201
|
Pepermans RA, Prossnitz ER. ERα-targeted endocrine therapy, resistance and the role of GPER. Steroids 2019; 152:108493. [PMID: 31518595 PMCID: PMC6859199 DOI: 10.1016/j.steroids.2019.108493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
Endocrine therapy is an effective option for the treatment of estrogen receptor alpha (ERα)-positive breast cancers. Unfortunately, a large fraction of women relapse with endocrine-resistant tumors. The presence of constitutively active ERα mutants, found in a subset of relapse tumors, is thought to be an important endocrine resistance mechanism and has prompted the search for more effective anti-hormone drugs that can effectively inhibit these mutant versions of the receptor. The G protein-coupled estrogen receptor (GPER) is also thought to contribute to the development of endocrine resistance, in part, due to its activation by clinically used selective estrogen receptor modulators and downregulators (SERMs/SERDs). Therefore, next-generation drugs should be screened for potential activity towards GPER. Here, we highlight the need for truly ERα-selective SERMs and SERDs that do not cross-react with GPER for the treatment of ERα-positive breast cancers.
Collapse
Affiliation(s)
- Richard A Pepermans
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
202
|
De Santo I, McCartney A, Migliaccio I, Di Leo A, Malorni L. The Emerging Role of ESR1 Mutations in Luminal Breast Cancer as a Prognostic and Predictive Biomarker of Response to Endocrine Therapy. Cancers (Basel) 2019; 11:E1894. [PMID: 31795152 PMCID: PMC6966519 DOI: 10.3390/cancers11121894] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations in the hotspot ligand-binding domain of the estrogen receptor (ER) gene ESR1 have recently been recognized as mechanisms of endocrine resistance in endocrine receptor-positive metastatic breast cancer (MBC). Accumulating data suggest these mutations develop under the selective pressure of endocrine treatments, and are infrequent in untreated ER-positive breast cancers. In vitro studies show that these mutations confer ligand-independent activity, resistance to estrogen deprivation, and relative resistance to tamoxifen and fulvestrant. Post-hoc retrospective and prospective analyses of ESR1 mutations in patients with MBC have consistently found that these mutations are markers of poor prognosis and predict resistance to aromatase inhibitors (AIs). These results warrant further investigation and prospective validation in dedicated studies. Moreover, studies are ongoing to clarify the activity of novel drugs in the context of metastatic endocrine resistant luminal breast cancer harboring ESR1 mutations. In this review, we summarize the pre-clinical and clinical findings defining the characteristics of ESR1 mutant breast cancer, and highlight the potential clinical developments in this field.
Collapse
Affiliation(s)
- Irene De Santo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
- “Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (A.M.); (A.D.L.)
| | - Amelia McCartney
- “Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (A.M.); (A.D.L.)
| | - Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, 59100 Prato, Italy;
| | - Angelo Di Leo
- “Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (A.M.); (A.D.L.)
| | - Luca Malorni
- “Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (A.M.); (A.D.L.)
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, 59100 Prato, Italy;
| |
Collapse
|
203
|
Hartmaier RJ, Trabucco SE, Priedigkeit N, Chung JH, Parachoniak CA, Vanden Borre P, Morley S, Rosenzweig M, Gay LM, Goldberg ME, Suh J, Ali SM, Ross J, Leyland-Jones B, Young B, Williams C, Park B, Tsai M, Haley B, Peguero J, Callahan RD, Sachelarie I, Cho J, Atkinson JM, Bahreini A, Nagle AM, Puhalla SL, Watters RJ, Erdogan-Yildirim Z, Cao L, Oesterreich S, Mathew A, Lucas PC, Davidson NE, Brufsky AM, Frampton GM, Stephens PJ, Chmielecki J, Lee AV. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann Oncol 2019; 29:872-880. [PMID: 29360925 PMCID: PMC5913625 DOI: 10.1093/annonc/mdy025] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Estrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer. Patients and methods To identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287-395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots. Results We identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3' partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations. Conclusions Collectively, these data indicate that N-terminal ESR1 fusions involving exons 6-7 are a recurrent driver of endocrine therapy resistance and are impervious to ER-targeted therapies.
Collapse
Affiliation(s)
- R J Hartmaier
- Foundation Medicine Inc., Cambridge; Department of Pharmacology and Chemical Biolog, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA; Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA.
| | | | - N Priedigkeit
- Department of Pharmacology and Chemical Biolog, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA; Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA
| | | | | | | | - S Morley
- Foundation Medicine Inc., Cambridge
| | | | - L M Gay
- Foundation Medicine Inc., Cambridge
| | | | - J Suh
- Foundation Medicine Inc., Cambridge
| | - S M Ali
- Foundation Medicine Inc., Cambridge
| | - J Ross
- Foundation Medicine Inc., Cambridge
| | - B Leyland-Jones
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, USA
| | - B Young
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, USA
| | - C Williams
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, USA
| | - B Park
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, USA
| | - M Tsai
- Minnesota Oncology, Minneapolis, USA
| | - B Haley
- UT Southwestern Medical Center, Dallas, USA
| | - J Peguero
- Oncology Consultants Research Department, Houston, USA
| | | | | | - J Cho
- New Bern Cancer Care, New Bern, USA
| | - J M Atkinson
- Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA
| | - A Bahreini
- Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA; Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A M Nagle
- Department of Pharmacology and Chemical Biolog, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA; Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA
| | - S L Puhalla
- Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA; Foundation Medicine Inc., Cambridge; Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, USA
| | - R J Watters
- Department of Pharmacology and Chemical Biolog, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA; Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Z Erdogan-Yildirim
- Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA
| | - L Cao
- Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA; Central South University Xiangya School of Medicine, China
| | - S Oesterreich
- Department of Pharmacology and Chemical Biolog, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA; Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA
| | - A Mathew
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - P C Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, USA
| | - N E Davidson
- Foundation Medicine Inc., Cambridge; Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, USA
| | - A M Brufsky
- Foundation Medicine Inc., Cambridge; Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, USA
| | | | | | | | - A V Lee
- Department of Pharmacology and Chemical Biolog, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA; Women's Cancer Research Center, Magee-Women's Research Institute, Pittsburgh, USA
| |
Collapse
|
204
|
Shi J, Li Y, Jia R, Fan X. The fidelity of cancer cells in PDX models: Characteristics, mechanism and clinical significance. Int J Cancer 2019; 146:2078-2088. [PMID: 31479514 DOI: 10.1002/ijc.32662] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022]
Abstract
Patient-derived xenograft (PDX) models are widely used as preclinical cancer models and are considered better than cell culture models in recapitulating the histological features, molecular characteristics and intratumoral heterogeneity (ITH) of human tumors. While the PDX model is commonly accepted for use in drug discovery and other translational studies, a growing body of evidence has suggested its limitations. Recently, the fidelity of cancer cells within a PDX has been questioned, which may impede the future application of these models. In this review, we will focus the variable phenotypes of xenograft tumors and the genomic instability and molecular inconsistency of PDX tumors after serial transplantation. Next, we will discuss the underlying mechanism of ITH and its clinical relevance. Stochastic selection bias in the sampling process and/or deterministic clonal dynamics due to murine selective pressure may have detrimental effects on the results of personalized medicine and drug screening studies. In addition, we aim to identify a possible solution for the issue of fidelity in current PDX models and to discuss emerging next-generation preclinical models.
Collapse
Affiliation(s)
- Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
205
|
Makar S, Saha T, Swetha R, Gutti G, Kumar A, Singh SK. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. Bioorg Chem 2019; 94:103380. [PMID: 31757413 DOI: 10.1016/j.bioorg.2019.103380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
Drug discovery and development have gained momentum due to the rational drug design by engaging computational tools and bioinformatics methodologies. Bioisosteric replacements and hybrid molecular approaches are the other inventive processes, used by medicinal chemists for the desired modifications of leads for clinical drug candidates. SERMs, ought to produce inhibitory activity in breast, uterus and agonist activity in other tissues, are beneficial for estrogen-like actions. ER subtypes α and β are hormone dependent modulators of intracellular signaling and gene expression, and development of ER selective ligands could be an effective approach for treatment of breast cancer. This report has critically investigated the possible designing considerations of SERMs, their in silico interactions, and potent pharmacophore generation approaches viz. indole, restricted benzothiophene [3, 2-b] indole, carborane, xanthendione, combretastatin A-4, organometallic heterocycles, OBHS-SAHA hybrids, benzopyranones, tetrahydroisoquinolines, Dig G derivatives and their specifications in drug design and development, to rationally improve the understanding in drug discovery. This also includes various strategies for the development of dual inhibitors for the management of antiestrogenic resistance.
Collapse
Affiliation(s)
- Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India.
| |
Collapse
|
206
|
Cao L, Basudan A, Sikora MJ, Bahreini A, Tasdemir N, Levine KM, Jankowitz RC, McAuliffe PF, Dabbs D, Haupt S, Haupt Y, Lucas PC, Lee AV, Oesterreich S, Atkinson JM. Frequent amplifications of ESR1, ERBB2 and MDM4 in primary invasive lobular breast carcinoma. Cancer Lett 2019; 461:21-30. [PMID: 31229512 PMCID: PMC6682463 DOI: 10.1016/j.canlet.2019.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023]
Abstract
Invasive lobular carcinoma (ILC) is the second most common histological subtype of breast cancer following invasive ductal carcinoma (IDC). To identify potential genetic drivers of ILC progression, we used NanoString nCounter technology to investigate the DNA copy number (CN) in 70 well-curated primary ILC samples. We confirmed prior observations of frequent amplification of CCND1 (33%), and MYC (17%) in ILC, but additionally identified a substantial subset of ILCs with ESR1 and ERBB2 (19%) amplifications. Of interest, tumors with ESR1 CN gains (14%) and amplification (10%) were more likely to recur compared to those with normal CN. Finally, we observed that MDM4 (MDMX) was amplified in 17% of ILC samples. MDM4 knockdown in TP53 wild-type ILC cell lines caused increased apoptosis, decreased proliferation associated with cell cycle arrest, and concomitant activation of TP53 target genes. Similar effects were seen in TP53 mutant cells, indicting a TP53-independent role for MDM4 in ILC. To conclude, amplification of ESR1 and MDM4 are potential genetic drivers of ILC. These amplifications may represent actionable, targetable tumor dependencies, and thus have potential clinical implications and warrant further study.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Cycle Checkpoints
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- DNA Copy Number Variations
- Estrogen Receptor alpha/genetics
- Female
- Follow-Up Studies
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, ErbB-2/genetics
- Retrospective Studies
- Survival Rate
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Lan Cao
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics and Gynecology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ahmed Basudan
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical Laboratory Sciences, King Saud University, Saudi Arabia
| | - Matthew J Sikora
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amir Bahreini
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Genetics and Molecular Biology; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nilgun Tasdemir
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin M Levine
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel C. Jankowitz
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology Oncology; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Priscilla F McAuliffe
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, Pittsburgh, PA
| | - David Dabbs
- Division of Breast and Gynecologic Pathology, Department of Pathology, Pittsburgh, PA
| | - Sue Haupt
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer M Atkinson
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
207
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
208
|
Association of ESR1 Mutations and Visceral Metastasis in Patients with Estrogen Receptor-Positive Advanced Breast Cancer from Brazil. JOURNAL OF ONCOLOGY 2019; 2019:1947215. [PMID: 31511774 PMCID: PMC6710809 DOI: 10.1155/2019/1947215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/02/2019] [Indexed: 01/12/2023]
Abstract
Mutations in the ESR1 gene (ESR1m) are important mechanisms of resistance to endocrine therapy in estrogen receptor-positive advanced breast cancer and have been recognized as a prognostic and predictive biomarker as well as a potential therapeutic target. However, the prevalence of ESR1m in real-world patients has not been adequately described. Therefore, we sought to evaluate the prevalence of ESR1m in metastatic samples from Brazilian patients with estrogen receptor-positive (ER+) advanced breast cancer previously treated with endocrine therapy. The presence of ESR1m was evaluated in formalin-fixed paraffin-embedded (FFPE) breast cancer tissue using real-time quantitative polymerase chain reaction (RT-qPCR). Mutations in codons 380, 537, and 538 of the ESR1 gene were analyzed. Out of 77 breast cancer samples, 11 (14.3%) showed mutations in the ESR1 gene. ESR1m were detected in a variety of organs, and the D538G substitution was the most common mutation. In visceral metastasis, ESR1m were detected in 25% (8/32) of the samples, whereas in nonvisceral metastasis, ESR1m were detected in 6.7% (3/45) of the samples. The odds of a sample with visceral metastasis having an ESR1 mutation is 4.66 times the odds of a sample of nonvisceral metastasis having an ESR1 mutation (95% CI: 1.13-19.27; p value = 0.0333). Our study indicates that the prevalence of ESR1m in samples from Brazilian patients with metastatic ER+ breast cancer is similar to that described in patients included in clinical trials. We observed an association of ESR1m with visceral metastasis.
Collapse
|
209
|
Zheng Y, Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell 2019; 50:264-282. [PMID: 31386861 PMCID: PMC6748048 DOI: 10.1016/j.devcel.2019.06.003] [Citation(s) in RCA: 600] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/23/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway regulates diverse physiological processes, and its dysfunction has been implicated in an increasing number of human diseases, including cancer. Here, we provide an updated review of the Hippo pathway; discuss its roles in development, homeostasis, regeneration, and diseases; and highlight outstanding questions for future investigation and opportunities for Hippo-targeted therapies.
Collapse
Affiliation(s)
- Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
210
|
Huang KL, Wu Y, Primeau T, Wang YT, Gao Y, McMichael JF, Scott AD, Cao S, Wendl MC, Johnson KJ, Ruggles K, Held J, Payne SH, Davies S, Dar A, Kinsinger CR, Mesri M, Rodriguez H, Ellis MJ, Townsend RR, Chen F, Fenyö D, Li S, Liu T, Carr SA, Ding L. Regulated Phosphosignaling Associated with Breast Cancer Subtypes and Druggability. Mol Cell Proteomics 2019; 18:1630-1650. [PMID: 31196969 PMCID: PMC6682998 DOI: 10.1074/mcp.ra118.001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Aberrant phospho-signaling is a hallmark of cancer. We investigated kinase-substrate regulation of 33,239 phosphorylation sites (phosphosites) in 77 breast tumors and 24 breast cancer xenografts. Our search discovered 2134 quantitatively correlated kinase-phosphosite pairs, enriching for and extending experimental or binding-motif predictions. Among the 91 kinases with auto-phosphorylation, elevated EGFR, ERBB2, PRKG1, and WNK1 phosphosignaling were enriched in basal, HER2-E, Luminal A, and Luminal B breast cancers, respectively, revealing subtype-specific regulation. CDKs, MAPKs, and ataxia-telangiectasia proteins were dominant, master regulators of substrate-phosphorylation, whose activities are not captured by genomic evidence. We unveiled phospho-signaling and druggable targets from 113 kinase-substrate pairs and cascades downstream of kinases, including AKT1, BRAF and EGFR. We further identified kinase-substrate-pairs associated with clinical or immune signatures and experimentally validated activated phosphosites of ERBB2, EIF4EBP1, and EGFR. Overall, kinase-substrate regulation revealed by the largest unbiased global phosphorylation data to date connects driver events to their signaling effects.
Collapse
Affiliation(s)
- Kuan-Lin Huang
- ‡Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; §Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ¶Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
| | - Yige Wu
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Tina Primeau
- ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Yi-Ting Wang
- §§§Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Yuqian Gao
- §§§Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | | | - Adam D Scott
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Song Cao
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Michael C Wendl
- ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108; §§Department of Genetics, Washington University in St. Louis, MO 63108; ¶¶Department of Mathematics, Washington University in St. Louis, MO 63108.
| | - Kimberly J Johnson
- ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108; ‡‡‡Brown School of Social Work, Washington University in St. Louis, MO 63108
| | - Kelly Ruggles
- ¶¶¶Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016
| | - Jason Held
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Samuel H Payne
- §§§Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Sherri Davies
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Arvin Dar
- ‖Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Mehdi Mesri
- ‖‖‖National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Henry Rodriguez
- ‖‖‖National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew J Ellis
- ‡‡‡‡Dan L. Duncan Cancer Center & Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - R Reid Townsend
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Feng Chen
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - David Fenyö
- ¶¶Department of Mathematics, Washington University in St. Louis, MO 63108
| | - Shunqiang Li
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Tao Liu
- ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Steven A Carr
- §§§§The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Li Ding
- **Department of Medicine, Washington University in St. Louis, MO 63108; §§Department of Genetics, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| |
Collapse
|
211
|
Santiago-Gómez A, Kedward T, Simões BM, Dragoni I, NicAmhlaoibh R, Trivier E, Sabin V, Gee JM, Sims AH, Howell SJ, Clarke RB. PAK4 regulates stemness and progression in endocrine resistant ER-positive metastatic breast cancer. Cancer Lett 2019; 458:66-75. [DOI: 10.1016/j.canlet.2019.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
|
212
|
Hamdan D, Nguyen TT, Leboeuf C, Meles S, Janin A, Bousquet G. Genomics applied to the treatment of breast cancer. Oncotarget 2019; 10:4786-4801. [PMID: 31413819 PMCID: PMC6677666 DOI: 10.18632/oncotarget.27102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022] Open
Abstract
Breast cancer remains a major health issue in the world with 1.7 million new cases in 2012 worldwide. It is the second cause of death from cancer in western countries. Genomics have started to modify the treatment of breast cancer, and the developments should become more and more significant, especially in the present era of treatment personalization and with the implementation of new technologies. With molecular signatures, genomics enabled a de-escalation of chemotherapy and personalized treatments of localized forms of estrogen-dependent breast cancers. Genomics can also make a real contribution to constitutional genetics, so as to identify mutations in a panel of candidate genes. In this review, we will discuss the contributions of genomics applied to the treatment of breast cancer, whether already validated contributions or possible future applications linked to research data.
Collapse
Affiliation(s)
- Diaddin Hamdan
- Hôpital La Porte Verte, Versailles F-78004, France.,U942, Université Paris-Diderot, INSERM, Paris F-75010, France
| | - Thi Thuy Nguyen
- U942, Université Paris-Diderot, INSERM, Paris F-75010, France.,National Cancer Hospital, Medical Oncology Department 2, Ha Noi 110000, Viet Nam.,Ha Noi Medical University, Oncology Department, Ha Noi 116001, Viet Nam
| | - Christophe Leboeuf
- U942, Université Paris-Diderot, INSERM, Paris F-75010, France.,AP-HP-Hôpital Saint-Louis, Laboratoire de Pathologie, Paris F-75010, France
| | - Solveig Meles
- U942, Université Paris-Diderot, INSERM, Paris F-75010, France
| | - Anne Janin
- U942, Université Paris-Diderot, INSERM, Paris F-75010, France.,AP-HP-Hôpital Saint-Louis, Laboratoire de Pathologie, Paris F-75010, France
| | - Guilhem Bousquet
- U942, Université Paris-Diderot, INSERM, Paris F-75010, France.,AP-HP-Hôpital Avicenne, Service d'Oncologie Médicale, Bobigny F-93000, France.,Université Paris 13, Leonard de Vinci, Villetaneuse F-93430, France
| |
Collapse
|
213
|
Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. Cell 2019; 178:949-963.e18. [PMID: 31353221 DOI: 10.1016/j.cell.2019.06.026] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/28/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.
Collapse
|
214
|
Piscuoglio S, Ng CKY, Weigelt B, Chandarlapaty S, Reis-Filho JS. ESR1 and endocrine therapy resistance: more than just mutations. Ann Oncol 2019. [PMID: 29522117 DOI: 10.1093/annonc/mdy081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- S Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - C K Y Ng
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - B Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - S Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
215
|
Rodriguez D, Ramkairsingh M, Lin X, Kapoor A, Major P, Tang D. The Central Contributions of Breast Cancer Stem Cells in Developing Resistance to Endocrine Therapy in Estrogen Receptor (ER)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11071028. [PMID: 31336602 PMCID: PMC6678134 DOI: 10.3390/cancers11071028] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer stem cells (BCSC) play critical roles in the acquisition of resistance to endocrine therapy in estrogen receptor (ER)-positive (ER + ve) breast cancer (BC). The resistance results from complex alterations involving ER, growth factor receptors, NOTCH, Wnt/β-catenin, hedgehog, YAP/TAZ, and the tumor microenvironment. These mechanisms are likely converged on regulating BCSCs, which then drive the development of endocrine therapy resistance. In this regard, hormone therapies enrich BCSCs in ER + ve BCs under both pre-clinical and clinical settings along with upregulation of the core components of “stemness” transcriptional factors including SOX2, NANOG, and OCT4. SOX2 initiates a set of reactions involving SOX9, Wnt, FXY3D, and Src tyrosine kinase; these reactions stimulate BCSCs and contribute to endocrine resistance. The central contributions of BCSCs to endocrine resistance regulated by complex mechanisms offer a unified strategy to counter the resistance. ER + ve BCs constitute approximately 75% of BCs to which hormone therapy is the major therapeutic approach. Likewise, resistance to endocrine therapy remains the major challenge in the management of patients with ER + ve BC. In this review we will discuss evidence supporting a central role of BCSCs in developing endocrine resistance and outline the strategy of targeting BCSCs to reduce hormone therapy resistance.
Collapse
Affiliation(s)
- David Rodriguez
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Marc Ramkairsingh
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, Hamilton, ON L8S 4K1, Canada
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON, L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
216
|
Dustin D, Gu G, Fuqua SAW. ESR1 mutations in breast cancer. Cancer 2019; 125:3714-3728. [PMID: 31318440 DOI: 10.1002/cncr.32345] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
The acquisition of ligand-independent ESR1 mutations during aromatase inhibitor therapy in metastatic estrogen receptor (ER)-positive breast cancer is a common mechanism of hormonal therapy resistance. Preclinical and clinical studies have demonstrated that ESR1 mutations can preexist in primary tumors and can be enriched during metastasis. Furthermore, ESR1 mutations express a unique transcriptional profile that favors tumor progression, suggesting that selected ESR1 mutations may influence metastasis. Several groups have used sensitive detection methods using patient liquid biopsies to track ESR1 or truncal somatic mutations to predict treatment outcome and tumor progression, and some of these techniques may eventually be used to guide sequential treatment options in patients. Further development and standardization of mutation tracking in circulating tumor DNA is ongoing. Clinically, patients with ESR1 mutations derive clinical benefit when treated with fulvestrant and CDK4/6-targeted therapies, but the development of more potent selective ER degraders and/or new targeted biotherapies are needed to overcome the endocrine-resistant phenotype of ESR1 mutant-bearing tumors. In this review, we discuss the mechanisms of resistance and dissemination of ESR1 mutations as well as the detection methods for ESR1 mutation tracking, newly discovered potential therapeutic targets, and the clinical implications and treatment options for treating patients with ESR1 mutant-bearing tumors.
Collapse
Affiliation(s)
- Derek Dustin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Guowei Gu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
217
|
Zecha J, Satpathy S, Kanashova T, Avanessian SC, Kane MH, Clauser KR, Mertins P, Carr SA, Kuster B. TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach. Mol Cell Proteomics 2019; 18:1468-1478. [PMID: 30967486 PMCID: PMC6601210 DOI: 10.1074/mcp.tir119.001385] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/06/2019] [Indexed: 11/06/2022] Open
Abstract
Isobaric stable isotope labeling using, for example, tandem mass tags (TMTs) is increasingly being applied for large-scale proteomic studies. Experiments focusing on proteoform analysis in drug time course or perturbation studies or in large patient cohorts greatly benefit from the reproducible quantification of single peptides across samples. However, such studies often require labeling of hundreds of micrograms of peptides such that the cost for labeling reagents represents a major contribution to the overall cost of an experiment. Here, we describe and evaluate a robust and cost-effective protocol for TMT labeling that reduces the quantity of required labeling reagent by a factor of eight and achieves complete labeling. Under- and overlabeling of peptides derived from complex digests of tissues and cell lines were systematically evaluated using peptide quantities of between 12.5 and 800 μg and TMT-to-peptide ratios (wt/wt) ranging from 8:1 to 1:2 at different TMT and peptide concentrations. When reaction volumes were reduced to maintain TMT and peptide concentrations of at least 10 mm and 2 g/l, respectively, TMT-to-peptide ratios as low as 1:1 (wt/wt) resulted in labeling efficiencies of > 99% and excellent intra- and interlaboratory reproducibility. The utility of the optimized protocol was further demonstrated in a deep-scale proteome and phosphoproteome analysis of patient-derived xenograft tumor tissue benchmarked against the labeling procedure recommended by the TMT vendor. Finally, we discuss the impact of labeling reaction parameters for N-hydroxysuccinimide ester-based chemistry and provide guidance on adopting efficient labeling protocols for different peptide quantities.
Collapse
Affiliation(s)
- Jana Zecha
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Shankha Satpathy
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Tamara Kanashova
- ¶Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Shayan C Avanessian
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - M Harry Kane
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Karl R Clauser
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Philipp Mertins
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA;; ¶Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany;; ‖Berlin Institute of Health, Berlin, Germany
| | - Steven A Carr
- §Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA;.
| | - Bernhard Kuster
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany;; **Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany.
| |
Collapse
|
218
|
Carausu M, Bidard FC, Callens C, Melaabi S, Jeannot E, Pierga JY, Cabel L. ESR1 mutations: a new biomarker in breast cancer. Expert Rev Mol Diagn 2019; 19:599-611. [PMID: 31188645 DOI: 10.1080/14737159.2019.1631799] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Introduction: In hormone receptor-positive breast cancer, ESR1 mutations have emerged as a key mechanism of resistance to endocrine therapy. Areas covered: Here, we review currently available data on ESR1 mutations, regarding their functional impact, prevalence at different stages (and according to the material used: tissue-based analysis vs. liquid biopsy), prognostic impact and predictive value of resistance to aromatase inhibitors. Possible strategies to overcome this resistance by using selective estrogen receptor downregulators (such as fulvestrant) are also discussed. Expert opinion: ESR1 mutation detection will probably become a prognostic and predictive biomarker in the future, used in clinical practice for hormone-receptor breast cancer, especially in the metastatic setting. In the future, we should expect to assess ESR1 mutations, using liquid biopsy (by digital-PCR or next-generation sequencing), in the same way as other prognostic or predictive biomarkers, such as EGFR mutations in lung cancer, and possibly even have targeted-therapies against these mutations.
Collapse
Affiliation(s)
- Marcela Carausu
- a Department of Medical Oncology , Institut Curie, PSL Research University , Saint Cloud , France
| | - François-Clément Bidard
- a Department of Medical Oncology , Institut Curie, PSL Research University , Saint Cloud , France
- b Faculty of Medicine , Versailles Saint Quentin en Yvelines University, Paris Saclay University , Paris , France
| | - Celine Callens
- c Department of Genetics , Institut Curie, PSL Research University , Paris , France
| | - Samia Melaabi
- c Department of Genetics , Institut Curie, PSL Research University , Paris , France
| | - Emmanuelle Jeannot
- d Department of Pathology , Institut Curie, PSL Research University , Paris , France
| | - Jean-Yves Pierga
- e Faculty of Medicine , Paris Descartes University , Paris , France
- f Department of Medical Oncology, Institut Curie , PSL Research University , Paris & Saint Cloud , France
| | - Luc Cabel
- a Department of Medical Oncology , Institut Curie, PSL Research University , Saint Cloud , France
- b Faculty of Medicine , Versailles Saint Quentin en Yvelines University, Paris Saclay University , Paris , France
| |
Collapse
|
219
|
Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells 2019; 8:cells8060621. [PMID: 31226846 PMCID: PMC6628218 DOI: 10.3390/cells8060621] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, patient-derived xenograft (PDX) models of many types of tumors including breast cancer have emerged as a powerful tool for predicting drug efficacy and for understanding tumor characteristics. PDXs are established by the direct transfer of human tumors into highly immunodeficient mice and then maintained by passaging from mouse to mouse. The ability of PDX models to maintain the original features of patient tumors and to reflect drug sensitivity has greatly improved both basic and clinical study outcomes. However, current PDX models cannot completely predict drug efficacy because they do not recapitulate the tumor microenvironment of origin, a failure which puts emphasis on the necessity for the development of the next generation PDX models. In this article, we summarize the advantages and limitations of current PDX models and discuss the future directions of this field.
Collapse
|
220
|
Development of Personalized Therapeutic Strategies by Targeting Actionable Vulnerabilities in Metastatic and Chemotherapy-Resistant Breast Cancer PDXs. Cells 2019; 8:cells8060605. [PMID: 31216647 PMCID: PMC6627522 DOI: 10.3390/cells8060605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023] Open
Abstract
Human breast cancer is characterized by a high degree of inter-patients heterogeneity in terms of histology, genomic alterations, gene expression patterns, and metastatic behavior, which deeply influences individual prognosis and treatment response. The main cause of mortality in breast cancer is the therapy-resistant metastatic disease, which sets the priority for novel treatment strategies for these patients. In the present study, we demonstrate that Patient Derived Xenografts (PDXs) that were obtained from metastatic and therapy-resistant breast cancer samples recapitulate the wide spectrum of the disease in terms of histologic subtypes and mutational profiles, as evaluated by whole exome sequencing. We have integrated genomic and transcriptomic data to identify oncogenic and actionable pathways in each PDX. By taking advantage of primary short-term in vitro cultures from PDX tumors, we showed their resistance to standard chemotherapy (Paclitaxel), as seen in the patients. Moreover, we selected targeting drugs and analyzed PDX sensitivity to single agents or to combination of targeted and standard therapy on the basis of PDX-specific genomic or transcriptomic alterations. Our data demonstrate that PDXs represent a suitable model to test new targeting drugs or drug combinations and to prioritize personalized therapeutic regimens for pre-clinal and clinical tests.
Collapse
|
221
|
The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-Cell Technologies. Trends Cancer 2019; 5:411-425. [PMID: 31311656 DOI: 10.1016/j.trecan.2019.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022]
Abstract
Many malignancies display heterogeneous features that support cancer progression. Emerging high-resolution methods provide a view of heterogeneity that recognizes the influence of diverse cell types and cell states of the tumor microenvironment. Here we outline a hierarchical organization of tumor heterogeneity from a genomic perspective, summarize the origins of spatially patterned metabolic features, and review recent developments in single-cell and spatially resolved techniques for genome-wide study of multicellular tissues. We also discuss how integrating these approaches can yield new insights into human cancer and emerging immune therapies. Applying these technologies for the analysis of primary tumors, patient-derived xenografts, and in vitro systems holds great promise for understanding the hierarchical structure and environmental influences that underlie tumor ecosystems.
Collapse
|
222
|
Establishment and characterization of melanoma patient-derived xenograft models for preclinical evaluation of novel therapeutics. Melanoma Res 2019; 28:527-535. [PMID: 30086074 DOI: 10.1097/cmr.0000000000000494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Patient-derived xenograft (PDX) models mostly retain the histological and genetic features of their donor tumors, which have been used for investigating various types of cancer. However, PDX models for melanoma, especially acral melanoma, are reported occasionally. We aimed to establish a large panel of melanoma PDX models representing the predominant Asian melanomas. Ninety-three fresh melanoma samples were implanted subcutaneously into nonobese diabetic/severe combined immunodeficiency mice. The histological and genetic characteristics were analyzed in both patient tumors and PDX models using immunohistochemistry, PCR amplification, and Sanger sequencing. Furthermore, the sensitivities of PDX models harboring distinct mutation profiles to binimetinib (a MEK inhibitor), vemubrafenib (a BRAF inhibitor), and imatinib (a KIT inhibitor) were also evaluated. Twenty-five PDX models were established successfully [25/93 (26.9%)] and passaged to maintain tumors in vivo. Clinical stage and origin of tumor sample were correlated with successful establishment rates (P=0.008 and <0.001, respectively). The histological (expression of NRAS, P16, and RB) and genetic (mutation status of NRAS, BRAF, and KIT) characteristics were stably maintained from patient tumors to PDX models. Targeted drugs could inhibit the tumor growth of PDX models harboring the corresponding target gene mutations. These PDX models constitute a pharmacological platform, enabling personalized development of therapeutic strategies for Asian melanomas.
Collapse
|
223
|
Shafaee MN, Ellis MJ. Breast Cancer Patient-Derived Xenografts: Pros, Cons, and Next Steps. J Natl Cancer Inst 2019; 109:3071269. [PMID: 28376181 DOI: 10.1093/jnci/djw307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Matthew James Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
224
|
Lei JT, Gou X, Seker S, Ellis MJ. ESR1 alterations and metastasis in estrogen receptor positive breast cancer. ACTA ACUST UNITED AC 2019; 5. [PMID: 31106278 PMCID: PMC6519472 DOI: 10.20517/2394-4722.2019.12] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Endocrine therapy is essential for the treatment of patients with estrogen receptor positive (ER+) breast cancer, however, resistance and the development of metastatic disease is common. Understanding how ER+ breast cancer metastasizes is critical since the major cause of death in breast cancer is metastasis to distant organs. Results from many studies suggest dysregulation of the estrogen receptor alpha gene (ESR1 ) contributes to therapeutic resistance and metastatic biology. This review covers both pre-clinical and clinical evidence on the spectrum of ESR1 alterations including amplification, point mutations, and genomic rearrangement events driving treatment resistance and metastatic potential of ER+ breast cancer. Importantly, we describe how these ESR1 alterations may provide therapeutic opportunities to improve outcomes in patients with lethal, metastatic breast cancer.
Collapse
Affiliation(s)
- Jonathan T Lei
- Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuxu Gou
- Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sinem Seker
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
225
|
Ryu JS, Sim SH, Park IH, Lee EG, Lee ES, Kim YH, Kwon Y, Kong SY, Lee KS. Integrative In Vivo Drug Testing Using Gene Expression Signature and Patient-Derived Xenografts from Treatment-Refractory HER2 Positive and Triple-Negative Subtypes of Breast Cancer. Cancers (Basel) 2019; 11:cancers11040574. [PMID: 31018595 PMCID: PMC6520730 DOI: 10.3390/cancers11040574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
Patient-derived xenografts (PDXs) are powerful tools for translational cancer research. Here, we established PDX models from different molecular subtypes of breast cancer for in vivo drug tests and compared the histopathologic features of PDX model tumors with those of patient tumors. Predictive biomarkers were identified by gene expression analysis of PDX samples using Nanostring nCount cancer panels. Validation of predictive biomarkers for treatment response was conducted in established PDX models by in vivo drug testing. Twenty breast cancer PDX models were generated from different molecular subtypes (overall success rate, 17.5%; 3.6% for HR+/HER2-, 21.4% for HR+/HER2+, 21.9% for HR-/HER2+ and 22.5% for triple-negative breast cancer (TNBC)). The histopathologic features of original tumors were retained in the PDX models. We detected upregulated HIF1A, RAF1, AKT2 and VEGFA in TNBC cases and demonstrated the efficacy of combined treatment with sorafenib and everolimus or docetaxel and bevacizumab in each TNBC model. Additionally, we identified upregulated HIF1A in two cases of trastuzumab-exposed HR-/HER2+ PDX models and validated the efficacy of the HIF1A inhibitor, PX-478, alone or in combination with neratinib. Our results demonstrate that PDX models can be used as effective tools for predicting therapeutic markers and evaluating personalized treatment strategies in breast cancer patients with resistance to standard chemotherapy regimens.
Collapse
Affiliation(s)
- Jin-Sun Ryu
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Sung Hoon Sim
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea.
| | - In Hae Park
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea.
| | - Eun Gyeong Lee
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Eun Sook Lee
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Yun-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
- Division of Convergence Technology, National Cancer Center, Goyang 10408, Korea.
| | - Youngmee Kwon
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Sun-Young Kong
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
- Department of Laboratory Medicine, Center for Diagnostic Oncology, National Cancer Center, Goyang 10408, Korea.
| | - Keun Seok Lee
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| |
Collapse
|
226
|
Furman C, Hao MH, Prajapati S, Reynolds D, Rimkunas V, Zheng GZ, Zhu P, Korpal M. Estrogen Receptor Covalent Antagonists: The Best Is Yet to Come. Cancer Res 2019; 79:1740-1745. [PMID: 30952631 DOI: 10.1158/0008-5472.can-18-3634] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022]
Abstract
The development of tamoxifen and subsequent estrogen receptor alpha (ERα) antagonists represents a tremendous therapeutic breakthrough in the treatment of breast cancer. Despite the ability of ERα antagonists to increase survival rates, resistance to these therapies is an all-too-common occurrence. The majority of resistant tumors, including those with hotspot mutations in the ligand-binding domain of ERα, remain dependent on ERα signaling, indicating that either a more potent or novel class of antagonist could have clinical benefit. With this thought in mind, we developed a novel ERα antagonist that exhibits enhanced potency due to its ability to covalently target a unique cysteine in ER. This review describes the design of this antagonist, H3B-5942, and discusses opportunities for future improvements, which could reduce the risk of escape mutations to this therapeutic modality.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo Z Zheng
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | - Ping Zhu
- H3 Biomedicine, Inc., Cambridge, Massachusetts.
| | | |
Collapse
|
227
|
Combined Targeting of Estrogen Receptor Alpha and XPO1 Prevent Akt Activation, Remodel Metabolic Pathways and Induce Autophagy to Overcome Tamoxifen Resistance. Cancers (Basel) 2019; 11:cancers11040479. [PMID: 30987380 PMCID: PMC6520695 DOI: 10.3390/cancers11040479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023] Open
Abstract
A majority of breast cancer specific deaths in women with ERα (+) tumors occur due to metastases that are resistant to endocrine therapy. There is a critical need for novel therapeutic approaches to resensitize recurrent ERα (+) tumors to endocrine therapies. The objective of this study was to elucidate mechanisms of improved effectiveness of combined targeting of ERα and the nuclear transport protein XPO1 in overcoming endocrine resistance. Selinexor (SEL), an XPO1 antagonist, has been evaluated in multiple late stage clinical trials in patients with relapsed and /or refractory hematological and solid tumor malignancies. Our transcriptomics analysis showed that 4-Hydroxytamoxifen (4-OHT), SEL alone or their combination induced differential Akt signaling- and metabolism-associated gene expression profiles. Western blot analysis in endocrine resistant cell lines and xenograft models validated differential Akt phosphorylation. Using the Seahorse metabolic profiler, we showed that ERα-XPO1 targeting changed the metabolic phenotype of TAM-resistant breast cancer cells from an energetic to a quiescent profile. This finding demonstrated that combined targeting of XPO1 and ERα rewired the metabolic pathways and shut down both glycolytic and mitochondrial pathways that would eventually lead to autophagy. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and given the need for better strategies to improve therapy response in relapsed ERα (+) tumors, our findings show great promise for uncovering the role that ERα-XPO1 crosstalk plays in reducing cancer recurrences.
Collapse
|
228
|
Button B, Croessmann S, Chu D, Rosen DM, Zabransky DJ, Dalton WB, Cravero K, Kyker-Snowman K, Waters I, Karthikeyan S, Christenson ES, Donaldson J, Hunter T, Dennison L, Ramin C, May B, Roden R, Petry D, Armstrong DK, Visvanathan K, Park BH. The estrogen receptor-alpha S118P variant does not affect breast cancer incidence or response to endocrine therapies. Breast Cancer Res Treat 2019; 174:401-412. [PMID: 30560461 PMCID: PMC6447053 DOI: 10.1007/s10549-018-05087-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE Estrogen receptor-alpha (ER) is a therapeutic target of ER-positive (ER+) breast cancers. Although ER signaling is complex, many mediators of this pathway have been identified. Specifically, phosphorylation of ER at serine 118 affects responses to estrogen and therapeutic ligands and has been correlated with clinical outcomes in ER+ breast cancer patients. We hypothesized that a newly described germline variant (S118P) at this residue would drive cellular changes consistent with breast cancer development and/or hormone resistance. METHODS Isogenic human breast epithelial cell line models harboring ER S118P were developed via genome editing and characterized to determine the functional effects of this variant. We also examined the frequency of ER S118P in a case-control study (N = 536) of women with and without breast cancer with a familial risk. RESULTS In heterozygous knock-in models, the S118P variant demonstrated no significant change in proliferation, migration, MAP Kinase pathway signaling, or response to the endocrine therapies tamoxifen and fulvestrant. Further, there was no difference in the prevalence of S118P between women with and without cancer relative to population registry databases. CONCLUSIONS This study suggests that the ER S118P variant does not affect risk for breast cancer or hormone therapy resistance. Germline screening and modification of treatments for patients harboring this variant are likely not warranted.
Collapse
Affiliation(s)
- Berry Button
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Croessmann
- Vanderbilt Ingram Cancer Center, Vanderbilt Universtiy Medical Center, 2220 Pierce Avenue, PRB 777, Nashville, TN, 37232, USA
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Brian Dalton
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Cravero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly Kyker-Snowman
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Waters
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swathi Karthikeyan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josh Donaldson
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tasha Hunter
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Dennison
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cody Ramin
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Betty May
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard Roden
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dana Petry
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah K Armstrong
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kala Visvanathan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt Universtiy Medical Center, 2220 Pierce Avenue, PRB 777, Nashville, TN, 37232, USA.
- Department of Chemical and Biomolecular Engineering, The Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
229
|
Hwang PY, Brenot A, King AC, Longmore GD, George SC. Randomly Distributed K14 + Breast Tumor Cells Polarize to the Leading Edge and Guide Collective Migration in Response to Chemical and Mechanical Environmental Cues. Cancer Res 2019; 79:1899-1912. [PMID: 30862718 DOI: 10.1158/0008-5472.can-18-2828] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/27/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Collective cell migration is an adaptive, coordinated interactive process involving cell-cell and cell-extracellular matrix (ECM) microenvironmental interactions. A critical aspect of collective migration is the sensing and establishment of directional movement. It has been proposed that a subgroup of cells known as leader cells localize at the front edge of a collectively migrating cluster and are responsible for directing migration. However, it is unknown how and when leader cells arrive at the front edge and what environmental cues dictate leader cell development and behavior. Here, we addressed these questions by combining a microfluidic device design that mimics multiple tumor microenvironmental cues concurrently with biologically relevant primary, heterogeneous tumor cell organoids. Prior to migration, breast tumor leader cells (K14+) were present throughout a tumor organoid and migrated (polarized) to the leading edge in response to biochemical and biomechanical cues. Impairment of either CXCR4 (biochemical responsive) or the collagen receptor DDR2 (biomechanical responsive) abrogated polarization of leader cells and directed collective migration. This work demonstrates that K14+ leader cells utilize both chemical and mechanical cues from the microenvironment to polarize to the leading edge of collectively migrating tumors. SIGNIFICANCE: These findings demonstrate that pre-existing, randomly distributed leader cells within primary tumor organoids use CXCR4 and DDR2 to polarize to the leading edge and direct migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Audrey Brenot
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ashley C King
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Gregory D Longmore
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri. .,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri.,Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
230
|
The next generation personalized models to screen hidden layers of breast cancer tumorigenicity. Breast Cancer Res Treat 2019; 175:277-286. [PMID: 30810866 DOI: 10.1007/s10549-019-05159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Breast cancer (BC) is a challenging disease and major cause of death amongst women worldwide who die due to tumor relapse or sidelong diseases. BC main complexity comes from the heterogeneous nature of breast tumors that demands customized treatments in the form of personalized medicine. REVIEW OF THE LITERATURE AND DISCUSSION Spatiotemporally dynamic and heterogeneous nature of BC tumors is shaped by their clonal evolution and sub-clonal selections and shapes resistance to collective or group therapies that drives cancer recurrence and tumor metastasis. Personalized intervention promises to administer medications that selectively target each individual patient tumor and even further each colonized secondary tumor. Such personalized regimens will require creation of in vitro and in vivo models genuinely recapitulating characteristics of each tumor type as initiating platforms for two main purposes: to closely monitor the tumorigenic processes that shape tumor heterogeneity and evolution as the main driving forces behind tumor chemo-resistance and relapse, and subsequently to establish patient-specific preventive and therapeutic measures. While application of tumor modeling for personalized drug screening and design requires a separate review, here we discuss the personalized utilities of xenograft modeling in investigating BC tumor formation and progression toward metastasis. We will further elaborate on the impact of innovative technologies on personalized modeling of BC tumorigenicity at improved resolution. CONCLUSION Heterogeneous nature of each BC tumor requires personalized intervention implying that modeling breast tumors is inevitable for better disease understanding, detection and cure. Patient-derived xenografts are just the initiating piece of the puzzle for ideal management of breast cancer. Emerging technologies promise to model BC more personalized than before.
Collapse
|
231
|
Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat Commun 2019; 10:766. [PMID: 30770823 PMCID: PMC6377663 DOI: 10.1038/s41467-019-08595-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/18/2019] [Indexed: 12/23/2022] Open
Abstract
Primary triple negative breast cancers (TNBC) are prone to dissemination but sub-clonal relationships between tumors and resulting metastases are poorly understood. Here we use cellular barcoding of two treatment-naïve TNBC patient-derived xenografts (PDXs) to track the spatio-temporal fate of thousands of barcoded clones in primary tumors, and their metastases. Tumor resection had a major impact on reducing clonal diversity in secondary sites, indicating that most disseminated tumor cells lacked the capacity to 'seed', hence originated from 'shedders' that did not persist. The few clones that continued to grow after resection i.e. 'seeders', did not correlate in frequency with their parental clones in primary tumors. Cisplatin treatment of one BRCA1-mutated PDX model to non-palpable levels had a surprisingly minor impact on clonal diversity in the relapsed tumor yet purged 50% of distal clones. Therefore, clonal features of shedding, seeding and drug resistance are important factors to consider for the design of therapeutic strategies.
Collapse
|
232
|
Chen YA, Lu CY, Cheng TY, Pan SH, Chen HF, Chang NS. WW Domain-Containing Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness Maintenance, Tissue Homeostasis, and Tumorigenesis. Front Oncol 2019; 9:60. [PMID: 30805310 PMCID: PMC6378284 DOI: 10.3389/fonc.2019.00060] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The Hippo pathway is a conserved signaling pathway originally defined in Drosophila melanogaster two decades ago. Deregulation of the Hippo pathway leads to significant overgrowth in phenotypes and ultimately initiation of tumorigenesis in various tissues. The major WW domain proteins in the Hippo pathway are YAP and TAZ, which regulate embryonic development, organ growth, tissue regeneration, stem cell pluripotency, and tumorigenesis. Recent reports reveal the novel roles of YAP/TAZ in establishing the precise balance of stem cell niches, promoting the production of induced pluripotent stem cells (iPSCs), and provoking signals for regeneration and cancer initiation. Activation of YAP/TAZ, for example, results in the expansion of progenitor cells, which promotes regeneration after tissue damage. YAP is highly expressed in self-renewing pluripotent stem cells. Overexpression of YAP halts stem cell differentiation and yet maintains the inherent stem cell properties. A success in reprograming iPSCs by the transfection of cells with Oct3/4, Sox2, and Yap expression constructs has recently been shown. In this review, we update the current knowledge and the latest progress in the WW domain proteins of the Hippo pathway in relevance to stem cell biology, and provide a thorough understanding in the tissue homeostasis and identification of potential targets to block tumor development. We also provide the regulatory role of tumor suppressor WWOX in the upstream of TGF-β, Hyal-2, and Wnt signaling that cross talks with the Hippo pathway.
Collapse
Affiliation(s)
- Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Lu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tian-You Cheng
- Department of Optics and Photonics, National Central University, Chungli, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
233
|
Zinger L, Merenbakh-Lamin K, Klein A, Elazar A, Journo S, Boldes T, Pasmanik-Chor M, Spitzer A, Rubinek T, Wolf I. Ligand-binding Domain–activating Mutations of ESR1 Rewire Cellular Metabolism of Breast Cancer Cells. Clin Cancer Res 2019; 25:2900-2914. [DOI: 10.1158/1078-0432.ccr-18-1505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/18/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
|
234
|
Rodriguez AC, Blanchard Z, Maurer KA, Gertz J. Estrogen Signaling in Endometrial Cancer: a Key Oncogenic Pathway with Several Open Questions. Discov Oncol 2019; 10:51-63. [PMID: 30712080 PMCID: PMC6542701 DOI: 10.1007/s12672-019-0358-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 01/10/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancer in the developed world, and it is one of the few cancer types that is becoming more prevalent and leading to more deaths in the USA each year. The majority of endometrial tumors are considered to be hormonally driven, where estrogen signaling through estrogen receptor α (ER) acts as an oncogenic signal. The major risk factors and some treatment options for endometrial cancer patients emphasize a key role for estrogen signaling in the disease. Despite the strong connections between estrogen signaling and endometrial cancer, important molecular aspects of ER function remain poorly understood; however, progress is being made in our understanding of estrogen signaling in endometrial cancer. Here, we discuss the evidence for the importance of estrogen signaling in endometrial cancer, details of the endometrial cancer-specific actions of ER, and open questions surrounding estrogen signaling in endometrial cancer.
Collapse
Affiliation(s)
- Adriana C Rodriguez
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zannel Blanchard
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathryn A Maurer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. .,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
235
|
Basudan A, Priedigkeit N, Hartmaier RJ, Sokol ES, Bahreini A, Watters RJ, Boisen MM, Bhargava R, Weiss KR, Karsten MM, Denkert C, Blohmer JU, Leone JP, Hamilton RL, Brufsky AM, Elishaev E, Lucas PC, Lee AV, Oesterreich S. Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer. Mol Cancer Res 2019; 17:457-468. [PMID: 30355675 PMCID: PMC6359977 DOI: 10.1158/1541-7786.mcr-18-0946] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022]
Abstract
DNA sequencing has identified a limited number of driver mutations in metastatic breast cancer beyond single base-pair mutations in the estrogen receptor (ESR1). However, our previous studies and others have observed that structural variants, such as ESR1 fusions, may also play a role. Therefore, we expanded upon these observations by performing a comprehensive and highly sensitive characterization of copy-number (CN) alterations in a large clinical cohort of metastatic specimens. NanoString DNA hybridization was utilized to measure CN gains, amplifications, and deletions of 67 genes in 108 breast cancer metastases, and in 26 cases, the patient-matched primary tumor. For ESR1, a copyshift algorithm was applied to identify CN imbalances at exon-specific resolution and queried large data sets (>15,000 tumors) that had previously undergone next-generation sequencing (NGS). Interestingly, a subset of ER+ tumors showed increased ESR1 CN (11/82, 13%); three had CN amplifications (4%) and eight had gains (10%). Increased ESR1 CN was enriched in metastatic specimens versus primary tumors, and this was orthogonally confirmed in a large NGS data set. ESR1-amplified tumors showed a site-specific enrichment for bone metastases and worse outcomes than nonamplified tumors. No ESR1 CN amplifications and only one gain was identified in ER- tumors. ESR1 copyshift was present in 5 of the 11 ESR1-amplified tumors. Other frequent amplifications included ERBB2, GRB7, and cell-cycle pathway members CCND1 and CDK4/6, which showed mutually exclusivity with deletions of CDKN2A, CDKN2B, and CDKN1B. IMPLICATIONS: Copy-number alterations of ESR1 and key CDK pathway genes are frequent in metastatic breast cancers, and their clinical relevance should be tested further.
Collapse
Affiliation(s)
- Ahmed Basudan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Clinical Lab Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nolan Priedigkeit
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan J Hartmaier
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Amir Bahreini
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rebecca J Watters
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michelle M Boisen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Women Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rohit Bhargava
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kurt R Weiss
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | - Jose P Leone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ronald L Hamilton
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam M Brufsky
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Esther Elishaev
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Women Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adrian V Lee
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
236
|
Yu YP, Liu P, Nelson J, Hamilton RL, Bhargava R, Michalopoulos G, Chen Q, Zhang J, Ma D, Pennathur A, Luketich J, Nalesnik M, Tseng G, Luo JH. Identification of recurrent fusion genes across multiple cancer types. Sci Rep 2019; 9:1074. [PMID: 30705370 PMCID: PMC6355770 DOI: 10.1038/s41598-019-38550-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Chromosome changes are one of the hallmarks of human malignancies. Chromosomal rearrangement is frequent in human cancers. One of the consequences of chromosomal rearrangement is gene fusions in the cancer genome. We have previously identified a panel of fusion genes in aggressive prostate cancers. In this study, we showed that 6 of these fusion genes are present in 7 different types of human malignancies with variable frequencies. Among them, the CCNH-C5orf30 and TRMT11-GRIK2 gene fusions were found in breast cancer, colon cancer, non-small cell lung cancer, esophageal adenocarcinoma, glioblastoma multiforme, ovarian cancer and liver cancer, with frequencies ranging from 12.9% to 85%. In contrast, four other gene fusions (mTOR-TP53BP1, TMEM135-CCDC67, KDM4-AC011523.2 and LRRC59-FLJ60017) are less frequent. Both TRMT11-GRIK2 and CCNH-C5orf30 are also frequently present in lymph node metastatic cancer samples from the breast, colon and ovary. Thus, detecting these fusion transcripts may have significant biological and clinical implications in cancer patient management.
Collapse
Affiliation(s)
- Yan-Ping Yu
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Peng Liu
- Departments of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Joel Nelson
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Ronald L Hamilton
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Rohit Bhargava
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - George Michalopoulos
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Qi Chen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas, Kansas City, KS, 66160, USA
| | - Jun Zhang
- Department of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Deqin Ma
- Department of Pathology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Arjun Pennathur
- Departments of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - James Luketich
- Departments of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Michael Nalesnik
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - George Tseng
- Departments of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jian-Hua Luo
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
237
|
The Phosphorylated Estrogen Receptor α (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Mol Cell Biol 2019; 39:MCB.00417-18. [PMID: 30455249 DOI: 10.1128/mcb.00417-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.
Collapse
|
238
|
Cheng F, Liang H, Butte AJ, Eng C, Nussinov R. Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacol Rev 2019; 71:1-19. [PMID: 30545954 PMCID: PMC6294046 DOI: 10.1124/pr.118.016253] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent remarkable advances in genome sequencing have enabled detailed maps of identified and interpreted genomic variation, dubbed "mutanomes." The availability of thousands of exome/genome sequencing data has prompted the emergence of new challenges in the identification of novel druggable targets and therapeutic strategies. Typically, mutanomes are viewed as one- or two-dimensional. The three-dimensional protein structural view of personal mutanomes sheds light on the functional consequences of clinically actionable mutations revealed in tumor diagnosis and followed up in personalized treatments, in a mutanome-informed manner. In this review, we describe the protein structural landscape of personal mutanomes and provide expert opinions on rational strategies for more streamlined oncological drug discovery and molecularly targeted therapies for each individual and each tumor. We provide the structural mechanism of orthosteric versus allosteric drugs at the atom-level via targeting specific somatic alterations for combating drug resistance and the "undruggable" challenges in solid and hematologic neoplasias. We discuss computational biophysics strategies for innovative mutanome-informed cancer immunotherapies and combination immunotherapies. Finally, we highlight a personal mutanome infrastructure for the emerging development of personalized cancer medicine using a breast cancer case study.
Collapse
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Han Liang
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Atul J Butte
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| | - Ruth Nussinov
- Genomic Medicine Institute, Lerner Research Institute (F.C., C.E.) and Taussig Cancer Institute (C.E.), Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (F.C., C.E.); CASE Comprehensive Cancer Center (F.C., C.E.) and Department of Genetics and Genome Sciences (C.E.), Case Western Reserve University School of Medicine, Cleveland, Ohio; Departments of Bioinformatics and Computational Biology and Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (H.L.); Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California (A.J.B.); Center for Data-Driven Insights and Innovation, University of California Health, Oakland, California (A.J.B.); Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (R.N.); and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (R.N.)
| |
Collapse
|
239
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
240
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
241
|
Ranganathan P, Nadig N, Nambiar S. Non-canonical Estrogen Signaling in Endocrine Resistance. Front Endocrinol (Lausanne) 2019; 10:708. [PMID: 31749762 PMCID: PMC6843063 DOI: 10.3389/fendo.2019.00708] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer related deaths in women worldwide. The disease is extremely heterogenous. A large percentage of the breast cancers are dependent on estrogen signaling and hence respond to endocrine therapies which essentially block the estrogen signaling. However, many of these tumors emerge as endocrine resistant tumors. Many mechanisms have been proposed to explain the emergence of endocrine resistance, which include mutations in the estrogen receptors, cross-talk with other signaling pathways, cancer stem cells etc. This review is focused on the role of non-canonical estrogen receptor signaling in endocrine resistance. Most of the therapeutics which are used currently are targeting the major receptor of estrogen namely ER-α. Last two decades has witnessed the discovery of alternate forms of ER-α, as well as other receptors for estrogen such as ERRgamma, GPER-1 as well as ER-β, which are activated not only by estrogen, but also by the therapeutic agents such as tamoxifen that are routinely used in treatment of breast cancer. However, when the alternate receptors are activated, they result in activation of membrane signaling which subsequently activates pathways such as MAPK and GPCR leading to cell-proliferation. This renders the anticipated anti-estrogenic effects of tamoxifen less effective or ineffective. Future research in this area has to focus on the alternate mechanisms and develop a combinatorial strategy, which can complement the existing therapeutics to get better outcome of endocrine therapies.
Collapse
|
242
|
Sharma A, Toy W, Guillen VS, Sharma N, Min J, Carlson KE, Mayne CG, Lin S, Sabio M, Greene G, Katzenellenbogen BS, Chandarlapaty S, Katzenellenbogen JA. Antagonists for Constitutively Active Mutant Estrogen Receptors: Insights into the Roles of Antiestrogen-Core and Side-Chain. ACS Chem Biol 2018; 13:3374-3384. [PMID: 30404440 DOI: 10.1021/acschembio.8b00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major risk for patients having estrogen receptor α (ERα)-positive breast cancer is the recurrence of drug-resistant metastases after initial successful treatment with endocrine therapies. Recent studies have implicated a number of activating mutations in the ligand-binding domain of ERα that stabilize the agonist conformation as a prominent mechanism for this acquired resistance. There are several critical gaps in our knowledge regarding the specific pharmacophore requirements of an antagonist that could effectively inhibit all or most of the different mutant ERs. To address this, we screened various chemotypes for blocking mutant ER-mediated transcriptional signaling and identified RU58668 as a model compound that contains structural elements that support potent ligand-induced inhibition of mutant ERs. We designed and synthesized a focused library of novel antagonists and probed how small and large perturbations in different ligand structural regions influenced inhibitory activity on individual mutant ERs in breast cancer cells. Effective inhibition derives from both nonpolar and moderately polar motifs in a multifunctional side chain of the antagonists, with the nature of the ligand core making important contributions by increasing the potency of ligands possessing similar types of side chains. Some of our new antagonists potently blocked the transcriptional activity of the three most common mutant ERs (L536R, Y537S, D538G) and inhibited mutant ER-mediated cell proliferation. Supported by our molecular modeling, these studies provide new insights into the role of specific components, involving both the ligand core and multifunctional side chain, in suppressing wild-type and mutant ER-mediated transcription and breast cancer cell proliferation.
Collapse
Affiliation(s)
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | | | | | | | | | | | | | | | - Geoffrey Greene
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | | |
Collapse
|
243
|
Matsunuma R, Chan DW, Kim BJ, Singh P, Han A, Saltzman AB, Cheng C, Lei JT, Wang J, Roberto da Silva L, Sahin E, Leng M, Fan C, Perou CM, Malovannaya A, Ellis MJ. DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci U S A 2018; 115:E11978-E11987. [PMID: 30498031 PMCID: PMC6305012 DOI: 10.1073/pnas.1810598115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomic analysis prioritized dihydropyrimidinase-like-3 (DPYSL3) as a multilevel (RNA/protein/phosphoprotein) expression outlier specific to the claudin-low (CLOW) subset of triple-negative breast cancers. A PubMed informatics tool indicated a paucity of data in the context of breast cancer, which further prioritized DPYSL3 for study. DPYSL3 knockdown in DPYSL3-positive ([Formula: see text]) CLOW cell lines demonstrated reduced proliferation, yet enhanced motility and increased expression of epithelial-to-mesenchymal transition (EMT) markers, suggesting that DPYSL3 is a multifunctional signaling modulator. Slower proliferation in DPYSL3-negative ([Formula: see text]) CLOW cells was associated with accumulation of multinucleated cells, indicating a mitotic defect that was associated with a collapse of the vimentin microfilament network and increased vimentin phosphorylation. DPYSL3 also suppressed the expression of EMT regulators SNAIL and TWIST and opposed p21 activated kinase 2 (PAK2)-dependent migration. However, these EMT regulators in turn induce DPYSL3 expression, suggesting that DPYSL3 participates in negative feedback on EMT. In conclusion, DPYSL3 expression identifies CLOW tumors that will be sensitive to approaches that promote vimentin phosphorylation during mitosis and inhibitors of PAK signaling during migration and EMT.
Collapse
Affiliation(s)
- Ryoichi Matsunuma
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Medical Oncology, Hamamatsu Oncology Center, Hamamatsu, Shizuoka 430-0929, Japan
| | - Doug W Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Purba Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Airi Han
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Alexander B Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Junkai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Leonardo Roberto da Silva
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Department of Obstetrics and Gynecology, Faculty of Medical Science, State University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Ergun Sahin
- Department of Physiology and Biophysics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Mei Leng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
244
|
Liu S, Li S, Wang B, Liu W, Gagea M, Chen H, Sohn J, Parinyanitikul N, Primeau T, Do KA, Vande Woude GF, Mendelsohn J, Ueno NT, Mills GB, Tripathy D, Gonzalez-Angulo AM. Cooperative Effect of Oncogenic MET and PIK3CA in an HGF-Dominant Environment in Breast Cancer. Mol Cancer Ther 2018; 18:399-412. [PMID: 30518672 DOI: 10.1158/1535-7163.mct-18-0710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023]
Abstract
There is compelling evidence that oncogenic MET and PIK3CA signaling pathways contribute to breast cancer. However, the activity of pharmacologic targeting of either pathway is modest. Mechanisms of resistance to these monotherapies have not been clarified. Currently, commonly used mouse models are inadequate for studying the HGF-MET axis because mouse HGF does not bind human MET. We established human HGF-MET paired mouse models. In this study, we evaluated the cooperative effects of MET and PIK3CA in an environment with involvement of human HGF in vivo Oncogenic MET/PIK3CA synergistically induced aggressive behavior and resistance to each targeted therapy in an HGF-paracrine environment. Combined targeting of MET and PI3K abrogates resistance. Associated cell signaling changes were explored by functional proteomics. Consistently, combined targeting of MET and PI3K inhibited activation of associated oncogenic pathways. We also evaluated the response of tumor cells to HGF stimulation using breast cancer patient-derived xenografts (PDX). HGF stimulation induced significant phosphorylation of MET for all PDX lines detected to varying degrees. However, the levels of phosphorylated MET are not correlated with its expression, suggesting that MET expression level cannot be used as a sole criterion to recruit patients to clinical trials for MET-targeted therapy. Altogether, our data suggest that combined targeting of MET and PI3K could be a potential clinical strategy for breast cancer patients, where phosphorylated MET and PIK3CA mutation status would be biomarkers for selecting patients who are most likely to derive benefit from these cotargeted therapy.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shunqiang Li
- Section of Breast Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Bailiang Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenbin Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huiqin Chen
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joohyuk Sohn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Napa Parinyanitikul
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tina Primeau
- Section of Breast Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - John Mendelsohn
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ana M Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
245
|
Martínez-Pérez C, Turnbull AK, Dixon JM. The evolving role of receptors as predictive biomarkers for metastatic breast cancer. Expert Rev Anticancer Ther 2018; 19:121-138. [PMID: 30501540 DOI: 10.1080/14737140.2019.1552138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In breast cancer, estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) are essential biomarkers to predict response to endocrine and anti-HER2 therapies, respectively. In metastatic breast cancer, the use of these receptors and targeted therapies present additional challenges: temporal heterogeneity, together with limited sampling methodologies, hinders receptor status assessment, and the constant evolution of the disease invariably leads to resistance to treatment. Areas covered: This review summarizes the genomic abnormalities in ER and HER2, such as mutations, amplifications, translocations, and alternative splicing, emerging as novel biomarkers that provide an insight into underlying mechanisms of resistance and hold potential predictive value to inform treatment selection. We also describe how liquid biopsies for sampling of circulating markers and ultrasensitive detection technologies have emerged which complement ongoing efforts for biomarker discovery and analysis. Expert commentary: While evidence suggests that genomic aberrations in ER and HER2 could contribute to meeting the pressing need for better predictive biomarkers, efforts need to be made to standardize assessment methods and better understand the resistance mechanisms these markers denote. Taking advantage of emerging technologies, research in upcoming years should include prospective trials incorporating these predictors into the study design to validate their potential clinical value.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Arran K Turnbull
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - J Michael Dixon
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK.,b Edinburgh Breast Unit , Western General Hospital , Edinburgh , UK
| |
Collapse
|
246
|
Lamb CA, Fabris VT, Jacobsen BM, Molinolo A, Lanari C. Biological and clinical impact of imbalanced progesterone receptor isoform ratios in breast cancer. Endocr Relat Cancer 2018; 25:R605-R624. [PMID: 29991638 DOI: 10.1530/erc-18-0179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
There is a consensus that progestins and thus their cognate receptor molecules, the progesterone receptors (PRs), are essential in the development of the adult mammary gland and regulators of proliferation and lactation. However, a role for natural progestins in breast carcinogenesis remains poorly understood. A hint to that possible role came from studies in which the synthetic progestin medroxyprogesterone acetate was associated with an increased breast cancer risk in women under hormone replacement therapy. However, progestins have also been used for breast cancer treatment and to inhibit the growth of several experimental breast cancer models. More recently, PRs have been shown to be regulators of estrogen receptor signaling. With all this information, the question is how can we target PR, and if so, which patients may benefit from such an approach? PRs are not single unique molecules. Two main PR isoforms have been characterized, PRA and PRB, which exert different functions and the relative abundance of one isoform with respect to the other determines the response of PR agonists and antagonists. Immunohistochemistry with standard antibodies against PR do not discriminate between isoforms. In this review, we summarize the current knowledge on the expression of both PR isoforms in mammary glands, in experimental models of breast cancer and in breast cancer patients, to better understand how the PRA/PRB ratio can be exploited therapeutically to design personalized therapeutic strategies.
Collapse
Affiliation(s)
- Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Victoria T Fabris
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Britta M Jacobsen
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
247
|
Tanioka M, Mott KR, Hollern DP, Fan C, Darr DB, Perou CM. Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer. Genome Med 2018; 10:86. [PMID: 30497520 PMCID: PMC6267061 DOI: 10.1186/s13073-018-0597-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Based on promising phase II data, the histone deacetylase inhibitor entinostat is in phase III trials for patients with metastatic estrogen receptor-positive breast cancer. Predictors of sensitivity and resistance, however, remain unknown. METHODS A total of eight cell lines and nine mouse models of breast cancer were treated with entinostat. Luminal cell lines were treated with or without entinostat at their IC50 doses, and MMTV/Neu luminal mouse tumors were untreated or treated with entinostat until progression. We investigated these models using their gene expression profiling by microarray and copy number by arrayCGH. We also utilized the network-based DawnRank algorithm that integrates DNA and RNA data to identify driver genes of resistance. The impact of candidate drivers was investigated in The Cancer Genome Atlas and METABRIC breast cancer datasets. RESULTS Luminal models displayed enhanced sensitivity to entinostat as compared to basal-like or claudin-low models. Both in vitro and in vivo luminal models showed significant downregulation of Myc gene signatures following entinostat treatment. Myc gene signatures became upregulated on tumor progression in vivo and overexpression of Myc conferred resistance to entinostat in vitro. Further examination of resistance mechanisms in MMTV/Neu tumors identified a portion of mouse chromosome 4 that had DNA copy number loss and low gene expression. Within this region, Jun was computationally identified to be a driver gene of resistance. Jun knockdown in cell lines resulted in upregulation of Myc signatures and made these lines more resistant to entinostat. Jun-deleted samples, found in 17-23% of luminal patients, had significantly higher Myc signature scores that predicted worse survival. CONCLUSIONS Entinostat inhibited luminal breast cancer through Myc signaling, which was upregulated by Jun DNA loss to promote resistance to entinostat in our models. Jun DNA copy number loss, and/or high MYC signatures, might represent biomarkers for entinostat responsiveness in luminal breast cancer.
Collapse
Affiliation(s)
- Maki Tanioka
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, The Animal Study Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
248
|
High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat Commun 2018; 9:5079. [PMID: 30498242 PMCID: PMC6265294 DOI: 10.1038/s41467-018-07406-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Most triple negative breast cancers (TNBCs) are aggressively metastatic with a high degree of intra-tumoral heterogeneity (ITH), but how ITH contributes to metastasis is unclear. Here, clonal dynamics during metastasis were studied in vivo using two patient-derived xenograft (PDX) models established from the treatment-naive primary breast tumors of TNBC patients diagnosed with synchronous metastasis. Genomic sequencing and high-complexity barcode-mediated clonal tracking reveal robust alterations in clonal architecture between primary tumors and corresponding metastases. Polyclonal seeding and maintenance of heterogeneous populations of low-abundance subclones is observed in each metastasis. However, lung, liver, and brain metastases are enriched for an identical population of high-abundance subclones, demonstrating that primary tumor clones harbor properties enabling them to seed and thrive in multiple organ sites. Further, clones that dominate multi-organ metastases share a genomic lineage. Thus, intrinsic properties of rare primary tumor subclones enable the seeding and colonization of metastases in secondary organs in these models. It is unclear how intra-tumoral heterogeneity contributes to metastasis. Here the authors study the clonal dynamics of triple negative breast cancer metastasis using patient derived xenografts and demonstrate that primary tumor clones harbor properties that support seeding and colonization of multiple organs.
Collapse
|
249
|
Saltzman AB, Leng M, Bhatt B, Singh P, Chan DW, Dobrolecki L, Chandrasekaran H, Choi JM, Jain A, Jung SY, Lewis MT, Ellis MJ, Malovannaya A. gpGrouper: A Peptide Grouping Algorithm for Gene-Centric Inference and Quantitation of Bottom-Up Proteomics Data. Mol Cell Proteomics 2018; 17:2270-2283. [PMID: 30093420 PMCID: PMC6210220 DOI: 10.1074/mcp.tir118.000850] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
In quantitative mass spectrometry, the method by which peptides are grouped into proteins can have dramatic effects on downstream analyses. Here we describe gpGrouper, an inference and quantitation algorithm that offers an alternative method for assignment of protein groups by gene locus and improves pseudo-absolute iBAQ quantitation by weighted distribution of shared peptide areas. We experimentally show that distributing shared peptide quantities based on unique peptide peak ratios improves quantitation accuracy compared with conventional winner-take-all scenarios. Furthermore, gpGrouper seamlessly handles two-species samples such as patient-derived xenografts (PDXs) without ignoring the host species or species-shared peptides. This is a critical capability for proper evaluation of proteomics data from PDX samples, where stromal infiltration varies across individual tumors. Finally, gpGrouper calculates peptide peak area (MS1) based expression estimates from multiplexed isobaric data, producing iBAQ results that are directly comparable across label-free, isotopic, and isobaric proteomics approaches.
Collapse
Affiliation(s)
- Alexander B Saltzman
- From the ‡Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | - Mei Leng
- From the ‡Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | - Bhoomi Bhatt
- From the ‡Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | - Purba Singh
- §Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030
| | - Doug W Chan
- §Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030
| | - Lacey Dobrolecki
- §Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030
- **Patient-Derived Xenograft and Advanced In Vivo Models Core
| | | | | | | | - Sung Y Jung
- From the ‡Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- ¶Mass Spectrometry Proteomics Core
| | - Michael T Lewis
- §Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030
- ‖Dan L Duncan Comprehensive Cancer Center
- **Patient-Derived Xenograft and Advanced In Vivo Models Core
- ‡‡Department of Molecular and Cellular Biology
| | - Matthew J Ellis
- §Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030
- ‖Dan L Duncan Comprehensive Cancer Center
- ‡‡Department of Molecular and Cellular Biology
| | - Anna Malovannaya
- From the ‡Verna and Marrs McLean Department of Biochemistry and Molecular Biology;
- ‡‡Department of Molecular and Cellular Biology
- ¶Mass Spectrometry Proteomics Core
- ‖Dan L Duncan Comprehensive Cancer Center
| |
Collapse
|
250
|
Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 2018; 173:489-497. [PMID: 30382472 PMCID: PMC6394602 DOI: 10.1007/s10549-018-5023-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
Introduction The majority of breast cancers (BCs) are characterized by the expression of estrogen receptor alpha (ERα+). ERα acts as ligand-dependent transcription factor for genes associated with cell survival, proliferation, and tumor growth. Thus, blocking the estrogen agonist effect on ERα is the main strategy in the treatment of ERα+ BCs. However, despite the development of targeted anti-estrogen therapies for ER+ BC, around 30–50% of early breast cancer patients will relapse. Acquired resistance to endocrine therapy is a great challenge in ER+ BC patient treatment. Discussion Anti-estrogen resistance is a consequence of molecular changes, which allow for tumor growth irrespective of estrogen presence. Those changes may be associated with ERα modifications either at the genetic, regulatory or protein level. Additionally, the activation of alternate growth pathways and/or cell survival mechanisms can lead to estrogen-independence and endocrine resistance. Conclusion This comprehensive review summarizes molecular mechanisms associated with resistance to anti-estrogen therapy, focusing on genetic alterations, stress responses, cell survival mechanisms, and cell reprogramming.
Collapse
Affiliation(s)
- Małgorzata Szostakowska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Alicja Trębińska-Stryjewska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Ewa Anna Grzybowska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Anna Fabisiewicz
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland.
| |
Collapse
|