201
|
Charlton-Perkins M, Whitaker SL, Fei Y, Xie B, Li-Kroeger D, Gebelein B, Cook T. Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling. Neural Dev 2011; 6:20. [PMID: 21539742 PMCID: PMC3123624 DOI: 10.1186/1749-8104-6-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/03/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The concept of an equivalence group, a cluster of cells with equal potential to adopt the same specific fate, has served as a useful paradigm to understand neural cell type specification. In the Drosophila eye, a set of five cells, called the 'R7 equivalence group', generates a single photoreceptor neuron and four lens-secreting epithelial cells. This choice between neuronal versus non-neuronal cell fates rests on differential requirements for, and cross-talk between, Notch/Delta- and Ras/mitogen-activated protein kinase (MAPK)-dependent signaling pathways. However, many questions remain unanswered related to how downstream events of these two signaling pathways mediate distinct cell fate decisions. RESULTS Here, we demonstrate that two direct downstream targets of Ras and Notch signaling, the transcription factors Prospero and dPax2, are essential regulators of neuronal versus non-neuronal cell fate decisions in the R7 equivalence group. Prospero controls high activated MAPK levels required for neuronal fate, whereas dPax2 represses Delta expression to prevent neuronal fate. Importantly, activity from both factors is required for proper cell fate decisions to occur. CONCLUSIONS These data demonstrate that Ras and Notch signaling are integrated during cell fate decisions within the R7 equivalence group through the combinatorial and opposing activities of Pros and dPax2. Our study provides one of the first examples of how the differential expression and synergistic roles of two independent transcription factors determine cell fate within an equivalence group. Since the integration of Ras and Notch signaling is associated with many developmental and cancer models, these findings should provide new insights into how cell specificity is achieved by ubiquitously used signaling pathways in diverse biological contexts.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
202
|
Boyan GS, Reichert H. Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 2011; 34:247-57. [PMID: 21397959 DOI: 10.1016/j.tins.2011.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/04/2011] [Accepted: 02/04/2011] [Indexed: 02/07/2023]
|
203
|
Neural Stem Cell Biology in Vertebrates and Invertebrates: More Alike than Different? Neuron 2011; 70:719-29. [DOI: 10.1016/j.neuron.2011.05.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/20/2022]
|
204
|
A transient expression of Prospero promotes cell cycle exit of Drosophila postembryonic neurons through the regulation of Dacapo. PLoS One 2011; 6:e19342. [PMID: 21552484 PMCID: PMC3084296 DOI: 10.1371/journal.pone.0019342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 11/29/2022] Open
Abstract
Cell proliferation, specification and terminal differentiation must be precisely coordinated during brain development to ensure the correct production of different neuronal populations. Most Drosophila neuroblasts (NBs) divide asymmetrically to generate a new NB and an intermediate progenitor called ganglion mother cell (GMC) which divides only once to generate two postmitotic cells called ganglion cells (GCs) that subsequently differentiate into neurons. During the asymmetric division of NBs, the homeodomain transcription factor PROSPERO is segregated into the GMC where it plays a key role as cell fate determinant. Previous work on embryonic neurogenesis has shown that PROSPERO is not expressed in postmitotic neuronal progeny. Thus, PROSPERO is thought to function in the GMC by repressing genes required for cell-cycle progression and activating genes involved in terminal differentiation. Here we focus on postembryonic neurogenesis and show that the expression of PROSPERO is transiently upregulated in the newly born neuronal progeny generated by most of the larval NBs of the OL and CB. Moreover, we provide evidence that this expression of PROSPERO in GCs inhibits their cell cycle progression by activating the expression of the cyclin-dependent kinase inhibitor (CKI) DACAPO. These findings imply that PROSPERO, in addition to its known role as cell fate determinant in GMCs, provides a transient signal to ensure a precise timing for cell cycle exit of prospective neurons, and hence may link the mechanisms that regulate neurogenesis and those that control cell cycle progression in postembryonic brain development.
Collapse
|
205
|
Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet 2011; 7:e1002030. [PMID: 21490958 PMCID: PMC3072375 DOI: 10.1371/journal.pgen.1002030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/04/2011] [Indexed: 12/04/2022] Open
Abstract
Spinal muscular atrophy is a severe neurogenic disease that is caused by mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein is required for the assembly of small nuclear ribonucleoproteins and a dramatic reduction of the protein leads to cell death. It is currently unknown how the reduction of this ubiquitously essential protein can lead to tissue-specific abnormalities. In addition, it is still not known whether the disease is caused by developmental or degenerative defects. Using the Drosophila system, we show that SMN is enriched in postembryonic neuroblasts and forms a concentration gradient in the differentiating progeny. In addition to the developing Drosophila larval CNS, Drosophila larval and adult testes have a striking SMN gradient. When SMN is reduced in postembryonic neuroblasts using MARCM clonal analysis, cell proliferation and clone formation defects occur. These SMN mutant neuroblasts fail to correctly localise Miranda and have reduced levels of snRNAs. When SMN is removed, germline stem cells are lost more frequently. We also show that changes in SMN levels can disrupt the correct timing of cell differentiation. We conclude that highly regulated SMN levels are essential to drive timely cell proliferation and cell differentiation. Spinal muscular atrophy is a debilitating disease that affects the motor nervous system. The disease is caused by the reduction of the protein survival motor neuron (SMN), which is involved in the assembly of ubiquitous small nuclear ribonucleoproteins. As SMN is required in every cell, it is important to understand the differential functionality of the protein within developing tissues. In this paper, we identify stem cells as having the highest levels of SMN. The concentration of SMN then decreases in a declining gradient until it reaches its lowest level in differentiated cells. SMN reduction, using clonal analysis, slows stem cell division and can lead to stem cell loss. These defects correlate with a reduction in the U2 and U5 small nuclear RNAs and with the mislocalisation of Miranda protein in postembryonic neuroblasts. In addition, we show that the overexpression of SMN can change the timing of development and cell differentiation. This research highlights possible mechanisms explaining how SMN expression alterations may affect tissue development.
Collapse
|
206
|
Bukharina TA, Furman DP. Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
207
|
Jeong J, Verheyden JM, Kimble J. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 2011; 7:e1001348. [PMID: 21455289 PMCID: PMC3063749 DOI: 10.1371/journal.pgen.1001348] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/18/2011] [Indexed: 11/29/2022] Open
Abstract
Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA–binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators. How are cell cycle regulators coordinated with cell fate and patterning regulators during development? Several studies suggest that core cell cycle regulators can influence development, but molecular mechanisms remain unknown for the most part. We have tackled this question in the nematode Caenorhabditis elegans. Specifically, we have investigated how cell cycle regulators affect germline stem cells. Previous work had identified conserved developmental regulators that control the choice between self-renewal and differentiation in this tissue. In this work, we focus on cyclin E/Cdk-2, which is a core cell cycle kinase, and GLD-1, a key regulator of stem cell differentiation. Our work shows that cyclin E/Cdk-2 phosphorylates GLD-1 and lowers its abundance in stem cells via a post-translational mechanism. We also find that a post-transcriptional GLD-1 regulator, called FBF-1, works synergistically with cyclin E/Cdk-2 to ensure that GLD-1 is off in germline stem cells. When both FBF-1 and cyclin E/Cdk-2 are removed, the stem cells are no longer maintained and instead differentiate. Our findings reveal that cyclin E/Cdk-2 kinase is a critical stem cell regulator and provide a paradigm for how cell cycle regulators interface with developmental regulators.
Collapse
Affiliation(s)
- Johan Jeong
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jamie M. Verheyden
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
208
|
Kuzin A, Kundu M, Brody T, Odenwald WF. Functional analysis of conserved sequences within a temporally restricted neural precursor cell enhancer. Mech Dev 2011; 128:165-77. [PMID: 21315151 DOI: 10.1016/j.mod.2011.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/18/2022]
Abstract
Many of the key regulators of Drosophila CNS neural identity are expressed in defined temporal orders during neuroblast (NB) lineage development. To begin to understand the structural and functional complexity of enhancers that regulate ordered NB gene expression programs, we have undertaken the mutational analysis of the temporally restricted nerfin-1 NB enhancer. Our previous studies have localized the enhancer to a region just proximal to the nerfin-1 transcription start site. Analysis of this enhancer, using the phylogenetic footprint program EvoPrinter, reveals the presence of multiple sequence blocks that are conserved among drosophilids. cis-Decoder alignments of these conserved sequence blocks (CSBs) has identified shorter elements that are conserved in other Drosophila NB enhancers. Mutagenesis of the enhancer reveals that although each CSB is required for wild-type expression, neither position nor orientation of the CSBs within the enhancer is crucial for enhancer function; removal of less-conserved or non-conserved sequences flanking CSB clusters also does not significantly alter enhancer activity. While all three conserved E-box transcription factor (TF) binding sites (CAGCTG) are required for full function, adding an additional site at different locations within non-conserved sequences interferes with enhancer activity. Of particular note, none of the mutations resulted in ectopic reporter expression outside of the early NB expression window, suggesting that the temporally restricted pattern is defined by transcriptional activators and not by direct DNA binding repressors. Our work also points to an unexpectedly large number of TFs required for optimal enhancer function - mutant TF analysis has identified at least four that are required for full enhancer regulation.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, MD, USA.
| | | | | | | |
Collapse
|
209
|
Yong KJ, Yan B. The relevance of symmetric and asymmetric cell divisions to human central nervous system diseases. J Clin Neurosci 2011; 18:458-63. [PMID: 21288724 DOI: 10.1016/j.jocn.2010.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 12/29/2022]
Abstract
During development of the embryonic central nervous system (CNS), large numbers of neurons and glia are generated from the neuroepithelium and its progenitor derivatives as a result of symmetric and asymmetric cell divisions. We describe the biology of symmetric and asymmetric cell divisions in the CNS as gleaned from animal models, and discuss the relevance of these processes to human CNS development and disease.
Collapse
Affiliation(s)
- Kol Jia Yong
- Cancer Science Institute, National University of Singapore, Singapore
| | | |
Collapse
|
210
|
San-Juán BP, Baonza A. The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila. Dev Biol 2011; 352:70-82. [PMID: 21262215 DOI: 10.1016/j.ydbio.2011.01.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
A defining feature of stem cells is their capacity to renew themselves at each division while producing differentiated progeny. How these cells balance self-renewal versus differentiation is a fundamental issue in developmental and cancer biology. The Notch signaling pathway has long been known to influence cell fate decisions during development. Indeed, there is a great deal of evidence correlating its function with the regulation of neuroblast (NB) self-renewal during larval brain development in Drosophila. However, little is known about the transcription factors regulated by this pathway during this process. Here we show that deadpan (dpn), a gene encoding a bHLH transcription factor, is a direct target of the Notch signaling pathway during type II NB development. Type II NBs undergo repeated asymmetric divisions to self-renew and to produce immature intermediate neural progenitors. These cells mature into intermediate neural progenitors (INPs) that have the capacity to undergo multiple rounds of asymmetric division to self-renew and to generate GMCs and neurons. Our results indicate that the expression of dpn at least in INPs cells depends on Notch signaling. The ectopic expression of dpn in immature INP cells can transform these cells into NBs-like cells that divide uncontrollably causing tumor over-growth. We show that in addition to dpn, Notch signaling must be regulating other genes during this process that act redundantly with dpn.
Collapse
Affiliation(s)
- Beatriz P San-Juán
- Centro de Biología Molecular Severo Ochoa-Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | | |
Collapse
|
211
|
Reichert H. Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. Results Probl Cell Differ 2011; 53:529-546. [PMID: 21630158 DOI: 10.1007/978-3-642-19065-0_21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The wealth of neurons that make up the brain are generated through the proliferative activity of neural stem cells during development. This neurogenesis activity involves complex cell cycle control of proliferative self-renewal, differentiation, and termination processes in these cells. Considerable progress has been made in understanding these processes in the neural stem cell-like neuroblasts which generate the brain in the genetic model system Drosophila. Neuroblasts in the developing fly brain generate neurons through repeated series of asymmetrical cell divisions, which balance self-renewal of the neuroblast with generation of differentiated progeny through the segregation of cell fate determinants such as Numb, Prospero, and Brat to the neural progeny. A number of classical cell cycle regulators such as cdc2/CDK1, Polo, Aurora A, and cyclin E are implicated in the control of asymmetric divisions in neuroblasts linking the cell cycle to the asymmetrical division machinery. The cellular and molecular identity of the postmitotic neurons produced by proliferating neuroblasts is influenced by the timing of their exit from the cell cycle through the action of a temporal expression series of transcription factors, which include Hunchback, Kruppel, Pdm, and Castor. This temporal series is also implicated in the control of termination of neuroblast proliferation which is effected by two different cell cycle exit strategies, terminal differentiative division or programmed cell death of the neuroblast. Defects in the asymmetric division machinery which interfere with the termination of proliferation can result in uncontrolled tumorigenic overgrowth. These findings in Drosophila brain development are likely to have general relevance in neural stem cell biology and may apply to cell cycle control in mammalian brain development as well.
Collapse
Affiliation(s)
- Heinrich Reichert
- University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
212
|
Hirth F. Stem Cells and Asymmetric Cell Division. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
213
|
Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L. Modeling cancers in Drosophila. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:51-82. [PMID: 21377624 DOI: 10.1016/b978-0-12-384878-9.00002-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The basic cellular processes deregulated during carcinogenesis and the vast majority of the genes implicated in cancer appear conserved from humans to flies. This conservation, together with an ever-expanding fly genetic toolbox, has made of Drosophila melanogaster a remarkably profitable model to study many fundamental aspects of carcinogenesis. In particular, Drosophila has played a major role in the identification of genes and pathways implicated in cancer and in disclosing novel functional relationships between cancer genes. It has also proved to be a genetically tractable system where to mimic cancer-like situations and characterize the mode of action of human oncogenes. Here, we outline some advances in the study of cancer, both at the basic and more translational levels, which have benefited from research carried out in flies.
Collapse
Affiliation(s)
- Cédric Polesello
- Université de Toulouse, UPS, CBD, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062, CNRS, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|
214
|
Chang KC, Garcia-Alvarez G, Somers G, Sousa-Nunes R, Rossi F, Lee YY, Soon SB, Gonzalez C, Chia W, Wang H. Interplay between the transcription factor Zif and aPKC regulates neuroblast polarity and self-renewal. Dev Cell 2010; 19:778-85. [PMID: 21074726 DOI: 10.1016/j.devcel.2010.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/17/2010] [Accepted: 09/14/2010] [Indexed: 12/14/2022]
Abstract
How a cell decides to self-renew or differentiate is a critical issue in stem cell and cancer biology. Atypical protein kinase C (aPKC) promotes self-renewal of Drosophila larval brain neural stem cells, neuroblasts. However, it is unclear how aPKC cortical polarity and protein levels are regulated. Here, we have identified a zinc-finger protein, Zif, which is required for the expression and asymmetric localization of aPKC. aPKC displays ectopic cortical localization with upregulated protein levels in dividing zif mutant neuroblasts, leading to neuroblast overproliferation. We show that Zif is a transcription factor that directly represses aPKC transcription. We further show that Zif is phosphorylated by aPKC both in vitro and in vivo. Phosphorylation of Zif by aPKC excludes it from the nucleus, leading to Zif inactivation in neuroblasts. Thus, reciprocal repression between Zif and aPKC act as a critical regulatory mechanism for establishing cell polarity and controlling neuroblast self-renewal.
Collapse
Affiliation(s)
- Kai Chen Chang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Kaltezioti V, Kouroupi G, Oikonomaki M, Mantouvalou E, Stergiopoulos A, Charonis A, Rohrer H, Matsas R, Politis PK. Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol 2010; 8:e1000565. [PMID: 21203589 PMCID: PMC3006385 DOI: 10.1371/journal.pbio.1000565] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022] Open
Abstract
During development of the spinal cord, Prox1 controls the balance between proliferation and differentiation of neural progenitor cells via suppression of Notch1 gene expression. Activation of Notch1 signaling in neural progenitor cells (NPCs) induces self-renewal and inhibits neurogenesis. Upon neuronal differentiation, NPCs overcome this inhibition, express proneural genes to induce Notch ligands, and activate Notch1 in neighboring NPCs. The molecular mechanism that coordinates Notch1 inactivation with initiation of neurogenesis remains elusive. Here, we provide evidence that Prox1, a transcription repressor and downstream target of proneural genes, counteracts Notch1 signaling via direct suppression of Notch1 gene expression. By expression studies in the developing spinal cord of chick and mouse embryo, we showed that Prox1 is limited to neuronal precursors residing between the Notch1+ NPCs and post-mitotic neurons. Physiological levels of Prox1 in this tissue are sufficient to allow binding at Notch1 promoter and they are critical for proper Notch1 transcriptional regulation in vivo. Gain-of-function studies in the chick neural tube and mouse NPCs suggest that Prox1-mediated suppression of Notch1 relieves its inhibition on neurogenesis and allows NPCs to exit the cell cycle and differentiate. Moreover, loss-of-function in the chick neural tube shows that Prox1 is necessary for suppression of Notch1 outside the ventricular zone, inhibition of active Notch signaling, down-regulation of NPC markers, and completion of neuronal differentiation program. Together these data suggest that Prox1 inhibits Notch1 gene expression to control the balance between NPC self-renewal and neuronal differentiation. Early during development, neural progenitor cells (NPCs) can either proliferate or differentiate into neurons. Thus, generation of the correct number of neurons is governed by a tightly regulated balance between proliferation and differentiation, and disruption of this balance can result in severe developmental deficits, malformations, or cancers. Notch1 is a member of the Notch family of receptors, which make up a highly conserved cell signaling system. Notch1 signaling has been shown to inhibit NPC differentiation and to promote self-renewal, thereby allowing NPCs to divide and progressively generate the enormous number of neurons present in the central nervous system. The molecular mechanism by which NPCs overcome Notch1-mediated inhibition in order to differentiate into neurons, however, is not completely understood. In this study, we show that Prox1, a homeobox transcriptional repressor, plays a fundamental role in the switch to differentiation by suppressing the expression of Notch1 receptor, thereby preventing newly produced neuronal precursors from receiving inhibitory signals from Notch ligands present in neighboring cells. This transcriptional repression may regulate cell cycle exit and differentiation of NPCs as they migrate towards different regions and adopt their final cell fates. We suggest that Prox1 may exert its known influence on embryonic development, organ morphogenesis, and cancer through its ability to counteract Notch1 signaling.
Collapse
Affiliation(s)
- Valeria Kaltezioti
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Oikonomaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Mantouvalou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasios Stergiopoulos
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aristidis Charonis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Hermann Rohrer
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Frankfurt/Main, Germany
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
216
|
Thompson BJ. Developmental control of cell growth and division in Drosophila. Curr Opin Cell Biol 2010; 22:788-94. [DOI: 10.1016/j.ceb.2010.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/10/2010] [Accepted: 08/15/2010] [Indexed: 01/21/2023]
|
217
|
van Bemmel JG, Pagie L, Braunschweig U, Brugman W, Meuleman W, Kerkhoven RM, van Steensel B. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One 2010; 5:e15013. [PMID: 21124834 PMCID: PMC2991331 DOI: 10.1371/journal.pone.0015013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/05/2010] [Indexed: 12/11/2022] Open
Abstract
Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome - NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome - NL interactions.
Collapse
Affiliation(s)
- Joke G. van Bemmel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ludo Pagie
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ulrich Braunschweig
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wim Brugman
- Central Microarray Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter Meuleman
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ron M. Kerkhoven
- Central Microarray Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
218
|
Biehs B, Kechris K, Liu S, Kornberg TB. Hedgehog targets in the Drosophila embryo and the mechanisms that generate tissue-specific outputs of Hedgehog signaling. Development 2010; 137:3887-98. [PMID: 20978080 DOI: 10.1242/dev.055871] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paracrine Hedgehog (Hh) signaling regulates growth and patterning in many Drosophila organs. We mapped chromatin binding sites for Cubitus interruptus (Ci), the transcription factor that mediates outputs of Hh signal transduction, and we analyzed transcription profiles of control and mutant embryos to identify genes that are regulated by Hh. Putative targets that we identified included several Hh pathway components, mostly previously identified targets, and many targets that are novel. Every Hh target we analyzed that is not a pathway component appeared to be regulated by Hh in a tissue-specific manner; analysis of expression patterns of pathway components and target genes provided evidence of autocrine Hh signaling in the optic primordium of the embryo. We present evidence that tissue specificity of Hh targets depends on transcription factors that are Hh-independent, suggesting that `pre-patterns' of transcription factors partner with Ci to make Hh-dependent gene expression position specific.
Collapse
Affiliation(s)
- Brian Biehs
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2711, USA
| | | | | | | |
Collapse
|
219
|
Pauli A, van Bemmel JG, Oliveira RA, Itoh T, Shirahige K, van Steensel B, Nasmyth K. A direct role for cohesin in gene regulation and ecdysone response in Drosophila salivary glands. Curr Biol 2010; 20:1787-98. [PMID: 20933422 PMCID: PMC4763543 DOI: 10.1016/j.cub.2010.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/09/2010] [Accepted: 08/23/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND Developmental abnormalities observed in Cornelia de Lange syndrome have been genetically linked to mutations in the cohesin machinery. These and other recent experimental findings have led to the suggestion that cohesin, in addition to its canonical function of mediating sister chromatid cohesion, might also be involved in regulating gene expression. RESULTS We report that cleavage of cohesin's kleisin subunit in postmitotic Drosophila salivary glands induces major changes in the transcript levels of many genes. Kinetic analyses of changes in transcript levels upon cohesin cleavage reveal that a subset of genes responds to cohesin cleavage within a few hours. In addition, cohesin binds to most of these loci, suggesting that cohesin is directly regulating their expression. Among these genes are several that are regulated by the steroid hormone ecdysone. Cytological visualization of transcription at selected ecdysone-responsive genes reveals that puffing at Eip74EF ceases within an hour or two of cohesin cleavage, long before any decline in ecdysone receptor could be detected at this locus. CONCLUSION We conclude that cohesin regulates expression of a distinct set of genes, including those mediating the ecdysone response.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joke G. van Bemmel
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Raquel A. Oliveira
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Takehiko Itoh
- Laboratory of In Silico Functional Genomics, Graduate School of Bioscience, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
220
|
Weng M, Lee CY. Keeping neural progenitor cells on a short leash during Drosophila neurogenesis. Curr Opin Neurobiol 2010; 21:36-42. [PMID: 20952184 DOI: 10.1016/j.conb.2010.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 12/30/2022]
Abstract
The developmental potential of stem cells and progenitor cells must be functionally distinguished to ensure the generation of diverse cell types while maintaining the stem cell pool throughout the lifetime of an organism. In contrast to stem cells, progenitor cells possess restricted developmental potential, allowing them to give rise to only a limited number of post-mitotic progeny. Failure to establish or maintain restricted progenitor cell potential can perturb tissue development and homeostasis, and probably contributes to tumor initiation. Recent studies using the developing fruit fly Drosophila larval brain have provided molecular insight into how the developmental potential is restricted in neural progenitor cells.
Collapse
Affiliation(s)
- Mo Weng
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
221
|
An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell 2010; 7:101-13. [PMID: 20621054 DOI: 10.1016/j.stem.2010.06.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/26/2010] [Accepted: 06/09/2010] [Indexed: 12/18/2022]
Abstract
In this study, we describe an in vivo RNA interference functional genetics approach to evaluate the role of 20 different conserved polarity factors and fate determinants in mouse hematopoietic stem cell (HSC) activity. In total, this screen revealed three enhancers and one suppressor of HSC-derived reconstitution. Pard6a, Prkcz, and Msi2 shRNA-mediated depletion significantly impaired HSC repopulation. An in vitro promotion of differentiation was observed after the silencing of these genes, consistent with their function in regulating HSC self-renewal. Conversely, Prox1 knockdown led to in vivo accumulation of primitive and differentiated cells. HSC activity was also enhanced in vitro when Prox1 levels were experimentally reduced, identifying it as a potential antagonist of self-renewal. HSC engineered to overexpress Msi2 or Prox1 showed the reverse phenotype to those transduced with corresponding shRNA vectors. Gene expression profiling studies identified a number of known HSC and cell cycle regulators as potential downstream targets to Msi2 and Prox1.
Collapse
|
222
|
Bayraktar OA, Boone JQ, Drummond ML, Doe CQ. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev 2010; 5:26. [PMID: 20920301 PMCID: PMC2958855 DOI: 10.1186/1749-8104-5-26] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/01/2010] [Indexed: 01/01/2023] Open
Abstract
Tissue homeostasis depends on the ability of stem cells to properly regulate self-renewal versus differentiation. Drosophila neural stem cells (neuroblasts) are a model system to study self-renewal and differentiation. Recent work has identified two types of larval neuroblasts that have different self-renewal/differentiation properties. Type I neuroblasts bud off a series of small basal daughter cells (ganglion mother cells) that each generate two neurons. Type II neuroblasts bud off small basal daughter cells called intermediate progenitors (INPs), with each INP generating 6 to 12 neurons. Type I neuroblasts and INPs have nuclear Asense and cytoplasmic Prospero, whereas type II neuroblasts lack both these transcription factors. Here we test whether Prospero distinguishes type I/II neuroblast identity or proliferation profile, using several newly characterized Gal4 lines. We misexpress prospero using the 19H09-Gal4 line (expressed in type II neuroblasts but no adjacent type I neuroblasts) or 9D11-Gal4 line (expressed in INPs but not type II neuroblasts). We find that differential prospero expression does not distinguish type I and type II neuroblast identities, but Prospero regulates proliferation in both type I and type II neuroblast lineages. In addition, we use 9D11 lineage tracing to show that type II lineages generate both small-field and large-field neurons within the adult central complex, a brain region required for locomotion, flight, and visual pattern memory.
Collapse
Affiliation(s)
- Omer Ali Bayraktar
- Howard Hughes Medical Institute, University of Oregon, Eugene, 97403, USA
| | | | | | | |
Collapse
|
223
|
Prehoda KE. Polarization of Drosophila neuroblasts during asymmetric division. Cold Spring Harb Perspect Biol 2010; 1:a001388. [PMID: 20066083 DOI: 10.1101/cshperspect.a001388] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During Drosophila development, neuroblasts divide to generate progeny with two different fates. One daughter cell self-renews to maintain the neuroblast pool, whereas the other differentiates to populate the central nervous system. The difference in fate arises from the asymmetric distribution of proteins that specify either self-renewal or differentiation, which is brought about by their polarization into separate apical and basal cortical domains during mitosis. Neuroblast symmetry breaking is regulated by numerous proteins, many of which have only recently been discovered. The atypical protein kinase C (aPKC) is a broad regulator of polarity that localizes to the neuroblast apical cortical region and directs the polarization of the basal domain. Recent work suggests that polarity can be explained in large part by the mechanisms that restrict aPKC activity to the apical domain and those that couple asymmetric aPKC activity to the polarization of downstream factors. Polarized aPKC activity is created by a network of regulatory molecules, including Bazooka/Par-3, Cdc42, and the tumor suppressor Lgl, which represses basal recruitment. Direct phosphorylation by aPKC leads to cortical release of basal domain factors, preventing them from occupying the apical domain. In this framework, neuroblast polarity arises from a complex system that orchestrates robust aPKC polarity, which in turn polarizes substrates by coupling phosphorylation to cortical release.
Collapse
Affiliation(s)
- Kenneth E Prehoda
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
224
|
Histone deacetylase Rpd3 regulates olfactory projection neuron dendrite targeting via the transcription factor Prospero. J Neurosci 2010; 30:9939-46. [PMID: 20660276 DOI: 10.1523/jneurosci.1643-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3(-/-) PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3(-/-) phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor.
Collapse
|
225
|
Generalizing moving averages for tiling arrays using combined p-value statistics. Stat Appl Genet Mol Biol 2010; 9:Article29. [PMID: 20812907 DOI: 10.2202/1544-6115.1434] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High density tiling arrays are an effective strategy for genome-wide identification of transcription factor binding regions. Sliding window methods that calculate moving averages of log ratios or t-statistics have been useful for the analysis of tiling array data. Here, we present a method that generalizes the moving average approach to evaluate sliding windows of p-values by using combined p-value statistics. In particular, the combined p-value framework can be useful in situations when taking averages of the corresponding test-statistic for the hypothesis may not be appropriate or when it is difficult to assess the significance of these averages. We exhibit the strengths of the combined p-values methods on Drosophila tiling array data and assess their ability to predict genomic regions enriched for transcription factor binding. The predictions are evaluated based on their proximity to target genes and their enrichment of known transcription factor binding sites. We also present an application for the generalization of the moving average based on integrating two different tiling array experiments.
Collapse
|
226
|
Kitajima A, Fuse N, Isshiki T, Matsuzaki F. Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development. Dev Biol 2010; 347:9-23. [PMID: 20599889 DOI: 10.1016/j.ydbio.2010.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/05/2023]
Abstract
Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.
Collapse
Affiliation(s)
- Atsushi Kitajima
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
227
|
Buttitta LA, Katzaroff AJ, Edgar BA. A robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo. J Cell Biol 2010; 189:981-96. [PMID: 20548101 PMCID: PMC2886355 DOI: 10.1083/jcb.200910006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/12/2010] [Indexed: 11/29/2022] Open
Abstract
Terminally differentiated cells in Drosophila melanogaster wings and eyes are largely resistant to proliferation upon deregulation of either E2F or cyclin E (CycE), but exogenous expression of both factors together can bypass cell cycle exit. In this study, we show this is the result of cooperation of cell cycle control mechanisms that limit E2F-CycE positive feedback and prevent cycling after terminal differentiation. Aberrant CycE activity after differentiation leads to the degradation of E2F activator complexes, which increases the proportion of CycE-resistant E2F repressor complexes, resulting in stable E2F target gene repression. If E2F-dependent repression is lost after differentiation, high anaphase-promoting complex/cyclosome (APC/C) activity degrades key E2F targets to limit cell cycle reentry. Providing both CycE and E2F activities bypasses exit by simultaneously inhibiting the APC/C and inducing a group of E2F target genes essential for cell cycle reentry after differentiation. These mechanisms are essential for proper development, as evading them leads to tissue outgrowths composed of dividing but terminally differentiated cells.
Collapse
Affiliation(s)
| | - Alexia J. Katzaroff
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Bruce A. Edgar
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Deutsches Krebsforschungszentrum–Zentrum für Molekulare Biologie der Universität Heidelberg Allianz, D-69120 Heidelberg, Germany
| |
Collapse
|
228
|
Karlsson D, Baumgardt M, Thor S. Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol 2010; 8:e1000368. [PMID: 20485487 PMCID: PMC2867937 DOI: 10.1371/journal.pbio.1000368] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022] Open
Abstract
To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell “output” along the body axis by integration of local anteroposterior and temporal cues. The generation of distinct neuronal subtypes at different axial levels relies upon both anteroposterior and temporal cues. However, the integration between these cues is poorly understood. In the Drosophila central nervous system, the segmentally repeated neuroblast 5–6 generates a unique group of neurons, the Apterous (Ap) cluster, only in thoracic segments. Recent studies have identified elaborate genetic pathways acting to control the generation of these neurons. These insights, combined with novel markers, provide a unique opportunity for addressing how anteroposterior and temporal cues are integrated to generate segment-specific neuronal subtypes. We find that Pbx/Meis, Hox, and temporal genes act in three different ways. Posteriorly, Pbx/Meis and posterior Hox genes block lineage progression within an early temporal window, by triggering cell cycle exit. Because Ap neurons are generated late in the thoracic 5–6 lineage, this prevents generation of Ap cluster cells in the abdomen. Thoracically, Pbx/Meis and anterior Hox genes integrate with late temporal genes to specify Ap clusters, via activation of a specific feed-forward loop. In brain segments, “Ap cluster cells” are present but lack both proper Hox and temporal coding. Only by simultaneously altering Hox and temporal gene activity in all segments can Ap clusters be generated throughout the neuroaxis. This study provides the first detailed analysis, to our knowledge, of an identified neuroblast lineage along the entire neuroaxis, and confirms the concept that lineal homologs of truncal neuroblasts exist throughout the developing brain. We furthermore provide the first insight into how Hox/Pbx/Meis anteroposterior and temporal cues are integrated within a defined lineage, to specify unique neuronal identities only in thoracic segments. This study reveals a surprisingly restricted, yet multifaceted, function of both anteroposterior and temporal cues with respect to lineage control and cell fate specification. An animal's nervous system contains a wide variety of neuronal subtypes generated from neural progenitor (“stem”) cells, which generate different types of neurons at different axial positions and time points. Hence, the generation and specification of unique neuronal subtypes is dependent upon the integration of both spatial and temporal cues within distinct stem cells. The nature of this integration is poorly understood. We have addressed this issue in the Drosophila neuroblast 5–6 lineage. This stem cell is generated in all 18 segments of the central nervous system, stretching from the brain down to the abdomen of the fly, but a larger lineage containing a well-defined set of cells—the Apterous (Ap) cluster—is generated only in thoracic segments. We show that segment-specific generation of the Ap cluster neurons is achieved by the integration of the anteroposterior and temporal cues in several different ways. Generation of the Ap neurons in abdominal segments is prevented by anteroposterior cues stopping the cell cycle in the stem cell at an early stage. In brain segments, late-born neurons are generated, but are differently specified due to the presence of different anteroposterior and temporal cues. Finally, in thoracic segments, the temporal and spatial cues integrate on a highly limited set of target genes to specify the Ap cluster neurons.
Collapse
Affiliation(s)
- Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
- * E-mail:
| |
Collapse
|
229
|
Chartier NT, Hyenne V, Labbé JC. [Mechanisms of asymmetric cell division: from model organisms to tumorigenesis]. Med Sci (Paris) 2010; 26:251-7. [PMID: 20346274 DOI: 10.1051/medsci/2010263251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Asymmetric cell division is the process by which a single cell gives rise to two different daughter cells. This process is important to generate cell diversity during the development of multicellular organisms, as well as for stem cell self-renewal in adults. Current knowledge on so-called cancer stem cells suggests that a loss of asymmetry during their division could lead to overproliferation and favour tumorigenesis, highlighting the importance of deciphering the mechanisms governing asymmetric cell division. Two mechanisms can lead to an asymmetric cell division: asymmetry can either be governed by proximity to a given cellular environment (or niche), in which case the mechanism is referred to as extrinsic, or the mother cell polarizes itself without external intervention, in which case the mechanism is referred to as intrinsic. In the last 20 years, our understanding of intrinsic mechanisms leading to asymmetric cell division has progressed, largely after studies carried out in model organisms such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. These models allowed the identification of molecular complexes used by nearly all the cells that divide asymmetrically, including human cells. Here we review the main intrinsic mechanisms of asymmetric cell division as described in model organisms and discuss their relevance towards mammalian tumorigenesis.
Collapse
Affiliation(s)
- Nicolas T Chartier
- Unité de recherche en division et différenciation cellulaire, Institut de recherche en immunologie et en cancérologie, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal (Québec), Canada H3C 3J7.
| | | | | |
Collapse
|
230
|
Weng M, Golden KL, Lee CY. dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev Cell 2010; 18:126-35. [PMID: 20152183 DOI: 10.1016/j.devcel.2009.12.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 08/21/2009] [Accepted: 12/07/2009] [Indexed: 01/12/2023]
Abstract
To ensure normal development and maintenance of homeostasis, the extensive developmental potential of stem cells must be functionally distinguished from the limited developmental potential of transit amplifying cells. Yet the mechanisms that restrict the developmental potential of transit amplifying cells are poorly understood. Here we show that the evolutionarily conserved transcription factor dFezf/Earmuff (Erm) functions cell-autonomously to maintain the restricted developmental potential of the intermediate neural progenitors generated by type II neuroblasts in Drosophila larval brains. Although erm mutant intermediate neural progenitors are correctly specified and show normal apical-basal cortical polarity, they can dedifferentiate back into a neuroblast state, functionally indistinguishable from normal type II neuroblasts. Erm restricts the potential of intermediate neural progenitors by activating Prospero to limit proliferation and by antagonizing Notch signaling to prevent dedifferentiation. We conclude that Erm dependence functionally distinguishes intermediate neural progenitors from neuroblasts in the Drosophila larval brain, balancing neurogenesis with stem cell maintenance.
Collapse
Affiliation(s)
- Mo Weng
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
231
|
Kalverda B, Pickersgill H, Shloma VV, Fornerod M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 2010; 140:360-71. [PMID: 20144760 DOI: 10.1016/j.cell.2010.01.011] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 05/18/2009] [Accepted: 12/31/2009] [Indexed: 10/19/2022]
Abstract
Nuclear pore complexes (NPCs) mediate transport across the nuclear envelope. In yeast, they also interact with active genes, attracting or retaining them at the nuclear periphery. In higher eukaryotes, some NPC components (nucleoporins) are also found in the nucleoplasm, with a so far unknown function. We have functionally characterized nucleoporin-chromatin interactions specifically at the NPC or within the nucleoplasm in Drosophila. We analyzed genomic interactions of full-length nucleoporins Nup98, Nup50, and Nup62 and nucleoplasmic and NPC-tethered forms of Nup98. We found that nucleoporins predominantly interacted with transcriptionally active genes inside the nucleoplasm, in particular those involved in developmental regulation and the cell cycle. A smaller set of nonactive genes interacted with the NPC. Genes strongly interacting with nucleoplasmic Nup98 were downregulated upon Nup98 depletion and activated on nucleoplasmic Nup98 overexpression. Thus, nucleoporins stimulate developmental and cell-cycle gene expression away from the NPC by interacting with these genes inside the nucleoplasm.
Collapse
Affiliation(s)
- Bernike Kalverda
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
232
|
Levendusky MC, Basle J, Chang S, Mandalaywala NV, Voigt JM, Dearborn RE. Expression and regulation of vitamin D3 upregulated protein 1 (VDUP1) is conserved in mammalian and insect brain. J Comp Neurol 2010; 517:581-600. [PMID: 19824090 DOI: 10.1002/cne.22195] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Originally characterized as a cell-cycle inhibitor induced by vitamin D(3), the tumor suppressor vitamin-D(3) upregulated protein 1 (VDUP1) has increasingly been shown to play major physiological roles in cell differentiation and glucose metabolism. Here we show evolutionarily conserved expression patterns of VDUP1 in Drosophila and rat nervous systems, including subcellular localization--cytoplasmic enrichment in neurons and nuclear expression in glia. These anatomical correlates suggested conservation of VDUP1 regulation, which was investigated both functionally and through promoter studies. Characterization of orthologous vdup1 cis-regulatory regions identified evolutionarily conserved sequence blocks (CSBs) with similarities to neural enhancers, including basic helix-loop-helix (bHLH) transcription factor Neurogenin/Math/atonal and Mash/achaete-scute family members. E-boxes (CANNTG), the binding sites for bHLH proteins, were associated with these CSBs as well, including E-boxes known to mediate glucose-dependent upregulation of VDUP1 in nonneuronal cells. Hyperglycemia-induced upregulation of VDUP1 was observed in brain tumor cells and in the Drosophila nervous system, which resulted in developmental arrest. Taken together, these data demonstrate evolutionary conservation of VDUP1 regulation and function, and suggest an expanding role for VDUP1 in nervous system development.
Collapse
Affiliation(s)
- Mark C Levendusky
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
233
|
Chang S, Mandalaywala NV, Snyder RG, Levendusky MC, Dearborn RE. Hedgehog-dependent down-regulation of the tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), precedes lamina development in Drosophila. Brain Res 2010; 1324:1-13. [PMID: 20138028 DOI: 10.1016/j.brainres.2010.01.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 12/19/2009] [Accepted: 01/23/2010] [Indexed: 11/30/2022]
Abstract
The tumor suppressor vitamin D(3) up-regulated protein 1 (VDUP1) is expressed throughout the developing and mature Drosophila nervous system, but its regulatory pathways are not well understood. Within the developing Drosophila visual system, down-regulation of VDUP1 in lamina precursor cells (LPCs) coincided with the arrival of retinal axons into the lamina target field, suggesting VDUP1 regulation by an axonally transmitted signal. Hedgehog (Hh) is a signal well known to coordinate LPC proliferation and differentiation in response to retinal axon innervation, and analysis of orthologous dvdup1 promoters identified an evolutionarily conserved binding site for the Hh-dependent transcription factor cubitus interruptus (Ci). Hh-dependent regulation of VDUP1 in the developing lamina was confirmed in Hh loss-of-function backgrounds where VDUP1 expression was maintained in LPCs, inhibiting both cell proliferation and lamina neurogenesis. This putative coupling of VDUP1 to the Hh signaling pathway may provide novel insights into the mechanisms controlling brain growth and development.
Collapse
Affiliation(s)
- Solomon Chang
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 9 Samaritan Road, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
234
|
Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol 2010; 20:50-7. [DOI: 10.1016/j.conb.2009.12.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 01/04/2023]
|
235
|
Guenin L, Raharijaona M, Houlgatte R, Baba-Aissa F. Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth. BMC Genomics 2010; 11:47. [PMID: 20085633 PMCID: PMC2826315 DOI: 10.1186/1471-2164-11-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 01/19/2010] [Indexed: 11/11/2022] Open
Abstract
Background The antenno-maxilary complex (AMC) forms the chemosensory system of the Drosophila larva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1, V1), presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS) were affected. Our earlier reports on larval AMC did not argue in favour of a role of pros in cell fate decision, but strongly suggested that pros could be involved in the control of other aspect of neuronal development. In order to identify these functions, we used microarray analysis of larval AMC and CNS tissue isolated from the wild type, and three other previously characterised prospero alleles, including the V1 mutant, considered as a null allele for the AMC. Results A total of 17 samples were first analysed with hierarchical clustering. To determine those genes affected by loss of pros function, we calculated a discriminating score reflecting the differential expression between V1 mutant and other pros alleles. We identified a total of 64 genes in the AMC. Additional manual annotation using all the computed information on the attributed role of these genes in the Drosophila larvae nervous system, enabled us to identify one functional category of potential Prospero target genes known to be involved in neurite outgrowth, synaptic transmission and more specifically in neuronal connectivity remodelling. The second category of genes found to be differentially expressed between the null mutant AMC and the other alleles concerned the development of the sensory organs and more particularly the larval olfactory system. Surprisingly, a third category emerged from our analyses and suggests an association of pros with the genes that regulate autophagy, growth and insulin pathways. Interestingly, EGFR and Notch pathways were represented in all of these three functional categories. We now propose that Pros could perform all of these different functions through the modulation of these two antagonistic and synergic pathways. Conclusions The current data contribute to the clarification of the prospero function in the larval AMC and show that pros regulates different function in larvae as compared to those controlled by this gene in embryos. In the future, the possible mechanism by which Pros could achieve its function in the AMC will be explored in detail.
Collapse
Affiliation(s)
- Laure Guenin
- Université de Bourgogne, Facultés des Sciences, Unité Mixte de Recherche 5548 Associée au Centre National de la Recherche Scientifique, 6, Bd Gabriel, 21 000 Dijon, France
| | | | | | | |
Collapse
|
236
|
Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO J 2010; 28:3799-807. [PMID: 19851284 PMCID: PMC2770102 DOI: 10.1038/emboj.2009.309] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022] Open
Abstract
Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here, we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a shortcut to identifying genes important for nervous system development.
Collapse
|
237
|
Abstract
The regulation of self-renewal, cell diversity, and differentiation can occur by modulating symmetric and asymmetric cell divisions. Remarkably, asymmetric cell divisions can arise through multiple processes in which molecules in the cytoplasm and nucleus, as well as template "immortal" DNA strands, can segregate to one daughter cell during cell division. Explaining how these events direct distinct daughter cell fates is a major challenge to understanding how the organism is assembled and maintained for a lifetime. Numerous technical issues that are associated with assessing how distinct cell fates are executed in vivo have resulted in divergent interpretations of experimental findings. This review addresses some of these points and considers different developmental model systems that attempt to investigate how cell fate decisions are determined, as well as the molecules that guide these choices.
Collapse
Affiliation(s)
- Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental Biology, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
238
|
Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009; 23:2675-99. [PMID: 19952104 DOI: 10.1101/gad.1850809] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell division is commonly thought to involve the equal distribution of cellular components into the two daughter cells. During many cell divisions, however, proteins, membrane compartments, organelles, or even DNA are asymmetrically distributed between the two daughter cells. Here, we review the various types of asymmetries that have been described in yeast and in animal cells. Asymmetric segregation of protein determinants is particularly relevant for stem cell biology. We summarize the relevance of asymmetric cell divisions in various stem cell systems and discuss why defects in asymmetric cell division can lead to the formation of tumors.
Collapse
Affiliation(s)
- Ralph A Neumüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | | |
Collapse
|
239
|
van Steensel B, Braunschweig U, Filion GJ, Chen M, van Bemmel JG, Ideker T. Bayesian network analysis of targeting interactions in chromatin. Genome Res 2009; 20:190-200. [PMID: 20007327 DOI: 10.1101/gr.098822.109] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotes, many chromatin proteins together regulate gene expression. Chromatin proteins often direct the genomic binding pattern of other chromatin proteins, for example, by recruitment or competition mechanisms. The network of such targeting interactions in chromatin is complex and still poorly understood. Based on genome-wide binding maps, we constructed a Bayesian network model of the targeting interactions among a broad set of 43 chromatin components in Drosophila cells. This model predicts many novel functional relationships. For example, we found that the homologous proteins HP1 and HP1C each target the heterochromatin protein HP3 to distinct sets of genes in a competitive manner. We also discovered a central role for the remodeling factor Brahma in the targeting of several DNA-binding factors, including GAGA factor, JRA, and SU(VAR)3-7. Our network model provides a global view of the targeting interplay among dozens of chromatin components.
Collapse
Affiliation(s)
- Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
240
|
Pistocchi A, Feijóo CG, Cabrera P, Villablanca EJ, Allende ML, Cotelli F. The zebrafish prospero homolog prox1 is required for mechanosensory hair cell differentiation and functionality in the lateral line. BMC DEVELOPMENTAL BIOLOGY 2009; 9:58. [PMID: 19948062 PMCID: PMC2794270 DOI: 10.1186/1471-213x-9-58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 11/30/2009] [Indexed: 11/20/2022]
Abstract
Background The lateral line system in zebrafish is composed of a series of organs called neuromasts, which are distributed over the body surface. Neuromasts contain clusters of hair cells, surrounded by accessory cells. Results In this report we describe zebrafish prox1 mRNA expression in the migrating primordium and in the neuromasts of the posterior lateral line. Furthermore, using an antibody against Prox1 we characterize expression of the protein in different cell types within neuromasts, and we show distribution among the supporting cells and hair cells. Conclusion Functional analysis using antisense morpholinos indicates that prox1 activity is crucial for the hair cells to differentiate properly and acquire functionality, while having no role in development of other cell types in neuromasts.
Collapse
Affiliation(s)
- Anna Pistocchi
- Department of Biology, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
241
|
Berger C, Kannan R, Myneni S, Renner S, Shashidhara LS, Technau GM. Cell cycle independent role of Cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function. Dev Biol 2009; 337:415-24. [PMID: 19914234 DOI: 10.1016/j.ydbio.2009.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/02/2009] [Accepted: 11/09/2009] [Indexed: 11/16/2022]
Abstract
During development, neural progenitor cells or neuroblasts generate a great intra- and inter-segmental diversity of neuronal and glial cell types in the nervous system. In thoracic segments of the embryonic central nervous system of Drosophila, the neuroblast NB6-4t undergoes an asymmetric first division to generate a neuronal and a glial sublineage, while abdominal NB6-4a divides once symmetrically to generate only 2 glial cells. We had earlier reported a critical function for the G1 cyclin, CyclinE (CycE) in regulating asymmetric cell division in NB6-4t. Here we show that (i) this function of CycE is independent of its role in cell cycle regulation and (ii) the two functions are mediated by distinct domains at the protein level. Results presented here also suggest that CycE inhibits the function of Prospero and facilitates its cortical localization, which is critical for inducing stem cell behaviour, i.e. asymmetric cell division of NB6-4t. Furthermore our data imply that CycE is required for the maintenance of stem cell identity of most other neuroblasts.
Collapse
Affiliation(s)
- Christian Berger
- Institute for Genetics, University of Mainz, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
242
|
Sawa H. Specification of neurons through asymmetric cell divisions. Curr Opin Neurobiol 2009; 20:44-9. [PMID: 19896361 DOI: 10.1016/j.conb.2009.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 11/20/2022]
Abstract
The brain requires diverse neuronal subtypes to carry out its complex functions. Many types of neurons are produced through asymmetric division, and the molecular mechanisms of asymmetric division have been extensively studied in C. elegans and Drosophila. In these model organisms, the same molecular mechanisms regulate asymmetric divisions throughout development, although diverse cell types are created. How these common mechanisms for asymmetric division can specify diverse neuronal fates, however, is still being discovered. Recent studies suggest that neurons are specified by the combined effects of asymmetric divisions, which are regulated by common mechanisms, and specific transcription factors expressed in the mother cell.
Collapse
Affiliation(s)
- Hitoshi Sawa
- Laboratory for Cell Fate Decision, Riken Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
243
|
Agathocleous M, Harris WA. From Progenitors to Differentiated Cells in the Vertebrate Retina. Annu Rev Cell Dev Biol 2009; 25:45-69. [DOI: 10.1146/annurev.cellbio.042308.113259] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
- Gonville and Caius College, University of Cambridge, Cambridge CB2 1TA, United Kingdom;
| | - William A. Harris
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
244
|
Braunschweig U, Hogan GJ, Pagie L, van Steensel B. Histone H1 binding is inhibited by histone variant H3.3. EMBO J 2009; 28:3635-45. [PMID: 19834459 DOI: 10.1038/emboj.2009.301] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/07/2009] [Indexed: 01/23/2023] Open
Abstract
Linker histones are involved in the formation of higher-order chromatin structure and the regulation of specific genes, yet it remains unclear what their principal binding determinants are. We generated a genome-wide high-resolution binding map for linker histone H1 in Drosophila cells, using DamID. H1 binds at similar levels across much of the genome, both in classic euchromatin and heterochromatin. Strikingly, there are pronounced dips of low H1 occupancy around transcription start sites for active genes and at many distant cis-regulatory sites. H1 dips are not due to lack of nucleosomes; rather, all regions with low binding of H1 show enrichment of the histone variant H3.3. Knockdown of H3.3 causes H1 levels to increase at these sites, with a concomitant increase in nucleosome repeat length. These changes are independent of transcriptional changes. Our results show that the H3.3 protein counteracts association of H1, providing a mechanism to keep diverse genomic sites in an open chromatin conformation.
Collapse
Affiliation(s)
- Ulrich Braunschweig
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
245
|
Zhang L, Ward RE. uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila. Dev Biol 2009; 336:201-12. [PMID: 19818339 DOI: 10.1016/j.ydbio.2009.09.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/23/2009] [Accepted: 09/26/2009] [Indexed: 11/15/2022]
Abstract
The tracheal system of Drosophila melanogaster has proven to be an excellent model system for studying the development of branched tubular organs. Mechanisms regulating the patterning and initial maturation of the tracheal system have been largely worked out, yet important questions remain regarding how the mature tubes inflate with air at the end of embryogenesis, and how the tracheal system grows in response to the oxygen needs of a developing larva that increases nearly 1000-fold in volume over a four day period. Here we describe the cloning and characterization of uninflatable (uif), a gene that encodes a large transmembrane protein containing carbohydrate binding and cell signaling motifs in its extracellular domain. Uif is highly conserved in insect species, but does not appear to have a true ortholog in vertebrate species. uif is expressed zygotically beginning in stage 5 embryos, and Uif protein localizes to the apical plasma membrane in all ectodermally derived epithelia, most notably in the tracheal system. uif mutant animals show defects in tracheal inflation at the end of embryogenesis, and die primarily as larvae. Tracheal tubes in mutant larvae are often crushed or twisted, although tracheal patterning and maturation appear normal during embryogenesis. uif mutant larvae also show defects in tracheal growth and molting of their tracheal cuticle.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | | |
Collapse
|
246
|
Kim DW, Hirth F. Genetic mechanisms regulating stem cell self-renewal and differentiation in the central nervous system of Drosophila. Cell Adh Migr 2009; 3:402-11. [PMID: 19421003 DOI: 10.4161/cam.3.4.8690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies using the Drosophila central nervous system as a model have identified key molecules and mechanisms underlying stem cell self-renewal and differentiation. These studies suggest that proteins like Aurora-A, atypical protein kinase C, Prospero and Brain tumor act as key regulators in a tightly coordinated interplay between mitotic spindle orientation and asymmetric protein localization. These data also provide initial evidence that both processes are coupled to cell cycle progression and growth control, thereby regulating a binary switch between proliferative stem self-renewal and differentiative progenitor cell specification. Considering the evolutionary conservation of some of the mechanisms and molecules involved, these data provide a rationale and genetic model for understanding stem cell self-renewal and differentiation in general. The new data gained in Drosophila may therefore lead to conceptual advancements in understanding the aetiology and treatment of human neurological disorders such as brain tumor formation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongwook W Kim
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, UK
| | | |
Collapse
|
247
|
Kerner P, Simionato E, Le Gouar M, Vervoort M. Orthologs of key vertebrate neural genes are expressed during neurogenesis in the annelidPlatynereis dumerilii. Evol Dev 2009; 11:513-24. [DOI: 10.1111/j.1525-142x.2009.00359.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
248
|
Cabernard C, Doe CQ. Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Dev Cell 2009; 17:134-41. [PMID: 19619498 DOI: 10.1016/j.devcel.2009.06.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/14/2009] [Accepted: 06/18/2009] [Indexed: 12/23/2022]
Abstract
Precise regulation of stem cell self-renewal/differentiation is essential for embryogenesis and tumor suppression. Drosophila neural progenitors (neuroblasts) align their spindle along an apical/basal polarity axis to generate a self-renewed apical neuroblast and a differentiating basal cell. Here, we genetically disrupt spindle orientation without altering cell polarity to test the role of spindle orientation in self-renewal/differentiation. We perform correlative live imaging of polarity markers and spindle orientation over multiple divisions within intact brains, followed by molecular marker analysis of cell fate. We find that spindle alignment orthogonal to apical/basal polarity always segregates apical determinants into both siblings, which invariably assume a neuroblast identity. Basal determinants can all be localized into one sibling without inducing neuronal differentiation, but overexpression of the basal determinant Prospero can deplete neuroblasts. We conclude that the ratio of apical/basal determinants specifies neuroblast/GMC identity, and that apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation.
Collapse
Affiliation(s)
- Clemens Cabernard
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon 1254, Eugene OR 97403, USA
| | | |
Collapse
|
249
|
Simon F, Fichelson P, Gho M, Audibert A. Notch and Prospero repress proliferation following cyclin E overexpression in the Drosophila bristle lineage. PLoS Genet 2009; 5:e1000594. [PMID: 19662164 PMCID: PMC2715135 DOI: 10.1371/journal.pgen.1000594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms that coordinate cell proliferation, cell cycle arrest, and cell differentiation is essential to address the problem of how “normal” versus pathological developmental processes take place. In the bristle lineage of the adult fly, we have tested the capacity of post-mitotic cells to re-enter the cell cycle in response to the overexpression of cyclin E. We show that only terminal cells in which the identity is independent of Notch pathway undergo extra divisions after CycE overexpression. Our analysis shows that the responsiveness of cells to forced proliferation depends on both Prospero, a fate determinant, and on the level of Notch pathway activity. Our results demonstrate that the terminal quiescent state and differentiation are regulated by two parallel mechanisms acting simultaneously on fate acquisition and cell cycle progression. Despite substantial progress that has been made, we still know little about how single precursor cells undergo a limited number of cell divisions before arrest. Discovering the mechanisms by which terminal cells maintain cell division arrest is essential for understanding “normal” development, as well as the origin of pathological deregulations. Using the bristle cell lineage, a model system widely employed to analye cell identity acquisition, we observed that only two out of four terminal cells in this lineage are unable to re-enter the cell cycle and proliferate. Our study shows that in these cells, cell division arrest is maintained by the action of the transcription factor Prospero and the signalling pathway Notch. Since both of these factors also control cell identity in this lineage, this finding demonstrates that common elements acting simultaneously and in parallel regulate the terminal quiescent state and differentiation. This system provides a unique animal model in which to understand how the mechanisms involved in cell fate acquisition and those controlling cell division intermingle to produce cell lineages resulting in terminal cells in the right number and at the right place and time.
Collapse
Affiliation(s)
- Françoise Simon
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
| | - Pierre Fichelson
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
| | - Michel Gho
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
| | - Agnès Audibert
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
- * E-mail:
| |
Collapse
|
250
|
Ruiz i Altaba A, Brand AH. Entity versus property: tracking the nature, genesis and role of stem cells in cancer. Conference on Stem cells and cancer. EMBO Rep 2009; 10:832-6. [PMID: 19609320 DOI: 10.1038/embor.2009.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/23/2009] [Indexed: 12/30/2022] Open
Affiliation(s)
- Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | | |
Collapse
|