201
|
Miyamoto S. Autophagy and cardiac aging. Cell Death Differ 2019; 26:653-664. [PMID: 30692640 PMCID: PMC6460392 DOI: 10.1038/s41418-019-0286-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and the prevalence of CVD dramatically increases with age. Cardiac aging is associated with hypertrophy, fibrosis, inflammation, and decreased contractility. Autophagy, a bulk degradation/recycling system, is essential to maintain cellular homeostasis. Cardiac autophagy is decreased with age, and misfolded proteins and dysfunctional mitochondria are accumulated in the aging heart. Inhibition of autophagy leads to exacerbated cardiac aging, while stimulation of autophagy improves cardiac function and also increases lifespan in many organisms. Thus autophagy represents a potential therapeutic target for aging-related cardiac dysfunction. This review discusses recent progress in our understanding of the role and regulation of autophagy in the aging heart.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman drive, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
202
|
Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Sci Rep 2019; 9:2002. [PMID: 30765730 PMCID: PMC6376057 DOI: 10.1038/s41598-018-37862-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (Dox) is a highly effective anticancer drug but cause acute ventricular dysfunction, and also induce late-onset cardiomyopathy and heart failure. Despite extensive studies, the pathogenic sequelae leading to the progression of Dox-associated cardiomyopathy remains unknown. We assessed temporal changes in autophagy, mitochondrial dynamics, and bioenergetics in mouse models of acute and chronic Dox-cardiomyopathy. Time course study of acute Dox-treatment showed accumulation of LC3B II in heart lysates. Autophagy flux assays confirmed that the Dox-induced accumulation of autophagosomes occurs due to blockage of the lysosomal degradation process. Dox-induced autophagosomes and autolysosome accumulation were confirmed in vivo by using GFP-LC3 and mRFP-GFP-LC3 transgenic (Tg) mice. Mitochondria isolated from acute Dox-treated hearts showed significant suppression of oxygen consumption rate (OCR). Chronic Dox-cardiotoxicity also exhibited time-dependent accumulation of LC3B II levels and increased accumulation of green puncta in GFP-LC3 Tg hearts. Mitochondria isolated from chronic Dox-treated hearts also showed significant suppression of mitochondrial OCR. The in vivo impairment of autophagic degradation process and mitochondrial dysfunction data were confirmed in vitro using cultured neonatal cardiomyocytes. Both acute and chronic Dox-associated cardiomyopathy involves a multifocal disease process resulting from autophagosomes and autolysosomes accumulation, altered expression of mitochondrial dynamics and oxidative phosphorylation regulatory proteins, and mitochondrial respiratory dysfunction.
Collapse
|
203
|
Abstract
The concept that mitochondria are highly dynamic is as widely accepted as it is untrue for a number of important contexts. Healthy mitochondria of the most energy-dependent and mitochondrial-rich mammalian organ, the heart, only rarely undergo fusion or fission and are seemingly static within cardiac myocytes. Here, we revisit mitochondrial dynamism with a fresh perspective developed from the recently discovered multifunctionality of mitochondrial fusion proteins and newly defined mechanisms for direct cross talk between mitochondrial dynamics, biogenesis, quality control, and trafficking pathways. Insights gained from comparing static mitochondrial biology in cardiac myocytes and dynamic mitochondrial biology in neurons are reviewed with the goal of understanding contextual fallacies of overly generalized characterizations of these essential and intriguing organelles.
Collapse
Affiliation(s)
- Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
204
|
Gustafsson ÅB, Dorn GW. Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol Rev 2019; 99:853-892. [PMID: 30540226 PMCID: PMC6442924 DOI: 10.1152/physrev.00005.2018] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/10/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
The central functions fulfilled by mitochondria as both energy generators essential for tissue homeostasis and gateways to programmed apoptotic and necrotic cell death mandate tight control over the quality and quantity of these ubiquitous endosymbiotic organelles. Mitophagy, the targeted engulfment and destruction of mitochondria by the cellular autophagy apparatus, has conventionally been considered as the mechanism primarily responsible for mitochondrial quality control. However, our understanding of how, why, and under what specific conditions mitophagy is activated has grown tremendously over the past decade. Evidence is accumulating that nonmitophagic mitochondrial quality control mechanisms are more important to maintaining normal tissue homeostasis whereas mitophagy is an acute tissue stress response. Moreover, previously unrecognized mitophagic regulation of mitochondrial quantity control, metabolic reprogramming, and cell differentiation suggests that the mechanisms linking genetic or acquired defects in mitophagy to neurodegenerative and cardiovascular diseases or cancer are more complex than simple failure of normal mitochondrial quality control. Here, we provide a comprehensive overview of mitophagy in cellular homeostasis and disease and examine the most revolutionary concepts in these areas. In this context, we discuss evidence that atypical mitophagy and nonmitophagic pathways play central roles in mitochondrial quality control, functioning that was previously considered to be the primary domain of mitophagy.
Collapse
Affiliation(s)
- Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| | - Gerald W Dorn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
205
|
Martin JL, Gruszczyk AV, Beach TE, Murphy MP, Saeb-Parsy K. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr Nephrol 2019; 34:1167-1174. [PMID: 29860579 PMCID: PMC6366561 DOI: 10.1007/s00467-018-3984-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) remains a major problem in critically unwell children and young adults. Ischaemia reperfusion (IR) injury is a major contributor to the development of AKI in a significant proportion of these cases and mitochondria are increasingly recognised as being central to this process through generation of a burst of reactive oxygen species early in reperfusion. Mitochondria have additionally been shown to have key roles in downstream processes including activation of the immune response, immunomodulation, and apoptosis and necrosis. The recognition of the central role of mitochondria in IR injury and an increased understanding of the pathophysiology that undermines these processes has resulted in identification of novel therapeutic targets and potential biomarkers. This review summarises a variety of therapeutic approaches that are currently under exploration and may have potential in ameliorating AKI in children in the future.
Collapse
Affiliation(s)
- Jack L Martin
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Timothy E Beach
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
206
|
Wang Y, Li Y, He C, Gou B, Song M. Mitochondrial regulation of cardiac aging. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1853-1864. [PMID: 30593894 DOI: 10.1016/j.bbadis.2018.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with progressive decline in cardiac structure and function. Accumulating evidence in model organisms and humans links cardiac aging to mitochondrial regulation, encompassing a complex interplay of mitochondrial morphology, mitochondrial ROS, mitochondrial DNA mutations, mitochondrial unfolded protein response, nicotinamide adenine dinucleotide levels and sirtuins, as well as mitophagy. This review summarizes the recent discoveries on the mitochondrial regulation of cardiac aging and the possible molecular mechanisms underlying the anti-aging effects, as well as the potential interventions that alleviate aging-related cardiac diseases and attenuate cardiac aging via the regulation of mitochondria.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Forestry University, Beijing 100083, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Science and Technology of China, Anhui 230026, China
| | - Chuting He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Gou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
207
|
Boyer MJ, Eguchi S. A cytoskeletal anchor connects ischemic mitochondrial fission to myocardial senescence. Sci Signal 2018; 11:11/556/eaav3267. [PMID: 30425163 DOI: 10.1126/scisignal.aav3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The interplay between the actin cytoskeleton and mitochondria has been implicated in cell and tissue homeostasis and physiological function. In this issue of Science Signaling, Nishimura et al. demonstrate that inhibiting the interaction of filamin A, an actin cytoskeleton regulator, with Drp1, a modulator of mitochondrial dynamics, attenuates mitochondrial hyperfission and cardiomyocyte senescence after myocardial infarction.
Collapse
Affiliation(s)
- Michael J Boyer
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
208
|
Yu SB, Pekkurnaz G. Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis. J Mol Biol 2018; 430:3922-3941. [PMID: 30089235 PMCID: PMC6186503 DOI: 10.1016/j.jmb.2018.07.027] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
To maintain homeostasis, every cell must constantly monitor its energy level and appropriately adjust energy, in the form of ATP, production rates based on metabolic demand. Continuous fulfillment of this energy demand depends on the ability of cells to sense, metabolize, and convert nutrients into chemical energy. Mitochondria are the main energy conversion sites for many cell types. Cellular metabolic states dictate the mitochondrial size, shape, function, and positioning. Mitochondrial shape varies from singular discrete organelles to interconnected reticular networks within cells. The morphological adaptations of mitochondria to metabolic cues are facilitated by the dynamic events categorized as transport, fusion, fission, and quality control. By changing their dynamics and strategic positioning within the cytoplasm, mitochondria carry out critical functions and also participate actively in inter-organelle cross-talk, assisting metabolite transfer, degradation, and biogenesis. Mitochondrial dynamics has become an active area of research because of its particular importance in cancer, metabolic diseases, and neurological disorders. In this review, we will highlight the molecular pathways involved in the regulation of mitochondrial dynamics and their roles in maintaining energy homeostasis.
Collapse
Affiliation(s)
- Seungyoon B Yu
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Gulcin Pekkurnaz
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
209
|
Liu L, Huang X, Gao J, Guo Y, Di Y, Sun S, Deng X, Cao J. Improved endogenous epoxyeicosatrienoic acid production mends heart function via increased PGC 1α-mitochondrial functions in metabolic syndrome. J Pharmacol Sci 2018; 138:138-145. [PMID: 30342783 DOI: 10.1016/j.jphs.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/27/2023] Open
Abstract
Metabolic syndrome (MS) is a combination of symptoms characterized by central obesity, hypertension, hyperglycemia, and hyperlipidemia, which together increase the risk of heart disease, stroke and diabetes. In our study, we hypothesized that an EET-agonist (AUDA) would increase expression of PGC 1α and improve mitochondrial and endothelial functions, resulting in improved heart function in a rat model of MS. To investigate this, rats were randomly divided into four groups: 1) Control; 2) MS + ABCT; 3) MS + AUDA; and 4) MS + AUDA + SnMP. MS rats were fed a high-fructose diet for 16 weeks and developed elevated inflammatory mediators, oxidative stress, and significant decreases in fractional shortening and hemodynamic parameters, indicating cardiac dysfunction. Histology revealed myocardial fibrosis and myocyte hypertrophy. AUDA improves mitochondrial function proven by increase in mt copy number and ATP production and significantly increased expression of PGC-1α and HO-1 in the rats and normalization of inflammatory cytokines, oxidative stress, and improves in cardiac function and myocardial fibrosis. These benefits were reversed by SnMP. Furthermore, AUDA increases eNOS but decreases iNOS expression which improved endothelial function. We therefore demonstrate that endogenous EET upregulation plays a novel role in protecting the heart from MS by regulating mitochondrial and endothelial function.
Collapse
Affiliation(s)
- Lu Liu
- Department of Geriatric Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xin Huang
- Department of Geriatric Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Jinliao Gao
- Department of Geriatric Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yusong Guo
- Department of Geriatric Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yanqi Di
- Department of Geriatric Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Shasha Sun
- Department of Geriatric Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xinli Deng
- Nanlou Laboratory Medicine Department, Chinese PLA General Hospital, Beijing, 100853, PR China.
| | - Jian Cao
- Department of Geriatric Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
210
|
Multiple recycling routes: Canonical vs. non-canonical mitophagy in the heart. Biochim Biophys Acta Mol Basis Dis 2018; 1865:797-809. [PMID: 30290272 DOI: 10.1016/j.bbadis.2018.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
Abstract
The heart is composed of cardiomyocytes that require large amounts of energy to sustain contraction. Mitochondria are distinctive organelles of bacterial origin that generate most of the energy for the heart via oxidative phosphorylation. To ensure a healthy population of mitochondria that efficiently produce ATP, myocytes quickly eliminate any unhealthy or unwanted mitochondria via a process known as mitochondrial autophagy, or mitophagy. It is especially important to selectively remove damaged or aged mitochondria since they can become excessive producers of reactive oxygen species and release pro-death proteins. Because this is such a crucial cellular process, cells have several mechanisms in place to deal with potentially harmful mitochondria. Here, we review the various pathways identified to date and how they are regulated. We also discuss the importance of these canonical and non-canonical pathways in the heart and their link to cardiovascular health, disease and aging.
Collapse
|
211
|
Yamada T, Murata D, Adachi Y, Itoh K, Kameoka S, Igarashi A, Kato T, Araki Y, Huganir RL, Dawson TM, Yanagawa T, Okamoto K, Iijima M, Sesaki H. Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease. Cell Metab 2018; 28:588-604.e5. [PMID: 30017357 PMCID: PMC6170673 DOI: 10.1016/j.cmet.2018.06.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/07/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
It is unknown what occurs if both mitochondrial division and fusion are completely blocked. Here, we introduced mitochondrial stasis by deleting two dynamin-related GTPases for division (Drp1) and fusion (Opa1) in livers. Mitochondrial stasis rescues liver damage and hypotrophy caused by the single knockout (KO). At the cellular level, mitochondrial stasis re-establishes mitochondrial size and rescues mitophagy defects caused by division deficiency. Using Drp1KO livers, we found that the autophagy adaptor protein p62/sequestosome-1-which is thought to function downstream of ubiquitination-promotes mitochondrial ubiquitination. p62 recruits two subunits of a cullin-RING ubiquitin E3 ligase complex, Keap1 and Rbx1, to mitochondria. Resembling Drp1KO, diet-induced nonalcoholic fatty livers enlarge mitochondria and accumulate mitophagy intermediates. Resembling Drp1Opa1KO, Opa1KO rescues liver damage in this disease model. Our data provide a new concept that mitochondrial stasis leads the spatial dimension of mitochondria to a stationary equilibrium and a new mechanism for mitochondrial ubiquitination in mitophagy.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shoichiro Kameoka
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoichi Araki
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
212
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
213
|
Bell MB, Bush Z, McGinnis GR, Rowe GC. Adult skeletal muscle deletion of Mitofusin 1 and 2 impedes exercise performance and training capacity. J Appl Physiol (1985) 2018; 126:341-353. [PMID: 30260752 DOI: 10.1152/japplphysiol.00719.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endurance exercise has been shown to be a positive regulator of skeletal muscle metabolic function. Changes in mitochondrial dynamics (fusion and fission) have been shown to influence mitochondrial oxidative capacity. We therefore tested whether genetic disruption of mitofusins (Mfns) affected exercise performance in adult skeletal muscle. We generated adult-inducible skeletal muscle-specific Mfn1 (iMS-Mfn1KO), Mfn2 (iMS-Mfn2KO), and Mfn1/2 (iMS-MfnDKO) knockout mice. We assessed exercise capacity by performing a treadmill time to exhaustion stress test before deletion and up to 8 wk after deletion. Analysis of either the iMS-Mfn1KO or the iMS-Mfn2KO did not reveal an effect on exercise capacity. However, analysis of iMS-MfnDKO animals revealed a progressive reduction in exercise performance. We measured individual electron transport chain (ETC) complex activity and observed a reduction in ETC activity in both the subsarcolemmal and intermyofibrillar mitochondrial fractions specifically for NADH dehydrogenase (complex I) and cytochrome- c oxidase (complex IV), which was associated with a decrease in ETC subunit expression for these complexes. We also tested whether voluntary exercise training would prevent the decrease in exercise capacity observed in iMS-MfnDKO animals ( n = 10/group). However, after 8 wk of training we did not observe any improvement in exercise capacity or ETC subunit parameters in iMS-MfnDKO animals. These data suggest that the decrease in exercise capacity observed in the iMS-MfnDKO animals is in part the result of impaired ETC subunit expression and ETC complex activity. Taken together, these results provide strong evidence that mitochondrial fusion in adult skeletal muscle is important for exercise performance. NEW & NOTEWORTHY This study is the first to utilize an adult-inducible skeletal muscle-specific knockout model for Mitofusin (Mfn)1 and Mfn2 to assess exercise capacity. Our findings reveal a progressive decrease in exercise performance with Mfn1 and Mfn2 deletion. The decrease in exercise capacity was accompanied by impaired oxidative phosphorylation specifically for complex I and complex IV. Furthermore, voluntary exercise training was unable to rescue the impairment, suggesting that normal fusion is essential for exercise-induced mitochondrial adaptations.
Collapse
Affiliation(s)
- Margaret B Bell
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Zachary Bush
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Alabama
| |
Collapse
|
214
|
Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Ma Q, Guatimosim S, Hu Y, Varuzhanyan G, VanDusen NJ, Zhang D, Chan DC, Yuan GC, Seidman CE, Seidman JG, Pu WT. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun 2018; 9:3837. [PMID: 30242271 PMCID: PMC6155060 DOI: 10.1038/s41467-018-06347-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal's lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Isha Sethi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Christopher N Toepfer
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Radcliffe Department of Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yulan Ai
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Yongwu Hu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Wenzhou Medical University, School of Life Sciences, Wenzhou, China
| | - Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Nathan J VanDusen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Donghui Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD, 20815, USA
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
215
|
Mani K, Javaheri A, Diwan A. Lysosomes Mediate Benefits of Intermittent Fasting in Cardiometabolic Disease: The Janitor Is the Undercover Boss. Compr Physiol 2018; 8:1639-1667. [PMID: 30215867 DOI: 10.1002/cphy.c180005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adaptive responses that counter starvation have evolved over millennia to permit organismal survival, including changes at the level of individual organelles, cells, tissues, and organ systems. In the past century, a shift has occurred away from disease caused by insufficient nutrient supply toward overnutrition, leading to obesity and diabetes, atherosclerosis, and cardiometabolic disease. The burden of these diseases has spurred interest in fasting strategies that harness physiological responses to starvation, thus limiting tissue injury during metabolic stress. Insights gained from animal and human studies suggest that intermittent fasting and chronic caloric restriction extend lifespan, decrease risk factors for cardiometabolic and inflammatory disease, limit tissue injury during myocardial stress, and activate a cardioprotective metabolic program. Acute fasting activates autophagy, an intricately orchestrated lysosomal degradative process that sequesters cellular constituents for degradation, and is critical for cardiac homeostasis during fasting. Lysosomes are dynamic cellular organelles that function as incinerators to permit autophagy, as well as degradation of extracellular material internalized by endocytosis, macropinocytosis, and phagocytosis. The last decade has witnessed an explosion of knowledge that has shaped our understanding of lysosomes as central regulators of cellular metabolism and the fasting response. Intriguingly, lysosomes also store nutrients for release during starvation; and function as a nutrient sensing organelle to couple activation of mammalian target of rapamycin to nutrient availability. This article reviews the evidence for how the lysosome, in the guise of a janitor, may be the "undercover boss" directing cellular processes for beneficial effects of intermittent fasting and restoring homeostasis during feast and famine. © 2018 American Physiological Society. Compr Physiol 8:1639-1667, 2018.
Collapse
Affiliation(s)
- Kartik Mani
- John Cochran VA Medical Center, St. Louis, Missouri, USA.,Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Javaheri
- Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
216
|
Yu F, Xu T, Wang M, Chang W, Li P, Wang J. Function and regulation of mitofusin 2 in cardiovascular physiology and pathology. Eur J Cell Biol 2018; 97:474-482. [DOI: 10.1016/j.ejcb.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/03/2023] Open
|
217
|
Lewis SA, Takimoto T, Mehrvar S, Higuchi H, Doebley AL, Stokes G, Sheibani N, Ikeda S, Ranji M, Ikeda A. The effect of Tmem135 overexpression on the mouse heart. PLoS One 2018; 13:e0201986. [PMID: 30102730 PMCID: PMC6089435 DOI: 10.1371/journal.pone.0201986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Tissues with high-energy demand including the heart are rich in the energy-producing organelles, mitochondria, and sensitive to mitochondrial dysfunction. While alterations in mitochondrial function are increasingly recognized in cardiovascular diseases, the molecular mechanisms through which changes in mitochondria lead to heart abnormalities have not been fully elucidated. Here, we report that transgenic mice overexpressing a novel regulator of mitochondrial dynamics, transmembrane protein 135 (Tmem135), exhibit increased fragmentation of mitochondria and disease phenotypes in the heart including collagen accumulation and hypertrophy. The gene expression analysis showed that genes associated with ER stress and unfolded protein response, and especially the pathway involving activating transcription factor 4, are upregulated in the heart of Tmem135 transgenic mice. It also showed that gene expression changes in the heart of Tmem135 transgenic mice significantly overlap with those of aged mice in addition to the similarity in cardiac phenotypes, suggesting that changes in mitochondrial dynamics may be involved in the development of heart abnormalities associated with aging. Our study revealed the pathological consequence of overexpression of Tmem135, and suggested downstream molecular changes that may underlie those disease pathologies.
Collapse
Affiliation(s)
- Sarah Aileen Lewis
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tetsuya Takimoto
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Institute for Innovation, Ajinomoto Co., Inc., Tokyo, Japan
| | - Shima Mehrvar
- Department of Electrical Engineering, Biophotonics Laboratory, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna-Lisa Doebley
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Giangela Stokes
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nader Sheibani
- Department Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mahsa Ranji
- Department of Electrical Engineering, Biophotonics Laboratory, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
218
|
Parodi-Rullán RM, Chapa-Dubocq XR, Javadov S. Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3. Front Physiol 2018; 9:1094. [PMID: 30131726 PMCID: PMC6090200 DOI: 10.3389/fphys.2018.01094] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
A growing number of studies have demonstrated the role of post-translational modifications of proteins, particularly acetylation, in human diseases including neurodegenerative and cardiovascular diseases, diabetes, cancer, and in aging. Acetylation of mitochondrial proteins has been shown to be involved in the pathogenesis of cardiac diseases such as myocardial infarction (ischemia-reperfusion) and heart failure. Indeed, over 60% of mitochondrial proteins contain acetylation sites, and most of these proteins are involved in mitochondrial bioenergetics. Mitochondrial non-enzymatic acetylation is enabled by acetyl-coenzyme A abundance and serves as the primary pathway of acetylation in mitochondria. Hence, regulation of enzymatic deacetylation becomes the most important mechanism to control acetylation/deacetylation of mitochondrial proteins. Acetylation/deacetylation of mitochondrial proteins has been regarded as a key regulator of mitochondrial metabolism and function. Proteins are deacetylated by NAD+-dependent deacetylases known as sirtuins (SIRTs). Among seven sirtuin isoforms, only SIRT3, SIRT4, and SIRT5 are localized in the mitochondria. SIRT3 is the main mitochondrial sirtuin which plays a key role in maintaining metabolic and redox balance in the mitochondria under physiological and pathological conditions. SIRT3 regulates the enzymatic activity of proteins involved in fatty acid oxidation, tricarboxylic acid cycle, electron transport chain, and oxidative phosphorylation. Although many enzymes have been identified as targets for SIRT3, cardiac-specific SIRT3 effects and regulations could differ from those in non-cardiac tissues. Therefore, it is important to elucidate the contribution of SIRT3 and mitochondrial protein acetylation/deacetylation in mitochondrial metabolism and cardiac dysfunction. Here, we summarize previous studies and provide a comprehensive analysis of the role of SIRT3 in mitochondria metabolism and bioenergetics under physiological conditions and in cardiac diseases. In addition, the review discusses mitochondrial protein acetylation as a potential target for cardioprotection.
Collapse
Affiliation(s)
- Rebecca M Parodi-Rullán
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| |
Collapse
|
219
|
Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 2018; 20:755-765. [PMID: 29950571 PMCID: PMC6716149 DOI: 10.1038/s41556-018-0133-0] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria sense and respond to many stressors and can support either cell survival or death through energy production and signaling pathways. Mitochondrial responses depend on fusion-fission dynamics that dilute and segregate damaged mitochondria. Mitochondrial motility and inter-organellar interactions, including with the endoplasmic reticulum, also function in cellular adaptation to stress. In this Review, we discuss how stressors influence these components, and how they contribute to the complex adaptive and pathological responses that lead to disease.
Collapse
Affiliation(s)
- Verónica Eisner
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Picard
- Division of Behavioral Medicine, Departments of Psychiatry and Neurology, The Merritt Center, Columbia Translational Neuroscience Initiative, Columbia Aging Center, Columbia University Medical Center, New York, NY, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
220
|
|
221
|
Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K, Philippou A, Vavuranakis M, Stefanadis C, Tousoulis D, Papavassiliou AG. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:256. [PMID: 30069458 DOI: 10.21037/atm.2018.06.21] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are the source of cellular energy production and are present in different types of cells. However, their function is especially important for the heart due to the high demands in energy which is achieved through oxidative phosphorylation. Mitochondria form large networks which regulate metabolism and the optimal function is achieved through the balance between mitochondrial fusion and mitochondrial fission. Moreover, mitochondrial function is upon quality control via the process of mitophagy which removes the damaged organelles. Mitochondrial dysfunction is associated with the development of numerous cardiac diseases such as atherosclerosis, ischemia-reperfusion (I/R) injury, hypertension, diabetes, cardiac hypertrophy and heart failure (HF), due to the uncontrolled production of reactive oxygen species (ROS). Therefore, early control of mitochondrial dysfunction is a crucial step in the therapy of cardiac diseases. A number of anti-oxidant molecules and medications have been used but the results are inconsistent among the studies. Eventually, the aim of future research is to design molecules which selectively target mitochondrial dysfunction and restore the capacity of cellular anti-oxidant enzymes.
Collapse
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.,Division of Cardiovascular, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Tsigkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marinos Kosmopoulos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimosthenis Theodosiadis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Spyridon Simantiris
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nikoletta Maria Tagkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Tsimpiktsioglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiota K Stampouloglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Mourouzis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Anastasios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Dimitris Tousoulis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
222
|
Pan L, Zhou L, Yin W, Bai J, Liu R. miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission. Int J Oncol 2018; 53:124-136. [PMID: 29749475 PMCID: PMC5958665 DOI: 10.3892/ijo.2018.4380] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA-125a (miR-125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro-apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR-125a enhanced mitochondria-dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC-1 cell migration by preserving the F-actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a-mediated mitochondrial fission. Low contents of miR-125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR-125a and Mfn2 are regulated by hypoxia-inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR-125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR-125a/Mfn2 pathways, acting to restrict PANC-1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy.
Collapse
Affiliation(s)
- Lichao Pan
- The Second Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lin Zhou
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weijia Yin
- Department of Biochemistry, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jia Bai
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rong Liu
- The Second Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
223
|
Discovery and characterization of selective small molecule inhibitors of the mammalian mitochondrial division dynamin, DRP1. Biochem Biophys Res Commun 2018; 499:556-562. [PMID: 29601815 DOI: 10.1016/j.bbrc.2018.03.189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 11/20/2022]
Abstract
Balanced rates of mitochondrial division and fusion are required to maintain mitochondrial function, as well as cellular and organismal homeostasis. In mammals, the cellular machines that mediate these processes are dynamin-related GTPases; the cytosolic DRP1 mediates division, while the outer membrane MFN1/2 and inner membrane OPA1 mediate fusion. Unbalanced mitochondrial dynamics are linked to varied pathologies, including cell death and neurodegeneration, raising the possibility that small molecules that target the division and fusion machines to restore balance may have therapeutic potential. Here we describe the discovery of novel small molecules that directly and selectively inhibit assembly-stimulated GTPase activity of the division dynamin, DRP1. In addition, these small molecules restore wild type mtDNA copy number in MFN1 knockout mouse embryonic fibroblast cells, a phenotype linked to deficient mitochondrial fusion activity. Thus, these compounds are unique tools to explore the roles of mitochondrial division in cells, and to assess the potential therapeutic efficacy of rebalancing mitochondrial dynamics in pathologies associated with excessive mitochondrial division.
Collapse
|
224
|
Wang K, Xu Y, Sun Q, Long J, Liu J, Ding J. Mitochondria regulate cardiac contraction through ATP-dependent and independent mechanisms. Free Radic Res 2018; 52:1256-1265. [PMID: 29544373 DOI: 10.1080/10715762.2018.1453137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multipurpose organelle mitochondria play an essential role(s) in controlling cardiac muscle contraction. Mitochondria, not only function as the powerhouses and the energy source of myocytes but also modulate intracellular Ca2+ homeostasis, the production of intermediary metabolites/reactive oxygen species (ROS), and other cellular processes. Those molecular events can substantially influence myocardial contraction. Mitochondrial dysfunction is usually associated with cardiac remodelling, and is the causal factor of heart contraction defects in many cases. The manipulation of mitochondria or mitochondria-relevant pathways appears to be a promising therapeutic approach to treat the diseases.
Collapse
Affiliation(s)
- Kexin Wang
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Yang Xu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Qiong Sun
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiangang Long
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiankang Liu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jian Ding
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
225
|
Dorn GW. Cardiac-specific research platforms engender novel insights into mitochondrial dynamism. CURRENT OPINION IN PHYSIOLOGY 2018; 3:110-115. [PMID: 30467553 DOI: 10.1016/j.cophys.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac myocyte-specific gene manipulation is facilitated by reagents permitting temporal control over transgene expression or gene ablation, and by physiological phenotyping platforms that complement post-mortem cellular and pathological analyses. The ease of creating cardiac-specific gene modified mice may have contributed to genetic mouse models lacking strong underlying mechanistic rationales; this was argued for genetic ablation of mitochondrial dynamics factors in cardiac myocytes that exhibit little evidence for mitochondrial dynamism. Here, I review recent published studies in which experimental in vivo manipulation of mitochondrial fusion and fission genes has revealed non-canonical functioning dynamics factors in mitochondrial quality and quantity control. Targeting mitochondrial dynamics proteins in the cardiac system, where mitochondrial dynamism is barely observed, was essential to uncovering novel functioning of these factors in other pathways.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8220, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
226
|
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, Frank S, Brown SA, Eckert A. Circadian Control of DRP1 Activity Regulates Mitochondrial Dynamics and Bioenergetics. Cell Metab 2018; 27:657-666.e5. [PMID: 29478834 DOI: 10.1016/j.cmet.2018.01.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2017] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
Mitochondrial fission-fusion dynamics and mitochondrial bioenergetics, including oxidative phosphorylation and generation of ATP, are strongly clock controlled. Here we show that these circadian oscillations depend on circadian modification of dynamin-related protein 1 (DRP1), a key mediator of mitochondrial fission. We used a combination of in vitro and in vivo models, including human skin fibroblasts and DRP1-deficient or clock-deficient mice, to show that these dynamics are clock controlled via circadian regulation of DRP1. Genetic or pharmacological abrogation of DRP1 activity abolished circadian network dynamics and mitochondrial respiratory activity and eliminated circadian ATP production. Pharmacological silencing of pathways regulating circadian metabolism and mitochondrial function (e.g., sirtuins, AMPK) also altered DRP1 phosphorylation, and abrogation of DRP1 activity impaired circadian function. Our findings provide new insight into the crosstalk between the mitochondrial network and circadian cycles.
Collapse
Affiliation(s)
- Karen Schmitt
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Robert Dallmann
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bjoern Oettinghaus
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Lisa Michelle Restelli
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Melissa Witzig
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jürgen A Ripperger
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland.
| |
Collapse
|
227
|
Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants (Basel) 2018; 7:antiox7010007. [PMID: 29316654 PMCID: PMC5789317 DOI: 10.3390/antiox7010007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/25/2022] Open
Abstract
Exercise is a robust stimulus for mitochondrial adaptations in skeletal muscle which consequently plays a central role in enhancing metabolic health. Despite this, the precise molecular events that underpin these beneficial effects remain elusive. In this review, we discuss molecular signals generated during exercise leading to altered mitochondrial morphology and dynamics. In particular, we focus on the interdependence between reactive oxygen species (ROS) and redox homeostasis, the sensing of cellular bioenergetic status via 5’ adenosine monophosphate (AMP)-activated protein kinase (AMPK), and the regulation of mitochondrial fission and fusion. Precisely how exercise regulates the network of these responses and their effects on mitochondrial dynamics is not fully understood at present. We highlight the limitations that exist with the techniques currently available, and discuss novel molecular tools to potentially advance the fields of redox biology and mitochondrial bioenergetics. Ultimately, a greater understanding of these processes may lead to novel mitochondria-targeted therapeutic strategies to augment or mimic exercise in order to attenuate or reverse pathophysiology.
Collapse
|
228
|
Mitohormesis, an Antiaging Paradigm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
229
|
ABEL EDALE. MITOCHONDRIAL DYNAMICS AND METABOLIC REGULATION IN CARDIAC AND SKELETAL MUSCLE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2018; 129:266-278. [PMID: 30166722 PMCID: PMC6116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mitochondria are the metabolic powerhouses of cells. In addition to generating adenosine triphosphate (ATP), they play important roles in cell survival pathways such as apoptosis and necrosis. Mitochondrial size and shape are dynamically regulated by a process known as mitochondrial dynamics. The significance of this process in metabolically active cells such as skeletal and cardiac muscle are only now beginning to be elucidated. In cardiac muscle, mitochondrial dynamics plays an important role in mitochondrial quality control and defects in regulatory pathways that govern these processes and leads to heart failure. In response to nutrient excess such as lipid overload, as occurs in diabetes, mitochondrial shape and morphology are altered by effects of nutrient stress on mitochondrial dynamics signaling pathways, which have important implications for understanding mitochondrial dysfunction in diabetic cardiomyopathy. Moreover, crosstalk between mitochondria and other organelles such as the endoplasmic reticulum can regulate generation of hormones such as fibroblast growth factor 21, with potent anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- E. DALE ABEL
- Correspondence and reprint requests: E. Dale Abel, MD, PhD, Department of Internal Medicine and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine,
169 Newton Rd., 4312 PBDB, Iowa City, Iowa 52242319-384-4684319-335-3865
| |
Collapse
|
230
|
Pernas L, Scorrano L. RevAMPing Mitochondrial Shape to Live Longer. Cell Metab 2017; 26:805-806. [PMID: 29211978 DOI: 10.1016/j.cmet.2017.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Whether and how mitochondria connect reduced energy intake to healthy aging are unclear. In this issue of Cell Metabolism, Weir et al. (2017) find that constitutive AMPK activation and dietary restriction promote longevity in C. elegans via remodeling of the mitochondrial network and fatty acid oxidation in peripheral tissues.
Collapse
Affiliation(s)
- Lena Pernas
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| |
Collapse
|