201
|
Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, Han L, Li C, Xue J, Zhao Z, Li W, Qing Y, Shen C, Tan B, Chen Z, Leung K, Wang K, Swaminathan S, Li L, Wunderlich M, Mulloy JC, Li X, Chen H, Zhang B, Horne D, Rosen ST, Marcucci G, Xu M, Li Z, Wei M, Tian J, Shen B, Su R, Chen J. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023; 30:1072-1090.e10. [PMID: 37541212 PMCID: PMC11166201 DOI: 10.1016/j.stem.2023.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.
Collapse
Affiliation(s)
- Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31003, Zhejiang, China
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Ling Li
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Steven T Rosen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Jingyan Tian
- State Key Laboratory of Medical Genomics, Clinical Trial Center, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
202
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
203
|
Zhang Z, Chen N, Yin N, Liu R, He Y, Li D, Tong M, Gao A, Lu P, Zhao Y, Li H, Zhang J, Zhang D, Gu W, Hong J, Wang W, Qi L, Ning G, Wang J. The rs1421085 variant within FTO promotes brown fat thermogenesis. Nat Metab 2023; 5:1337-1351. [PMID: 37460841 DOI: 10.1038/s42255-023-00847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/14/2023] [Indexed: 08/06/2023]
Abstract
One lead genetic risk signal of obesity-the rs1421085 T>C variant within the FTO gene-is reported to be functional in vitro but lacks evidence at an organism level. Here we recapitulate the homologous human variant in mice with global and brown adipocyte-specific variant knock-in and reveal that mice carrying the C-allele show increased brown fat thermogenic capacity and resistance to high-fat diet-induced adiposity, whereas the obesity-related phenotypic changes are blunted at thermoneutrality. Both in vivo and in vitro data reveal that the C-allele in brown adipocytes enhances the transcription of the Fto gene, which is associated with stronger chromatin looping linking the enhancer region and Fto promoter. Moreover, FTO knockdown or inhibition effectively eliminates the increased thermogenic ability of brown adipocytes carrying the C-allele. Taken together, these findings identify rs1421085 T>C as a functional variant promoting brown fat thermogenesis.
Collapse
Affiliation(s)
- Zhiyin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Na Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Nan Yin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yang He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Muye Tong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Peng Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yuxiao Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Huabing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfang Zhang
- Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, Shanghai, China
| | - Dan Zhang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| |
Collapse
|
204
|
Wang SH, Liu L, Bao KY, Zhang YF, Wang WW, Du S, Jia NE, Suo S, Cai J, Guo JF, Lv G. EZH2 Contributes to Anoikis Resistance and Promotes Epithelial Ovarian Cancer Peritoneal Metastasis by Regulating m6A. Curr Med Sci 2023; 43:794-802. [PMID: 37498408 DOI: 10.1007/s11596-023-2719-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Histone modification has a significant effect on gene expression. Enhancer of zeste homolog 2 (EZH2) contributes to the epigenetic silencing of target chromatin through its roles as a histone-lysine N-methyltransferase enzyme. The development of anoikis resistance in tumor cells is considered to be a critical step in the metastatic process of primary malignant tumors. The purpose of this study was to investigate the effect and mechanism of anoikis resistance in ovarian adenocarcinoma peritoneal metastasis. METHODS In addition to examining EZH2 protein expression in ovarian cancer omental metastatic tissues, we established a model of ovarian cancer cell anoikis and a xenograft tumor model in nude mice. Anoikis resistance and ovarian cancer progression were tested after EZH2 and N6-methyladenosine (m6A) levels were modified. RESULTS EZH2 expression was significantly higher in ovarian cancer omental metastatic tissues than in normal ovarian tissues. Reducing the level of EZH2 decreased the level of m6A and ovarian cancer cell anoikis resistance in vitro and inhibited ovarian cancer progression in vivo. M6a regulation altered the effect of EZH2 on anoikis resistance. CONCLUSION Our results indicate that EZH2 contributes to anoikis resistance and promotes ovarian adenocarcinoma abdominal metastasis by m6A modification. Our findings imply the potential of the clinical application of m6A and EZH2 for patients with ovarian cancer.
Collapse
Affiliation(s)
- Shao-Hai Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Yong Bao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, 028000, China
| | - Yi-Fan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Wen Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Na-Er Jia
- Department of Obstetrics and Gynecology, Bozhou Branch of Union Hospital, Bozhou, 833400, China
- Department of Obstetrics and Gynecology, Bozhou People's Hospital, Bozhou, 833400, China
| | - Suo Suo
- Department of Obstetrics and Gynecology, Bozhou Branch of Union Hospital, Bozhou, 833400, China
- Department of Obstetrics and Gynecology, Bozhou People's Hospital, Bozhou, 833400, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian-Feng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Gang Lv
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
205
|
Garrett MC, Albano R, Carnwath T, Elahi L, Behrmann CA, Pemberton M, Woo D, O'Brien E, VanCauwenbergh B, Perentesis J, Shah S, Hagan M, Kendler A, Zhao C, Paranjpe A, Roskin K, Kornblum H, Plas DR, Lu QR. HDAC1 and HDAC6 are essential for driving growth in IDH1 mutant glioma. Sci Rep 2023; 13:12433. [PMID: 37528157 PMCID: PMC10394035 DOI: 10.1038/s41598-023-33889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/20/2023] [Indexed: 08/03/2023] Open
Abstract
Low-grade and secondary high-grade gliomas frequently contain mutations in the IDH1 or IDH2 metabolic enzymes that are hypothesized to drive tumorigenesis by inhibiting many of the chromatin-regulating enzymes that regulate DNA structure. Histone deacetylase inhibitors are promising anti-cancer agents and have already been used in clinical trials. However, a clear understanding of their mechanism or gene targets is lacking. In this study, the authors genetically dissect patient-derived IDH1 mutant cultures to determine which HDAC enzymes drive growth in IDH1 mutant gliomas. A panel of patient-derived gliomasphere cell lines (2 IDH1 mutant lines, 3 IDH1 wildtype lines) were subjected to a drug-screen of epigenetic modifying drugs from different epigenetic classes. The effect of LBH (panobinostat) on gene expression and chromatin structure was tested on patient-derived IDH1 mutant lines. The role of each of the highly expressed HDAC enzymes was molecularly dissected using lentiviral RNA interference knock-down vectors and a patient-derived IDH1 mutant in vitro model of glioblastoma (HK252). These results were then confirmed in an in vivo xenotransplant model (BT-142). The IDH1 mutation leads to gene down-regulation, DNA hypermethylation, increased DNA accessibility and H3K27 hypo-acetylation in two distinct IDH1 mutant over-expression models. The drug screen identified histone deacetylase inhibitors (HDACi) and panobinostat (LBH) more specifically as the most selective compounds to inhibit growth in IDH1 mutant glioma lines. Of the eleven annotated HDAC enzymes (HDAC1-11) only six are expressed in IDH1 mutant glioma tissue samples and patient-derived gliomasphere lines (HDAC1-4, HDAC6, and HDAC9). Lentiviral knock-down experiments revealed that HDAC1 and HDAC6 are the most consistently essential for growth both in vitro and in vivo and target very different gene modules. Knock-down of HDAC1 or HDAC6 in vivo led to a more circumscribed less invasive tumor. The gene dysregulation induced by the IDH1 mutation is wide-spread and only partially reversible by direct IDH1 inhibition. This study identifies HDAC1 and HDAC6 as important and drug-targetable enzymes that are necessary for growth and invasiveness in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Matthew C Garrett
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Rebecca Albano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Troy Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lubayna Elahi
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine A Behrmann
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Merissa Pemberton
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Daniel Woo
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Eric O'Brien
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brett VanCauwenbergh
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Perentesis
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew Hagan
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Krishna Roskin
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Harley Kornblum
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
206
|
Wang G, Zeng D, Sweren E, Miao Y, Chen R, Chen J, Wang J, Liao W, Hu Z, Kang S, Garza LA. N6-methyladenosine RNA Methylation Correlates with Immune Microenvironment and Immunotherapy Response of Melanoma. J Invest Dermatol 2023; 143:1579-1590.e5. [PMID: 36842525 PMCID: PMC10363194 DOI: 10.1016/j.jid.2023.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/22/2023] [Indexed: 02/26/2023]
Abstract
RNA methylation normally inhibits the self-recognition and immunogenicity of RNA. As such, it is likely an important inhibitor of cancer immune recognition in the tumor microenvironment, but how N6-methyladenosine (m6A) affects prognosis and treatment response remains unknown. In eight independent melanoma cohorts (1,564 patients), the modification patterns of 21 m6A gene signatures were systematically correlated with the immune cell infiltration of melanoma tumor microenvironment. m6A modification patterns for each patient were quantified using the principal component analysis method, yielding an m6Ascore that reflects the abundance of m6A RNA modifications. Two different m6A modification patterns were observed in patients with melanoma, separated into high and low m6Ascores that correlated with survival and treatment response. Low m6Ascores were characterized by an immune-inflamed phenotype, with 61.1% 5-year survival. High m6Ascores were characterized by an immune-excluded phenotype, with 52.2% 5-year survival. Importantly, lower m6Ascores correlated with more sensitive anti-PD-1 and anti-CTLA4 treatment responses, with 90% of patients with low m6Ascore responding, whereas 10% of those with high m6Ascore nonresponding (in cohort GSE63557). At single-cell and spatial transcriptome resolution, m6Ascore reflects melanoma malignant progression, immune exhaustion, and resistance to immune checkpoint blockade therapy. Hence, the m6Ascore correlates to an important facet of tumor immune escape as a tool for personalized medicine to guide immunotherapy in patients with melanoma.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Evan Sweren
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjun Chen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
207
|
Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m 6A modification in cancer. Nat Rev Clin Oncol 2023; 20:507-526. [PMID: 37221357 DOI: 10.1038/s41571-023-00774-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
N6-Methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, has been extensively and increasingly studied over the past decade. Dysregulation of RNA m6A modification and its associated machinery, including writers, erasers and readers, is frequently observed in various cancer types, and the dysregulation profiles might serve as diagnostic, prognostic and/or predictive biomarkers. Dysregulated m6A modifiers have been shown to function as oncoproteins or tumour suppressors with essential roles in cancer initiation, progression, metastasis, metabolism, therapy resistance and immune evasion as well as in cancer stem cell self-renewal and the tumour microenvironment, highlighting the therapeutic potential of targeting the dysregulated m6A machinery for cancer treatment. In this Review, we discuss the mechanisms by which m6A modifiers determine the fate of target RNAs and thereby influence protein expression, molecular pathways and cell phenotypes. We also describe the state-of-the-art methodologies for mapping global m6A epitranscriptomes in cancer. We further summarize discoveries regarding the dysregulation of m6A modifiers and modifications in cancer, their pathological roles, and the underlying molecular mechanisms. Finally, we discuss m6A-related prognostic and predictive molecular biomarkers in cancer as well as the development of small-molecule inhibitors targeting oncogenic m6A modifiers and their activity in preclinical models.
Collapse
Affiliation(s)
- Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
- Gehr Family Center for Leukemia Research & City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
| |
Collapse
|
208
|
Zhao Z, Qing Y, Dong L, Han L, Wu D, Li Y, Li W, Xue J, Zhou K, Sun M, Tan B, Chen Z, Shen C, Gao L, Small A, Wang K, Leung K, Zhang Z, Qin X, Deng X, Xia Q, Su R, Chen J. QKI shuttles internal m 7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell 2023; 186:3208-3226.e27. [PMID: 37379838 PMCID: PMC10527483 DOI: 10.1016/j.cell.2023.05.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/28/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Miao Sun
- Keck School of Medicine, University of Southern California, and Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Andrew Small
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zheng Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
209
|
Ding SQ, Zhang XP, Pei JP, Bai X, Ma JJ, Zhang CD, Dai DQ. Role of N6-methyladenosine RNA modification in gastric cancer. Cell Death Discov 2023; 9:241. [PMID: 37443100 DOI: 10.1038/s41420-023-01485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the most prevalent internal modification of mammalian messenger RNA. The m6A modification affects multiple aspects of RNA metabolism, including processing, splicing, export, stability, and translation through the reversible regulation of methyltransferases (Writers), demethylases (Erasers), and recognition binding proteins (Readers). Accumulating evidence indicates that altered m6A levels are associated with a variety of human cancers. Recently, dysregulation of m6A methylation was shown to be involved in the occurrence and development of gastric cancer (GC) through various pathways. Thus, elucidating the relationship between m6A and the pathogenesis of GC has important clinical implications for the diagnosis, treatment, and prognosis of GC patients. In this review, we evaluate the potential role and clinical significance of m6A-related proteins which function in GC in an m6A-dependent manner. We discuss current issues regarding m6A-targeted inhibition of GC, explore new methods for GC diagnosis and prognosis, consider new targets for GC treatment, and provide a reasonable outlook for the future of GC research.
Collapse
Affiliation(s)
- Si-Qi Ding
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Xue-Ping Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Jun-Peng Pei
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Xiao Bai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Jin-Jie Ma
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Chun-Dong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China.
- Cancer Center, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China.
| |
Collapse
|
210
|
Yang Y, Zhang Z, Li W, Si Y, Li L, Du W. αKG-driven RNA polymerase II transcription of cyclin D1 licenses malic enzyme 2 to promote cell-cycle progression. Cell Rep 2023; 42:112770. [PMID: 37422761 DOI: 10.1016/j.celrep.2023.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Increased metabolic activity usually provides energy and nutrients for biomass synthesis and is indispensable for the progression of the cell cycle. Here, we find a role for α-ketoglutarate (αKG) generation in regulating cell-cycle gene transcription. A reduction in cellular αKG levels triggered by malic enzyme 2 (ME2) or isocitrate dehydrogenase 1 (IDH1) depletion leads to a pronounced arrest in G1 phase, while αKG supplementation promotes cell-cycle progression. Mechanistically, αKG directly binds to RNA polymerase II (RNAPII) and increases the level of RNAPII binding to the cyclin D1 gene promoter via promoting pre-initiation complex (PIC) assembly, consequently enhancing cyclin D1 transcription. Notably, αKG addition is sufficient to restore cyclin D1 expression in ME2- or IDH1-depleted cells, facilitating cell-cycle progression and proliferation in these cells. Therefore, our findings indicate a function of αKG in gene transcriptional regulation and cell-cycle control.
Collapse
Affiliation(s)
- Yanting Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhenxi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yufan Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Li Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
211
|
Xiao P, Duan Z, Liu Z, Chen L, Zhang D, Liu L, Zhou C, Gan J, Dong Z, Yang CG. Rational Design of RNA Demethylase FTO Inhibitors with Enhanced Antileukemia Drug-Like Properties. J Med Chem 2023. [PMID: 37418628 DOI: 10.1021/acs.jmedchem.3c00543] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The fat mass and obesity-associated protein (FTO) is an RNA N6-methyladenosine (m6A) demethylase highly expressed in diverse cancers including acute myeloid leukemia (AML). To improve antileukemia drug-like properties, we have designed 44/ZLD115, a flexible alkaline side-chain-substituted benzoic acid FTO inhibitor derived from FB23. A combination of structure-activity relationship analysis and lipophilic efficiency-guided optimization demonstrates that 44/ZLD115 exhibits better drug-likeness than the previously reported FTO inhibitors, FB23 and 13a/Dac85. Then, 44/ZLD115 shows significant antiproliferative activity in leukemic NB4 and MOLM13 cell lines. Moreover, 44/ZLD115 treatment noticeably increases m6A abundance on the AML cell RNA, upregulates RARA gene expression, and downregulates MYC gene expression in MOLM13 cells, which are consistent with FTO gene knockdown. Lastly, 44/ZLD115 exhibits antileukemic activity in xenograft mice without substantial side effects. This FTO inhibitor demonstrates promising properties that can be further developed for antileukemia applications.
Collapse
Affiliation(s)
- Pan Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zongliang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zeyu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyan Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
212
|
Zhang ZW, Zhao XS, Guo H, Huang XJ. The role of m 6A demethylase FTO in chemotherapy resistance mediating acute myeloid leukemia relapse. Cell Death Discov 2023; 9:225. [PMID: 37402730 DOI: 10.1038/s41420-023-01505-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematopoietic malignancies, and chemotherapy resistance is one of the main causes of relapse. Because of lower survival rate for patients with relapse, it is pivotal to identify etiological factors responsible for chemo-resistance. In this work, direct MeRIP-seq analysis of sequential samples at stage of complete remission (CR) and relapse identifies that dysregulated N6-methyladenosine (m6A) methylation is involved in this progression, and hypomethylated RNAs are related to cell differentiation. m6A demethylase FTO is overexpressed in relapse samples, which enhances the drug resistance of AML cells in vivo and in vitro. In addition, FTO knockdown cells exhibit stronger capacity of differentiation towards granules and myeloid lineages after cytosine arabinoside (Ara-C) treatment. Mechanistically, FOXO3 is identified as a downstream target of FTO, the hypomethylation of FOXO3 mRNA affects its RNA degradation and further reduces its own expression, which ultimately result in attenuated cell differentiation. Collectively, these results demonstrate that FTO-m6A-FOXO3 is the main regulatory axis to affect the chemotherapy resistance of AML cells and FTO is a potential therapeutic target of chemotherapy resistance in AML.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China
| | - Huidong Guo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, 100044, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100044, Beijing, China.
| |
Collapse
|
213
|
Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer 2023; 9:528-542. [PMID: 37147166 PMCID: PMC10330282 DOI: 10.1016/j.trecan.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Numerous strategies are employed by cancer cells to control gene expression and facilitate tumorigenesis. In the study of epitranscriptomics, a diverse set of modifications to RNA represent a new player of gene regulation in disease and in development. N6-methyladenosine (m6A) is the most common modification on mammalian messenger RNA and tends to be aberrantly placed in cancer. Recognized by a series of reader proteins that dictate the fate of the RNA, m6A-modified RNA could promote tumorigenesis by driving protumor gene expression signatures and altering the immunologic response to tumors. Preclinical evidence suggests m6A writer, reader, and eraser proteins are attractive therapeutic targets. First-in-human studies are currently testing small molecule inhibition against the methyltransferase-like 3 (METTL3)/methyltransferase-like 14 (METTL14) methyltransferase complex. Additional modifications to RNA are adopted by cancers to drive tumor development and are under investigation.
Collapse
Affiliation(s)
- Monica M Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Chuan He
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
214
|
Deacon S, Walker L, Radhi M, Smith S. The Regulation of m6A Modification in Glioblastoma: Functional Mechanisms and Therapeutic Approaches. Cancers (Basel) 2023; 15:3307. [PMID: 37444417 DOI: 10.3390/cancers15133307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma is the most prevalent primary brain tumour and invariably confers a poor prognosis. The immense intra-tumoral heterogeneity of glioblastoma and its ability to rapidly develop treatment resistance are key barriers to successful therapy. As such, there is an urgent need for the greater understanding of the tumour biology in order to guide the development of novel therapeutics in this field. N6-methyladenosine (m6A) is the most abundant of the RNA modifications in eukaryotes. Studies have demonstrated that the regulation of this RNA modification is altered in glioblastoma and may serve to regulate diverse mechanisms including glioma stem-cell self-renewal, tumorigenesis, invasion and treatment evasion. However, the precise mechanisms by which m6A modifications exert their functional effects are poorly understood. This review summarises the evidence for the disordered regulation of m6A in glioblastoma and discusses the downstream functional effects of m6A modification on RNA fate. The wide-ranging biological consequences of m6A modification raises the hope that novel cancer therapies can be targeted against this mechanism.
Collapse
Affiliation(s)
- Simon Deacon
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Lauryn Walker
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Masar Radhi
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart Smith
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| |
Collapse
|
215
|
Abstract
Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
216
|
Abstract
Chemical modifications on mRNA represent a critical layer of gene expression regulation. Research in this area has continued to accelerate over the last decade, as more modifications are being characterized with increasing depth and breadth. mRNA modifications have been demonstrated to influence nearly every step from the early phases of transcript synthesis in the nucleus through to their decay in the cytoplasm, but in many cases, the molecular mechanisms involved in these processes remain mysterious. Here, we highlight recent work that has elucidated the roles of mRNA modifications throughout the mRNA life cycle, describe gaps in our understanding and remaining open questions, and offer some forward-looking perspective on future directions in the field.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA;
| | - Sigrid Nachtergaele
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
217
|
Piperi C, Markouli M, Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Deciphering glioma epitranscriptome: focus on RNA modifications. Oncogene 2023:10.1038/s41388-023-02746-y. [PMID: 37322070 DOI: 10.1038/s41388-023-02746-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Gliomas are highly malignant tumors accounting for the majority of brain neoplasms. They are characterized by nuclear atypia, high mitotic rate and cellular polymorphism that often contributes to aggressiveness and resistance to standard therapy. They often associate with challenging treatment approaches and poor outcomes. New treatment strategies or regimens to improve the efficacy of glioma treatment require a deeper understanding of glioma occurrence and development as well as elucidation of their molecular biological characteristics. Recent studies have revealed RNA modifications as a key regulatory mechanism involved in tumorigenesis, tumor progression, immune regulation, and response to therapy. The present review discusses research advances on several RNA modifications involved in glioma progression and tumor microenvironment (TME) immunoregulation as well as in the development of adaptive drug resistance, summarizing current progress on major RNA modification targeting strategies.
Collapse
Affiliation(s)
- Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
218
|
Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother 2023; 162:114583. [PMID: 36989722 DOI: 10.1016/j.biopha.2023.114583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous mRNA modification in eukaryotes. m6A occurs through the action of methyltransferases, demethylases, and methylation-binding proteins. m6A methylation of RNA is associated with various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, cerebral apoplexy, brain injury, epilepsy, cerebral arteriovenous malformations, and glioma. Furthermore, recent studies report that m6A-related drugs have attracted considerable concerns in the therapeutic areas of neurological disorders. Here, we mainly summarized the role of m6A modification in neurological diseases and the therapeutic potential of m6A-related drugs. The aim of this review is expected to be useful to systematically assess m6A as a new potential biomarker and develop innovative modulators of m6A for the amelioration and treatment of neurological disorders.
Collapse
Affiliation(s)
- Junya Lv
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Lijuan Xing
- Precision Laboratory of Panjin Central Hospital, Panjin 124000, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| | - Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| |
Collapse
|
219
|
Li M, Wu X, Li G, Lv G, Wang S. FTO Promotes the Stemness of Gastric Cancer Cells. DNA Cell Biol 2023. [PMID: 37229595 DOI: 10.1089/dna.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
The full name of the FTO gene is fat mass and obesity-associated gene. In recent years, it has also been found that FTO is involved in m6A demethylation and regulates the progression of multiple cancers, including gastric cancer. The cancer stem cell theory argues that cancer stem cells are key factors in cancer metastasis, and inhibiting the expression of stemness genes is a good method to inhibit metastasis of gastric cancer. Currently, the role of the FTO gene in regulating stemness of gastric cancer cells is still unclear. By analyzing public databases, it was discovered that FTO gene expression was increased in gastric cancer, and high expression of FTO was associated with poor prognosis of patients with gastric cancer. After gastric cancer stem cells were isolated, it was found that FTO protein expression was increased in gastric cancer stem cells; stemness of gastric cancer cells was reduced after the FTO gene knockdown; subcutaneous tumors of nude mice were smaller than those of the control group after FTO knockdown; and stemness of gastric cancer cells was enhanced after FTO was overexpressed by plasmid. By reviewing additional literature and experimental validation, we found that SOX2 may be the factor by which FTO promotes the stemness of gastric cancer cells. Therefore, it was concluded that FTO could promote the stemness of gastric cancer cells, and targeting FTO may be a potential therapeutic approach for patients with metastatic gastric cancer. CTR number: TOP-IACUC-2021-0123.
Collapse
Affiliation(s)
- Mengqing Li
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Peking University Shenzhen Hospital, Cancer Institute of Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xuan Wu
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Peking University Shenzhen Hospital, Cancer Institute of Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Guan Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shubin Wang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Peking University Shenzhen Hospital, Cancer Institute of Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| |
Collapse
|
220
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
221
|
Zhang L, Xu X, Su X. Modifications of noncoding RNAs in cancer and their therapeutic implications. Cell Signal 2023:110726. [PMID: 37230201 DOI: 10.1016/j.cellsig.2023.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In the last 50 years, over 150 various chemical modifications on RNA molecules, including mRNAs, rRNAs, tRNAs, and other noncoding RNAs (ncRNAs), have been identified and characterized. These RNA modifications regulate RNA biogenesis and biological functions and are widely involved in various physiological processes and diseases, including cancer. In recent decades, broad interest has arisen in the epigenetic modification of ncRNAs due to the increased knowledge of the critical roles of ncRNAs in cancer. In this review, we summarize the various modifications of ncRNAs and highlight their roles in cancer initiation and progression. In particular, we discuss the potential of RNA modifications as novel biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612-9497, USA
| | - Xiulan Su
- Clinical Medical Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China.
| |
Collapse
|
222
|
Bukhari SIA, Truesdell SS, Datta C, Choudhury P, Wu KQ, Shrestha J, Maharjan R, Plotsker E, Elased R, Laisa S, Bhambhani V, Lin Y, Kreuzer J, Morris R, Koh SB, Ellisen LW, Haas W, Ly A, Vasudevan S. Regulation of RNA methylation by therapy treatment, promotes tumor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540602. [PMID: 37292633 PMCID: PMC10245743 DOI: 10.1101/2023.05.19.540602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.
Collapse
Affiliation(s)
- Syed IA Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Pritha Choudhury
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Keith Q Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ethan Plotsker
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ramzi Elased
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Sadia Laisa
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Vijeta Bhambhani
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Yue Lin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
223
|
Xu ZY, Jing X, Xiong XD. Emerging Role and Mechanism of the FTO Gene in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050850. [PMID: 37238719 DOI: 10.3390/biom13050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The fat mass and obesity-associated (FTO) gene was the first obesity-susceptibility gene identified through a genome-wide association study (GWAS). A growing number of studies have suggested that genetic variants of FTO are strongly associated with the risk of cardiovascular diseases, including hypertension and acute coronary syndrome. In addition, FTO was also the first N6-methyladenosine (m6A) demethylase, suggesting the reversible nature of m6A modification. m6A is dynamically deposited, removed, and recognized by m6A methylases, demethylases, and m6A binding proteins, respectively. By catalyzing m6A demethylation on mRNA, FTO may participate in various biological processes by modulating RNA function. Recent studies demonstrated that FTO plays a pivotal role in the initiation and progression of cardiovascular diseases such as myocardial fibrosis, heart failure, and atherosclerosis and may hold promise as a potential therapeutic target for treating or preventing a variety of cardiovascular diseases. Here, we review the association between FTO genetic variants and cardiovascular disease risk, summarize the role of FTO as an m6A demethylase in cardiovascular disorders, and discuss future research directions and possible clinical implications.
Collapse
Affiliation(s)
- Zi-Yang Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xia Jing
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
224
|
Zhang Y, Zhan L, Li J, Jiang X, Yin L. Insights into N6-methyladenosine (m6A) modification of noncoding RNA in tumor microenvironment. Aging (Albany NY) 2023; 15:3857-3889. [PMID: 37178254 PMCID: PMC10449301 DOI: 10.18632/aging.204679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes, and it participates in the regulation of pathophysiological processes in various diseases, including malignant tumors, by regulating the expression and function of both coding and non-coding RNAs (ncRNAs). More and more studies demonstrated that m6A modification regulates the production, stability, and degradation of ncRNAs and that ncRNAs also regulate the expression of m6A-related proteins. Tumor microenvironment (TME) refers to the internal and external environment of tumor cells, which is composed of numerous tumor stromal cells, immune cells, immune factors, and inflammatory factors that are closely related to tumors occurrence and development. Recent studies have suggested that crosstalk between m6A modifications and ncRNAs plays an important role in the biological regulation of TME. In this review, we summarized and analyzed the effects of m6A modification-associated ncRNAs on TME from various perspectives, including tumor proliferation, angiogenesis, invasion and metastasis, and immune escape. Herein, we showed that m6A-related ncRNAs can not only be expected to become detection markers of tumor tissue samples, but can also be wrapped into exosomes and secreted into body fluids, thus exhibiting potential as markers for liquid biopsy. This review provides a deeper understanding of the relationship between m6A-related ncRNAs and TME, which is of great significance to the development of a new strategy for precise tumor therapy.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Jing Li
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Li Yin
- Department of Biopharmaceutics, Yulin Normal University, Guangxi, Yulin 537000, China
- Bioengineering and Technology Center for Native Medicinal Resources Development, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
225
|
Wang Y, Wei J, Feng L, Li O, Huang L, Zhou S, Xu Y, An K, Zhang Y, Chen R, He L, Wang Q, Wang H, Du Y, Liu R, Huang C, Zhang X, Yang YG, Kan Q, Tian X. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol Cancer 2023; 22:81. [PMID: 37161388 PMCID: PMC10169458 DOI: 10.1186/s12943-023-01780-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND RNA 5-methylcytosine (m5C) modification plays critical roles in the pathogenesis of various tumors. However, the function and molecular mechanism of RNA m5C modification in tumor drug resistance remain unclear. METHODS The correlation between RNA m5C methylation, m5C writer NOP2/Sun RNA methyltransferase family member 2 (NSUN2) and EGFR-TKIs resistance was determined in non-small-cell lung cancer (NSCLC) cell lines and patient samples. The effects of NSUN2 on EGFR-TKIs resistance were investigated by gain- and loss-of-function assays in vitro and in vivo. RNA-sequencing (RNA-seq), RNA bisulfite sequencing (RNA-BisSeq) and m5C methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) were performed to identify the target gene of NSUN2 involved in EGFR-TKIs resistance. Furthermore, the regulatory mechanism of NSUN2 modulating the target gene expression was investigated by functional rescue and puromycin incorporation assays. RESULTS RNA m5C hypermethylation and NSUN2 were significantly correlated with intrinsic resistance to EGFR-TKIs. Overexpression of NSUN2 resulted in gefitinib resistance and tumor recurrence, while genetic inhibition of NSUN2 led to tumor regression and overcame intrinsic resistance to gefitinib in vitro and in vivo. Integrated RNA-seq and m5C-BisSeq analyses identified quiescin sulfhydryl oxidase 1 (QSOX1) as a potential target of aberrant m5C modification. NSUN2 methylated QSOX1 coding sequence region, leading to enhanced QSOX1 translation through m5C reader Y-box binding protein 1 (YBX1). CONCLUSIONS Our study reveals a critical function of aberrant RNA m5C modification via the NSUN2-YBX1-QSOX1 axis in mediating intrinsic resistance to gefitinib in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Yueqin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyao Wei
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Luyao Feng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ouwen Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shaoxuan Zhou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yingjie Xu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ke An
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruiying Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lulu He
- Biobank of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruijuan Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Chunmin Huang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China.
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| | - Xin Tian
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
226
|
Wang L, Tang Y. N6-methyladenosine (m6A) in cancer stem cell: From molecular mechanisms to therapeutic implications. Biomed Pharmacother 2023; 163:114846. [PMID: 37167725 DOI: 10.1016/j.biopha.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The emergence of drug resistance and metastasis has long been a difficult problem for cancer treatment. Recent studies have shown that cancer stem cell populations are key factors in the regulation of cancer aggressiveness, relapse and drug resistance. Cancer stem cell (CSC) populations are highly plastic and self-renewing, giving them unique metabolic, metastatic, and chemotherapy resistance properties. N6-methyladenosine (m6A) is the most abundant internal modification of mRNA and is involved in a variety of cell growth and development processes, including RNA transcription, alternative splicing, degradation, and translation. It has also been linked to the development of various cancers. At present, the important role of m6A in tumour progression is gradually attracting attention, especially in the tumour stemness regulation process. Abnormal m6A modifications regulate tumour metastasis, recurrence and drug resistance. This paper aims to explore the regulatory mechanism of m6A in CSCs and clinical therapy, clarify its regulatory network, and provide theoretical guidance for the development of clinical targets and improvement of therapeutic effects.
Collapse
Affiliation(s)
- Liming Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China.
| |
Collapse
|
227
|
Meng W, Han Y, Li B, Li H. The diverse role of RNA methylation in esophageal cancer. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37070847 DOI: 10.3724/abbs.2023057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Esophageal cancer is one of the major life-threatening diseases in the world. RNA methylation is the most common post-transcriptional modification and a wide-ranging regulatory system controlling gene expression. Numerous studies have revealed that dysregulation of RNA methylation is critical for cancer development and progression. However, the diverse role of RNA methylation and its regulators in esophageal cancer remains to be elucidated and summarized. In this review, we focus on the regulation of major RNA methylation, including m 6A, m 5C, and m 7G, as well as the expression patterns and clinical implications of its regulators in esophageal cancer. We systematically summarize how these RNA modifications affect the "life cycle" of target RNAs, including mRNA, microRNA, long non-coding RNA, and tRNA. The downstream signaling pathways associated with RNA methylation during the development and treatment of esophageal cancer are also discussed in detail. Further studies on how these modifications function together in the microenvironment of esophageal cancer will draw a clearer picture of the clinical application of novel and specific therapeutic strategies.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yichao Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
228
|
Tuhongjiang A, Wang F, Zhang C, Pang S, Qu Y, Feng B, Amuti G. Construction of an RNA modification-related gene predictive model associated with prognosis and immunity in gastric cancer. BMC Bioinformatics 2023; 24:147. [PMID: 37061682 PMCID: PMC10105968 DOI: 10.1186/s12859-023-05283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer-related fatalities worldwide, and its progression is associated with RNA modifications. Here, using RNA modification-related genes (RNAMRGs), we aimed to construct a prognostic model for patients with GC. METHODS Based on RNAMRGs, RNA modification scores (RNAMSs) were obtained for GC samples from The Cancer Genome Atlas and were divided into high- and low-RNAMS groups. Differential analysis and weighted correlation network analysis were performed for the differential expressed genes (DEGs) to obtain the key genes. Next, univariate Cox regression, least absolute shrinkage and selection operator, and multivariate Cox regression analyses were performed to obtain the model. According to the model risk score, samples were divided into high- and low-risk groups. Enrichment analysis and immunoassays were performed for the DEGs in these groups. Four external datasets from Gene Expression Omnibus data base were used to test the accuracy of the predictive model. RESULTS We identified SELP and CST2 as key DEGs, which were used to generate the predictive model. The high-risk group had a worse prognosis compared to the low-risk group (p < 0.05). Enrichment analysis and immunoassays revealed that 144 DEGs related to immune cell infiltration were associated with the Wnt signaling pathway and included hub genes such as ELN. Overall mutation levels, tumor mutation burden, and microsatellite instability were lower, but tumor immune dysfunction and exclusion scores were greater (p < 0.05) in the high-risk group than in the low-risk group. The validation results showed that the prediction model score can accurately predict the prognosis of GC patients. Finally, a nomogram was constructed using the risk score combined with the clinicopathological characteristics of patients with GC. CONCLUSION This risk score from the prediction model related to the tumor microenvironment and immunotherapy could accurately predict the overall survival of GC patients.
Collapse
Affiliation(s)
- Airexiati Tuhongjiang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Feng Wang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Chengrong Zhang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Sisi Pang
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yujiang Qu
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Bo Feng
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Gulimire Amuti
- Department of Day Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| |
Collapse
|
229
|
Liu Y, Yang D, Liu T, Chen J, Yu J, Yi P. N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med 2023; 29:454-467. [PMID: 37068987 DOI: 10.1016/j.molmed.2023.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
N6-methyladenosine (m6A) RNA methylation is the most abundant form of mRNA modification in eukaryotes and is at the front line of biological and biomedical research. This dynamic and reversible m6A RNA modification determines the fates of modified RNA molecules at the post-transcriptional level, affecting almost all important biological processes. Notably, m6A is also involved in chromatin and transcriptional regulation, while m6A dysregulation is implicated in various diseases. Here, we review current knowledge of post-transcriptional and transcriptional regulatory mechanisms involving m6A modification. We also discuss their involvement in the occurrence and development of diseases, including cancer, as well as potential theranostic targets, in hope of facilitating the translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Yujiao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| |
Collapse
|
230
|
He J, Liu F, Zhang Z. Functions of N6-methyladenosine in cancer metabolism: from mechanism to targeted therapy. Biomark Res 2023; 11:40. [PMID: 37055798 PMCID: PMC10100159 DOI: 10.1186/s40364-023-00483-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of eukaryotic mRNA and is involved in almost every stage of RNA metabolism. The m6A modification on RNA has been demonstrated to be a regulator of the occurrence and development of a substantial number of diseases, especially cancers. Increasing evidence has shown that metabolic reprogramming is a hallmark of cancer and is crucial for maintaining the homeostasis of malignant tumors. Cancer cells rely on altered metabolic pathways to support their growth, proliferation, invasion and metastasis in an extreme microenvironment. m6A regulates metabolic pathways mainly by either directly acting on metabolic enzymes and transporters or indirectly influencing metabolism-related molecules. This review discusses the functions of the m6A modification on RNAs, its role in cancer cell metabolic pathways, the possible underlying mechanisms of its effects and the implication of this modification in cancer therapy.
Collapse
Affiliation(s)
- Jiayi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
| |
Collapse
|
231
|
Yang Y, Zhang Z, Li W, Li L, Zhou Y, Du W. ME2 Promotes Hepatocellular Carcinoma Cell Migration through Pyruvate. Metabolites 2023; 13:metabo13040540. [PMID: 37110198 PMCID: PMC10145348 DOI: 10.3390/metabo13040540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer metastasis is still a major challenge in clinical cancer treatment. The migration and invasion of cancer cells into surrounding tissues and blood vessels is the primary step in cancer metastasis. However, the underlying mechanism of regulating cell migration and invasion are not fully understood. Here, we show the role of malic enzyme 2 (ME2) in promoting human liver cancer cell lines SK-Hep1 and Huh7 cells migration and invasion. Depletion of ME2 reduces cell migration and invasion, whereas overexpression of ME2 increases cell migration and invasion. Mechanistically, ME2 promotes the production of pyruvate, which directly binds to β-catenin and increases β-catenin protein levels. Notably, pyruvate treatment restores cell migration and invasion of ME2-depleted cells. Our findings provide a mechanistic understanding of the link between ME2 and cell migration and invasion.
Collapse
Affiliation(s)
- Yanting Yang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhenxi Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Li Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Ying Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| |
Collapse
|
232
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
233
|
Shen LT, Che LR, He Z, Lu Q, Chen DF, Qin ZY, Wang B. Aberrant RNA m 6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death Dis 2023; 14:236. [PMID: 37015927 PMCID: PMC10072051 DOI: 10.1038/s41419-023-05736-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
Gastrointestinal (GI) cancer is one of the most common malignancies, and a leading cause of cancer-related death worldwide. However, molecular targeted therapies are still lacking, leading to poor treatment efficacies. As an important layer of epigenetic regulation, RNA N6-Methyladenosine (m6A) modification is recently linked to various biological hallmarks of cancer by orchestrating RNA metabolism, including RNA splicing, export, translation, and decay, which is partially involved in a novel biological process termed phase separation. Through these regulatory mechanisms, m6A dictates gene expression in a dynamic and reversible manner and may play oncogenic, tumor suppressive or context-dependent roles in GI tumorigenesis. Therefore, regulators and effectors of m6A, as well as their modified substrates, represent a novel class of molecular targets for cancer treatments. In this review, we comprehensively summarize recent advances in this field and highlight research findings that documented key roles of RNA m6A modification in governing hallmarks of GI cancers. From a historical perspective, milestone findings in m6A machinery are integrated with a timeline of developing m6A targeting compounds. These available chemical compounds, as well as other approaches that target core components of the RNA m6A pathway hold promises for clinical translational to treat human GI cancers. Further investigation on several outstanding issues, e.g. how oncogenic insults may disrupt m6A homeostasis, and how m6A modification impacts on the tumor microenvironment, may dissect novel mechanisms underlying human tumorigenesis and identifies next-generation anti-cancer therapeutics. In this review, we discuss advances in our understanding of m6A RNA modification since its discovery in the 1970s to the latest progress in defining its potential clinic relevance. We summarize the molecular basis and roles of m6A regulators in the hallmarks of GI cancer and discuss their context-dependent functions. Furthermore, the identification and characterization of inhibitors or activators of m6A regulators and their potential anti-cancer effects are discussed. With the rapid growth in this field there is significant potential for developing m6A targeted therapy in GI cancers.
Collapse
Affiliation(s)
- Li-Ting Shen
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
- Department of Internal Medicine, Hospital of Zhejiang Armed Police (PAP), Hangzhou, 310051, China
| | - Lin-Rong Che
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qian Lu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dong-Feng Chen
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zhong-Yi Qin
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
234
|
Kumari S, Kumar S, Muthuswamy S. RNA N6-methyladenosine modification in regulating cancer stem cells and tumor immune microenvironment and its implication for cancer therapy. J Cancer Res Clin Oncol 2023; 149:1621-1633. [PMID: 35796777 DOI: 10.1007/s00432-022-04158-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Therapy resistance is a well-known phenomenon in cancer treatment. It can be intrinsic or acquired, accountable for frequent tumor relapse and death worldwide. The interplay between cancer cells and their neighboring environment can activate complex signaling mechanisms influencing epigenetic changes and maintain cancer cell survival leading to the malignant phenotype. Cancer stem cells (CSCs) are tumor-initiating cells (TICs) and constitute the primary source of drug resistance and tumor recurrence. Studies have shown that cancer cells exhibit dysregulated RNA N6-methyladenosine (m6A) "writers," "erasers," and "readers" levels after acquiring drug resistance. The present review provides novel insight into the role of m6A modifiers involved in CSC generation, cancer cell proliferation, and therapy resistance. m6A RNA modifications in the cross-talk between CSC and the tumor immune microenvironment (TIME) have also been highlighted. Further, we have discussed the therapeutic potential of targeting m6A machinery for cancer diagnosis and the development of new therapies for cancer treatment.
Collapse
Affiliation(s)
- Subhadra Kumari
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | |
Collapse
|
235
|
Liu W, Yasui M, Sassa A, You X, Wan J, Cao Y, Xi J, Zhang X, Honma M, Luan Y. FTO regulates the DNA damage response via effects on cell-cycle progression. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503608. [PMID: 37003652 DOI: 10.1016/j.mrgentox.2023.503608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The fat mass and obesity-associated protein FTO is an "eraser" of N6-methyladenosine, the most abundant mRNA modification. FTO plays important roles in tumorigenesis. However, its activities have not been fully elucidated and its possible involvement in DNA damage - the early driving event in tumorigenesis - remains poorly characterized. Here, we have investigated the role of FTO in the DNA damage response (DDR) and its underlying mechanisms. We demonstrate that FTO responds to various DNA damage stimuli. FTO is overexpressed in mice following exposure to the promutagens aristolochic acid I and benzo[a]pyrene. Knockout of the FTO gene in TK6 cells, via CRISPR/Cas9, increased genotoxicity induced by DNA damage stimuli (micronucleus and TK mutation assays). Cisplatin- and diepoxybutane-induced micronucleus frequencies and methyl methanesulfonate- and azathioprine-induced TK mutant frequencies were also higher in FTO KO cells. We investigated the potential roles of FTO in DDR. RNA sequencing and enrichment analysis revealed that FTO deletion disrupted the p38 MAPK pathway and inhibited the activation of nucleotide excision repair and cell-cycle-related pathways following cisplatin (DNA intrastrand cross-links) treatment. These effects were confirmed by western blotting and qRT-PCR. FTO deletion impaired cell-cycle arrest at the G2/M phase following cisplatin and diepoxybutane treatment (flow cytometry analysis). Our findings demonstrated that FTO is involved in several aspects of DDR, acting, at least in part, by impairing cell cycle progression.
Collapse
|
236
|
Gan L, Zhao Y, Fu Y, Chen Q. The potential role of m6A modifications on immune cells and immunotherapy. Biomed Pharmacother 2023; 160:114343. [PMID: 36758318 DOI: 10.1016/j.biopha.2023.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
N6-methyladenosine (m6A), is the most prevalent and reversible post-transcriptional epigenetic modification of RNA in mammals. Dysregulation of m6A modifications impacts RNA procession, degradation, translocation, and translation, disrupting immune cell homeostasis and promoting tumor initiation and development. Here, we discuss an -up-to-date summary of the mechanisms by which m6A modifications regulate immune cell anti-tumor as well as self-homeostasis. We also present how the dysregulation of m6A modifications intrinsic to tumor cells regulates the function of immune cells in the tumor microenvironment. Meanwhile, we described some specific inhibitors targeting m6A modulators and discussed their potential use in cancer treatments.
Collapse
Affiliation(s)
- Linchuan Gan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Yuxiang Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
237
|
Qiao X, Zhu L, Song R, Shang C, Guo Y. METTL3/14 and IL-17 signaling contribute to CEBPA-DT enhanced oral cancer cisplatin resistance. Oral Dis 2023; 29:942-956. [PMID: 34807506 DOI: 10.1111/odi.14083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Chemotherapy has been recognized as an optional combination treatment, which enhance the overall survival of OSCC patients. However, the majority of patients would suffer therapeutic resistance, which led to the treatment failure and poor prognosis. MATERIALS AND METHODS To explore the mechanism of chemoresistance in OSCC, we first constructed two chemoresistant cell lines using Cal27 and HSC4. Then MeRIP sequencing together with bioinformatics analysis and a series of in vitro experiments were used to assess the possible regulation manner of RNA methylation on OSCC chemoresistance. Finally, xenograft models were constructed to confirm the relationship among OSCC chemoresistance. RESULTS METTL3/METTL14 upregulation could enhance OSCC chemoresistance. CEBPA-DT overexpression could regulate METTL3/METTL14 expression and further activate downstream BHLHB9. CEBPA-DT overexpression could inhibit the activity of IL-17 signaling, resulting in the homeostasis breakdown of immune infiltration and cytokine release. CEBPA-DT overexpression could significantly enhance chemoresistance through METTL3/METTL14/BHLHB9 in vivo, which accelerated the tumor growth. CONCLUSIONS Our results suggest that CEBPA-DT might regulate OSCC chemoresistance through BHLHB9 gene manipulated by METTL3/METTL14 as well as through IL-17 signaling inhibition, which may contribute to the assessment of potential therapeutic targets in OSCC chemoresistance.
Collapse
Affiliation(s)
- Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Li Zhu
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Rongbo Song
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chao Shang
- Department of Neurobiology, China Medical University, Shenyang, China
| | - Yan Guo
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
238
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
239
|
Zhou Y, Fan K, Dou N, Li L, Wang J, Chen J, Li Y, Gao Y. YTHDF2 exerts tumor-suppressor roles in gastric cancer via up-regulating PPP2CA independently of m 6A modification. Biol Proced Online 2023; 25:6. [PMID: 36870954 PMCID: PMC9985201 DOI: 10.1186/s12575-023-00195-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND YTHDF2 is one of important readers of N6-methyladenosine (m6A) modification on RNA. Growing evidence implicates that YTHDF2 takes an indispensable part in the regulation of tumorigenesis and metastasis in different cancers, but its biological functions and underlying mechanisms remain elusive in gastric cancer (GC). AIM To investigate the clinical relevance and biological function of YTHDF2 in GC. RESULTS Compared with matched normal stomach tissues, YTHDF2 expression was markedly decreased in gastric cancer tissues. The expression level of YTHDF2 was inversely associated with gastric cancer patients' tumor size, AJCC classification and prognosis. Functionally, YTHDF2 reduction facilitated gastric cancer cell growth and migration in vitro and in vivo, whereas YTHDF2 overexpression exhibited opposite phenotypes. Mechanistically, YTHDF2 enhanced expression of PPP2CA, the catalytic subunit of PP2A (Protein phosphatase 2A), in an m6A-independent manner, and silencing of PPP2CA antagonized the anti-tumor effects caused by overexpression of YTHDF2 in GC cells. CONCLUSION These findings demonstrate that YTHDF2 is down-regulated in GC and its down-regulation promotes GC progression via a possible mechanism involving PPP2CA expression, suggesting that YTHDF2 may be a hopeful biomarker for diagnosis and an unrevealed treatment target for GC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Kailing Fan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Jialin Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital Ji'an Hospital, Ji'an City, 343000, Jiangxi Province, China.,School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China.
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China.
| |
Collapse
|
240
|
Huang H, Zhao G, Cardenas H, Valdivia AF, Wang Y, Matei D. N6-Methyladenosine RNA Modifications Regulate the Response to Platinum Through Nicotinamide N-methyltransferase. Mol Cancer Ther 2023; 22:393-405. [PMID: 36622754 DOI: 10.1158/1535-7163.mct-22-0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Development of resistance to platinum (Pt) in ovarian cancer remains a major clinical challenge. Here we focused on identifying epitranscriptomic modifications linked to Pt resistance. Fat mass and obesity-associated protein (FTO) is a N6-methyladenosine (m6A) RNA demethylase that we recently described as a tumor suppressor in ovarian cancer. We hypothesized that FTO-induced removal of m6A marks regulates the cellular response of ovarian cancer cells to Pt and is linked to the development of resistance. To study the involvement of FTO in the cellular response to Pt, we used ovarian cancer cells in which FTO was knocked down via short hairpin RNA or overexpressed and Pt-resistant (Pt-R) models derived through repeated cycles of exposure to Pt. We found that FTO was significantly downregulated in Pt-R versus sensitive ovarian cancer cells. Forced expression of FTO, but not of mutant FTO, increased sensitivity to Pt in vitro and in vivo (P < 0.05). Increased numbers of γ-H2AX foci, measuring DNA double-strand breaks, and increased apoptosis were observed after exposure to Pt in FTO-overexpressing versus control cells. Through integrated RNA sequencing and MeRIP sequencing, we identified and validated the enzyme nicotinamide N-methyltransferase (NNMT), as a new FTO target linked to Pt response. NNMT was upregulated and demethylated in FTO-overexpressing cells. Treatment with an NNMT inhibitor or NNMT knockdown restored sensitivity to Pt in FTO-overexpressing cells. Our results support a new function for FTO-dependent m6A RNA modifications in regulating the response to Pt through NNMT, a newly identified RNA methylated gene target.
Collapse
Affiliation(s)
- Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andres Felipe Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
241
|
Zhu X, Fu H, Sun J, Xu Q. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373:110376. [PMID: 36736874 DOI: 10.1016/j.cbi.2023.110376] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
A wide variety of chemicals are ubiquitous in the environment and thus exposure to these environmental chemicals poses a serious threat to public health. Particularly, environmental factors such as air pollution, heavy metals, and endocrine-disrupting chemicals (EDCs) can lead to diseases in various organ systems. Recent research in environmental epigenetics has demonstrated that N6-methyladenosine (m6A) modification is a key mechanism of environment-related diseases. m6A modification is the most abundant chemical modification in mRNAs, which can specifically regulate gene expression by affecting RNA translation, stability, processing, and nuclear export. In this review, we discussed how environmental chemicals affected m6A modification and mediated environment-related disease occurrence by classifying the diseases of various systems. Here, we conclude that environmental chemicals alter the levels of m6A and its modulators, which then participate in the occurrence of diseases in various systems by regulating gene expression and downstream signaling pathways such as METTL3/m6A ZBTB4/YTHDF2/EZH2, Foxo3a/FTO/m6A ephrin-B2/YTHDF2, and HIF1A/METTL3/m6A BIRC5/IGF2BP3/VEGFA. Considering the significant role of m6A and its modulators in response to environmental chemicals, they are expected to be used as biomarkers of environment-related diseases. Additionally, targeting m6A modulators using small molecule inhibitors and activators is expected to be a new method for the treatment of environment-related diseases. This review systematically and comprehensively clarifies the important role of m6A in diseases caused by environmental chemicals, thus establishing a scientific basis for the treatment of diseases in various organ systems.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
242
|
Cao X, Geng Q, Fan D, Wang Q, Wang X, Zhang M, Zhao L, Jiao Y, Deng T, Liu H, Zhou J, Jia L, Xiao C. m 6A methylation: a process reshaping the tumour immune microenvironment and regulating immune evasion. Mol Cancer 2023; 22:42. [PMID: 36859310 PMCID: PMC9976403 DOI: 10.1186/s12943-022-01704-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is the most universal internal modification in eukaryotic mRNA. With elaborate functions executed by m6A writers, erasers, and readers, m6A modulation is involved in myriad physiological and pathological processes. Extensive studies have demonstrated m6A modulation in diverse tumours, with effects on tumorigenesis, metastasis, and resistance. Recent evidence has revealed an emerging role of m6A modulation in tumour immunoregulation, and divergent m6A methylation patterns have been revealed in the tumour microenvironment. To depict the regulatory role of m6A methylation in the tumour immune microenvironment (TIME) and its effect on immune evasion, this review focuses on the TIME, which is characterized by hypoxia, metabolic reprogramming, acidity, and immunosuppression, and outlines the m6A-regulated TIME and immune evasion under divergent stimuli. Furthermore, m6A modulation patterns in anti-tumour immune cells are summarized.
Collapse
Affiliation(s)
- Xiaoxue Cao
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Danping Fan
- grid.410318.f0000 0004 0632 3409Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- grid.24696.3f0000 0004 0369 153XChina-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Jiao
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Deng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Zhou
- grid.256607.00000 0004 1798 2653Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China. .,Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
243
|
Peng C, Zheng C, Zhou F, Xie Y, Wang L, Chen D, Zhang X. Targeting FTO by Dac51 contributes to attenuating DSS-induced colitis. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
244
|
Liu Z, Gao L, Cheng L, Lv G, Sun B, Wang G, Tang Q. The roles of N6-methyladenosine and its target regulatory noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic implications. Exp Mol Med 2023; 55:487-501. [PMID: 36854773 PMCID: PMC10073155 DOI: 10.1038/s12276-023-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 03/02/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the epigenetic modifications of RNA. The addition of this chemical mark to RNA molecules regulates gene expression by affecting the fate of the RNA molecules. This posttranscriptional RNA modification is reversible and regulated by methyltransferase "writers" and demethylase "erasers". The fate of m6A-modified RNAs depends on the function of different "readers" that recognize and bind to them. Research on m6A methylation modification has recently increased due to its important role in regulating cancer progression. Noncoding RNAs (ncRNAs) are a class of RNA molecules that are transcribed from the genome but whose roles have been overlooked due to their lack of well-defined potential for translation into proteins or peptides. However, this misconception has now been completely overturned. ncRNAs regulate various diseases, especially tumors, and it has been confirmed that they play either tumor-promoting or tumor-suppressing roles in almost all types of tumors. In this review, we discuss the m6A modification of different types of ncRNA and summarize the mechanisms involved. Finally, we discuss the progress of research on clinical treatment and discuss the important significance of the m6A modification of ncRNAs in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gaoyuan Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Qiushi Tang
- Chinese Journal of Practical Surgery, Chinese Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
245
|
Abstract
N6-Methyladenosine (m6A) is one of the most abundant modifications of the epitranscriptome and is found in cellular RNAs across all kingdoms of life. Advances in detection and mapping methods have improved our understanding of the effects of m6A on mRNA fate and ribosomal RNA function, and have uncovered novel functional roles in virtually every species of RNA. In this Review, we explore the latest studies revealing roles for m6A-modified RNAs in chromatin architecture, transcriptional regulation and genome stability. We also summarize m6A functions in biological processes such as stem-cell renewal and differentiation, brain function, immunity and cancer progression.
Collapse
Affiliation(s)
- Konstantinos Boulias
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
246
|
Ke S, Wang J, Lu J, Fang M, Li R. Long intergenic non-protein coding RNA 00858 participates in the occurrence and development of esophageal squamous cell carcinoma through the activation of the FTO-m6A-MYC axis by recruiting ZNF184. Genomics 2023; 115:110593. [PMID: 36868327 DOI: 10.1016/j.ygeno.2023.110593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVES We aimed at probing impact of LINC00858 on esophageal squamous cell carcinoma (ESCC) progression via ZNF184-FTO-m6A-MYC axis. METHODS Expression of related genes (LINC00858, ZNF184, FTO, and MYC) was detected in ESCC tissues or cells and their relationships were assessed. After expression alterations in ESCC cells, cell proliferation, invasion, migration, and apoptosis were detected. Tumor formation in nude mice was conducted. RESULTS LINC00858, ZNF184, FTO, and MYC were overexpressed in ESCC tissues and cells. LINC00858 enhanced ZNF184 expression to upregulate FTO, which augmented MYC expression. LINC00858 knockdown diminished ESCC cell proliferative, migratory, and invasive properties while elevating apoptosis, which was negated by FTO overexpression. FTO knockdown exerted similar functions of LINC00858 knockdown on ESCC cell movements, which was annulled by MYC upregulation. Silencing LINC00858 repressed tumor growth and related gene expression in nude mice. CONCLUSIONS LINC00858 modulated MYC m6A modification via FTO by recruiting ZNF184, thus facilitating ESCC progression.
Collapse
Affiliation(s)
- Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jing Wang
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruichao Li
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
247
|
Wang C, Danli Ma, Yu H, Zhuo Z, Ye Z. N6-methyladenosine (m6A) as a regulator of carcinogenesis and drug resistance by targeting epithelial-mesenchymal transition and cancer stem cells. Heliyon 2023; 9:e14001. [PMID: 36915498 PMCID: PMC10006539 DOI: 10.1016/j.heliyon.2023.e14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Emergence of drug resistance to chemotherapeutic agents is the principal obstacle towards curative cancer treatment in human cancer patients. It is in an urgent to explore the underlying molecular mechanisms to overcome the drug resistance. N6-Methyladenosine (m6A) RNA modification is the most abundant reversible RNA modification and has emerged in recent years to regulate gene expression in eukaryotes. Recent evidence has identified m6A is associated with cancer pathogenesis and drug resistance, contributing to the self-renewal and differentiation of cancer stem cell, tumor epithelial-mesenchymal transition (EMT) and tumor metastasis. Here we reviewed up-to-date knowledge of the relationship between m6A modulation and drug resistance. Furthermore, we illustrated the underlying mechanisms of m6A modulation in drug resistance. Lastly, we discussed the regulation of m6A modulation in EMT and cancer stem cells. Hence, it will help to provide significant therapeutic strategies to overcome drug resistance for cancer patients by changing m6A-related proteins via targeting cancer stem cells and EMT-phenotypic cells.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China.,Medical School of NingBo University, Ningbo, Zhejiang, 31500, China
| | - Danli Ma
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Huimin Yu
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Zhihong Zhuo
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Zhiying Ye
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| |
Collapse
|
248
|
Yu W, Lin J, Yu T, Lou J, Qian C, Xu A, Liu B, Tao H, Jin L. The regulation of N6-methyladenosine modification in PD-L1-induced anti-tumor immunity. Immunol Cell Biol 2023; 101:204-215. [PMID: 36630591 DOI: 10.1111/imcb.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
There is growing evidence that programmed death ligand-1 (PD-L1) has exciting therapeutic efficacy in hematological malignancy and partial solid tumors. However, many patients still face failure with the treatment of immune checkpoint blockade because of PD-L1 expression regulation during transcription and post-transcription processes, including N6-methyladenosine (m6A). Similar to the epigenetic regulation in DNA and histones, recent research has revealed the essential regulation of m6A modification in RNA nuclear export, metabolism and translation. Recent studies have shown that m6A-induced PD-L1 expression emerges as one of the main reasons for the immunological alteration in this process and contributes to the failure of T cell-induced anti-tumor immunity. The results of preclinical studies demonstrate the potential of m6A-targeted therapy in combination with immune checkpoint blockade. The comprehensive expression of m6A-related genes also provided the possibility to indicate the prognosis and to optimize the treatment for patients of various cancer types. In this review, we focus on the m6A modification in PD-L1 mRNA as well as the regulation of PD-L1 expression in cancer cells and summarize its clinical value in anti-PD-L1 cancer immune therapy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jinti Lin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Tao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jianan Lou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chao Qian
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Libin Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
249
|
Shi H, Ji Y, Zhang Y, Wang Y, Li W. Circ-N4BP2L2 enhances mitochondrial function in non-small cell lung cancer cells through regulating the miR-135a-5p/ARL5B axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:883-898. [PMID: 36637163 DOI: 10.1002/tox.23736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer with a high incidence and mortality. Circular RNAs (circRNAs) exert vital functions in various cancers by acting as a sponge of miRNAs to abolish their inhibitory effect on target genes. This study aims to explore the biological function of circRNA NEDD4 binding protein 2 like 2 (circ-N4BP2L2) in NSCLC. We found that circ-N4BP2L2 was upregulated in NSCLC tissues and cells by using RT-qPCR. A549 cells were transfected with pcDNA-circN4BP2L2 or sh-circN4BP2L2 to obtain circN4BP2L2-overexpressed or -silenced cells, and then cell proliferation, invasion and apoptosis were determined. The results showed that knockdown of circ-N4BP2L2 repressed cell proliferation, invasion as well as mitochondrial function, and promoted cell apoptosis; while overexpression of circ-N4BP2L2 resulted in the opposite results. Mechanistically, the targeting correlations between miR-135a-5p and circ-N4BP2L2 or ADP-ribosylation factorlike 5B (ARL5B) were confirmed by using dual luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. In addition, we found that circ-N4BP2L2 could promote the expression of ARL5B by serving as a sponge of miR-135a-5p. Moreover, rescue assays revealed that silencing miR-135a-5p or overexpressing ARL5B was able to abate the effects of circ-N4BP2L2 knockdown on malignant phenotypes and mitochondrial function of A549 cells. Finally, tumorigenicity assay demonstrated that circ-N4BP2L2 facilitated NSCLC tumor growth in vivo. Taken together, circ-N4BP2L2 enhanced NSCLC progression via the miR-135a-5p/ARL5B axis, which may provide a novel therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Hongyang Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuqiang Ji
- Department of Cardiovascular Disease, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Yonghong Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
250
|
The hTERT-p50 homodimer inhibits PLEKHA7 expression to promote gastric cancer invasion and metastasis. Oncogene 2023; 42:1144-1156. [PMID: 36823376 PMCID: PMC10063444 DOI: 10.1038/s41388-023-02630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Although accumulating evidence has highlighted the molecular mechanisms by which hTERT promotes tumour cell invasion and metastasis, the molecular mechanisms of the properties enabling hTERT to contribute to invasion and metastasis have not been clearly illustrated. Here, we report that hTERT promotes gastric cancer invasion and metastasis by recruiting p50 to synergistically inhibit PLEKHA7 expression. We observed that the expression of PLEKHA7 in gastric cancer was significantly negatively associated with the TNM stage and lymphatic metastasis and that decreased PLEKHA7 expression dramatically increased invasion and metastasis in gastric cancer cells. Further mechanistic research showed that hTERT directly regulates PLEKHA7 expression by binding p50 and recruiting the hTERT/p50 complex to the PLEKHA7 promoter. Increased hTERT dramatically decreased PLEKHA7 expression and promoted invasion and metastasis in gastric cancer cells. The hTERT-mediated invasion/metastasis properties at least partially depended on PLEKHA7. Our work uncovers a novel molecular mechanism underlying invasion/metastasis in gastric cancer orchestrated by hTERT and p50.
Collapse
|