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, California, CA 92521.,Department of Entomology, University of California, Riverside, California, CA 92521.,Center for Disease Vector Research, University of California, Riverside, California, CA 92521.,Institute of Integrative Genome Biology, University of California, Riverside, California, CA 92521
| |
Collapse
|
235
|
Daly KC, Bradley S, Chapman PD, Staudacher EM, Tiede R, Schachtner J. Space Takes Time: Concentration Dependent Output Codes from Primary Olfactory Networks Rapidly Provide Additional Information at Defined Discrimination Thresholds. Front Cell Neurosci 2016; 9:515. [PMID: 26834563 PMCID: PMC4712294 DOI: 10.3389/fncel.2015.00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
As odor concentration increases, primary olfactory network representations expand in spatial distribution, temporal complexity and duration. However, the direct relationship between concentration dependent odor representations and the psychophysical thresholds of detection and discrimination is poorly understood. This relationship is absolutely critical as thresholds signify transition points whereby representations become meaningful to the organism. Here, we matched stimulus protocols for psychophysical assays and intracellular recordings of antennal lobe (AL) projection neurons (PNs) in the moth Manduca sexta to directly compare psychophysical thresholds and the output representations they elicit. We first behaviorally identified odor detection and discrimination thresholds across an odor dilution series for a panel of structurally similar odors. We then characterized spatiotemporal spiking patterns across a population of individually filled and identified AL PNs in response to those odors at concentrations below, at, and above identified thresholds. Using spatial and spatiotemporal based analyses we observed that each stimulus produced unique representations, even at sub-threshold concentrations. Mean response latency did not decrease and the percent glomerular activation did not increase with concentration until undiluted odor. Furthermore, correlations between spatial patterns for odor decreased, but only significantly with undiluted odor. Using time-integrated Euclidean distance (ED) measures, we determined that added spatiotemporal information was present at the discrimination but not detection threshold. This added information was evidenced by an increase in integrated distance between the sub-detection and discrimination threshold concentrations (of the same odor) that was not present in comparison of the sub-detection and detection threshold. After consideration of delays for information to reach the AL we find that it takes ~120-140 ms for the AL to output identity information. Overall, these results demonstrate that as odor concentration increases, added information about odor identity is embedded in the spatiotemporal representation at the discrimination threshold.
Collapse
Affiliation(s)
- Kevin C Daly
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Samual Bradley
- Department of Biology, West Virginia University Morgantown, WV, USA
| | | | | | - Regina Tiede
- Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | |
Collapse
|
236
|
Maeda T, Tamotsu M, Yamaoka R, Ozaki M. Effects of Floral Scents and Their Dietary Experiences on the Feeding Preference in the Blowfly, Phormia regina. Front Integr Neurosci 2015; 9:59. [PMID: 26648851 PMCID: PMC4664696 DOI: 10.3389/fnint.2015.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022] Open
Abstract
The flowers of different plant species have diverse scents with varied chemical compositions. Hence, every floral scent does not uniformly affect insect feeding preferences. The blowfly, Phormia regina, is a nectar feeder, and when a fly feeds on flower nectar, its olfactory organs, antennae, and maxillary palps are exposed to the scent. Generally, feeding preference is influenced by food flavor, which relies on both taste and odor. Therefore, the flies perceive the sweet taste of nectar and the particular scent of the flower simultaneously, and this olfactory information affects their feeding preference. Here, we show that the floral scents of 50 plant species have various effects on their sucrose feeding motivation, which was evaluated using the proboscis extension reflex (PER). Those floral scents were first categorized into three groups, based on their effects on the PER threshold sucrose concentration, which indicates whether a fly innately dislikes, ignores, or likes the target scent. Moreover, memory of olfactory experience with those floral scents during sugar feeding influenced the PER threshold. After feeding on sucrose solutions flavored with floral scents for 5 days, the scents did not consistently show the previously observed effects. Considering such empirical effects of scents on the PER threshold, we categorized the effects of the 50 tested floral scents on feeding preference into 16 of all possible 27 theoretical types. We then conducted the same experiments with flies whose antennae or maxillary palps were ablated prior to PER test in a fly group naïve to floral scents and prior to the olfactory experience during sugar feeding in the other fly group in order to test how these organs were involved in the effect of the floral scent. The results suggested that olfactory inputs through these organs play different roles in forming or modifying feeding preferences. Thus, our study contributes to an understanding of underlying mechanisms associated with the convergent processing of olfactory inputs with taste information, which affects feeding preference or appetite.
Collapse
Affiliation(s)
- Toru Maeda
- Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| | - Miwako Tamotsu
- Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| | - Ryohei Yamaoka
- Department of Applied Biology, School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| |
Collapse
|
237
|
Gonzalez F, Bengtsson JM, Walker WB, Sousa MFR, Cattaneo AM, Montagné N, de Fouchier A, Anfora G, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M. A Conserved Odorant Receptor Detects the Same 1-Indanone Analogs in a Tortricid and a Noctuid Moth. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
238
|
Koenig C, Hirsh A, Bucks S, Klinner C, Vogel H, Shukla A, Mansfield JH, Morton B, Hansson BS, Grosse-Wilde E. A reference gene set for chemosensory receptor genes of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:51-63. [PMID: 26365739 DOI: 10.1016/j.ibmb.2015.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
The order of Lepidoptera has historically been crucial for chemosensory research, with many important advances coming from the analysis of species like Bombyx mori or the tobacco hornworm, Manduca sexta. Specifically M. sexta has long been a major model species in the field, especially regarding the importance of olfaction in an ecological context, mainly the interaction with its host plants. In recent years transcriptomic data has led to the discovery of members of all major chemosensory receptor families in the species, but the data was fragmentary and incomplete. Here we present the analysis of the newly available high-quality genome data for the species, supplemented by additional transcriptome data to generate a high quality reference gene set for the three major chemosensory receptor gene families, the gustatory (GR), olfactory (OR) and antennal ionotropic receptors (IR). Coupled with gene expression analysis our approach allows association of specific receptor types and behaviors, like pheromone and host detection. The dataset will provide valuable support for future analysis of these essential chemosensory modalities in this species and in Lepidoptera in general.
Collapse
Affiliation(s)
- Christopher Koenig
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA.
| | - Sascha Bucks
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| | - Christian Klinner
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| | - Aditi Shukla
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur Boston, MA 02115, USA.
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| |
Collapse
|
239
|
Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV. Towards an understanding of the structural basis for insect olfaction by odorant receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:31-41. [PMID: 26416146 DOI: 10.1016/j.ibmb.2015.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Insects have co-opted a unique family of seven transmembrane proteins for odour sensing. Odorant receptors are believed to have evolved from gustatory receptors somewhere at the base of the Hexapoda and have expanded substantially to become the dominant class of odour recognition elements within the Insecta. These odorant receptors comprise an obligate co-receptor, Orco, and one of a family of highly divergent odorant "tuning" receptors. The two subunits are thought to come together at some as-yet unknown stoichiometry to form a functional complex that is capable of both ionotropic and metabotropic signalling. While there are still no 3D structures for these proteins, site-directed mutagenesis, resonance energy transfer, and structural modelling efforts, all mainly on Drosophila odorant receptors, are beginning to inform hypotheses of their structures and how such complexes function in odour detection. Some of the loops, especially the second extracellular loop that has been suggested to form a lid over the binding pocket, and the extracellular regions of some transmembrane helices, especially the third and to a less extent the sixth and seventh, have been implicated in ligand recognition in tuning receptors. The possible interaction between Orco and tuning receptor subunits through the final intracellular loop and the adjacent transmembrane helices is thought to be important for transducing ligand binding into receptor activation. Potential phosphorylation sites and a calmodulin binding site in the second intracellular loop of Orco are also thought to be involved in regulating channel gating. A number of new methods have recently been developed to express and purify insect odorant receptor subunits in recombinant expression systems. These approaches are enabling high throughput screening of receptors for agonists and antagonists in cell-based formats, as well as producing protein for the application of biophysical methods to resolve the 3D structure of the subunits and their complexes.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Julie Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Private Bag 11008, Palmerston North 4442, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David L Christie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
240
|
Joseph RM, Carlson JR. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet 2015; 31:683-695. [PMID: 26477743 DOI: 10.1016/j.tig.2015.09.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
Abstract
Chemoreception is essential for survival. Feeding, mating, and avoidance of predators depend on detection of sensory cues. Drosophila contains diverse families of chemoreceptors that detect odors, tastants, pheromones, and noxious stimuli, including receptors of the odor receptor (Or), gustatory receptor (Gr), ionotropic receptor (IR), Pickpocket (Ppk), and Trp families. We consider recent progress in understanding chemoreception in the fly, including the identification of new receptors, the discovery of novel biological functions for receptors, and the localization of receptors in unexpected places. We discuss major unsolved problems and suggest areas that may be particularly ripe for future discoveries, including the roles of these receptors in driving the circuits and behaviors that are essential to the survival and reproduction of the animal.
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| |
Collapse
|
241
|
Jung SH, Hueston C, Bhandawat V. Odor-identity dependent motor programs underlie behavioral responses to odors. eLife 2015; 4. [PMID: 26439011 PMCID: PMC4868540 DOI: 10.7554/elife.11092] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/05/2015] [Indexed: 02/01/2023] Open
Abstract
All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly’s locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters. DOI:http://dx.doi.org/10.7554/eLife.11092.001 Humans rely chiefly on vision to understand and navigate the world around them. But for many organisms, the world is dominated by their sense of smell. For these animals, everyday activities, like finding food, depend on being able to change behavior based on odor-based cues. To meet the challenges of detecting and discriminating between different odors, animals have many odorant receptors that bind to the odors, which are found on olfactory receptor neurons (ORNs). Each odor activates multiple ORNs, and different odors activate different combinations of ORNs. But it is not clear how activities from different classes of ORN are combined to create the perception of an odor or to guide behavior. Now, Jung et al. have investigated the logic by which odors can alter a fruit fly’s movements. The olfactory system of the fruit fly is organized along similar lines to that of a mammal, but is much simpler. Moreover, many genetic tools are available in fruit flies to allow neuroscientists to activate and inactivate specific neurons and assess the effect this has on behavior. The results suggest that odor-guided movement in fruit flies has two noteworthy features. Firstly, in the presence of odors, flies alter their walking in unexpectedly large number of ways. Therefore, one needs to consider many different factors, or “motor parameters”, to describe how odors affect a fly’s movement. For instance, instead of just walking faster or slower, a fly can change how long it stops (stop duration), how long it runs (run duration) and how fast it runs (run speed) – all of which will affect overall speed. Secondly, a single class of ORN can strongly affect some parameters (like run duration) without affecting others (like stop duration). These data indicate that the neural circuits involved have a modular organization in which each ORN class affects a subset of motor parameters, and each motor parameter is affected by a subset of ORN classes. These findings were largely unexpected. Jung et al.’s study focused on attractive odors. Future work will study repulsive odors to investigate if similar results are seen when studying repulsion versus attraction. DOI:http://dx.doi.org/10.7554/eLife.11092.002
Collapse
Affiliation(s)
- Seung-Hye Jung
- Department of Biology, Duke University, Durham, United States
| | - Catherine Hueston
- Department of Biology, Duke University, Durham, United States.,Department of Neurobiology, Duke University, Durham, United States
| | - Vikas Bhandawat
- Department of Biology, Duke University, Durham, United States.,Department of Neurobiology, Duke University, Durham, United States.,Duke Institute for Brain Sciences, Duke University, Durham, United States
| |
Collapse
|
242
|
Lin CC, Potter CJ. Re-Classification of Drosophila melanogaster Trichoid and Intermediate Sensilla Using Fluorescence-Guided Single Sensillum Recording. PLoS One 2015; 10:e0139675. [PMID: 26431203 PMCID: PMC4592000 DOI: 10.1371/journal.pone.0139675] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/16/2015] [Indexed: 12/01/2022] Open
Abstract
Drosophila olfactory receptor neurons are found within specialized sensory hairs on antenna and maxillary palps. The linking of odorant-induced responses to olfactory neuron activities is often accomplished via Single Sensillum Recordings (SSR), in which an electrode inserted into a single sensory hair records the neuronal activities of all the neurons housed in that sensillum. The identification of the recorded sensillum requires matching the neuronal responses with known odor-response profiles. To record from specific sensilla, or to systematically screen all sensillar types, requires repetitive and semi-random SSR experiments. Here, we validate an approach in which the GAL4/UAS binary expression system is used for targeting specific sensilla for recordings. We take advantage of available OrX-Gal4 lines, in combination with recently generated strong membrane targeted GFP reporters, to guide electrophysiological recordings to GFP-labeled sensilla. We validate a full set of reagents that can be used to rapidly screen the odor-response profiles of all basiconic, intermediate, and trichoid sensilla. Fluorescence-guided SSR further revealed that two antennal trichoid sensilla types should be re-classified as intermediate sensilla. This approach provides a simple and practical addition to a proven method for investigating olfactory neurons, and can be extended by the addition of UAS-geneX effectors for gain-of-function or loss-of-function studies.
Collapse
Affiliation(s)
- Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher J. Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
243
|
The chemical ecology of the fly. Curr Opin Neurobiol 2015; 34:95-102. [DOI: 10.1016/j.conb.2015.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 02/01/2023]
|
244
|
Lin CC, Prokop-Prigge KA, Preti G, Potter CJ. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. eLife 2015; 4:e08688. [PMID: 26422512 PMCID: PMC4621432 DOI: 10.7554/elife.08688] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022] Open
Abstract
Animals use olfactory cues for navigating complex environments. Food odors in particular provide crucial information regarding potential foraging sites. Many behaviors occur at food sites, yet how food odors regulate such behaviors at these sites is unclear. Using Drosophila melanogaster as an animal model, we found that males deposit the pheromone 9-tricosene upon stimulation with the food-odor apple cider vinegar. This pheromone acts as a potent aggregation pheromone and as an oviposition guidance cue for females. We use genetic, molecular, electrophysiological, and behavioral approaches to show that 9-tricosene activates antennal basiconic Or7a receptors, a receptor activated by many alcohols and aldehydes such as the green leaf volatile E2-hexenal. We demonstrate that loss of Or7a positive neurons or the Or7a receptor abolishes aggregation behavior and oviposition site-selection towards 9-tricosene and E2-hexenal. 9-Tricosene thus functions via Or7a to link food-odor perception with aggregation and egg-laying decisions.
Collapse
Affiliation(s)
- Chun-Chieh Lin
- The Solomon H Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - George Preti
- Monell Chemical Senses Center, Philadelphia, United States
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Christopher J Potter
- The Solomon H Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
245
|
Bachtiar LR, Unsworth CP, Newcomb RD. Using multilayer perceptron computation to discover ideal insect olfactory receptor combinations in the mosquito and fruit fly for an efficient electronic nose. Neural Comput 2015; 27:171-201. [PMID: 25380337 DOI: 10.1162/neco_a_00691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The model organism, Drosophila melanogaster, and the mosquito Anopheles gambiae use 60 and 79 odorant receptors, respectively, to sense their olfactory world. However, a commercial "electronic nose" in the form of an insect olfactory biosensor demands very low numbers of receptors at its front end of detection due to the difficulties of receptor/sensor integration and functionalization. In this letter, we demonstrate how computation via artificial neural networks (ANNs), in the form of multilayer perceptrons (MLPs), can be successfully incorporated as the signal processing back end of the biosensor to drastically reduce the number of receptors to three while still retaining 100% performance of odorant detection to that of a full complement of receptors. In addition, we provide a detailed performance comparison between D. melanogaster and A. gambiae odorant receptors and demonstrate that A. gambiae receptors provide superior olfaction detection performance over D. melanogaster for very low receptor numbers. The results from this study present the possibility of using the computation of MLPs to discover ideal biological olfactory receptors for an olfactory biosensor device to provide maximum classification performance of unknown odorants.
Collapse
Affiliation(s)
- Luqman R Bachtiar
- Department of Engineering Science, University of Auckland, Auckland 1142, New Zealand
| | | | | |
Collapse
|
246
|
Bachtiar LR, Unsworth CP, Newcomb RD. Artificial neural network prediction of specific VOCs and blended VOCs for various concentrations from the olfactory receptor firing rates of Drosophila melanogaster. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:3232-5. [PMID: 25570679 DOI: 10.1109/embc.2014.6944311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In our previous work, we have investigated the classification of odorants based on their chemical classes only, e.g. Alcohol, Terpene or Ester, using Artificial Neural Networks (ANN) as the signal processing backend of an insect olfactory electronic nose, or e-nose. However, potential applications of e-noses in the food and beverage industry which include the assessment of a fruit's ripeness, quality of wines or identifying bacterial contamination in products, demand the ability to predict beyond chemical class and to identify exact chemicals, known as specific Volatile Organic Compounds (VOCs) and blends of chemical that present themselves as aromas, known as blended VOCs (BVOCs). In this work, we demonstrate for the first time how it is possible to predict such VOCs and also BVOCs at varying concentration levels. We achieve this goal by using ANNs in the form of hybrid Multi-Layer Perceptrons (MLPs), to analyze the firing rate responses of the model organism Drosophila melanogaster's odorant receptors (DmOrs), in order to predict the specific VOCs and BVOCs. We report for the raw and noise injected data how the highest MLP prediction for specific VOCs occurred at a 10(-4)mol.dm(-3) concentration in which all the VOC validation vectors were identified and at a concentration of 10(-2)mol.dm(-3) for BVOCs in which 8/9 or 88.9% were identified. The results demonstrate for the first time the power of using MLPs and insect odorant receptors (Ors) to predict specific VOCs and BVOCs.
Collapse
|
247
|
Hill SR, Majeed S, Ignell R. Molecular basis for odorant receptor tuning: a short C-terminal sequence is necessary and sufficient for selectivity of mosquito Or8. INSECT MOLECULAR BIOLOGY 2015; 24:491-501. [PMID: 26033210 DOI: 10.1111/imb.12176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 05/23/2023]
Abstract
A birth-and-death evolutionary model for odorant receptor gene repertoires presumes the creation of repertoires with the capacity for high-level diversity and rapid ligand specificity change. This changes the recognised odour space, directly affecting fitness-related behaviours and ultimately affecting adaptation to new environments and resources. The proximate molecular mechanisms underlying the tuning of odorant receptor repertoires, and thus peripheral olfaction, are unclear. In the present study, we report a concrete example of this model of odorant receptor evolution leading to rapid changes in receptor tuning that leave the peripheral neuronal circuitry intact. We identified a conserved odorant receptor gene in mosquitoes, Or8, which in Culex quinquefasciatus underwent a duplication and inversion event. The paralogues differ in only minor structural changes manifesting at the C-terminus. We assessed the specificity of the paralogous odorant receptors and receptor neurones. We found that the functional tuning of the receptor was indeed reflected in minor differences in amino acid structure. Specifically, we found that enantiomeric specificity of these mosquito Or8 paralogues relies on eight C-terminal amino acids encoded in the final exon of the gene; thus, the birth of a paralogous odorant receptor can change the tuning of the peripheral olfactory system.
Collapse
Affiliation(s)
- S R Hill
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 230 52 Alnarp, Sweden
| | - S Majeed
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 230 52 Alnarp, Sweden
| | - R Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 230 52 Alnarp, Sweden
| |
Collapse
|
248
|
Koenig C, Bretschneider A, Heckel DG, Grosse-Wilde E, Hansson BS, Vogel H. The plastic response of Manduca sexta to host and non-host plants. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:72-85. [PMID: 26070471 DOI: 10.1016/j.ibmb.2015.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Specialist insect herbivores have evolved efficient ways to adapt to the major defenses of their host plants. Although Manduca sexta, specialized on Solanaceous plants, has become a model organism for insect molecular biology, little is known about its adaptive responses to the chemical defenses of its hosts. To study larval performance and transcriptomic responses to host and non-host plants, we conducted developmental assays and replicated RNAseq experiments with Manduca larvae fed on different Solanaceous plants as well as on a Brassicaceous non-host plant, Brassica napus. Manduca larvae developed fastest on Nicotiana attenuata, but no significant differences in performance were found on larvae fed on other Solanaceae or the non-host B. napus. The RNAseq experiments revealed that Manduca larvae display plastic responses at the gene expression level, and transcriptional signatures specific to the challenges of each host- and non-host plant. Our observations are not consistent with expectations that specialist herbivores would perform poorly on non-host plants. Instead, our findings demonstrate the ability of this specialized insect herbivore to efficiently use a larger repertoire of host plants than it utilizes in the field.
Collapse
Affiliation(s)
- Christopher Koenig
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Anne Bretschneider
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - David G Heckel
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Heiko Vogel
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Jena 07745, Germany.
| |
Collapse
|
249
|
Milet-Pinheiro P, Navarro DMDAF, Dötterl S, Carvalho AT, Pinto CE, Ayasse M, Schlindwein C. Pollination biology in the dioecious orchid Catasetum uncatum: How does floral scent influence the behaviour of pollinators? PHYTOCHEMISTRY 2015; 116:149-161. [PMID: 25771507 DOI: 10.1016/j.phytochem.2015.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
Catasetum is a neotropical orchid genus that comprises about 160 dioecious species with a remarkable sexual dimorphism in floral morphology. Flowers of Catasetum produce perfumes as rewards, which are collected only by male euglossine bees. Currently, floral scents are known to be involved in the selective attraction of specific euglossine species. However, sexual dimorphism in floral scent and its eventual role in the pollination of Catasetum species have never been investigated. Here, we have investigated the pollination of Catasetum uncatum and asked: (1) Is floral scent a sexual dimorphic trait? (2) Does pollinarium removal/deposition affect scent emission? (3) Does sexual dimorphism in floral scent and changed scent emission have implications with regard to the behaviour of the pollinators? The frequency and behaviour of floral visitors were observed in non-manipulated flowers (both flower sexes) and in manipulated flowers (pistillate only) in which pollinaria were deposited. Scents of staminate and pistillate flowers (both manipulated and non-manipulated) were collected by using dynamic headspace methods and analysed chemically. Electrophysiological analyses were performed to detect compounds triggering antennal depolarisation in the euglossine species. C. uncatum is pollinated mainly by males of Euglossa nanomelanotricha. Pollinators were more frequent in pistillate than in staminate inflorescences. Bees approaching staminate flowers frequently flew away without visiting them, a behavioural pattern not observed in pistillate flowers. In the chemical analyses, we recorded 99 compounds, 31 of which triggered antennal depolarisation in pollinators. Multivariate analyses with the electrophysiological-active compounds did not detect differences between the scent composition of staminate and pistillate flowers. Pollinarium removal or deposition resulted in diminished scent emission within 24h in staminate and pistillate flowers, respectively. Surprisingly, bees discriminated pollinated from non-pollinated pistillate flowers as early as 2h after pollination. The rapid loss in the attractiveness of flowers following pollinarium removal/deposition can be interpreted as a strategy to direct pollinators to non-pollinated flowers. We have found no evidence that euglossine males discriminate staminate from pistillate flowers by means of floral scent. Instead, we speculate that bees use visual cues, such as sex dimorphic traits, to discriminate flowers of different sexes. Together, our results provide interesting insights into the evolution of floral signals in gender-dimorphic species and into its significance in plant reproductive biology.
Collapse
Affiliation(s)
- Paulo Milet-Pinheiro
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, 50670-901 Recife, Brazil; Institute of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| | | | - Stefan Dötterl
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Airton Torres Carvalho
- Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido, Avenida Francisco Mota 572, Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Carlos Eduardo Pinto
- Programa de Pós-Graduacão em Entomologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto-São Paulo 14040-901, Brazil
| | - Manfred Ayasse
- Institute of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Clemens Schlindwein
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
250
|
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 2015; 16:532. [PMID: 26187652 PMCID: PMC4506583 DOI: 10.1186/s12864-015-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. RESULTS We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45% of the sequences were shared. Phylogenetic trees were constructed for desaturases, FARs and FATs, and transcripts that clustered with the ∆14, ∆12 and ∆9 desaturases, PG-specific FARs and potential candidate FATs, respectively, were identified. Transcripts encoding putative pheromone degrading enzymes, and candidate pheromone carrier and receptor proteins expressed in the E. cautella PG, were also identified. CONCLUSIONS Our study provides important background information on the enzymes involved in pheromone biosynthesis. This information will be useful for the in vitro production of E. cautella sex pheromones and may provide potential targets for disrupting the pheromone-based communication system of E. cautella to prevent infestations.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
- Department of Plant Protection, King Saud University, EERU, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Agronomy Department, University of Ljubljana, Biotechnical Faculty, SI-1000, Ljubljana, Slovenia.
| | - Sulieman Alfaifi
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Koko D Sutanto
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|