201
|
Ren H, Dang X, Yang Y, Huang D, Liu M, Gao X, Lin D. SPIKE1 Activates ROP GTPase to Modulate Petal Growth and Shape. PLANT PHYSIOLOGY 2016; 172:358-71. [PMID: 27440754 PMCID: PMC5074625 DOI: 10.1104/pp.16.00788] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/19/2016] [Indexed: 05/22/2023]
Abstract
Plant organ growth and final shape rely on cell proliferation and, particularly, on cell expansion that largely determines the visible growth of plant organs. Arabidopsis (Arabidopsis thaliana) petals serve as an excellent model for dissecting the coordinated regulation of patterns of cell expansion and organ growth, but the molecular signaling mechanisms underlying this regulation remain largely unknown. Here, we demonstrate that during the late petal development stages, SPIKE1 (SPK1), encoding a guanine nucleotide exchange factor, activates Rho of Plants (ROP) GTPase proteins (ROP2, ROP4, and ROP6) to affect anisotropic expansion of epidermal cells in both petal blades and claws, thereby affecting anisotropic growth of the petal and the final characteristic organ shape. The petals of SPK1 knockdown mutants were significantly longer but narrower than those of the wild type, associated with increased anisotropic expansion of epidermal cells at late development stages. In addition, ROP2, ROP4, and ROP6 are activated by SPK1 to promote the isotropic organization of cortical microtubule arrays and thus inhibit anisotropic growth in the petal. Both knockdown of SPK1 and multiple rop mutants caused highly ordered cortical microtubule arrays that were transversely oriented relative to the axis of cell elongation after development stage 11. Taken together, our results suggest a SPK1-ROP-dependent signaling module that influences anisotropic growth in the petal and defines the final organ shape.
Collapse
Affiliation(s)
- Huibo Ren
- Basic Forestry and Proteomics Center (H.R., X.D., Y.Y., D.H., M.L., D.L.), Haixia Institute of Science and Technology (H.R., X.D., Y.Y., D.H., M.L., X.G., D.L.), and Horticultural Plant Biology and Metabolomics Center (X.G.), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xie Dang
- Basic Forestry and Proteomics Center (H.R., X.D., Y.Y., D.H., M.L., D.L.), Haixia Institute of Science and Technology (H.R., X.D., Y.Y., D.H., M.L., X.G., D.L.), and Horticultural Plant Biology and Metabolomics Center (X.G.), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanqiu Yang
- Basic Forestry and Proteomics Center (H.R., X.D., Y.Y., D.H., M.L., D.L.), Haixia Institute of Science and Technology (H.R., X.D., Y.Y., D.H., M.L., X.G., D.L.), and Horticultural Plant Biology and Metabolomics Center (X.G.), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dingquan Huang
- Basic Forestry and Proteomics Center (H.R., X.D., Y.Y., D.H., M.L., D.L.), Haixia Institute of Science and Technology (H.R., X.D., Y.Y., D.H., M.L., X.G., D.L.), and Horticultural Plant Biology and Metabolomics Center (X.G.), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mengting Liu
- Basic Forestry and Proteomics Center (H.R., X.D., Y.Y., D.H., M.L., D.L.), Haixia Institute of Science and Technology (H.R., X.D., Y.Y., D.H., M.L., X.G., D.L.), and Horticultural Plant Biology and Metabolomics Center (X.G.), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaowei Gao
- Basic Forestry and Proteomics Center (H.R., X.D., Y.Y., D.H., M.L., D.L.), Haixia Institute of Science and Technology (H.R., X.D., Y.Y., D.H., M.L., X.G., D.L.), and Horticultural Plant Biology and Metabolomics Center (X.G.), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deshu Lin
- Basic Forestry and Proteomics Center (H.R., X.D., Y.Y., D.H., M.L., D.L.), Haixia Institute of Science and Technology (H.R., X.D., Y.Y., D.H., M.L., X.G., D.L.), and Horticultural Plant Biology and Metabolomics Center (X.G.), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
202
|
Chomicki G, Wightman R, Turner SR. A Specific Class of Short Treadmilling Microtubules Enhances Cortical Microtubule Alignment. MOLECULAR PLANT 2016; 9:1214-1216. [PMID: 27235548 DOI: 10.1016/j.molp.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Guillaume Chomicki
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Raymond Wightman
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon R Turner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
203
|
Kirchhelle C, Chow CM, Foucart C, Neto H, Stierhof YD, Kalde M, Walton C, Fricker M, Smith RS, Jérusalem A, Irani N, Moore I. The Specification of Geometric Edges by a Plant Rab GTPase Is an Essential Cell-Patterning Principle During Organogenesis in Arabidopsis. Dev Cell 2016; 36:386-400. [PMID: 26906735 PMCID: PMC4766369 DOI: 10.1016/j.devcel.2016.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/14/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022]
Abstract
Plant organogenesis requires control over division planes and anisotropic cell wall growth, which each require spatial patterning of cells. Polyhedral plant cells can display complex patterning in which individual faces are established as biochemically distinct domains by endomembrane trafficking. We now show that, during organogenesis, the Arabidopsis endomembrane system specifies an important additional cellular spatial domain: the geometric edges. Previously unidentified membrane vesicles lying immediately beneath the plasma membrane at cell edges were revealed through localization of RAB-A5c, a plant GTPase of the Rab family of membrane-trafficking regulators. Specific inhibition of RAB-A5c activity grossly perturbed cell geometry in developing lateral organs by interfering independently with growth anisotropy and cytokinesis without disrupting default membrane trafficking. The initial loss of normal cell geometry can be explained by a failure to maintain wall stiffness specifically at geometric edges. RAB-A5c thus meets a requirement to specify this cellular spatial domain during organogenesis.
Collapse
Affiliation(s)
- Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Cheung-Ming Chow
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Camille Foucart
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Helia Neto
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology, Microscopy, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Monika Kalde
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Carol Walton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Richard S Smith
- Department of Comparative and Developmental Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Antoine Jérusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Niloufer Irani
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
204
|
|
205
|
Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2016; 113:E4294-303. [PMID: 27436908 DOI: 10.1073/pnas.1600677113] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson-Dumais rule generalizes Errera's rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson-Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson-Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants.
Collapse
|
206
|
Refahi Y, Brunoud G, Farcot E, Jean-Marie A, Pulkkinen M, Vernoux T, Godin C. A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis. eLife 2016; 5. [PMID: 27380805 PMCID: PMC4947393 DOI: 10.7554/elife.14093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and makes quantitative predictions on the nature of disorders arising from noise. We further show that disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that disorders can reveal biological watermarks of developmental systems. DOI:http://dx.doi.org/10.7554/eLife.14093.001 Plants grow throughout their lifetime, forming new flowers and leaves at the tips of their stems through a patterning process called phyllotaxis, which occurs in spirals for a vast number of plant species. The classical view suggests that the positioning of each new leaf or flower bud at the tip of a growing stem is based on a small set of principles. This includes the idea that buds produce inhibitory signals that prevent other buds from forming too close to each other. When computational models of phyllotaxis follow these ‘deterministic’ principles, they are able to recreate the spiral pattern the buds form on a growing stem. In real plants, however, the spiral pattern is not always perfect. The observed disturbances in the pattern are believed to reflect the presence of random fluctuations – regarded as noise – in phyllotaxis. Here, using numerical simulations, Refahi et al. noticed that the patterns of inhibitory signals in a shoot tip pre-determine the locations of several competing sites where buds could form in a robust manner. However, random fluctuations in the way cells perceive these inhibitory signals could greatly disturb the timing of organ formation and affect phyllotaxis patterns. Building on this, Refahi et al. created a new computational model of bud patterning that takes into account some randomness in how cells perceive the inhibitory signals released by existing buds. The model can accurately recreate the classical spiral patterns of buds and also produces occasional disrupted patterns that are similar to those seen in real plants. Unexpectedly, Refahi et al. show that these ‘errors’ reveal key information about how the signals that control phyllotaxis might work. These findings open up new avenues of research into the role of noise in phyllotaxis. The model can be used to predict how altering the activities of genes or varying plant growth conditions might disturb this patterning process. Furthermore, the work highlights how the structure of disturbances in a biological system can shed new light on how the system works. DOI:http://dx.doi.org/10.7554/eLife.14093.002
Collapse
Affiliation(s)
- Yassin Refahi
- Laboratoire de Reproduction de développement des plantes, Lyon, France.,Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Géraldine Brunoud
- Laboratoire de Reproduction de développement des plantes, Lyon, France
| | - Etienne Farcot
- School of Mathematical Sciences, The University of Nottingham, Nottingham, United Kingdom.,Center for Integrative Plant Biology, The University of Nottingham, Notthingam, United Kingdom
| | - Alain Jean-Marie
- INRIA Project-Team Maestro, INRIA Sophia-Antipolis Méditerranée Research Center, Montpellier, France
| | | | - Teva Vernoux
- Laboratoire de Reproduction de développement des plantes, Lyon, France
| | - Christophe Godin
- INRIA Project-Team Virtual Plants, CIRAD, INRA and INRIA Sophia-Antipolis Méditerranée Research Center, Montpellier, France
| |
Collapse
|
207
|
|
208
|
Abstract
In this study, Marhavý et al. investigate the role of auxin in the early lateral root initiation and identify a dual, spatiotemporally distinct role of auxin during the early phases of lateral root organogenesis. Using a cell ablation technique that can eliminate a single cell in the developing root, they show that auxin can relieve inhibition of pericycle meristematic activity by cell-to-cell interactions in the endodermis and defines the orientation of the cell division plane to initiate the lateral root developmental program in the pericycle. To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.
Collapse
|
209
|
Environmental and Endogenous Control of Cortical Microtubule Orientation. Trends Cell Biol 2016; 26:409-419. [DOI: 10.1016/j.tcb.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
210
|
Abstract
Plant organs reproducibly reach a set size and shape, and a key question is what prevents overgrowth. A new study uses imaging and computer modelling of the Arabidopsis sepal to show that mechanics determines growth arrest and thus final organ shape.
Collapse
|
211
|
Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D, Roeder AHK, Smith RS, Boudaoud A, Hamant O. A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis. Curr Biol 2016; 26:S0960-9822(16)30180-4. [PMID: 27151660 DOI: 10.1016/j.cub.2016.03.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
How organs reach their final shape is a central yet unresolved question in developmental biology. Here we investigate whether mechanical cues contribute to this process. We analyze the epidermal cells of the Arabidopsis sepal, focusing on cortical microtubule arrays, which align along maximal tensile stresses and restrict growth in that direction through their indirect impact on the mechanical anisotropy of cell walls. We find a good match between growth and microtubule orientation throughout most of the development of the sepal. However, at the sepal tip, where organ maturation initiates and growth slows down in later stages, microtubules remain in a configuration consistent with fast anisotropic growth, i.e., transverse, and the anisotropy of their arrays even increases. To understand this apparent paradox, we built a continuous mechanical model of a growing sepal. The model demonstrates that differential growth in the sepal can generate transverse tensile stress at the tip. Consistently, microtubules respond to mechanical perturbations and align along maximal tension at the sepal tip. Including this mechanical feedback in our growth model of the sepal, we predict an impact on sepal shape that is validated experimentally using mutants with either increased or decreased microtubule response to stress. Altogether, this suggests that a mechanical feedback loop, via microtubules acting both as stress sensor and growth regulator, channels the growth and shape of the sepal tip. We propose that this proprioception mechanism is a key step leading to growth arrest in the whole sepal in response to its own growth.
Collapse
Affiliation(s)
- Nathan Hervieux
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France
| | - Mathilde Dumond
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France
| | - Aleksandra Sapala
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Anne-Lise Routier-Kierzkowska
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Arezki Boudaoud
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France.
| | - Olivier Hamant
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
212
|
Bar-Sinai Y, Julien JD, Sharon E, Armon S, Nakayama N, Adda-Bedia M, Boudaoud A. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves. PLoS Comput Biol 2016; 12:e1004819. [PMID: 27074136 PMCID: PMC4830508 DOI: 10.1371/journal.pcbi.1004819] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/17/2016] [Indexed: 01/13/2023] Open
Abstract
Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types.
Collapse
Affiliation(s)
- Yohai Bar-Sinai
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université Paris VI, Université Paris VII, Paris, France
| | - Jean-Daniel Julien
- Laboratoire de Physique, ENS Lyon, CNRS, UCB Lyon I, Université de Lyon, Lyon, France
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
- Laboratoire Joliot-Curie, Univ Lyon, ENS de Lyon, CNRS, Lyon, France
| | - Eran Sharon
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Shahaf Armon
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Naomi Nakayama
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mokhtar Adda-Bedia
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université Paris VI, Université Paris VII, Paris, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
- Laboratoire Joliot-Curie, Univ Lyon, ENS de Lyon, CNRS, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
213
|
Abley K, Locke JCW, Leyser HMO. Developmental mechanisms underlying variable, invariant and plastic phenotypes. ANNALS OF BOTANY 2016; 117:733-48. [PMID: 27072645 PMCID: PMC4845803 DOI: 10.1093/aob/mcw016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. SCOPE Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. CONCLUSION In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - H M Ottoline Leyser
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
214
|
Mestek Boukhibar L, Barkoulas M. The developmental genetics of biological robustness. ANNALS OF BOTANY 2016; 117:699-707. [PMID: 26292993 PMCID: PMC4845795 DOI: 10.1093/aob/mcv128] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype-phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. SCOPE AND CONCLUSIONS Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved.
Collapse
Affiliation(s)
- Lamia Mestek Boukhibar
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
215
|
Cheung K, Senese S, Kuang J, Bui N, Ongpipattanakul C, Gholkar A, Cohn W, Capri J, Whitelegge JP, Torres JZ. Proteomic Analysis of the Mammalian Katanin Family of Microtubule-severing Enzymes Defines Katanin p80 subunit B-like 1 (KATNBL1) as a Regulator of Mammalian Katanin Microtubule-severing. Mol Cell Proteomics 2016; 15:1658-69. [PMID: 26929214 PMCID: PMC4858946 DOI: 10.1074/mcp.m115.056465] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Indexed: 11/24/2022] Open
Abstract
The Katanin family of microtubule-severing enzymes is critical for remodeling microtubule-based structures that influence cell division, motility, morphogenesis and signaling. Katanin is composed of a catalytic p60 subunit (A subunit, KATNA1) and a regulatory p80 subunit (B subunit, KATNB1). The mammalian genome also encodes two additional A-like subunits (KATNAL1 and KATNAL2) and one additional B-like subunit (KATNBL1) that have remained poorly characterized. To better understand the factors and mechanisms controlling mammalian microtubule-severing, we have taken a mass proteomic approach to define the protein interaction module for each mammalian Katanin subunit and to generate the mammalian Katanin family interaction network (Katan-ome). Further, we have analyzed the function of the KATNBL1 subunit and determined that it associates with KATNA1 and KATNAL1, it localizes to the spindle poles only during mitosis and it regulates Katanin A subunit microtubule-severing activity in vitro. Interestingly, during interphase, KATNBL1 is sequestered in the nucleus through an N-terminal nuclear localization signal. Finally KATNB1 was able to compete the interaction of KATNBL1 with KATNA1 and KATNAL1. These data indicate that KATNBL1 functions as a regulator of Katanin A subunit microtubule-severing activity during mitosis and that it likely coordinates with KATNB1 to perform this function.
Collapse
Affiliation(s)
- Keith Cheung
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Silvia Senese
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Jiaen Kuang
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ngoc Bui
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Chayanid Ongpipattanakul
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ankur Gholkar
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Whitaker Cohn
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Joseph Capri
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Julian P Whitelegge
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| | - Jorge Z Torres
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| |
Collapse
|
216
|
Bassel GW, Smith RS. Quantifying morphogenesis in plants in 4D. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:87-94. [PMID: 26748353 DOI: 10.1016/j.pbi.2015.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Plant development occurs in 3D space over time (4D). Recent advances in image acquisition and computational analysis are now enabling development to be visualized and quantified in its entirety at the cellular level. The simultaneous quantification of reporter abundance and 3D cell shape change enables links between signaling processes and organ morphogenesis to be accomplished organ-wide and at single cell resolution. Current work to integrate this quantitative 3D image data with computational models is enabling causal relationships between gene expression and organ morphogenesis to be uncovered. Further technical advances in imaging and image analysis will enable this approach to be applied to a greater diversity of plant organs and will become a key tool to address many questions in plant development.
Collapse
Affiliation(s)
- George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
217
|
Fal K, Landrein B, Hamant O. Interplay between miRNA regulation and mechanical stress for CUC gene expression at the shoot apical meristem. PLANT SIGNALING & BEHAVIOR 2016; 11:e1127497. [PMID: 26653277 PMCID: PMC4883852 DOI: 10.1080/15592324.2015.1127497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/26/2015] [Indexed: 05/18/2023]
Abstract
The shoot apical meristem is the central organizer of plant aerial organogenesis. The molecular bases of its functions involve several cross-talks between transcription factors, hormones and microRNAs. We recently showed that the expression of the homeobox transcription factor STM is induced by mechanical perturbations, adding another layer of complexity to this regulation. Here we provide additional evidence that mechanical perturbations impact the promoter activity of CUC3, an important regulator of boundary formation at the shoot meristem. Interestingly, we did not detect such an effect for CUC1. This suggests that the robustness of expression patterns and developmental programs is controlled via a combined action of molecular factors as well as mechanical cues in the shoot apical meristem.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire de Reproduction et Développement des Plantes, INRA-CNRS-UCBL-ENS Lyon, Lyon, France
- Laboratoire Joliot Curie, CNRS-ENS Lyon, Lyon, France
| | - Benoit Landrein
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA-CNRS-UCBL-ENS Lyon, Lyon, France
- Laboratoire Joliot Curie, CNRS-ENS Lyon, Lyon, France
| |
Collapse
|
218
|
Bidhendi AJ, Geitmann A. Relating the mechanics of the primary plant cell wall to morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:449-61. [PMID: 26689854 DOI: 10.1093/jxb/erv535] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Regulation of the mechanical properties of the cell wall is a key parameter used by plants to control the growth behavior of individual cells and tissues. Modulation of the mechanical properties occurs through the control of the biochemical composition and the degree and nature of interlinking between cell wall polysaccharides. Preferentially oriented cellulose microfibrils restrict cellular expansive growth, but recent evidence suggests that this may not be the trigger for anisotropic growth. Instead, non-uniform softening through the modulation of pectin chemistry may be an initial step that precedes stress-induced stiffening of the wall through cellulose. Here we briefly review the major cell wall polysaccharides and their implication for plant cell wall mechanics that need to be considered in order to study the growth behavior of the primary plant cell wall.
Collapse
Affiliation(s)
- Amir J Bidhendi
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H1X 2B2, Canada
| | - Anja Geitmann
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H1X 2B2, Canada
| |
Collapse
|
219
|
Ververis A, Christodoulou A, Christoforou M, Kamilari C, Lederer CW, Santama N. A novel family of katanin-like 2 protein isoforms (KATNAL2), interacting with nucleotide-binding proteins Nubp1 and Nubp2, are key regulators of different MT-based processes in mammalian cells. Cell Mol Life Sci 2016; 73:163-84. [PMID: 26153462 PMCID: PMC11108477 DOI: 10.1007/s00018-015-1980-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/08/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression.
Collapse
Affiliation(s)
- Antonis Ververis
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678, Nicosia, Cyprus
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678, Nicosia, Cyprus
| | - Maria Christoforou
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678, Nicosia, Cyprus
| | - Christina Kamilari
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678, Nicosia, Cyprus
| | | | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678, Nicosia, Cyprus.
| |
Collapse
|
220
|
Krupinski P, Bozorg B, Larsson A, Pietra S, Grebe M, Jönsson H. A Model Analysis of Mechanisms for Radial Microtubular Patterns at Root Hair Initiation Sites. FRONTIERS IN PLANT SCIENCE 2016; 7:1560. [PMID: 27840629 PMCID: PMC5083785 DOI: 10.3389/fpls.2016.01560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/04/2016] [Indexed: 05/12/2023]
Abstract
Plant cells have two main modes of growth generating anisotropic structures. Diffuse growth where whole cell walls extend in specific directions, guided by anisotropically positioned cellulose fibers, and tip growth, with inhomogeneous addition of new cell wall material at the tip of the structure. Cells are known to regulate these processes via molecular signals and the cytoskeleton. Mechanical stress has been proposed to provide an input to the positioning of the cellulose fibers via cortical microtubules in diffuse growth. In particular, a stress feedback model predicts a circumferential pattern of fibers surrounding apical tissues and growing primordia, guided by the anisotropic curvature in such tissues. In contrast, during the initiation of tip growing root hairs, a star-like radial pattern has recently been observed. Here, we use detailed finite element models to analyze how a change in mechanical properties at the root hair initiation site can lead to star-like stress patterns in order to understand whether a stress-based feedback model can also explain the microtubule patterns seen during root hair initiation. We show that two independent mechanisms, individually or combined, can be sufficient to generate radial patterns. In the first, new material is added locally at the position of the root hair. In the second, increased tension in the initiation area provides a mechanism. Finally, we describe how a molecular model of Rho-of-plant (ROP) GTPases activation driven by auxin can position a patch of activated ROP protein basally along a 2D root epidermal cell plasma membrane, paving the way for models where mechanical and molecular mechanisms cooperate in the initial placement and outgrowth of root hairs.
Collapse
Affiliation(s)
- Pawel Krupinski
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund UniversityLund, Sweden
- *Correspondence: Pawel Krupinski
| | - Behruz Bozorg
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund UniversityLund, Sweden
| | - André Larsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund UniversityLund, Sweden
| | - Stefano Pietra
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversityUmeå, Sweden
| | - Markus Grebe
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversityUmeå, Sweden
- Institute of Biochemistry and Biology, Plant Physiology, University of PotsdamPotsdam, Germany
| | - Henrik Jönsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund UniversityLund, Sweden
- Sainsbury Laboratory, University of CambridgeCambridge, UK
- Department of Applied Mathematics and Theoretical Physics, University of CambridgeCambridge, UK
| |
Collapse
|
221
|
Vogt G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 2015; 40:159-204. [PMID: 25740150 DOI: 10.1007/s12038-015-9506-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term 'stochastic developmental variation' (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviously mediated by molecular and higher-order epigenetic mechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most pathogens are asexuals that exploit this third source of phenotypic variation to modify infectivity and resistance to antibiotics. Since SDV affects all types of organisms and almost all aspects of life, it urgently requires more intense research and a better integration into biological thinking.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany,
| |
Collapse
|
222
|
Abu-Abied M, Mordehaev I, Sunil Kumar GB, Ophir R, Wasteneys GO, Sadot E. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns. PLoS One 2015; 10:e0143828. [PMID: 26630265 PMCID: PMC4668071 DOI: 10.1371/journal.pone.0143828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself. To examine AR formation when MTs are disturbed we used two mutants in the MT severing protein KATANIN. It was found that rate and number of AR primordium formed following IBA induction for three days was reduced in bot1-1 and bot1-7 plants. The reduced capacity to form ARs in bot1-1 was associated with altered expression of MAP-encoding genes along AR induction. While the expression of MAP65-4, MAP65-3, AURORA1, AURORA2 and TANGLED, increased in wild-type but not in bot1-1 plants, the expression of MAP65-8 and MDP25 decreased in wild type plants but not in the bot1-1 plant after two days of IBA-treatment. The expression of MOR1 was increased two days after AR induction in wild type and bot1-1 plants. To examine its expression specifically in AR primordium, MOR1 upstream regulatory sequence was isolated and cloned to regulate GFP. Expression of GFP was induced in the primary root tips and lateral roots, in the pericycle of the hypocotyls and in all stages of AR primordium formation. It is concluded that the expression of MAPs is regulated along AR induction and that reduction in KATANIN expression inhibits AR formation and indirectly influences the specific expression of some MAPs.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
| | - Inna Mordehaev
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
| | | | - Ron Ophir
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
| | - Geoffrey O. Wasteneys
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
- * E-mail:
| |
Collapse
|
223
|
Sassi M, Traas J. When biochemistry meets mechanics: a systems view of growth control in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:137-43. [PMID: 26583832 DOI: 10.1016/j.pbi.2015.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 05/11/2023]
Abstract
The emergence of complex shapes during the development of plants is under the control of genetically determined molecular networks. Such regulatory networks, comprising hormones and transcription factors, regulate the collective behavior of cell growth within a tissue. Because all the cells within a tissue are linked together by the cell wall, their collective growth generates a good amount of mechanical stress. In the last few years a compelling amount of evidence has shown that growth-generated mechanical stress can feed back on plant developmental programs by modifying cell growth. This involves primarily responses from the microtubules and interaction with auxin transport and signaling. Here we discuss the most recent advances in the understanding of mechanical feedbacks in plant development.
Collapse
Affiliation(s)
- Massimiliano Sassi
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCBL, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCBL, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
224
|
Landrein B, Kiss A, Sassi M, Chauvet A, Das P, Cortizo M, Laufs P, Takeda S, Aida M, Traas J, Vernoux T, Boudaoud A, Hamant O. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife 2015; 4:e07811. [PMID: 26623515 PMCID: PMC4666715 DOI: 10.7554/elife.07811] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem.
Collapse
Affiliation(s)
- Benoît Landrein
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France.,Laboratoire Joliot-Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Annamaria Kiss
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France.,Laboratoire Joliot-Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Massimiliano Sassi
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Chauvet
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France.,Laboratoire Joliot-Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Pradeep Das
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France.,Laboratoire Joliot-Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Millan Cortizo
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Patrick Laufs
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Seiji Takeda
- Cell and Genome Biology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Mitsuhiro Aida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Jan Traas
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Teva Vernoux
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France.,Laboratoire Joliot-Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France.,Laboratoire Joliot-Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
225
|
Fernandez-Sanchez ME, Brunet T, Röper JC, Farge E. Mechanotransduction's Impact on Animal Development, Evolution, and Tumorigenesis. Annu Rev Cell Dev Biol 2015; 31:373-97. [DOI: 10.1146/annurev-cellbio-102314-112441] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Thibaut Brunet
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
- Evolution of the Nervous System in Bilateria Group, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jens-Christian Röper
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| |
Collapse
|
226
|
Moreau V, Cordelières FP, Poujol C, Sagot I, Saltel F. Meeting report--Imaging the Cell. J Cell Sci 2015; 128:3843-7. [PMID: 26527200 DOI: 10.1242/jcs.180042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Every two years, the French Society for Cell Biology (SBCF) organises an international meeting called 'Imaging the Cell'. This year, the 8th edition was held on 24-26 June 2015 at University of Bordeaux Campus Victoire in the city of Bordeaux, France, a UNESCO World Heritage site. Over the course of three days, the meeting provided a forum for experts in different areas of cell imaging. Its unique approach was to combine conventional oral presentations during morning sessions with practical workshops at hosting institutes and the Bordeaux Imaging Center during the afternoons. The meeting, co-organised by Violaine Moreau and Frédéric Saltel (both INSERM U1053, Bordeaux, France), Christel Poujol and Fabrice Cordelières (both Bordeaux Imaging Center, Bordeaux, France) and Isabelle Sagot (Institut de Biochimie et Génétique Cellulaires, Bordeaux, France), brought together about 120 scientists including 16 outstanding speakers to discuss the latest advances in cell imaging. Thanks to recent progress in imaging technologies, cell biologists are now able to visualise, follow and manipulate cellular processes with unprecedented accuracy. The meeting sessions and workshops highlighted some of the most exciting developments in the field, with sessions dedicated to optogenetics, high-content screening, in vivo and live-cell imaging, correlative light and electron microscopy, as well as super-resolution imaging.
Collapse
Affiliation(s)
- Violaine Moreau
- INSERM, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Fabrice P Cordelières
- Université de Bordeaux, Bordeaux F-33076, France Bordeaux Imaging Center, UMS 3420 CNRS-Université de Bordeaux-US4 INSERM, Pôle d'imagerie photonique, Bordeaux F-33000, France
| | - Christel Poujol
- Université de Bordeaux, Bordeaux F-33076, France Bordeaux Imaging Center, UMS 3420 CNRS-Université de Bordeaux-US4 INSERM, Pôle d'imagerie photonique, Bordeaux F-33000, France
| | - Isabelle Sagot
- Université de Bordeaux, Bordeaux F-33076, France Institut de Biochimie et Génétique Cellulaires, Bordeaux F-33000, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, Bordeaux F-33077, France
| | - Frédéric Saltel
- INSERM, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| |
Collapse
|
227
|
Takatani S, Otani K, Kanazawa M, Takahashi T, Motose H. Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation. JOURNAL OF PLANT RESEARCH 2015; 128:875-91. [PMID: 26354760 DOI: 10.1007/s10265-015-0751-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/20/2015] [Indexed: 05/25/2023]
Abstract
Microtubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.
Collapse
Affiliation(s)
- Shogo Takatani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Kento Otani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Mai Kanazawa
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Taku Takahashi
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
| |
Collapse
|
228
|
Serrano-Mislata A, Schiessl K, Sablowski R. Active Control of Cell Size Generates Spatial Detail during Plant Organogenesis. Curr Biol 2015; 25:2991-6. [PMID: 26526374 PMCID: PMC4651904 DOI: 10.1016/j.cub.2015.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
How cells regulate their dimensions is a long-standing question [1, 2]. In fission and budding yeast, cell-cycle progression depends on cell size, although it is still unclear how size is assessed [3, 4, 5]. In animals, it has been suggested that cell size is modulated primarily by the balance of external signals controlling growth and the cell cycle [1], although there is evidence of cell-autonomous control in cell cultures [6, 7, 8, 9]. Regardless of whether regulation is external or cell autonomous, the role of cell-size control in the development of multicellular organisms remains unclear. Plants are a convenient system to study this question: the shoot meristem, which continuously provides new cells to form new organs, maintains a population of actively dividing and characteristically small cells for extended periods [10]. Here, we used live imaging and quantitative, 4D image analysis to measure the sources of cell-size variability in the meristem and then used these measurements in computer simulations to show that the uniform cell sizes seen in the meristem likely require coordinated control of cell growth and cell cycle in individual cells. A genetically induced transient increase in cell size was quickly corrected by more frequent cell division, showing that the cell cycle was adjusted to maintain cell-size homeostasis. Genetically altered cell sizes had little effect on tissue growth but perturbed the establishment of organ boundaries and the emergence of organ primordia. We conclude that meristem cells actively control their sizes to achieve the resolution required to pattern small-scale structures. Cell divisions are unequal and cell growth is heterogeneous in the meristem Simulations indicate that growth and cell cycle are coordinated in individual cells Meristem cell sizes are rapidly corrected after perturbation Abnormal cell sizes do not affect growth but perturb organ boundaries and emergence
Collapse
Affiliation(s)
- Antonio Serrano-Mislata
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katharina Schiessl
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
229
|
Jensen OE, Fozard JA. Multiscale models in the biomechanics of plant growth. Physiology (Bethesda) 2015; 30:159-66. [PMID: 25729061 DOI: 10.1152/physiol.00030.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development.
Collapse
Affiliation(s)
- Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester, United Kingdom; and
| | - John A Fozard
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
230
|
Muratov A, Baulin VA. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress. Biophys Chem 2015; 207:82-9. [PMID: 26422460 DOI: 10.1016/j.bpc.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism.
Collapse
Affiliation(s)
- Alexander Muratov
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain.
| |
Collapse
|
231
|
A Mechanism for Sustained Cellulose Synthesis during Salt Stress. Cell 2015; 162:1353-64. [PMID: 26343580 DOI: 10.1016/j.cell.2015.08.028] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/12/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022]
Abstract
Abiotic stress, such as salinity, drought, and cold, causes detrimental yield losses for all major plant crop species. Understanding mechanisms that improve plants' ability to produce biomass, which largely is constituted by the plant cell wall, is therefore of upmost importance for agricultural activities. Cellulose is a principal component of the cell wall and is synthesized by microtubule-guided cellulose synthase enzymes at the plasma membrane. Here, we identified two components of the cellulose synthase complex, which we call companion of cellulose synthase (CC) proteins. The cytoplasmic tails of these membrane proteins bind to microtubules and promote microtubule dynamics. This activity supports microtubule organization, cellulose synthase localization at the plasma membrane, and renders seedlings less sensitive to stress. Our findings offer a mechanistic model for how two molecular components, the CC proteins, sustain microtubule organization and cellulose synthase localization and thus aid plant biomass production during salt stress. VIDEO ABSTRACT.
Collapse
|
232
|
Liang Z, Brown RC, Fletcher JC, Opsahl-Sorteberg HG. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development. PLANT & CELL PHYSIOLOGY 2015. [PMID: 26220906 DOI: 10.1093/pcp/pcv110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells.
Collapse
Affiliation(s)
- Zhe Liang
- Department of Plant Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Roy C Brown
- Department of Biology, University of Louisiana, Lafayette, LA 70504, USA
| | | | | |
Collapse
|
233
|
Abstract
To achieve optimal functionality, plant organs like leaves and petals have to grow to a certain size. Beginning with a limited number of undifferentiated cells, the final size of an organ is attained by a complex interplay of cell proliferation and subsequent cell expansion. Regulatory mechanisms that integrate intrinsic growth signals and environmental cues are required to enable optimal leaf and flower development. This review focuses on plant-specific principles of growth reaching from the cellular to the organ level. The currently known genetic pathways underlying these principles are summarized and network connections are highlighted. Putative non-cell autonomously acting mechanisms that might coordinate plant-cell growth are discussed.
Collapse
Affiliation(s)
- Hjördis Czesnick
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
234
|
A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis. Sci Rep 2015; 5:11937. [PMID: 26149707 PMCID: PMC4493670 DOI: 10.1038/srep11937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
Recently, single cell cloning techniques have been gradually developed benefited from their important roles in monoclonal antibody screening, tumor heterogeneity research fields, etc. In this study, we developed a high throughput device containing 1400 lateral chambers to efficiently isolate single cells and carry out long-term single cell clonal cultivation as well as tumor heterogeneity studies. Most of the isolated single cells could proliferate normally nearly as long as three weeks and hundreds of clones could be formed once with one device, which made it possible to study tumor heterogeneity at single cell level. The device was further used to examine tumor heterogeneity such as morphology, growth rate, anti-cancer drug tolerance as well as adenosine triphosphate-binding cassette (ABC) transporter ABCG2 protein expression level. Except for the single cell isolation and tumor heterogeneity studies, the device is expected to be used as an excellent platform for drug screening, tumor biomarker discovering and tumor metastasis assay.
Collapse
|
235
|
Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana. Sci Rep 2015; 5:11364. [PMID: 26068445 PMCID: PMC4464343 DOI: 10.1038/srep11364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/22/2015] [Indexed: 11/28/2022] Open
Abstract
Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization.
Collapse
|
236
|
The Control of Growth Symmetry Breaking in the Arabidopsis Hypocotyl. Curr Biol 2015; 25:1746-52. [PMID: 26073136 DOI: 10.1016/j.cub.2015.05.022] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/07/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
Abstract
Complex shapes in biology depend on the ability of cells to shift from isotropic to anisotropic growth during development. In plants, this growth symmetry breaking reflects changes in the extensibility of the cell walls. The textbook view is that the direction of turgor-driven cell expansion depends on the cortical microtubule (CMT)-mediated orientation of cellulose microfibrils. Here, we show that this view is incomplete at best. We used atomic force microscopy (AFM) to study changes in cell-wall mechanics associated with growth symmetry breaking within the hypocotyl epidermis. We show that, first, growth symmetry breaking is preceded by an asymmetric loosening of longitudinal, as compared to transverse, anticlinal walls, in the absence of a change in CMT orientation. Second, this wall loosening is triggered by the selective de-methylesterification of cell-wall pectin in longitudinal walls, and, third, the resultant mechanical asymmetry is required for the growth symmetry breaking. Indeed, preventing or promoting pectin de-methylesterification, respectively, increased or decreased the stiffness of all the cell walls, but in both cases reduced the growth anisotropy. Finally, we show that the subsequent CMT reorientation contributes to the consolidation of the growth axis but is not required for the growth symmetry breaking. We conclude that growth symmetry breaking is controlled at a cellular scale by bipolar pectin de-methylesterification, rather than by the cellulose-dependent mechanical anisotropy of the cell walls themselves. Such a cell asymmetry-driven mechanism is comparable to that underlying tip growth in plants but also anisotropic cell growth in animal cells.
Collapse
|
237
|
Vaddepalli P, Scholz S, Schneitz K. Pattern formation during early floral development. Curr Opin Genet Dev 2015; 32:16-23. [DOI: 10.1016/j.gde.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
238
|
Tameshige T, Hirakawa Y, Torii KU, Uchida N. Cell walls as a stage for intercellular communication regulating shoot meristem development. FRONTIERS IN PLANT SCIENCE 2015; 6:324. [PMID: 26029226 PMCID: PMC4426712 DOI: 10.3389/fpls.2015.00324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/24/2015] [Indexed: 05/07/2023]
Abstract
Aboveground organs of plants are ultimately derived/generated from the shoot apical meristem (SAM), which is a proliferative tissue located at the apex of the stem. The SAM contains a population of stem cells that provide new cells for organ/tissue formation. The SAM is composed of distinct cell layers and zones with different properties. Primordia of lateral organs develop at the periphery of the SAM. The shoot apex is a dynamic and complex tissue, and as such intercellular communications among cells, layers and zones play significant roles in the coordination of cell proliferation, growth and differentiation to achieve elaborate morphogenesis. Recent findings have highlighted the importance of a number of signaling molecules acting in the cell wall space for the intercellular communication, including classic phytohormones and secretory peptides. Moreover, accumulating evidence has revealed that cell wall properties and their modifying enzymes modulate hormone actions. In this review, we outline how behaviors of signaling molecules and changes of cell wall properties are integrated for the shoot meristem regulation.
Collapse
Affiliation(s)
- Toshiaki Tameshige
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yuki Hirakawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
239
|
Barbier de Reuille P, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schüpbach T, Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A, Burian A, Hofhuis H, Sapala A, Lipowczan M, Heimlicher MB, Robinson S, Bayer EM, Basler K, Koumoutsakos P, Roeder AHK, Aegerter-Wilmsen T, Nakayama N, Tsiantis M, Hay A, Kwiatkowska D, Xenarios I, Kuhlemeier C, Smith RS. MorphoGraphX: A platform for quantifying morphogenesis in 4D. eLife 2015; 4:05864. [PMID: 25946108 PMCID: PMC4421794 DOI: 10.7554/elife.05864] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/03/2015] [Indexed: 12/25/2022] Open
Abstract
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.
Collapse
Affiliation(s)
| | - Anne-Lise Routier-Kierzkowska
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Namrata Bajpai
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alain Weber
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Annamaria Kiss
- Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire Joliot Curie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Agata Burian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Katowice, Poland
| | - Hugo Hofhuis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aleksandra Sapala
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Marcin Lipowczan
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Katowice, Poland
| | | | - Sarah Robinson
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, University of Bordeaux, Bordeaux, France
| | - Konrad Basler
- Institute of Molecular Life Sciences, Zurich, Switzerland
| | | | - Adrienne HK Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, United States
| | | | - Naomi Nakayama
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hay
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dorota Kwiatkowska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Katowice, Poland
| | | | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Richard S Smith
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
240
|
Abu-Abied M, Rogovoy Stelmakh O, Mordehaev I, Grumberg M, Elbaum R, Wasteneys GO, Sadot E. Dissecting the contribution of microtubule behaviour in adventitious root induction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2813-24. [PMID: 25788735 PMCID: PMC4986881 DOI: 10.1093/jxb/erv097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| | | | - Inna Mordehaev
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| | - Marina Grumberg
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| | - Rivka Elbaum
- The Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Geoffrey O Wasteneys
- Department of Botany, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan 50250, Israel
| |
Collapse
|
241
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
242
|
Liu Z, Persson S, Zhang Y. The connection of cytoskeletal network with plasma membrane and the cell wall. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:330-40. [PMID: 25693826 PMCID: PMC4405036 DOI: 10.1111/jipb.12342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/14/2015] [Indexed: 05/18/2023]
Abstract
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.
Collapse
Affiliation(s)
- Zengyu Liu
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, 3010, Victoria, Australia
| | - Yi Zhang
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| |
Collapse
|
243
|
Lipka E, Herrmann A, Mueller S. Mechanisms of plant cell division. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:391-405. [PMID: 25809139 DOI: 10.1002/wdev.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 11/09/2022]
Abstract
Plant cells are confined by a network of cellulosic walls that imposes rigid control over the selection of division plane orientations, crucial for morphogenesis and genetically regulated. While in animal cells and yeast, the actin cytoskeleton is instrumental in the execution of cytokinesis, in plant cells the microtubule cytoskeleton is taking the lead in spatially controlling and executing cytokinesis by the formation of two unique, plant-specific arrays, the preprophase band (PPB) and the phragmoplast. The formation of microtubule arrays in plant cells is contingent on acentrosomal microtubule nucleation. At the onset of mitosis, the PPB defines the plane of cell division where the partitioning cell wall is later constructed by the cytokinetic phragmoplast, imposing a spatio-temporal relationship between the two processes. Current research progress in the field of plant cell division focuses on identifying and tying the links between early and late events in spatial control of cytokinesis and how microtubule array formation is regulated in plant cells.
Collapse
|
244
|
Vermeer JEM, Geldner N. Lateral root initiation in Arabidopsis thaliana: a force awakens. F1000PRIME REPORTS 2015; 7:32. [PMID: 25926983 PMCID: PMC4371239 DOI: 10.12703/p7-32] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osmotically driven turgor pressure of plant cells can be higher than that of a car tire. It puts tremendous forces onto cell walls and drives cell growth and changes in cell shape. This has given rise to unique mechanisms to control organ formation compared to metazoans. The fascinating interplay between forces and local cellular reorganization is still poorly understood. Growth of lateral roots is a prominent example of a developmental process in which mechanical forces between neighboring cells are generated and must be dealt with. Lateral roots initiate from a single cell layer that resides deep within the primary root. On their way out, lateral roots grow through the overlying endodermal, cortical, and epidermal cell layers. It was recently demonstrated that endodermal cells actively accommodate lateral root formation. Interfering genetically with these accommodating responses in the endodermis completely blocks cell proliferation in the pericycle. The lateral root system provides a unique opportunity to elucidate the molecular and cellular mechanisms whereby mechanical forces and intercellular communication regulate spatial accommodation during plant development.
Collapse
|
245
|
Pietra S, Lang P, Grebe M. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2015; 153:440-453. [PMID: 25124848 DOI: 10.1111/ppl.12257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning.
Collapse
Affiliation(s)
- Stefano Pietra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-90187, Sweden
| | | | | |
Collapse
|
246
|
Zubairova U, Golushko S, Penenko A, Nikolaev S. A computational model of the effect of symplastic growth on cell mechanics in a linear leaf blade. J Bioinform Comput Biol 2015; 13:1540005. [DOI: 10.1142/s0219720015400053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The epidermis of a linear leaf, as in Poaceae, is established by parallel files of cells originating from the leaf base. Their feature is symplastic growth where neighboring cell walls adhere and do not slide along each other. We developed a simple mechanical cell-based model for symplastic growth of linear leaf blade. The challenge is to determine what restrictions on cell size symplastic growth creates compared to the free growing cells. We assume an unidirectional growing cell ensemble starting from a meristem-like layer of generative cells and then generating parallel cell rows from every cell of the initial layer. Each cell is characterized by its growth function, and growth of the whole leaf blade is accompanied by mutual adjustment between all the cells. Cells divide once they have reached a threshold area. A mathematical model and its implementation are proposed for computational simulation of 1D symplastic growth of tissues. The question analyzed is how a cell grows in a plant tissue if there is a mechanism for regulating the growth of an isolated growing cell and the behavior of the cell wall matter is elastoplastic. The results of the simulation of linear leaf blade growth are compared to those for a free-growing cell population.
Collapse
Affiliation(s)
- Ulyana Zubairova
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Science, 10, Prospekt Lavrentyeva, Novosibirsk 630090, Russia
| | - Sergey Golushko
- Design and Technology Institute of Digital Techniques of Siberian Branch of Russian Academy of Science, Laboratory of Analysis and Optimization of Technical Systems, 6, Akademika Rzhanova Str., Novosibirsk 630090, Russia
| | - Aleksey Penenko
- Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Science, 6, Prospekt Lavrentyeva, Novosibirsk 630090, Russia
| | - Sergey Nikolaev
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Science, 10, Prospekt Lavrentyeva, Novosibirsk 630090, Russia
| |
Collapse
|
247
|
Nakamura M. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. THE NEW PHYTOLOGIST 2015; 205:1022-7. [PMID: 25729799 DOI: 10.1111/nph.12932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In higher plants, reorientation of cortical microtubule arrays has been postulated to be of importance for modifying cell growth to adapt to environmental conditions. However, the process of microtubule reorientation is largely unknown. Recent genetic and live cell imaging studies of microtubule dynamics shed light on the regulatory mechanisms of microtubule molecular nucleation and severing apparatuses, which are required for array reorientation in response to blue light signaling. Branching nucleation from γ-tubulin complexes creates a small population of discordant microtubules that are acted on by KATANIN-mediated severing in two ways. KATANIN releases microtubules from nucleation sites and rapidly amplifies discordant microtubules by severing at microtubule crossovers. In this review, I focus on the molecular details of these two enzymes, which enable microtubule array transition.
Collapse
|
248
|
Höfte H. The yin and yang of cell wall integrity control: brassinosteroid and FERONIA signaling. PLANT & CELL PHYSIOLOGY 2015; 56:224-31. [PMID: 25481004 DOI: 10.1093/pcp/pcu182] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Understanding how developmental and environmental signals control plant cell expansion requires an intimate knowledge of the architecture of the primary cell wall and the chemo-rheological processes that underlie cell wall relaxation. In this review I discuss recent findings that reveal a more prominent role than previously suspected for covalent bonds and pectin cross-links in primary cell wall architecture. In addition, genetic studies have uncovered a role for receptor kinases in the control of cell wall homeostasis in growing cells. The emerging view is that, upon cell wall disruption, compensatory changes are induced in the cell wall through the interplay between the brassinosteroid signaling module, which positively regulates wall extensibility and receptor kinases of the CrRLKL1 family, which may act as negative regulators of cell wall stiffness. These findings lift the tip of the veil of a complex signaling network allowing normal homeostasis in walls of growing cells but also crisis management under stress conditions.
Collapse
Affiliation(s)
- Herman Höfte
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
249
|
Abstract
Plant cells in tissues experience mechanical stress not only as a result of high turgor, but also through interaction with their neighbors. Cells can expand at different rates and in different directions from neighbors with which they share a cell wall. This in connection with specific tissue shapes and properties of the cell wall material can lead to intricate stress patterns throughout the tissue. Two cellular responses to mechanical stress are a microtubule cytoskeletal response that directs new wall synthesis so as to resist stress, and a hormone transporter response that regulates transport of the hormone auxin, a regulator of cell expansion. Shape changes in plant tissues affect the pattern of stresses in the tissues, and at the same time, via the cellular stress responses, the pattern of stresses controls cell growth, which in turn changes tissue shape, and stress pattern. This feedback loop controls plant morphogenesis, and explains several previously mysterious aspects of plant growth.
Collapse
|
250
|
Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 2015; 11:e1003950. [PMID: 25569615 PMCID: PMC4288716 DOI: 10.1371/journal.pcbi.1003950] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.
Collapse
Affiliation(s)
- Frédéric Boudon
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
| | - Jérôme Chopard
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
| | - Olivier Ali
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Benjamin Gilles
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université Montpellier 2, CNRS, Montpellier, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
- * E-mail: (JT); (CG)
| | - Christophe Godin
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
- * E-mail: (JT); (CG)
| |
Collapse
|