201
|
Unfolded and intermediate states of PrP play a key role in the mechanism of action of an antiprion chaperone. Proc Natl Acad Sci U S A 2021; 118:2010213118. [PMID: 33619087 DOI: 10.1073/pnas.2010213118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion and prion-like diseases involve the propagation of misfolded protein conformers. Small-molecule pharmacological chaperones can inhibit propagated misfolding, but how they interact with disease-related proteins to prevent misfolding is often unclear. We investigated how pentosan polysulfate (PPS), a polyanion with antiprion activity in vitro and in vivo, interacts with mammalian prion protein (PrP) to alter its folding. Calorimetry showed that PPS binds two sites on natively folded PrP, but one PPS molecule can bind multiple PrP molecules. Force spectroscopy measurements of single PrP molecules showed PPS stabilizes not only the native fold of PrP but also many different partially folded intermediates that are not observed in the absence of PPS. PPS also bound tightly to unfolded segments of PrP, delaying refolding. These observations imply that PPS can act through multiple possible modes, inhibiting misfolding not only by stabilizing the native fold or sequestering natively folded PrP into aggregates, as proposed previously, but also by binding to partially or fully unfolded states that play key roles in mediating misfolding. These results underline the likely importance of unfolded states as critical intermediates on the prion conversion pathway.
Collapse
|
202
|
De Mattos EP, Wentink A, Nussbaum-Krammer C, Hansen C, Bergink S, Melki R, Kampinga HH. Protein Quality Control Pathways at the Crossroad of Synucleinopathies. JOURNAL OF PARKINSONS DISEASE 2021; 10:369-382. [PMID: 31985474 PMCID: PMC7242842 DOI: 10.3233/jpd-191790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathophysiology of Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and many others converge at alpha-synuclein (α-Syn) aggregation. Although it is still not entirely clear what precise biophysical processes act as triggers, cumulative evidence points towards a crucial role for protein quality control (PQC) systems in modulating α-Syn aggregation and toxicity. These encompass distinct cellular strategies that tightly balance protein production, stability, and degradation, ultimately regulating α-Syn levels. Here, we review the main aspects of α-Syn biology, focusing on the cellular PQC components that are at the heart of recognizing and disposing toxic, aggregate-prone α-Syn assemblies: molecular chaperones and the ubiquitin-proteasome system and autophagy-lysosome pathway, respectively. A deeper understanding of these basic protein homeostasis mechanisms might contribute to the development of new therapeutic strategies envisioning the prevention and/or enhanced degradation of α-Syn aggregates.
Collapse
Affiliation(s)
- Eduardo P De Mattos
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH), and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH), and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Hansen
- Molecular Neurobiology, Department of Experimental Medical Science, Lund, Sweden
| | - Steven Bergink
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald Melki
- Institute Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
203
|
Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders. Biochem J 2021; 478:2733-2758. [PMID: 34297044 DOI: 10.1042/bcj20200609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's remain highly prevalent and incurable disorders. A major challenge in fully understanding and combating the progression of these diseases is the complexity of the network of processes that lead to progressive neuronal dysfunction and death. An ideal therapeutic avenue is conceivably one that could address many if not all of these multiple misregulated mechanisms. Over the years, chemical intervention for the up-regulation of the endogenous posttranslational modification (PTM) O-GlcNAc has been proposed as a potential strategy to slow down the progression of neurodegeneration. Through the development and application of tools that allow dissection of the mechanistic roles of this PTM, there is now a growing body of evidence that O-GlcNAc influences a variety of important neurodegeneration-pertinent mechanisms, with an overall protective effect. As a PTM that is appended onto numerous proteins that participate in protein quality control and homeostasis, metabolism, bioenergetics, neuronal communication, inflammation, and programmed death, O-GlcNAc has demonstrated beneficence in animal models of neurodegenerative diseases, and its up-regulation is now being pursued in multiple clinical studies.
Collapse
|
204
|
Tozzi A, Sciaccaluga M, Loffredo V, Megaro A, Ledonne A, Cardinale A, Federici M, Bellingacci L, Paciotti S, Ferrari E, La Rocca A, Martini A, Mercuri NB, Gardoni F, Picconi B, Ghiglieri V, De Leonibus E, Calabresi P. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain 2021; 144:3477-3491. [PMID: 34297092 PMCID: PMC8677552 DOI: 10.1093/brain/awab242] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Misfolding and aggregation of α-synuclein are specific features of Parkinson’s disease and other neurodegenerative diseases defined as synucleinopathies. Parkinson’s disease progression has been correlated with the formation and extracellular release of α-synuclein aggregates, as well as with their spread from neuron to neuron. Therapeutic interventions in the initial stages of Parkinson’s disease require a clear understanding of the mechanisms by which α-synuclein disrupts the physiological synaptic and plastic activity of the basal ganglia. For this reason, we identified two early time points to clarify how the intrastriatal injection of α-synuclein-preformed fibrils in rodents via retrograde transmission induces time-dependent electrophysiological and behavioural alterations. We found that intrastriatal α-synuclein-preformed fibrils perturb the firing rate of dopaminergic neurons in the substantia nigra pars compacta, while the discharge of putative GABAergic cells of the substantia nigra pars reticulata is unchanged. The α-synuclein-induced dysregulation of nigrostriatal function also impairs, in a time-dependent manner, the two main forms of striatal synaptic plasticity, long-term potentiation and long-term depression. We also observed an increased glutamatergic transmission measured as an augmented frequency of spontaneous excitatory synaptic currents. These changes in neuronal function in the substantia nigra pars compacta and striatum were observed before overt neuronal death occurred. In an additional set of experiments, we were able to rescue α-synuclein-induced alterations of motor function, striatal synaptic plasticity and increased spontaneous excitatory synaptic currents by subchronic treatment with l-DOPA, a precursor of dopamine widely used in the therapy of Parkinson’s disease, clearly demonstrating that a dysfunctional dopamine system plays a critical role in the early phases of the disease.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Miriam Sciaccaluga
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Vittorio Loffredo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.,Institute of Biochemistry and Cell Biology-CNR, 00015 Monterotondo scalo, Italy
| | - Alfredo Megaro
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Ada Ledonne
- Laboratory of Experimental Neuroscience, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Antonella Cardinale
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Mauro Federici
- Laboratory of Experimental Neuroscience, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Laura Bellingacci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Silvia Paciotti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Elena Ferrari
- University of Milan, Department of Pharmacological and Biomolecular Sciences, 20133 Milan, Italy
| | - Antonino La Rocca
- Institute of Biochemistry and Cell Biology-CNR, 00015 Monterotondo scalo, Italy
| | - Alessandro Martini
- Laboratory of Experimental Neuroscience, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Nicola B Mercuri
- Laboratory of Experimental Neuroscience, Santa Lucia Foundation IRCCS, 00143 Rome, Italy.,Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Fabrizio Gardoni
- University of Milan, Department of Pharmacological and Biomolecular Sciences, 20133 Milan, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy.,Telematic University San Raffaele, 00166 Rome, Italy
| | | | - Elvira De Leonibus
- Institute of Biochemistry and Cell Biology-CNR, 00015 Monterotondo scalo, Italy.,Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.,Department of Neuroscience, Faculty of Medicine, Università Cattolica del "Sacro Cuore", 00168 Rome, Italy
| |
Collapse
|
205
|
Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021; 12:661117. [PMID: 34335440 PMCID: PMC8319954 DOI: 10.3389/fneur.2021.661117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
Collapse
Affiliation(s)
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
206
|
Perni M, Mannini B, Xu CK, Kumita JR, Dobson CM, Chiti F, Vendruscolo M. Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans. Sci Rep 2021; 11:14391. [PMID: 34257326 PMCID: PMC8277765 DOI: 10.1038/s41598-021-93527-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Misfolded protein oligomers are increasingly recognized as highly cytotoxic agents in a wide range of human disorders associated with protein aggregation. In this study, we assessed the possible uptake and resulting toxic effects of model protein oligomers administered to C. elegans through the culture medium. We used an automated machine-vision, high-throughput screening procedure to monitor the phenotypic changes in the worms, in combination with confocal microscopy to monitor the diffusion of the oligomers, and oxidative stress assays to detect their toxic effects. Our results suggest that the oligomers can diffuse from the intestinal lumen to other tissues, resulting in a disease phenotype. We also observed that pre-incubation of the oligomers with a molecular chaperone (αB-crystallin) or a small molecule inhibitor of protein aggregation (squalamine), reduced the oligomer absorption. These results indicate that exogenous misfolded protein oligomers can be taken up by the worms from their environment and spread across tissues, giving rise to pathological effects in regions distant from their place of absorbance.
Collapse
Affiliation(s)
- Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
207
|
Zheng H, Xie Z, Zhang X, Mao J, Wang M, Wei S, Fu Y, Zheng H, He Y, Chen H, Xu Y. Investigation of α-Synuclein Species in Plasma Exosomes and the Oligomeric and Phosphorylated α-Synuclein as Potential Peripheral Biomarker of Parkinson's Disease. Neuroscience 2021; 469:79-90. [PMID: 34186110 DOI: 10.1016/j.neuroscience.2021.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn), especially its abnormal oligomeric and phosphorylated form, plays a critical role in the pathogenesis of Parkinson's disease (PD). Plasma exosomal α-syn species have been shown to be a promising PD biomarker. However, whether different α-syn species in plasma exosomes (the oligomeric α-syn and the Ser129 phosphorylated α-syn (p-α-syn)) which represent the PD pathogenesis in the brain could be specific peripheral PD biomarker haven't been well elucidated. In this study, we successfully extracted and identified the human plasma exosomes, and the CNS-derived exosomes were detected. The different aggregation status, localization and degradation characteristics of α-syn and p-α-syn in the plasma exosomes between PD patients and healthy controls were further analyzed. The results suggested that α-syn and p-α-syn in the plasma exosomes of PD patients showed poor solubility after protease K (PK) treatment. Aggregated α-syn and p-α-syn existed both inside and on the membrane surface of plasma exosomes. The Receiver operating characteristic (ROC) performance of α-syn oligomer/total α-syn in exosomes was moderately helpful in PD diagnosis (AUC = 0.71, sensitivity = 60.5%, specificity = 59.4%), and the ratio of p-α-syn oligomer/total p-α-syn showed similar result (AUC = 0.69, sensitivity = 60.0%, specificity = 59.5%). This study indicates that the oligomeric α-syn/total α-syn and oligomeric p-α-syn/total p-α-syn ratio in plasma exosomes may be applied to assist the PD diagnosis, which needs further research.
Collapse
Affiliation(s)
- Hengxing Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenhua Xie
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xuran Zhang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Mengyuan Wang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sijia Wei
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiwen Fu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying He
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Chen
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
208
|
Takaichi Y, Chambers JK, Ano Y, Takashima A, Nakayama H, Uchida K. Deposition of Phosphorylated α-Synuclein and Activation of GSK-3β and PP2A in the PS19 Mouse Model of Tauopathy. J Neuropathol Exp Neurol 2021; 80:731-740. [PMID: 34151989 DOI: 10.1093/jnen/nlab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The simultaneous accumulation of multiple pathological proteins, such as hyperphosphorylated tau (hp-tau) and phosphorylated α-synuclein (p-αSyn), has been reported in the brains of patients with various neurodegenerative diseases. We previously demonstrated that hp-tau-dependent p-αSyn accumulation was associated with the activation of GSK-3β in the brains of P301L tau transgenic mice. To confirm the effects of another mutant tau on p-αSyn accumulation in vivo, we herein examined the brains of PS19 mice that overexpress human P301S mutant tau. Immunohistochemically, hp-tau and p-αSyn aggregates were detected in the same neuronal cells in the cerebrum and brain stem of aged PS19 mice. A semiquantitative analysis showed a positive correlation between hp-tau and p-αSyn accumulation. Furthermore, an activated form of GSK-3β was detected within cells containing both hp-tau and p-αSyn aggregates in PS19 mice. Western blotting showed a decrease in inactivated PP2A levels in PS19 mice. The present results suggest that the overexpression of human P301S mutant tau induces p-αSyn accumulation that is accompanied by not only GSK-3β, but also PP2A activation in PS19 mice, and highlight the synergic effects between tau and αSyn in the pathophysiology of neurodegenerative diseases that show the codeposition of tau and αSyn.
Collapse
Affiliation(s)
| | - James K Chambers
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Yasuhisa Ano
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Akihiko Takashima
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Hiroyuki Nakayama
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Kazuyuki Uchida
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| |
Collapse
|
209
|
Natural Alkaloid Compounds as Inhibitors for Alpha-Synuclein Seeded Fibril Formation and Toxicity. Molecules 2021; 26:molecules26123736. [PMID: 34205249 PMCID: PMC8234408 DOI: 10.3390/molecules26123736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023] Open
Abstract
The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.
Collapse
|
210
|
α-Helical peptidic scaffolds to target α-synuclein toxic species with nanomolar affinity. Nat Commun 2021; 12:3752. [PMID: 34145261 PMCID: PMC8213730 DOI: 10.1038/s41467-021-24039-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein aggregation is a key driver of neurodegeneration in Parkinson's disease and related syndromes. Accordingly, obtaining a molecule that targets α-synuclein toxic assemblies with high affinity is a long-pursued objective. Here, we exploit the biophysical properties of toxic oligomers and amyloid fibrils to identify a family of α-helical peptides that bind to these α-synuclein species with low nanomolar affinity, without interfering with the monomeric functional protein. This activity is translated into a high anti-aggregation potency and the ability to abrogate oligomer-induced cell damage. Using a structure-guided search we identify a human peptide expressed in the brain and the gastrointestinal tract with analogous binding, anti-aggregation, and detoxifying properties. The chemical entities we describe here may represent a therapeutic avenue for the synucleinopathies and are promising tools to assist diagnosis by discriminating between native and toxic α-synuclein species.
Collapse
|
211
|
Rahamtullah, Mishra R. Nicking and fragmentation are responsible for α-lactalbumin amyloid fibril formation at acidic pH and elevated temperature. Protein Sci 2021; 30:1919-1934. [PMID: 34107116 DOI: 10.1002/pro.4144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
Amyloid fibrils are ordered aggregates that may be formed from disordered, partially unfolded, and fragments of proteins and peptides. There are several diseases, which are due to the formation and deposition of insoluble β-sheet protein aggregates in various tissue, collectively known as amyloidosis. Here, we have used bovine α-lactalbumin as a model protein to understand the mechanism of amyloid fibril formation at pH 1.6 and 65°C under non-reducing conditions. Amyloid fibril formation is confirmed by Thioflavin T fluorescence and atomic force microscopy (AFM). Our finding demonstrates that hydrolysis of peptide bonds occurs under these conditions, which results in nicking and fragmentation. The nicking and fragmentation have been confirmed on non-reducing and reducing gel. We have identified the fragments by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The fragmentation may initiate nucleation as it coincides with AFM images. Conformational changes associated with monomer resulting in fibrillation are shown by circular dichroism and Raman spectroscopy. The current study highlights the importance of nicking and fragmentation in amyloid fibril formation, which may help understand the role of acidic pH and proteolysis under in vivo conditions in the initiation of amyloid fibril formation.
Collapse
Affiliation(s)
- Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
212
|
Kara E, Crimi A, Wiedmer A, Emmenegger M, Manzoni C, Bandres-Ciga S, D'Sa K, Reynolds RH, Botía JA, Losa M, Lysenko V, Carta M, Heinzer D, Avar M, Chincisan A, Blauwendraat C, García-Ruiz S, Pease D, Mottier L, Carrella A, Beck-Schneider D, Magalhães AD, Aemisegger C, Theocharides APA, Fan Z, Marks JD, Hopp SC, Abramov AY, Lewis PA, Ryten M, Hardy J, Hyman BT, Aguzzi A. An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein. Cell Rep 2021; 35:109189. [PMID: 34107263 PMCID: PMC8207177 DOI: 10.1016/j.celrep.2021.109189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson's disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread.
Collapse
Affiliation(s)
- Eleanna Kara
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland; Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK
| | - Alessandro Crimi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Anne Wiedmer
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Claudia Manzoni
- Department of Pharmacology, University College London School of Pharmacy, London WC1N 1AX, UK; School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20814, USA
| | - Karishma D'Sa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Juan A Botía
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia 30100, Spain
| | - Marco Losa
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Manfredi Carta
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Andra Chincisan
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | | | - Sonia García-Ruiz
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Daniel Pease
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Lorene Mottier
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Alessandra Carrella
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Dezirae Beck-Schneider
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Andreia D Magalhães
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Caroline Aemisegger
- Center for Microscopy and Image Analysis, University of Zurich, Zurich 8057, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jordan D Marks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah C Hopp
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX 78229, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Patrick A Lewis
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; School of Pharmacy, University of Reading, Reading RG6 6AP, UK; Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK; Institute for Advanced Study, the Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
213
|
Danial JSH, Klenerman D. Single molecule imaging of protein aggregation in Dementia: Methods, insights and prospects. Neurobiol Dis 2021; 153:105327. [PMID: 33705938 PMCID: PMC8039184 DOI: 10.1016/j.nbd.2021.105327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The aggregation of misfolded proteins is a fundamental pathology in neurodegeneration which remains poorly understood due to its exceptional complexity and lack of appropriate characterization tools that can probe the role of the low concentrations of heterogeneous protein aggregates formed during the progression of the disease. In this review, we explain the principles underlying the operation of single molecule microscopy, an imaging method that can resolve molecules one-by-one, its application to imaging and characterizing individual protein aggregates in human samples and in vitro as well as the important questions in neurobiology this has answered and can answer.
Collapse
Affiliation(s)
- John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
214
|
Yoo G, Yeou S, Son JB, Shin YK, Lee NK. Cooperative inhibition of SNARE-mediated vesicle fusion by α-synuclein monomers and oligomers. Sci Rep 2021; 11:10955. [PMID: 34040104 PMCID: PMC8155056 DOI: 10.1038/s41598-021-90503-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
The primary hallmark of Parkinson's disease (PD) is the generation of Lewy bodies of which major component is α-synuclein (α-Syn). Because of increasing evidence of the fundamental roles of α-Syn oligomers in disease progression, α-Syn oligomers have become potential targets for therapeutic interventions for PD. One of the potential toxicities of α-Syn oligomers is their inhibition of SNARE-mediated vesicle fusion by specifically interacting with vesicle-SNARE protein synaptobrevin-2 (Syb2), which hampers dopamine release. Here, we show that α-Syn monomers and oligomers cooperatively inhibit neuronal SNARE-mediated vesicle fusion. α-Syn monomers at submicromolar concentrations increase the fusion inhibition by α-Syn oligomers. This cooperative pathological effect stems from the synergically enhanced vesicle clustering. Based on this cooperative inhibition mechanism, we reverse the fusion inhibitory effect of α-Syn oligomers using small peptide fragments. The small peptide fragments, derivatives of α-Syn, block the binding of α-Syn oligomers to Syb2 and dramatically reverse the toxicity of α-Syn oligomers in vesicle fusion. Our findings demonstrate a new strategy for therapeutic intervention in PD and related diseases based on this specific interaction of α-Syn.
Collapse
Affiliation(s)
- Gyeongji Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sanghun Yeou
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jung Bae Son
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Yeon-Kyun Shin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
215
|
Abstract
Protein aggregation is a widespread phenomenon with important implications in many scientific areas. Although amyloid formation is typically considered as detrimental, functional amyloids that perform physiological roles have been identified in all kingdoms of life. Despite their functional and pathological relevance, the structural details of the majority of molecular species involved in the amyloidogenic process remains elusive. Here, we explore the application of AlphaFold, a highly accurate protein structure predictor, in the field of protein aggregation. While we envision a straightforward application of AlphaFold in assisting the design of globular proteins with improved solubility for biomedical and industrial purposes, the use of this algorithm for predicting the structure of aggregated species seems far from trivial. First, in amyloid diseases, the presence of multiple amyloid polymorphs and the heterogeneity of aggregation intermediates challenges the "one sequence, one structure" paradigm, inherent to sequence-based predictions. Second, aberrant aggregation is not the subject of positive selective pressure, precluding the use of evolutionary-based approaches, which are the core of the AlphaFold pipeline. Instead, amyloid polymorphism seems to be constrained by the need for a defined structure-activity relationship in functional amyloids. They may thus provide a starting point for the application of AlphaFold in the amyloid landscape.
Collapse
|
216
|
Bokor M, Tantos Á. Protein-Protein Connections-Oligomer, Amyloid and Protein Complex-By Wide Line 1H NMR. Biomolecules 2021; 11:biom11050757. [PMID: 34070204 PMCID: PMC8158481 DOI: 10.3390/biom11050757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 01/26/2023] Open
Abstract
The amount of bonds between constituting parts of a protein aggregate were determined in wild type (WT) and A53T α-synuclein (αS) oligomers, amyloids and in the complex of thymosin-β4–cytoplasmic domain of stabilin-2 (Tβ4-stabilin CTD). A53T αS aggregates have more extensive βsheet contents reflected by constant regions at low potential barriers in difference (to monomers) melting diagrams (MDs). Energies of the intermolecular interactions and of secondary structures bonds, formed during polymerization, fall into the 5.41 kJ mol−1 ≤ Ea ≤ 5.77 kJ mol−1 range for αS aggregates. Monomers lose more mobile hydration water while forming amyloids than oligomers. Part of the strong mobile hydration water–protein bonds break off and these bonding sites of the protein form intermolecular bonds in the aggregates. The new bonds connect the constituting proteins into aggregates. Amyloid–oligomer difference MD showed an overall more homogeneous solvent accessible surface of A53T αS amyloids. From the comparison of the nominal sum of the MDs of the constituting proteins to the measured MD of the Tβ4-stabilin CTD complex, the number of intermolecular bonds connecting constituent proteins into complex is 20(1) H2O/complex. The energies of these bonds are in the 5.40(3) kJ mol−1 ≤ Ea ≤ 5.70(5) kJ mol−1 range.
Collapse
Affiliation(s)
- Mónika Bokor
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, 1121 Budapest, Hungary
- Correspondence: ; Tel.: +36-209939420
| | - Ágnes Tantos
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary;
| |
Collapse
|
217
|
Exploring the Release of Toxic Oligomers from α-Synuclein Fibrils with Antibodies and STED Microscopy. Life (Basel) 2021; 11:life11050431. [PMID: 34064766 PMCID: PMC8150853 DOI: 10.3390/life11050431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (αS) is an intrinsically disordered and highly dynamic protein involved in dopamine release at presynaptic terminals. The abnormal aggregation of αS as mature fibrils into intraneuronal inclusion bodies is directly linked to Parkinson’s disease. Increasing experimental evidence suggests that soluble oligomers formed early during the aggregation process are the most cytotoxic forms of αS. This study investigated the uptake by neuronal cells of pathologically relevant αS oligomers and fibrils exploiting a range of conformation-sensitive antibodies, and the super-resolution stimulated emission depletion (STED) microscopy. We found that prefibrillar oligomers promptly penetrate neuronal membranes, thus resulting in cell dysfunction. By contrast, fibril docking to the phospholipid bilayer is accompanied by αS conformational changes with a progressive release of A11-reactive oligomers, which can enter into the neurons and trigger cell impairment. Our data provide important evidence on the role of αS fibrils as a source of harmful oligomers, which resemble the intermediate conformers formed de novo during aggregation, underling the dynamic and reversible nature of protein aggregates responsible for α-synucleinopathies.
Collapse
|
218
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
219
|
Lieberman RL, Ma MT. Molecular Insights into Myocilin and Its Glaucoma-Causing Misfolded Olfactomedin Domain Variants. Acc Chem Res 2021; 54:2205-2215. [PMID: 33847483 DOI: 10.1021/acs.accounts.1c00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous human disorders arise due to the inability of a particular protein to adopt its correct three-dimensional structure in the context of the cell, leading to aggregation. A new addition to the list of such protein conformational disorders is the inherited subtype of glaucoma. Different and rare coding mutations in myocilin, found in families throughout the world, are causal for early onset ocular hypertension, a key glaucoma risk factor. Myocilin is expressed at high levels in the trabecular meshwork (TM) extracellular matrix. The TM is the anatomical region of the eye that regulates intraocular pressure, and its dysfunction is associated with most forms of glaucoma. Disease variants, distributed across the 30 kDa olfactomedin domain (mOLF), cause myocilin to be sequestered intracellularly instead of being secreted to the TM extracellular matrix. The working hypothesis is that the intracellular aggregates cause a toxic gain of function: TM cell death is thought to lead to TM matrix dysfunction, hastening elevated intraocular pressure and subsequent vision loss.Our lab has provided molecular underpinnings for myocilin structure and misfolding, placing myocilin-associated glaucoma within the context of amyloid diseases like Alzheimer and diabetes. We have dissected complexities of the modular wild-type (WT) myocilin structure and associated misfolded states. Our data support the model that full-length WT myocilin adopts a Y-shaped dimer-of-dimers conferred by two different coiled-coil regions, generating new hypotheses regarding its mysterious function. The mOLF β-propellers are paired at each tip of the Y. Disease-associated variants aggregate because mOLFs are less stable, leading to facile aggregation under physiological conditions (37 °C, pH 7.2). Mutant myocilin aggregates exhibit numerous characteristics of amyloid in vitro and in cells, and aggregation proceeds from a partially folded state accessed preferentially by disease variants at physiological conditions. Interestingly, destabilization is not a universal consequence of mutation. We identified counterintuitive, stabilizing point variants that adopt a non-native structure and do not aggregate; however, these variants have not been identified in glaucoma patients. An ongoing effort is predicting the consequence of any given mutation. This effort is relevant to interpreting data from large-scale sequencing projects where clinical and family history data are not available. Finally, our work suggests avenues to develop disease-modifying precision medicines for myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, Georgia 30332-0400, United States
| | - Minh Thu Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
220
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
221
|
NMR unveils an N-terminal interaction interface on acetylated-α-synuclein monomers for recruitment to fibrils. Proc Natl Acad Sci U S A 2021; 118:2017452118. [PMID: 33903234 DOI: 10.1073/pnas.2017452118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyloid fibril formation of α-synuclein (αS) is associated with multiple neurodegenerative diseases, including Parkinson's disease (PD). Growing evidence suggests that progression of PD is linked to cell-to-cell propagation of αS fibrils, which leads to seeding of endogenous intrinsically disordered monomer via templated elongation and secondary nucleation. A molecular understanding of the seeding mechanism and driving interactions is crucial to inhibit progression of amyloid formation. Here, using relaxation-based solution NMR experiments designed to probe large complexes, we probe weak interactions of intrinsically disordered acetylated-αS (Ac-αS) monomers with seeding-competent Ac-αS fibrils and seeding-incompetent off-pathway oligomers to identify Ac-αS monomer residues at the binding interface. Under conditions that favor fibril elongation, we determine that the first 11 N-terminal residues on the monomer form a common binding site for both fibrils and off-pathway oligomers. Additionally, the presence of off-pathway oligomers within a fibril seeding environment suppresses seeded amyloid formation, as observed through thioflavin-T fluorescence experiments. This highlights that off-pathway αS oligomers can act as an auto-inhibitor against αS fibril elongation. Based on these data taken together with previous results, we propose a model in which Ac-αS monomer recruitment to the fibril is driven by interactions between the intrinsically disordered monomer N terminus and the intrinsically disordered flanking regions (IDR) on the fibril surface. We suggest that this monomer recruitment may play a role in the elongation of amyloid fibrils and highlight the potential of the IDRs of the fibril as important therapeutic targets against seeded amyloid formation.
Collapse
|
222
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
223
|
Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM, Chiti F, Cremades N, Cecchi C. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun 2021; 12:1814. [PMID: 33753734 PMCID: PMC7985515 DOI: 10.1038/s41467-021-21937-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson's disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-β structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Serene W Chen
- Department of Life Science, Imperial College London, London, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - José D Camino
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain.
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| |
Collapse
|
224
|
Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev Cell 2021; 55:45-68. [PMID: 33049211 DOI: 10.1016/j.devcel.2020.09.014] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Protein aggregation is the main hallmark of neurodegenerative diseases. Many proteins found in pathological inclusions are known to undergo liquid-liquid phase separation, a reversible process of molecular self-assembly. Emerging evidence supports the hypothesis that aberrant phase separation behavior may serve as a trigger of protein aggregation in neurodegeneration, and efforts to understand and control the underlying mechanisms are underway. Here, we review similarities and differences among four main proteins, α-synuclein, FUS, tau, and TDP-43, which are found aggregated in different diseases and were independently shown to phase separate. We discuss future directions in the field that will help shed light on the molecular mechanisms of aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Aurélie Zbinden
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Manuela Pérez-Berlanga
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Magdalini Polymenidou
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
225
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
226
|
Michiels E, Rousseau F, Schymkowitz J. Mechanisms and therapeutic potential of interactions between human amyloids and viruses. Cell Mol Life Sci 2021; 78:2485-2501. [PMID: 33244624 PMCID: PMC7690653 DOI: 10.1007/s00018-020-03711-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
The aggregation of specific proteins and their amyloid deposition in affected tissue in disease has been studied for decades assuming a sole pathogenic role of amyloids. It is now clear that amyloids can also encode important cellular functions, one of which involves the interaction potential of amyloids with microbial pathogens, including viruses. Human expressed amyloids have been shown to act both as innate restriction molecules against viruses as well as promoting agents for viral infectivity. The underlying molecular driving forces of such amyloid-virus interactions are not completely understood. Starting from the well-described molecular mechanisms underlying amyloid formation, we here summarize three non-mutually exclusive hypotheses that have been proposed to drive amyloid-virus interactions. Viruses can indirectly drive amyloid depositions by affecting upstream molecular pathways or induce amyloid formation by a direct interaction with the viral surface or specific viral proteins. Finally, we highlight the potential of therapeutic interventions using the sequence specificity of amyloid interactions to drive viral interference.
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
227
|
Dai X, Fu W, Chi H, Mesias VSD, Zhu H, Leung CW, Liu W, Huang J. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nat Commun 2021; 12:1292. [PMID: 33637710 PMCID: PMC7910584 DOI: 10.1038/s41467-021-21543-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/27/2021] [Indexed: 01/05/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool to detect biomolecules in aqueous environments. However, it is challenging to identify protein structures at low concentrations, especially for the proteins existing in an equilibrium mixture of various conformations. Here, we develop an in situ optical tweezers-coupled Raman spectroscopy to visualize and control the hotspot between two Ag nanoparticle-coated silica beads, generating tunable and reproducible SERS enhancements with single-molecule level sensitivity. This dynamic SERS detection window is placed in a microfluidic flow chamber to detect the passing-by proteins, which precisely characterizes the structures of three globular proteins without perturbation to their native states. Moreover, it directly identifies the structural features of the transient species of alpha-synuclein among its predominant monomers at physiological concentration of 1 μM by reducing the ensemble averaging. Hence, this SERS platform holds the promise to resolve the structural details of dynamic, heterogeneous, and complex biological systems.
Collapse
Affiliation(s)
- Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Hong Kong Science Park, Hong Kong, China
| | - Wenhao Fu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huanyu Chi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Vince St Dollente Mesias
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Cheuk Wai Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wei Liu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
228
|
Ikenoue T, Aprile FA, Sormanni P, Vendruscolo M. Rationally Designed Bicyclic Peptides Prevent the Conversion of Aβ42 Assemblies Into Fibrillar Structures. Front Neurosci 2021; 15:623097. [PMID: 33716651 PMCID: PMC7947257 DOI: 10.3389/fnins.2021.623097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
There is great interest in drug discovery programs targeted at the aggregation of the 42-residue form of the amyloid β peptide (Aβ42), since this molecular process is closely associated with Alzheimer’s disease. The use of bicyclic peptides may offer novel opportunities for the effective modification of Aβ42 aggregation and the inhibition of its cytotoxicity, as these compounds combine the molecular recognition ability of antibodies with a relatively small size of about 2 kD. Here, to pursue this approach, we rationally designed a panel of six bicyclic peptides targeting various epitopes along the sequence of Aβ42 to scan its most amyloidogenic region (residues 13–42). Our kinetic analysis and structural studies revealed that at sub-stoichiometric concentrations the designed bicyclic peptides induce a delay in the condensation of Aβ42 and the subsequent transition to a fibrillar state, while at higher concentrations they inhibit such transition. We thus suggest that designed bicyclic peptides can be employed to inhibit amyloid formation by redirecting the aggregation process toward amorphous assemblies.
Collapse
Affiliation(s)
- Tatsuya Ikenoue
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco A Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
229
|
Evidence of the existence of micellar-like aggregates for α-synuclein. Int J Biol Macromol 2021; 177:392-400. [PMID: 33631264 DOI: 10.1016/j.ijbiomac.2021.02.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 11/20/2022]
Abstract
We have been investigating the early stages of α-synuclein (Syn) aggregation, a small presynaptic protein implicated in Parkinson's disease. We previously reported that for pH jumps (1000 s) from pH 7 to pH 2 the variation of the Syn intrinsic fluorescence intensity did not change in the concentration range of ca. 10-50 μM (ref. 16). Additionally, I reported dynamic light scattering (DLS) experiments revealing the formation of early large Syn aggregates (ref. 7). These reported results mean that some molecular entity is being early formed. Herein, it was decided to investigate in detail these early Syn aggregates by using light scattering. By DLS analysis, these aggregates exhibited a hydrodynamic diameter of ca. 420 nm along with a high scattering intensity, characteristic of micellar-like aggregates formation. The critical micelle concentration (CMC) at which the Syn micellar-like aggregates are formed was ca. 10 μM. DLS analysis has also revealed that the micellar-like aggregates for Syn evolved, for protein concentrations >100 μM, to the formation of smaller aggregates (hydrodynamic diameter of ca. 165 nm), possibly Syn oligomers. The Syn micellar-like aggregates formed at pH 7 solutions seem to be active species and to have a role in this protein aggregation mechanism.
Collapse
|
230
|
Li B, Ponjavic A, Chen WH, Hopkins L, Hughes C, Ye Y, Bryant C, Klenerman D. Single-Molecule Light-Sheet Microscopy with Local Nanopipette Delivery. Anal Chem 2021; 93:4092-4099. [PMID: 33595281 DOI: 10.1021/acs.analchem.0c05296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detection of single molecules in biological systems has rapidly increased in resolution over the past decade. However, the delivery of single molecules remains to be a challenge. Currently, there is no effective method that can both introduce a precise amount of molecules onto or into a single cell at a defined position and then image the cellular response. Here, we have combined light-sheet microscopy with local delivery, using a nanopipette, to accurately deliver individual proteins to a defined position. We call this method local-delivery selective-plane illumination microscopy (ldSPIM). ldSPIM uses a nanopipette and ionic feedback current at the nanopipette tip to control the position from which the molecules are delivered. The number of proteins delivered can be controlled by varying the voltage applied. For single-molecule detection, we implemented single-objective SPIM using a reflective atomic force microscopy cantilever to create a 2 μm thin sheet. Using this setup, we demonstrate that ldSPIM can deliver single fluorescently labeled proteins onto the plasma membrane of HK293 cells or into the cytoplasm. Next, we deposited the aggregates of amyloid-β, which causes proteotoxicity relevant to Alzheimer's disease, onto a single macrophage stably expressing a MyDD88-eGFP fusion construct. Whole-cell imaging in the three-dimensional (3D) mode enables the live detection of MyDD88 accumulation and the formation of myddosome signaling complexes, as a result of the aggregate-induced triggering of toll-like receptor 4. Overall, we demonstrate a novel multifunctional imaging system capable of precise delivery of single proteins to a specific location on the cell surface or inside the cytoplasm and high-speed 3D detection at single-molecule resolution within live cells.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Wei-Hsin Chen
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Lee Hopkins
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Craig Hughes
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.,UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
231
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
232
|
Brás IC, Outeiro TF. Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 2021; 10:cells10020375. [PMID: 33673034 PMCID: PMC7917664 DOI: 10.3390/cells10020375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The accumulation of misfolded alpha-synuclein (aSyn) throughout the brain, as Lewy pathology, is a phenomenon central to Parkinson’s disease (PD) pathogenesis. The stereotypical distribution and evolution of the pathology during disease is often attributed to the cell-to-cell transmission of aSyn between interconnected brain regions. The spreading of conformationally distinct aSyn protein assemblies, commonly referred as strains, is thought to result in a variety of clinically and pathologically heterogenous diseases known as synucleinopathies. Although tremendous progress has been made in the field, the mechanisms involved in the transfer of these assemblies between interconnected neural networks and their role in driving PD progression are still unclear. Here, we present an update of the relevant discoveries supporting or challenging the prion-like spreading hypothesis. We also discuss the importance of aSyn strains in pathology progression and the various putative molecular mechanisms involved in cell-to-cell protein release. Understanding the pathways underlying aSyn propagation will contribute to determining the etiology of PD and related synucleinopathies but also assist in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Inês C. Brás
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-(0)-551-391-3544; Fax: +49-(0)-551-392-2693
| |
Collapse
|
233
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
234
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [PMID: 33284303 DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Parkinson's disease (PD), as the second most common neurodegenerative disease, is caused by complex pathological processes and currently remains very difficult to treat. PD brings great distress to patients and imposes a heavy economic burden on society. The number of PD patients is growing as the aging population increases worldwide. Therefore, it is crucial to develop new tools for aiding the early diagnosis and treatment of PD. The significant pathological features involved in PD include the abnormal accumulation of α-synuclein, metal ion dyshomeostasis, oxidative stress, mitochondrial dysfunction and neurotransmitter deficiencies. In recent years, fluorescent probes have emerged as a powerful bioimaging tool with potential to help understand the pathological processes of PD via the detection and monitoring of pathological features. In this review, we comprehensively summarize the design and working mechanisms of fluorescent probes along with their applications in the detection of various PD biomarkers. We also discuss the current limitations of fluorescent probes and provide perspectives on how these limitations can be overcome to develop better fluorescent probes suitable for application in clinical trials in the future. We hope that this review provides valuable information and guidance for the development of new fluorescent probes that can be used clinically in the early diagnosis of PD and contributes to the development of efficient PD drugs in the future.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Zurlo E, Kumar P, Meisl G, Dear AJ, Mondal D, Claessens MMAE, Knowles TPJ, Huber M. In situ kinetic measurements of α-synuclein aggregation reveal large population of short-lived oligomers. PLoS One 2021; 16:e0245548. [PMID: 33481908 PMCID: PMC7822277 DOI: 10.1371/journal.pone.0245548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Knowledge of the mechanisms of assembly of amyloid proteins into aggregates is of central importance in building an understanding of neurodegenerative disease. Given that oligomeric intermediates formed during the aggregation reaction are believed to be the major toxic species, methods to track such intermediates are clearly needed. Here we present a method, electron paramagnetic resonance (EPR), by which the amount of intermediates can be measured over the course of the aggregation, directly in the reacting solution, without the need for separation. We use this approach to investigate the aggregation of α-synuclein (αS), a synaptic protein implicated in Parkinson’s disease and find a large population of oligomeric species. Our results show that these are primary oligomers, formed directly from monomeric species, rather than oligomers formed by secondary nucleation processes, and that they are short-lived, the majority of them dissociates rather than converts to fibrils. As demonstrated here, EPR offers the means to detect such short-lived intermediate species directly in situ. As it relies only on the change in size of the detected species, it will be applicable to a wide range of self-assembling systems, making accessible the kinetics of intermediates and thus allowing the determination of their rates of formation and conversion, key processes in the self-assembly reaction.
Collapse
Affiliation(s)
- Enrico Zurlo
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Pravin Kumar
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Alexander J. Dear
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Dipro Mondal
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | | | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
236
|
Hardenberg MC, Sinnige T, Casford S, Dada ST, Poudel C, Robinson EA, Fuxreiter M, Kaminksi CF, Kaminski Schierle GS, Nollen EAA, Dobson CM, Vendruscolo M. Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. J Mol Cell Biol 2021; 13:282-294. [PMID: 33386842 DOI: 10.1093/jmcb/mjaa075] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Misfolded α-synuclein is a major component of Lewy bodies, which are a hallmark of Parkinson's disease (PD). A large body of evidence shows that α-synuclein can aggregate into amyloid fibrils, but the relationship between α-synuclein self-assembly and Lewy body formation remains unclear. Here, we show, both in vitro and in a Caenorhabditis elegans model of PD, that α-synuclein undergoes liquid‒liquid phase separation by forming a liquid droplet state, which converts into an amyloid-rich hydrogel with Lewy-body-like properties. This maturation process towards the amyloid state is delayed in the presence of model synaptic vesicles in vitro. Taken together, these results suggest that the formation of Lewy bodies may be linked to the arrested maturation of α-synuclein condensates in the presence of lipids and other cellular components.
Collapse
Affiliation(s)
- Maarten C Hardenberg
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tessa Sinnige
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Sam Casford
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Samuel T Dada
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Chetan Poudel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Elizabeth A Robinson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - Clemens F Kaminksi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | | | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
237
|
Tao J, Berthet A, Citron YR, Tsiolaki PL, Stanley R, Gestwicki JE, Agard DA, McConlogue L. Hsp70 chaperone blocks α-synuclein oligomer formation via a novel engagement mechanism. J Biol Chem 2021; 296:100613. [PMID: 33798554 PMCID: PMC8102405 DOI: 10.1016/j.jbc.2021.100613] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Overexpression and aggregation of α-synuclein (ASyn) are linked to the onset and pathology of Parkinson's disease and related synucleinopathies. Elevated levels of the stress-induced chaperone Hsp70 protect against ASyn misfolding and ASyn-driven neurodegeneration in cell and animal models, yet there is minimal mechanistic understanding of this important protective pathway. It is generally assumed that Hsp70 binds to ASyn using its canonical and promiscuous substrate-binding cleft to limit aggregation. Here we report that this activity is due to a novel and unexpected mode of Hsp70 action, involving neither ATP nor the typical substrate-binding cleft. We use novel ASyn oligomerization assays to show that Hsp70 directly blocks ASyn oligomerization, an early event in ASyn misfolding. Using truncations, mutations, and inhibitors, we confirm that Hsp70 interacts with ASyn via an as yet unidentified, noncanonical interaction site in the C-terminal domain. Finally, we report a biological role for a similar mode of action in H4 neuroglioma cells. Together, these findings suggest that new chemical approaches will be required to target the Hsp70-ASyn interaction in synucleinopathies. Such approaches are likely to be more specific than targeting Hsp70's canonical action. Additionally, these results raise the question of whether other misfolded proteins might also engage Hsp70 via the same noncanonical mechanism.
Collapse
Affiliation(s)
- Jiahui Tao
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Amandine Berthet
- Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA
| | - Y Rose Citron
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Paraskevi L Tsiolaki
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Robert Stanley
- Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases and UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| | - Lisa McConlogue
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
238
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
239
|
Musteikytė G, Jayaram AK, Xu CK, Vendruscolo M, Krainer G, Knowles TPJ. Interactions of α-synuclein oligomers with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183536. [PMID: 33373595 DOI: 10.1016/j.bbamem.2020.183536] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease is an increasingly prevalent and currently incurable neurodegenerative disorder. At the molecular level, this disease is characterized by the formation of aberrant intracellular protein deposits known as Lewy bodies. Oligomeric forms of the protein α-synuclein (αS), which are believed to be both intermediates and by-products of Lewy body formation, are considered to be the main pathogenic species. Interactions of such oligomers with lipid membranes are increasingly emerging as a major molecular pathway underpinning their toxicity. Here we review recent progress in our understanding of the interactions of αS oligomers with lipid membranes. We highlight key structural and biophysical features of αS oligomers, the effects of these features on αS oligomer membrane binding properties, and resultant implications for understanding the etiology of Parkinson's disease. We discuss mechanistic modes of αS oligomer-lipid membrane interactions and the effects of environmental factors to such modes. Finally, we provide an overview of the current understanding of the main molecular determinants of αS oligomer toxicity in vivo.
Collapse
Affiliation(s)
- Greta Musteikytė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Akhila K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
| |
Collapse
|
240
|
Kim S, Cho M, Lee Y. Point-of-Care Platform for Early Diagnosis of Parkinson's Disease. ACS APPLIED BIO MATERIALS 2020; 3:8997-9001. [PMID: 35019576 DOI: 10.1021/acsabm.0c01242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We created a cost-benefit analysis and swift point-of-care (PoC) testing for early stage Parkinson's disease (PD) that delivers the possibility of providing sensitive, rapid, and user-friendly analysis in home diagnostics applications. α-Synuclein (α-Syn) is considered a meaningful biomarker for the diagnosis of early stage PD. The PoC platform for diagnosis of PD is simply constructed with a conductive polymer and an aptamer receptor on a screen-printed electrode and exhibits a remarkable low detection limit of 1 × 10-3 fM. The developed PoC platform will offer an opportunity for individuals to conveniently and periodically check the progress of the diseases and success through expansion as a checkup platform for other diseases.
Collapse
Affiliation(s)
- Soochan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Misuk Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youngkwan Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
241
|
Staats R, Michaels TCT, Flagmeier P, Chia S, Horne RI, Habchi J, Linse S, Knowles TPJ, Dobson CM, Vendruscolo M. Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Commun Chem 2020; 3:191. [PMID: 36703335 PMCID: PMC9814678 DOI: 10.1038/s42004-020-00412-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
The aggregation of α-synuclein is a central event in Parkinsons's disease and related synucleinopathies. Since pharmacologically targeting this process, however, has not yet resulted in approved disease-modifying treatments, there is an unmet need of developing novel methods of drug discovery. In this context, the use of chemical kinetics has recently enabled accurate quantifications of the microscopic steps leading to the proliferation of protein misfolded oligomers. As these species are highly neurotoxic, effective therapeutic strategies may be aimed at reducing their numbers. Here, we exploit this quantitative approach to develop a screening strategy that uses the reactive flux toward α-synuclein oligomers as a selection parameter. Using this approach, we evaluate the efficacy of a library of flavone derivatives, identifying apigenin as a compound that simultaneously delays and reduces the formation of α-synuclein oligomers. These results demonstrate a compound selection strategy based on the inhibition of the formation of α-synuclein oligomers, which may be key in identifying small molecules in drug discovery pipelines for diseases associated with α-synuclein aggregation.
Collapse
Affiliation(s)
- Roxine Staats
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Patrick Flagmeier
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Robert I Horne
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sara Linse
- Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, 221 00, Lund, Sweden
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
242
|
Yao Y, Tang Y, Wei G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem Neurosci 2020; 11:4351-4361. [PMID: 33186020 DOI: 10.1021/acschemneuro.0c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of fibrillar aggregates of α-synuclein (α-syn) into Lewy bodies are the major hallmarks of Parkinson's disease (PD) for which there is no cure yet. Disrupting preformed α-syn fibrils is considered one of the rational therapeutic strategies to combat PD. Experimental studies reported that epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, can disrupt α-syn fibrils into benign amorphous aggregates. However, the molecular mechanism of action is poorly understood. Herein, we performed molecular dynamics simulations on a newly released Greek-key-like α-syn fibril with or without EGCG to investigate the influence of EGCG on α-syn fibril. Our simulations show that EGCG disrupts the local β-sheet structure, E46-K80 salt-bridge crucial for the stabilization of the Greek-key-like structure, and hydrophobic interactions stabilizing the inter-protofibril interface and destabilizes the global structure of the α-syn fibril. Interaction analyses reveal that hydrophobic and hydrogen-bonding interactions between EGCG and α-syn fibrils play important roles in the destabilization of the fibril. We find that the disruption of the E46-K80 salt-bridge closely correlates with the formation of hydrogen-bonds (H-bonds) between EGCG and E46/K80. Our results provide mechanistic insights into the disruption modes of α-syn fibril by EGCG, which may pave the way for designing drug candidates targeting α-syn fibrillization to treat PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
243
|
Forloni G, La Vitola P, Cerovic M, Balducci C. Inflammation and Parkinson's disease pathogenesis: Mechanisms and therapeutic insight. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:175-202. [PMID: 33453941 DOI: 10.1016/bs.pmbts.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After Alzheimer's disease, Parkinson's disease is the most frequent neurodegenerative disorder. Although numerous treatments have been developed to control the disease symptomatology, with some successes, an efficacious therapy affecting the causes of PD is still a goal to pursue. The genetic evidence and the identification of α-synuclein as the main component of intracellular Lewy bodies, the neuropathological hallmark of PD and related disorders, have changed the approach to these disorders. More recently, the detrimental role of α-synuclein has been further extended to explain the wide spread of cerebral pathology through its oligomers. To emphasize the central pathogenic role of these soluble aggregates, we have defined synucleinopathies and other neurodegenerative disorders associated with protein misfolding as oligomeropathies. Another common element in the pathogenesis of oligomeropathies is the role played by inflammation, both at the peripheral and cerebral levels. In the brain parenchyma, inflammatory reaction has been considered an obvious consequence of neuronal degeneration, but recent observations indicate a direct contribution of glial alteration in the early phase of the disease. Furthermore, systemic inflammation also influences the development of neuronal dysfunction caused by specific elements, β amyloid, α-synuclein, tau or prion. However, each disorder has its own specific pathological process and within the same pathological condition, it is possible to find inter-individual differences. This heterogeneity might explain the difficulties developing efficacious therapeutic approaches, even though the possibility of intervention is supported by robust biological evidence. We have recently demonstrated that peripheral inflammation can amplify the neuronal dysfunction induced by α-synuclein oligomers and the neuropathological consequences observed in a Parkinson's disease model. In both cases, activation of microglia was incremented by the "double hit" process, compared to the single treatment. In contrast, astrocyte activation was attenuated and these cells appeared damaged when chronic inflammation was combined with α-synuclein exposure. This evidence might indicate a more specific anti-inflammatory strategy rather than the generic anti-inflammatory treatment.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Pietro La Vitola
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Milica Cerovic
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Claudia Balducci
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
244
|
D’Onofrio M, Munari F, Assfalg M. Alpha-Synuclein-Nanoparticle Interactions: Understanding, Controlling and Exploiting Conformational Plasticity. Molecules 2020; 25:E5625. [PMID: 33260436 PMCID: PMC7731430 DOI: 10.3390/molecules25235625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Alpha-synuclein (αS) is an extensively studied protein due to its involvement in a group of neurodegenerative disorders, including Parkinson's disease, and its documented ability to undergo aberrant self-aggregation resulting in the formation of amyloid-like fibrils. In dilute solution, the protein is intrinsically disordered but can adopt multiple alternative conformations under given conditions, such as upon adsorption to nanoscale surfaces. The study of αS-nanoparticle interactions allows us to better understand the behavior of the protein and provides the basis for developing systems capable of mitigating the formation of toxic aggregates as well as for designing hybrid nanomaterials with novel functionalities for applications in various research areas. In this review, we summarize current progress on αS-nanoparticle interactions with an emphasis on the conformational plasticity of the biomolecule.
Collapse
Affiliation(s)
| | | | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.D.); (F.M.)
| |
Collapse
|
245
|
Fricova D, Harsanyiova J, Kralova Trancikova A. Alpha-Synuclein in the Gastrointestinal Tract as a Potential Biomarker for Early Detection of Parkinson's Disease. Int J Mol Sci 2020; 21:E8666. [PMID: 33212934 PMCID: PMC7698349 DOI: 10.3390/ijms21228666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
The primary pathogenesis associated with Parkinson's disease (PD) occurs in peripheral tissues several years before the onset of typical motor symptoms. Early and reliable diagnosis of PD could provide new treatment options for PD patients and improve their quality of life. At present, however, diagnosis relies mainly on clinical symptoms, and definitive diagnosis is still based on postmortem pathological confirmation of dopaminergic neuronal degeneration. In addition, the similarity of the clinical, cognitive, and neuropathological features of PD with other neurodegenerative diseases calls for new biomarkers, suitable for differential diagnosis. Alpha-synuclein (α-Syn) is a potential PD biomarker, due to its close connection with the pathogenesis of the disease. Here we summarize the currently available information on the possible use of α-Syn as a biomarker of early stages of PD in gastrointestinal (GI) tissues, highlight its potential to distinguish PD and other neurodegenerative diseases, and suggest alternative methods (primarily developed for other tissue analysis) that could improve α-Syn detection procedures or diagnostic methods in general.
Collapse
Affiliation(s)
- Dominika Fricova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia;
| | - Jana Harsanyiova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University, 814 99 Bratislava, Slovakia;
| | - Alzbeta Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, 814 99 Bratislava, Slovakia
| |
Collapse
|
246
|
Du XY, Xie XX, Liu RT. The Role of α-Synuclein Oligomers in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21228645. [PMID: 33212758 PMCID: PMC7697105 DOI: 10.3390/ijms21228645] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
α-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson’s disease (PD), the second most common neurodegeneration disease with no effective treatment. However, how α-syn drives the pathology of PD remains elusive. Recent studies suggest that α-syn oligomers are the primary cause of neurotoxicity and play a critical role in PD. In this review, we discuss the process of α-syn oligomers formation and the current understanding of the structures of oligomers. We also describe seed and propagation effects of oligomeric forms of α-syn. Then, we summarize the mechanism by which α-syn oligomers exert neurotoxicity and promote neurodegeneration, including mitochondrial dysfunction, endoplasmic reticulum stress, proteostasis dysregulation, synaptic impairment, cell apoptosis and neuroinflammation. Finally, we investigate treatment regimens targeting α-syn oligomers at present. Further research is needed to understand the structure and toxicity mechanism of different types of oligomers, so as to provide theoretical basis for the treatment of PD.
Collapse
Affiliation(s)
- Xiao-yu Du
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; (X.-y.D.); (X.-x.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; (X.-y.D.); (X.-x.X.)
| | - Rui-tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; (X.-y.D.); (X.-x.X.)
- Correspondence: ; Tel.: +86-10-82545017
| |
Collapse
|
247
|
Bilge N, Simsek F, Yevgi R, Ceylan M, Askın S. Low serum Α-SYNUCLEIN and oligomer Α-SYNUCLEIN levels in multiple sclerosis patients. J Neuroimmunol 2020; 350:577432. [PMID: 33220655 DOI: 10.1016/j.jneuroim.2020.577432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune, inflammatory, demyelinating neurodegenerative disease progressing with attacks. Alpha-synuclein (α-Syn), a neuronal protein, has been previously associated with the inflammation and development of neurodegenerative diseases. Although the cause of neurodegeneration in multiple sclerosis is mainly associated with inflammation, α-Syn may play a role in the pathogenesis of MS, as in other classical neurodegenerative diseases such as synucleinopathies. In multiple sclerosis, α-Syn has been directly studied in central nervous system lesions and cerebrospinal fluid (CSF). However, there are few studies approaching variations in peripheral α-Syn in MS. The aim of our study was to investigate the correlation between disease progression and other clinical parameters by measuring serum α-Syn and oligomer α-Syn levels in MS patients. MATERIAL AND METHOD The study included 60 MS patients aged 18 years or older who were admitted to the Department of Neurology between 01.02.2020-01.04.2020 and diagnosed with MS according to the 2010 MC Donald criteria, and 60 age- and sex-matched healthy controls. Those who were in the MS attack period and received cortisone treatment in the past three months were excluded from the study. The serum α-Syn and oligomer α-Syn levels of the individuals in both groups were measured. The correlation between the serum α-Syn, oligomer α-Syn, oligomer α-Syn/α-Syn ratio levels of the MS patients and their age, disease duration, number of attacks, annualized relapse rate (ARR), disease type, EDSS scores and immunomodulatory drug type used was investigated. Statistical analysis was performed using the SPSS 22.0 software. RESULTS In our study, 73.3% of the MS patients were female and the mean age of the patients was 36.18 ± 9.5 years. The most common MS disease type was RRMS with 83.3%. Serum α-Syn (79.52 ± 34.81) and oligomer α-Syn (18.79 ± 10.48) levels were significantly lower in the MS patients compared to the control group (p < 0.001). Serum oligomer α-Syn/α-Syn ratio was higher in the MS patients compared to the control group and in SPMS compared to RRMS, but was not statistically significant. There was no significant correlation between the serum α-Syn, oligomer α-Syn and oligomer α-Syn/α-Syn ratio ratio of the MS patients and their age, disease duration, disease type, EDDS, ARR and immunomodulatory treatments. There was a significant positive correlation between α-Syn and oligomer α-Syn in MS patients (r: 0.29, p: 0.02). CONCLUSION In our study, serum α-Syn and oligomer α-Syn levels were lower in the MS patients compared to the control group. Low levels of α-Syn in MS may play a role in the development of neuroinflammation and may be a result of the diffuse neuronal and synaptic loss. There is a need for further studies on this subject.
Collapse
Affiliation(s)
- Nuray Bilge
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey
| | - Fatma Simsek
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey
| | - Recep Yevgi
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey.
| | - Mustafa Ceylan
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey
| | - Seda Askın
- Ataturk University, Faculty of Medicine, Department of Biochemistry, Erzurum, Turkey
| |
Collapse
|
248
|
Meng F, Lu T, Wang Y, Zhao Y, Li Z, Li F. Role of Chain Extension in the Ability of Peptide Oligomers to Damage the Lipid Membrane Studied by the l- to d-Amino Acid Substitutions of hIAPP 18-27. J Phys Chem B 2020; 124:10147-10156. [PMID: 33140962 DOI: 10.1021/acs.jpcb.0c07656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploration of the relation between the structural feature of oligomers and the ability of oligomers to damage the membrane has been an important subject in the study of the cytotoxic mechanism of amyloid proteins. In this work, we selected the hIAPP18-27 fragment as a model peptide and modified it by an alternating substitution of a d-amino acid for an l-amino acid in the hydrophilic N-terminal region, the hydrophobic C-terminal region, and the entire sequence. We prepared the oligomers using these peptides and investigated the effects of chain extension in different regions of the peptide on the ability of the oligomers to damage the membrane composed of POPC/POPG 4:1. We examined the morphology, structure, surface hydrophobicity, and packing compactness of the oligomers and monitored the changes in the structure and aggregation of the peptides upon interaction with the membrane. We found that the surface hydrophobicity and the disruptive ability of the oligomers are increased by an alternating l- and d-amino acid arrangement in the hydrophobic region of the peptide, while the packing compactness of the oligomers is increased and the disruptive ability of the oligomers decreased by an alternating l- and d-amino acid arrangement only in the hydrophilic region. The extension of the hydrophobic chain plays a significant role in the disruptive ability of the oligomers. Our results suggest that a positive relation between the surface hydrophobicity and the disruptive ability could be established only for the oligomers in which the peptide chains are flexible and loosely packed.
Collapse
Affiliation(s)
- Feihong Meng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Yajie Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Yanping Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| |
Collapse
|
249
|
Arter WE, Xu CK, Castellana-Cruz M, Herling TW, Krainer G, Saar KL, Kumita JR, Dobson CM, Knowles TPJ. Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-Synuclein Oligomers in Solution. NANO LETTERS 2020; 20:8163-8169. [PMID: 33079553 PMCID: PMC7116857 DOI: 10.1021/acs.nanolett.0c03260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Oligomers comprised of misfolded proteins are implicated as neurotoxins in the pathogenesis of protein misfolding conditions such as Parkinson's and Alzheimer's diseases. Structural, biophysical, and biochemical characterization of these nanoscale protein assemblies is key to understanding their pathology and the design of therapeutic interventions, yet it is challenging due to their heterogeneous, transient nature and low relative abundance in complex mixtures. Here, we demonstrate separation of heterogeneous populations of oligomeric α-synuclein, a protein central to the pathology of Parkinson's disease, in solution using microfluidic free-flow electrophoresis. We characterize nanoscale structural heterogeneity of transient oligomers on a time scale of seconds, at least 2 orders of magnitude faster than conventional techniques. Furthermore, we utilize our platform to analyze oligomer ζ-potential and probe the immunochemistry of wild-type α-synuclein oligomers. Our findings contribute to an improved characterization of α-synuclein oligomers and demonstrate the application of microchip electrophoresis for the free-solution analysis of biological nanoparticle analytes.
Collapse
Affiliation(s)
- William E. Arter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Catherine K. Xu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Marta Castellana-Cruz
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Therese W. Herling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Georg Krainer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Kadi L. Saar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
250
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|