201
|
A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci 2021; 295:102495. [PMID: 34375877 DOI: 10.1016/j.cis.2021.102495] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Recently, zinc oxide nanoparticles (ZnONPs) are gaining much interest of nanobiotechnologists due to their profound biomedical applications. ZnONPs are used as antibacterial agents, which cause both gram-positive and negative bacterial cell death through the generation of reactive free radicals as well as membrane rupture. ZnONPs show excellent antioxidant properties in normal mammalian cells via the scavenging of reactive free radicals and up-regulation of antioxidant enzyme activities. Besides, it also shows hypoglycaemic effect in diabetic animals via pancreatic β-cells mediated increased insulin secretion and glucose uptake by liver, skeletal muscles and adipose tissues. Among the other potential applications, ZnONPs-induced bone and soft-tissue regeneration open a new horizon in the field of tissue engineering. Here, first we reviewed the complete synthesis routes of ZnONPs by physical, chemical, and biological pathways as well as outlined the advantages and disadvantages of the techniques. Further, we discussed the several important aspects of physicochemical analysis of ZnONPs. Additionally, we extensively reviewed the important biomedical applications of ZnONPs as antibacterial, antioxidant, and antidiabetic agents, and in the field of tissue engineering with special emphasis on their mechanisms of actions. Furthermore, the future perspectives of the ZnONPs are also discussed.
Collapse
|
202
|
Dhiman S, Singh S, Varma A, Goel A. Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica. Biometals 2021; 34:1275-1293. [PMID: 34455527 DOI: 10.1007/s10534-021-00342-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023]
Abstract
Plant pathogens resistant to the commercially available fungicides and bactericides even at higher concentrations are the biggest challenge for the farmers to control the losses due to plant diseases. The antibacterial and antifungal potential of nanomaterials makes them a suitable candidate for the control of plant diseases. Thus, the present study reports the phytofabricated zinc oxide nanoparticles (ZnO Np's) using aqueous plant leaf extract of Terminalia bellerica (Baheda). Characterization of ZnO nanoparticles was done by ultraviolet-visible (UV-Vis) studies, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR) analysis, and transmission electron microscopy (TEM). The presence of pure hexagonal wurtzite crystalline structure of ZnO nanoparticles was confirmed by XRD analysis. The TEM images revealed the spherical to hexagonal shaped ZnO nanoparticles with sizes ranging from 20 to 30 nm. The stabilization of synthesized ZnO nanoparticles through the interactions of terpenoids, steroids, phenylpropanoids, flavonoids, phenolic acids, and enzymes present in the leaf extract was suggested by FTIR analysis. The mechanism of the formation of ZnO nanoparticles using Terminalia bellerica (Baheda) (Tb-ZnO Np's) as a bioactive compound is proposed. These phytofabricated ZnO nanoparticles (Tb-ZnO Np's) have shown significant antifungal potential against Alternaria brassicae the causal agent of Alternaria blight disease/leaf spot disease in Brassica species. The microscopic results confirm the changes in mycelium morphology and reduction in the number of spore germination at 0.2 mg/mL concentration Tb-ZnO Np's.
Collapse
Affiliation(s)
- Shailja Dhiman
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201301, India
| | - Surender Singh
- Department of Microbiology, Central University Haryana, Mahendergarh, 123031, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201301, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201301, India.
| |
Collapse
|
203
|
Jan H, Shah M, Andleeb A, Faisal S, Khattak A, Rizwan M, Drouet S, Hano C, Abbasi BH. Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other In Vitro Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4786227. [PMID: 34457112 PMCID: PMC8387193 DOI: 10.1155/2021/4786227] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
The anti-cancer, anti-aging, anti-inflammatory, antioxidant, and anti-diabetic effects of zinc oxide nanoparticles (ZnO-NPs) produced from aqueous leaf extract of Aquilegia pubiflora were evaluated in this study. Several methods were used to characterize ZnO-NPs, including SEM, FTIR, XRD, DLS, PL, Raman, and HPLC. The nanoparticles that had a size of 34.23 nm as well as a strong aqueous dispersion potential were highly pure, spherical or elliptical in form, and had a mean size of 34.23 nm. According to FTIR and HPLC studies, the flavonoids and hydroxycinnamic acid derivatives were successfully capped. Synthesized ZnO-NPs in water have a zeta potential of -18.4 mV, showing that they are stable solutions. The ZnO-NPs proved to be highly toxic for the HepG2 cell line and showed a reduced cell viability of 23.68 ± 2.1% after 24 hours of ZnO-NP treatment. ZnO-NPs also showed excellent inhibitory potential against the enzymes acetylcholinesterase (IC50: 102 μg/mL) and butyrylcholinesterase (IC50: 125 μg/mL) which are involved in Alzheimer's disease. Overall, the enzymes involved in aging, diabetes, and inflammation showed a moderate inhibitory response to ZnO-NPs. Given these findings, these biosynthesized ZnO-NPs could be a good option for the cure of deadly diseases such as cancer, diabetes, Alzheimer's, and other inflammatory diseases due to their strong anticancer potential and efficient antioxidant properties.
Collapse
Affiliation(s)
- Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anisa Andleeb
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shah Faisal
- Institute of Biotechnology and Microbiology, Bacha Khan University, KPK, Pakistan
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir University Peshawar, KPK, Pakistan
| | - Muhammad Rizwan
- Centre for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, Cedex 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, Cedex 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
204
|
Zhang M, Qiao X, Han W, Jiang T, Liu F, Zhao X. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr Polym 2021; 266:118100. [PMID: 34044919 DOI: 10.1016/j.carbpol.2021.118100] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Moist, breathable and antibacterial microenvironment can promote cell proliferation and migration, which is beneficial to wound healing. Here, we fabricated a novel sodium alginate-chitosan oligosaccharide‑zinc oxide (SA-COS-ZnO) composite hydrogel by spontaneous Schiff base reaction, using aldehydated sodium alginate (SA), chitosan oligosaccharide (COS), and zinc oxide (ZnO) nanoparticles, which can provide a moist and antibacterial environment for wound healing. The porosity and swelling degree of SA-COS-ZnO hydrogel are 80% and 150%, respectively, and its water vapor permeability is 682 g/m2/24h. The composite hydrogel showed good biocompatibility to blood cells, 3T3 cells, and 293T cells, and significant antibacterial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Bacillus subtilis. Moreover, the hydrogel showed a promoting effect on wound healing in a rat scald model. The present study suggests that marine carbohydrates composite hydrogels are promising in wound care management.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoni Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenwei Han
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fei Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
205
|
Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci 2021; 294:102451. [PMID: 34098385 DOI: 10.1016/j.cis.2021.102451] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
In recent decades synthetic polymers have gained increasing popularity, and nowadays they are an integral part of people's daily lives. In addition, owing to their competitive advantage and being susceptible to modification, polymers have stimulated the fast development of innovative technologies in many areas of science. Biopolymers are of particular interest in various branches of medicine, such as implantology of bones, cartilage and skin tissues as well as blood vessels. Biomaterials with such specific applications must have appropriate mechanical and strength characteristics and above all they must be compatible with the surrounding tissues, human blood and its components, i.e. exhibit high hemo- and biocompatibility, low or no thrombo- and carcinogenicity, foreign body response (host response), appropriate osteoconduction, osteoinduction and mineralization. For biocompatibility improvement many surface treatment techniques have been utilized leading to fabricate the polymer biomaterials of required properties, also at nanoscale. This review paper discusses the most important physicochemical and biological factors that affect the biocompatibility, thus the reaction of the living organism after insertion of the polymer-based biomaterials, i.e. surface modification and/or degradation, surface composition (functional groups and charge), size and shapes, hydrophilic-hydrophobic character, wettability and surface free energy, topography (roughness, stiffness), crystalline and amorphous structure, nanostructure, cell adhesion and proliferation, cellular uptake. Particularly, the application of polysaccharides (chitosan, cellulose, starch) in the tissue engineering is emphasized.
Collapse
|
206
|
Gandhi AD, Miraclin PA, Abilash D, Sathiyaraj S, Velmurugan R, Zhang Y, Soontarapa K, Sen P, Sridharan TB. Nanosilver reinforced Parmelia sulcata extract efficiently induces apoptosis and inhibits proliferative signalling in MCF-7 cells. ENVIRONMENTAL RESEARCH 2021; 199:111375. [PMID: 34048745 DOI: 10.1016/j.envres.2021.111375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The Lichen, Parmelia sulcata synthesizes various secondary metabolites, in which phenolic based compounds received much attention due to their importance in biomedical application. Especially the phenolic compound was effective against the cancer treatment. An effective administration of such plant natural product can represent a significant conventional management of cancer in terms of chemoprevention. The nanomedicines are group of agents that selectively interfere the cancer cells which leads to reduction of side effect thereby reducing the doses. Silver nanoparticles is a promising antitumor agent, however, the conventional production of silver nanoparticles have many drawbacks which led to increase in need of eco-friendly biological production methods. In this study, we made an attempt to synthesise a nano silver (Ps-AgNPs) from phenolic extract of lichen Parmelia sulcata extract. The Ps-AgNps was applied for anticancer activity using MCF-7 cells and the effect was characterised by western blotting method. The FTIR, XRD, UV and TEM results confirms the presence of silver nanoparticles in phenolic extract of lichen Parmelia sulcata. The cytotoxicity assay shows that the Ps-AgNPs is toxic against cancer cells (MCF-7) but not to normal cells (NIH3T3), which confirm the selective induction of cell death (apoptosis) against cancer cells. The Western blot analysis also clearly indicates the down regulation of inflammatory genes (TNF-alpha and IL-6) and cell cycle genes (PCNA and Cyclin-D1) thus promoting intrinsic apoptotic pathway. The results suggest that Ps-AgNPs can effectively kill cancer cells and can be used as an alternative therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Arumugam Dhanesh Gandhi
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Prasanna A Miraclin
- Centre for Bio Separation Technology (CBST), School of Biosciences and Technology, VIT, Vellore, 632014, Tamil Nadu, India
| | - Doraiah Abilash
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sivaji Sathiyaraj
- Nano and Energy Biosciences Laboratory, Thiruvalluvar University, Serkkadu, Vellore, India
| | - Rajendran Velmurugan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yang Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Khantong Soontarapa
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), School of Biosciences and Technology, VIT, Vellore, 632014, Tamil Nadu, India
| | - T B Sridharan
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
207
|
Riduan SN, Zhang Y. Recent Advances of Zinc-based Antimicrobial Materials. Chem Asian J 2021; 16:2588-2595. [PMID: 34313021 DOI: 10.1002/asia.202100656] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Indexed: 12/16/2022]
Abstract
Zinc has been widely utilized as an antimicrobial material, often in the form of complexes or zinc oxide nanoparticles. The efficacy of zinc complexes are often due to the synergistic effect of both the zinc ions and the attached organic ligands. In contrast, the nanoparticle effect of ZnO, and the photocatalytic generation of reactive oxygen species (ROS) has been postulated to be the effective mechanism of ZnO as a biocide. Recently, new forms of zinc-based biocidal materials have been reported with distinct antimicrobial mechanisms. This minireview summarizes these recent advances, including zinc-based nano-arrays, MOF-based ROS release and zinc composites that can self-generate ROS.
Collapse
Affiliation(s)
- Siti Nurhanna Riduan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| |
Collapse
|
208
|
Tao H, Hu S, Xia C, Wang M, Wang T, Zeng W, Li Y, Chen H, Zheng J, Wang Q. Involvement of glucosinolates in the resistance to zinc oxide nanoparticle-induced toxicity and growth inhibition in Arabidopsis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1040-1049. [PMID: 34152344 DOI: 10.1039/d1em00134e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used to manufacture textile fibers, synthetic rubber, and paint. However, crop yields and quality are threatened by the increased use of metallic NPs in industry, which has resulted in their accumulation in agricultural land. Many studies have shown that plants defend against biotic and abiotic stresses through the activities of metabolites and hormones. However, whether glucosinolates (GSs) are involved in plant responses to ZnO NP-related stress remains unknown. In this study, wild-type (WT) and GS mutant (myb28/29 and cyp79B2/B3) Arabidopsis plants were subjected to ZnO NP stress to address this question. Our results showed that exposure to ZnO NPs promoted GS accumulation and induced the relative messenger RNA (mRNA) expression levels of GS biosynthesis-related genes. Moreover, ZnO NP treatment adversely affected root length, the number of lateral roots, chlorophyll contents, and plant biomass. Importantly, our results showed that root growth, chlorophyll contents, and plant biomass were all decreased in the GS mutants compared with those in WT plants. Overall, our results showed that WT plants tolerated ZnO NP-induced stress more efficiently than the GS mutants, suggesting that GSs are involved in plant resistance to ZnO NP-induced toxicity.
Collapse
Affiliation(s)
- Han Tao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Songshen Hu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China. and Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Chuchu Xia
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Mengyu Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Wei Zeng
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Yubo Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Hao Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| |
Collapse
|
209
|
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10070884. [PMID: 34356805 DOI: 10.3389/fphy.2021.641481] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 05/22/2023]
Abstract
The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs. Iron is one of the key microelements and plays an important role in the function of living systems of different hierarchies. Iron abundance and its physiological functions bring into question the ability of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation that combine antimicrobial action and high biocompatibility with the human body. This review is intended to inform readers about the available data on the antimicrobial properties of IONPs, a range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Anastasia A Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
210
|
DeLong RK, Swanson R, Niederwerder MC, Khanal P, Aryal S, Marasini R, Jaberi-Douraki M, Shakeri H, Mazloom R, Schneider S, Ensley S, Clarke LL, Woode RA, Young S, Rayamajhi S, Miesner T, Higginbotham ML, Lin Z, Shrestha T, Ghosh K, Glaspell G, Mathew EN. Zn-based physiometacomposite nanoparticles: distribution, tolerance, imaging, and antiviral and anticancer activity. Nanomedicine (Lond) 2021; 16:1857-1872. [PMID: 34282923 DOI: 10.2217/nnm-2021-0179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the distribution, tolerance, and anticancer and antiviral activity of Zn-based physiometacomposites (PMCs). Manganese, iron, nickel and cobalt-doped ZnO, ZnS or ZnSe were synthesized. Cell uptake, distribution into 3D culture and mice, and biochemical and chemotherapeutic activity were studied by fluorescence/bioluminescence, confocal microscopy, flow cytometry, viability, antitumor and virus titer assays. Luminescence and inductively coupled plasma mass spectrometry analysis showed that nanoparticle distribution was liver >spleen >kidney >lung >brain, without tissue or blood pathology. Photophysical characterization as ex vivo tissue probes and LL37 peptide, antisense oligomer or aptamer delivery targeting RAS/Ras binding domain (RBD) was investigated. Treatment at 25 μg/ml for 48 h showed ≥98-99% cell viability, 3D organoid uptake, 3-log inhibition of β-Galactosidase and porcine reproductive respiratory virus infection. Data support the preclinical development of PMCs for imaging and delivery targeting cancer and infectious disease.
Collapse
Affiliation(s)
- Robert K DeLong
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ryan Swanson
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Pratiksha Khanal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Santosh Aryal
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA.,Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Ramesh Marasini
- Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Majid Jaberi-Douraki
- 1DATA Consortium, & Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Heman Shakeri
- 1DATA Consortium, & Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Reza Mazloom
- 1DATA Consortium, & Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Sarah Schneider
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Steve Ensley
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rowena A Woode
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sarah Young
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Sagar Rayamajhi
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Tracy Miesner
- Comparative Medicine Group, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Mary L Higginbotham
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Zhoumeng Lin
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Institute for Computational Comparative Medicine, Kansas State University Manhattan, KS 66061, USA
| | - Tej Shrestha
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Kartik Ghosh
- Department of Physics, Astronomy & Materials Science, Missouri State University, Springfield, MO 65897, USA
| | - Garry Glaspell
- US Army Corps of Engineers Engineer Research & Development Center, Alexandria, VA 22315, USA
| | - Elza N Mathew
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
211
|
Curcuma longa Mediated Synthesis of Copper Oxide, Nickel Oxide and Cu-Ni Bimetallic Hybrid Nanoparticles: Characterization and Evaluation for Antimicrobial, Anti-Parasitic and Cytotoxic Potentials. COATINGS 2021. [DOI: 10.3390/coatings11070849] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticles have long been known and their biomedical potent activities have proven that these can provide an alternative to other drugs. In the current study, copper oxide, nickel oxide and copper/nickel hybrid NPs were biosynthesized by using Curcuma longa root extracts as a reducing and capping agent, followed by characterization via UV-spectroscopy, Fourier transformed infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo galvanometric analysis (TGA), and band gap. FTIR spectroscopy shows the availability of various functional groups and biomolecules such as carbohydrate, protein, polysaccharides, etc. The EDX peak confirmed that the elemental nickel and copper were present in large quantity in the analyzed sample. Scanning electron micrographs showed that the synthesized CuO-NPs and NiO-NPs were polyhedral uniform and homogeneous in morphology, while the copper/nickel hybrid NPs were well dispersed, spherical in shape, and uniform in size. TEM micrographs of CuO-NPs had 27.72 nm, NiO had 23.13 nm and, for their hybrid, the size was 17.38 nm, which was confirmed respectively. The CuO and NiO NPs possessed spherical- to multi-headed shapes, while their hybrid showed a complete spherical shape, small size, and polydispersed NPs. The XRD spectra revealed that the average particle size for CuO, NiO, and hybrid were 29.7 nm, 28 nm and 27 nm, respectively. Maximum anti-diabetic inhibition of (52.35 ± 0.76: CuO-NPs, 68.1 ± 0.93: NiO-NPs and 74.23 ± 0.42: Cu + Ni hybrids) for α-amylase and (39.25 ± 0.18 CuO-NPs, 52.35 ± 1.32: NiO-NPs and 62.32 ± 0.48: Cu + Ni hybrids) for α-glucosidase were calculated, respectively, at 400 µg/mL. The maximum antioxidants capacity was observed as 65.1 ± 0.83 μgAAE/mg for Cu-Ni hybrids, 58.39 ± 0.62 μgAAE/mg for NiO-NPs, and 52.2 ± 0.31 μgAAE/mg for CuO-NPs, respectively, at 400 μg/mL. The highest antibacterial activity of biosynthesized NPs was observed against P. aeuroginosa (28 ± 1.22) and P. vulgaris (25 ± 1.73) for Cu + Ni hybrids, respectively. Furthermore, the antibiotics were coated with NPs, and activity was noted. Significant anti-leishmanial activity of 60.5 ± 0.53 and 68.4 ± 0.59 for Cu + Ni hybrids; 53.2 ± 0.48 and 61.2 ± 0.44 for NiO-NPs; 49.1 ± 0.39 and 56.2 ± 0.45 for CuO-NPs at 400 μg/mL were recorded for promastigote and amastigotes, respectively. The biosynthesized NPs also showed significant anti-cancerous potential against HepG2 cell lines. It was concluded from the study that NPs are potential agents to be used as an alternative to antimicrobial agents.
Collapse
|
212
|
Jabłońska J, Onyszko M, Konopacki M, Augustyniak A, Rakoczy R, Mijowska E. Fabrication of Paper Sheets Coatings Based on Chitosan/Bacterial Nanocellulose/ZnO with Enhanced Antibacterial and Mechanical Properties. Int J Mol Sci 2021; 22:7383. [PMID: 34299003 PMCID: PMC8305840 DOI: 10.3390/ijms22147383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Here, we designed paper sheets coated with chitosan, bacterial cellulose (nanofibers), and ZnO with boosted antibacterial and mechanical activity. We investigated the compositions, with ZnO exhibiting two different sizes/shapes: (1) rods and (2) irregular sphere-like particles. The proposed processing of bacterial cellulose resulted in the formation of nanofibers. Antimicrobial behavior was tested using E. coli ATCC® 25922™ following the ASTM E2149-13a standard. The mechanical properties of the paper sheets were measured by comparing tearing resistance, tensile strength, and bursting strength according to the ISO 5270 standard. The results showed an increased antibacterial response (assigned to the combination of chitosan and ZnO, independent of its shape and size) and boosted mechanical properties. Therefore, the proposed composition is an interesting multifunctional mixture for coatings in food packaging applications.
Collapse
Affiliation(s)
- Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Magdalena Onyszko
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 49, 71-065 Szczecin, Poland; (M.O.); (E.M.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 49, 71-065 Szczecin, Poland; (M.O.); (E.M.)
| |
Collapse
|
213
|
do Carmo Neto JR, Guerra RO, Machado JR, Silva ACA, da Silva MV. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr Med Chem 2021; 29:2127-2141. [PMID: 34254904 DOI: 10.2174/0929867328666210709105850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials mainly involves trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnO NPs on these parasites.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450 Goiania, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
214
|
Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021; 141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by iron dependent accumulation of cellular reactive oxygen species (ROS) when glutathione (GSH)-dependent lipid peroxidation repair systems are compromised. Nuclear receptor co-activator 4 (NCOA4)-mediated selective autophagy of ferritin, termed ferritinophagy, involves the regulation of ferroptosis. Emerging evidence has revealed that ferritinophagy and ferroptosis exert a significant role in the occurrence and development of cardiovascular disease. In the present review, we aimed to present a brief overview of ferritinophagy and ferroptosis focusing on the underlying mechanism and regulations involved. We summarize and discuss relevant research progress on the role of ferritinophagy and ferroptosis in cardiovascular diseases accompanied with potential applications of ferritinophagy and ferroptosis modulators in the treatment of ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Yong Qiao
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Dong Wang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Chengchun Tang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| |
Collapse
|
215
|
Wang M, Xia A, Wu S, Shen J. Facile Synthesis of the Cu, N-CDs@GO-CS Hydrogel with Enhanced Antibacterial Activity for Effective Treatment of Wound Infection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7928-7935. [PMID: 34157835 DOI: 10.1021/acs.langmuir.1c00529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug resistance and increasing dangers during antibiotic treatment have brought a new eternal task for the research of effective antibacterial agents or therapeutics. In this work, we used Cu, N-doped carbon dots (Cu, N-CDs) to modify graphene oxide (GO) nanosheets and then loaded to chitosan (CS) hydrogels via electrostatic interaction to form Cu, N-CDs@GO-CS hydrogel nanoplatforms to treat Staphylococcus aureus and Escherichia coli. The excellent antibacterial activity is from the combined effects of hyperthermia and reactive oxygen species generated under near-infrared (NIR) laser irradiation of the Cu, N-CDs@GO-CS hydrogel, which shows excellent antibacterial activity compared with the CS hydrogel or the Cu, N-CDs@GO-CS hydrogel without NIR laser irradiation. Moreover, the inherent antibacterial nature of the CS hydrogel or the Cu, N-CDs@GO-CS hydrogel was used to treat bacteria-infected wounds in mice, which also protected the wound area from second infection. In vivo experiments demonstrate favorable wound healing results and have no significant harmful side effects to the major organs in mice. Overall, this work demonstrates that the antibacterial Cu, N-CDs@GO-CS hydrogel offers significant prospect as an antibacterial reagent for wound healing.
Collapse
Affiliation(s)
- Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Ao Xia
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Shishan Wu
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
216
|
Gharpure S, Ankamwar B. Use of nanotechnology in combating coronavirus. 3 Biotech 2021; 11:358. [PMID: 34221822 PMCID: PMC8238387 DOI: 10.1007/s13205-021-02905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/19/2021] [Indexed: 10/25/2022] Open
Abstract
Recent COVID-19 pandemic situation caused due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affected global health as well as economics. There is global attention on prevention, diagnosis as well as treatment of COVID-19 infection which would help in easing the current situation. The use of nanotechnology and nanomedicine has been considered to be promising due to its excellent potential in managing various medical issues such as viruses which is a major threat. Nanoparticles have shown great potential in various biomedical applications and can prove to be of great use in antiviral therapy, especially over other conventional antiviral agents. This review focusses on the pathophysiology of SARS-CoV-2 and the progression of the COVID-19 disease followed by currently available treatments for the same. Use of nanotechnology has been elaborated by exploiting various nanoparticles like metal and metal oxide nanoparticles, carbon-based nanoparticles, quantum dots, polymeric nanoparticles as well as lipid-based nanoparticles along with its mechanism of action against viruses which can prove to be beneficial in COVID-19 therapeutics. However, it needs to be considered that use of these nanotechnology-based approaches in COVID-19 therapeutics only aids the human immunity in fighting the infection. The main function is performed by the immune system in combatting any infection.
Collapse
Affiliation(s)
- Saee Gharpure
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| | - Balaprasad Ankamwar
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| |
Collapse
|
217
|
Seshadri VD. Zinc oxide nanoparticles from Cassia auriculata flowers showed the potent antimicrobial and in vitro anticancer activity against the osteosarcoma MG-63 cells. Saudi J Biol Sci 2021; 28:4046-4054. [PMID: 34220263 PMCID: PMC8241895 DOI: 10.1016/j.sjbs.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) is a foremost mesenchymal bone neoplasm and it can occur at any age with survival rate is nearly 2-8 times lesser in elders than in teenagers. The clinical therapies for cancer treatment have gradually becoming outdated because of the developments of nano-medicine and multi-targeted drug-delivery. In this work, we green synthesized the zinc oxide nanoparticles from the Cassia auriculata flower (AS-ZnONPs) extract and evaluated its antimicrobial and in vitro anticancer potential against the OS MG-63 cells. The synthesized AS-ZnONPs were confirmed and characterized by using UV-vis spectroscopy, XRD, FE-SEM, and photoluminescence techniques. The antimicrobial activity of AS-ZnONPs was studied by disc diffusion technique. The viability of AS-ZnONPs treated MG-63 cells were examined by MTT assay. The apoptotic cells in the AS-ZnONPs treated MG-63 cells were assayed by dual staining. The MMP status of AS-ZnONPs treated cells were tested by Rh-123 staining. The cell adhesion assay was performed to detect the anticancer effects of AS-ZnONPs against MG-63 cells. The results of UV-vis spectroscopy, XRD, FE-SEM, and photoluminescence techniques proved the formation of AS-ZnONPs and it has the hexagonal wurtzite structures. AS-ZnONPs displayed the potent antimicrobial activity against the tested microbial strains. The AS-ZnONPs were appreciably inhibited the cell viability of MG-63 cells. The outcomes of fluorescence staining proved that AS-ZnONPs reduced the MMP and prompted the apoptosis in MG-63 cells. In conclusion, our discoveries demonstrated that the formulated AS-ZnONPs has the potent antimicrobial and in vitro anticancer activity against the MG-63 cells. The AS-ZnONPs could be potent chemotherapeutic agent in the future to treat the OS.
Collapse
Affiliation(s)
- Vidya Devanathadesikan Seshadri
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al–Kharj, Saudi Arabia
| |
Collapse
|
218
|
Electrospun Nanosystems Based on PHBV and ZnO for Ecological Food Packaging. Polymers (Basel) 2021; 13:polym13132123. [PMID: 34203404 PMCID: PMC8272170 DOI: 10.3390/polym13132123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The electrospun nanosystems containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and 1 wt% Fe doped ZnO nanoparticles (NPs) (with the content of dopant in the range of 0–1 wt% Fe) deposited onto polylactic acid (PLA) film were prepared for food packaging application. They were investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), antimicrobial analysis, and X-ray photoelectron spectrometry (XPS) techniques. Migration studies conducted in acetic acid 3% (wt/wt) and ethanol 10% (v/v) food simulants as well as by the use of treated ashes with 3% HNO3 solution reveal that the migration of Zn and Fe falls into the specific limits imposed by the legislation in force. Results indicated that the PLA/PHBV/ZnO:Fex electrospun nanosystems exhibit excellent antibacterial activity against the Pseudomonas aeruginosa (ATCC-27853) due to the generation of a larger amount of perhydroxyl (˙OOH) radicals as assessed using electron paramagnetic resonance (EPR) spectroscopy coupled with a spin trapping method.
Collapse
|
219
|
Protective Effect of Zinc Oxide and Its Association with Neutrophil Degranulation in Piglets Infected with Porcine Epidemic Diarrhea Virus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3055810. [PMID: 34257799 PMCID: PMC8249118 DOI: 10.1155/2021/3055810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) has reemerged throughout the world in the past ten years and caused huge economic losses to the swine industry. No drugs are available to prevent or treat PEDV infection in piglets. Zinc oxide (ZnO) has been shown to reduce diarrhea. However, little is known about its role in PEDV infection. In this study, twenty-four 7-day-old piglets were randomly divided into three treatment groups: control, PEDV, and ZnO+PEDV. Piglets in the ZnO+PEDV group were orally administered with 100 mg/kg·BW ZnO and then inoculated PEDV at a dose of 104.5 TCID50 (50% tissue culture infectious dose) per pig. Growth performance, histologic lesions, viral load, indicators of intestinal damage, inflammation, and oxidative stress were recorded or detected to determine the effect of ZnO on PEDV infection. And the underlying mechanisms were revealed by microarray and proteomic analyses. Results showed that ZnO administration mitigated diarrhea and the reduction of average daily weight gain induced by PEDV infection. ZnO could inhibit PEDV replication in the small intestine and colon. Both villus height and crypt depth were affected by PEDV infection in the duodenum and jejunum, which could be rescued by ZnO administration. Moreover, the activity of catalase was decreased both in plasma and intestine after PEDV infection, while increased in the intestine by ZnO administration. PEDV infection also significantly increased the concentration of H2O2 in jejunal and ileum and decreased the activity of total superoxide dismutase and glutathione peroxidase in plasma, whereas ZnO administration obviously increased the activity of total superoxide dismutase and decreased the concentration of H2O2 in the ileum. The concentrations of IL-1β, IL-6, and IL-8 in the plasma were all decreased upon ZnO administration. A large number of differentially expressed genes and proteins were identified in the ileum among the three groups by microarray and proteomic analyses. Gene Ontology and Reactome pathway analyses indicated that neutrophil degranulation and nutrient metabolism were the main biological process and pathways in both PEDV infection and ZnO administration. Overall, ZnO administration could improve growth performance, intestinal redox status, morphology, and function and reduce diarrhea in PEDV-infected piglets; ZnO could exert antiviral and anti-inflammatory effects on PEDV-infected piglets probably through regulating neutrophil degranulation. Our findings have important implications in piglet and infant nutrition.
Collapse
|
220
|
Alayande AB, Kang Y, Jang J, Jee H, Lee YG, Kim IS, Yang E. Antiviral Nanomaterials for Designing Mixed Matrix Membranes. MEMBRANES 2021; 11:membranes11070458. [PMID: 34206245 PMCID: PMC8303748 DOI: 10.3390/membranes11070458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 01/02/2023]
Abstract
Membranes are helpful tools to prevent airborne and waterborne pathogenic microorganisms, including viruses and bacteria. A membrane filter can physically separate pathogens from air or water. Moreover, incorporating antiviral and antibacterial nanoparticles into the matrix of membrane filters can render composite structures capable of killing pathogenic viruses and bacteria. Such membranes incorporated with antiviral and antibacterial nanoparticles have a great potential for being applied in various application scenarios. Therefore, in this perspective article, we attempt to explore the fundamental mechanisms and recent progress of designing antiviral membrane filters, challenges to be addressed, and outlook.
Collapse
Affiliation(s)
| | - Yesol Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Hobin Jee
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon-si 24341, Korea;
| | - In S. Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
- Correspondence:
| |
Collapse
|
221
|
Ramya V, Kalaiselvi V, Kannan SK, Shkir M, Ghramh HA, Ahmad Z, Nithiya P, Vidhya N. Facile Synthesis and Characterization of Zinc Oxide Nanoparticles Using Psidium guajava leaf Extract and Their Antibacterial Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05717-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
222
|
Wiesmann N, Gieringer R, Viel M, Eckrich J, Tremel W, Brieger J. Zinc Oxide Nanoparticles Can Intervene in Radiation-Induced Senescence and Eradicate Residual Tumor Cells. Cancers (Basel) 2021; 13:cancers13122989. [PMID: 34203835 PMCID: PMC8232817 DOI: 10.3390/cancers13122989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Despite recent advancements in tumor therapy, metastasis and tumor relapse remain major complications hindering the complete recovery of many cancer patients. Dormant tumor cells, which reside in the body, possess the ability to re-enter the cell cycle after therapy. This phenomenon has been attributed to therapy-induced senescence. We show that these cells could be targeted by the use of zinc oxide nanoparticles (ZnO NPs). In the present study, the properties of tumor cells after survival of 16 Gy gamma-irradiation were investigated in detail. Analysis of morphological features, proliferation, cell cycle distribution, and protein expression revealed classical hallmarks of senescent cells among the remnant cell mass after irradiation. The observed radiation-induced senescence was associated with the increased ability to withstand further irradiation. Additionally, tumor cells were able to re-enter the cell cycle and proliferate again after weeks. Treatment with ZnO NPs was evaluated as a therapeutical approach to target senescent cells. ZnO NPs were suitable to induce cell death in senescent, irradiation-resistant tumor cells. Our findings underline the pathophysiological relevance of remnant tumor cells that survived first-line radiotherapy. Additionally, we highlight the therapeutic potential of ZnO NPs for targeting senescent tumor cells.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-17-4034
| | - Rita Gieringer
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
| | - Melanie Viel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany; (M.V.); (W.T.)
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
| | - Wolfgang Tremel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany; (M.V.); (W.T.)
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
| |
Collapse
|
223
|
Gonzalez-Diaz A, Pataquiva-Mateus A, García-Núñez JA. Recovery of palm phytonutrients as a potential market for the by-products generated by palm oil mills and refineries‒A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
224
|
Hong T, Zheng R, Qiu L, Zhou S, Chao H, Li Y, Rui W, Cui P, Ni X, Tan S, Jiang P, Wang J. Fluorescence coupled capillary electrophoresis as a strategy for tetrahedron DNA analysis. Talanta 2021; 228:122225. [PMID: 33773730 DOI: 10.1016/j.talanta.2021.122225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
A strategy based on fluorescence coupled capillary electrophoresis (CE-FL) was developed for analyzing tetrahedron DNA (TD) and TD-doxorubicin (DOX) conjugate. Capillary gel electrophoresis exhibited desirable performance for separating TD and DNA strands. Under the optimized conditions, satisfactory repeatability concerning run-to-run and interday repeatability was obtained, and relative standard deviation value of resolution (n = 6) was 0.64%. Furthermore, the combination of CE and fluorescence detection provided a sensitive platform for quantifying TD concentration and calculating the damage degree of TD. The electrophoretograms indicated that CE-FL was a suitable TD assay method with high specificity and sensitivity. In addition, the application of CE-FL for TD fluorescence resonance energy transfer (FRET) research was also explored. Two types of DNA strands were utilized to interfere the formation of TD. The impact of partially complementary chain and completely complementary chain on FRET signal was explored, and the influence mechanism was discussed. After applying CE-FL for characterizing TD, we also combine CE and FRET to analyze TD-DOX conjugate. CE presented a favourable technique to monitor DOX loading and releasing processes. These noteworthy results offered a stepping stone for DNA nanomaterials assay by using CE-FL.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ronghui Zheng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Hufei Chao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ying Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wen Rui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China.
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China; Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu, 213100, China.
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China; Changzhou Le Sun Pharmaceuticals Co., Ltd., Changzhou, Jiangsu, 213125, China; Jiangsu Yue Zhi Biopharmaceutical Co., Ltd., Changzhou, Jiangsu, 213125, China.
| |
Collapse
|
225
|
Kolahalam LA, Prasad K, Murali Krishna P, Supraja N. Saussurea lappa plant rhizome extract-based zinc oxide nanoparticles: synthesis, characterization and its antibacterial, antifungal activities and cytotoxic studies against Chinese Hamster Ovary (CHO) cell lines. Heliyon 2021; 7:e07265. [PMID: 34195406 PMCID: PMC8237308 DOI: 10.1016/j.heliyon.2021.e07265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
The plant extracts are known for their anti-inflammatory, antifungal, antiviral and antibacterial properties. The use of plant extracts in the preparation of bio-materials increases their biological application. In this concern, herein reporting an eco-friendly procedure which is also a simple and cost effective, for the synthesis of Zinc Oxide nanoparticles (ZnONPs) using Saussurea lappa plant root (rhizome) extract as a fuel. The prepared nanoparticles were confirmed using various characterization techniques. The Dynamic light scattering data showed 123.5 nm particle size with -99.9 mv zeta potential which indicates excellent stability of the particles. The peak at 541 cm-1 in the IR spectrum is assigned to the stretching frequency of the zinc-binding to oxygen. The X-ray diffraction peaks confirm the close association with JCPDS Data Card No: 36-1451. The FESEM data revealed a hexagonal wurtzite structure with a hexagonal shape of synthesized ZnO nanoparticles. The antibacterial studies indicate the gram-negative strains showed better inhibition activity than gram-positive strains. Among Fungal strains, Aspergillus niger and flavus, Fusarium oxysporum, and Rhizopus oryzae showed good inhibition activity at higher concentrations. The cytotoxic data indicates the 5 μg/mL of the ZnO particles showed cytotoxicity on the CHO cell line and with IC50 value 3.164 ± 0.8956 μg/mL.
Collapse
Affiliation(s)
- Lalitha A. Kolahalam
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522502, Andhra Pradesh, India
| | - K.R.S. Prasad
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522502, Andhra Pradesh, India
| | - P. Murali Krishna
- Department of Chemistry, Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| | - N. Supraja
- Nanotechnology Laboratory, Acharya N G Ranga Agricultural University, Tirupati, 517502, Andhra Pradesh, India
| |
Collapse
|
226
|
Wrońska N, Katir N, Miłowska K, Hammi N, Nowak M, Kędzierska M, Anouar A, Zawadzka K, Bryszewska M, El Kadib A, Lisowska K. Antimicrobial Effect of Chitosan Films on Food Spoilage Bacteria. Int J Mol Sci 2021; 22:5839. [PMID: 34072512 PMCID: PMC8198402 DOI: 10.3390/ijms22115839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging. The purposes of this study were to evaluate the antibacterial activity of a set of chitosan-metal oxide films and different chitosan-modified graphene (oxide) films against two foodborne pathogens: Campylobacter jejuni ATCC 33560 and Listeria monocytogenes 19115. Moreover, we wanted to check whether the incorporation of antimicrobial constituents such as TiO2, ZnO, Fe2O3, Ag, and graphene oxide (GO) into the polymer matrices can improve the antibacterial properties of these nanocomposite films. Finally, this research helps elucidate the interactions of these materials with eukaryotic cells. All chitosan-metal oxide films and chitosan-modified graphene (oxide) films displayed improved antibacterial (C. jejuni ATCC 33560 and L. monocytogenes 19115) properties compared to native chitosan films. The CS-ZnO films had excellent antibacterial activity towards L. monocytogenes (90% growth inhibition). Moreover, graphene-based chitosan films caused high inhibition of both tested strains. Chitosan films with graphene (GO, GOP, GOP-HMDS, rGO, GO-HMDS, rGOP), titanium dioxide (CS-TiO2 20:1a, CS-TiO2 20:1b, CS-TiO2 2:1, CS-TiO2 1:1a, CS-TiO2 1:1b) and zinc oxide (CS-ZnO 20:1a, CS-ZnO 20:1b) may be considered as a safe, non-cytotoxic packaging materials in the future.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Nadia Katir
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Nisrine Hammi
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Aicha Anouar
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| |
Collapse
|
227
|
Yao Y, Zhang A, Yuan C, Chen X, Liu Y. Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomater Sci 2021; 9:4523-4540. [PMID: 34047308 DOI: 10.1039/d1bm00411e] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute and chronic wounds can cause severe physical trauma to patients and also result in an immense socio-economic burden. Thus, wound management has attracted increasing attention in recent years. However, burn wound management is still a major challenge in wound management. Autografts are often considered the gold-standard for burn care, but their application is limited by many factors. Hence, ideal burn dressings and skin substitute dressings are desirable. With the development of biomaterials and progress of tissue engineering technology, some innovative dressings and tissue engineering scaffolds, such as nanofibers, films, foams and hydrogels, have been widely used in the field of biomedicine, especially in wound management. Among them, hydrogels have attracted tremendous attention with their unique advantages. In this review, we discuss the challenges in burn wound management, several crucial design considerations with respect to hydrogels for burn wound healing, and available polymers for hydrogels in burn wound care. In addition, the potential application and plausible prospect of hydrogels are also highlighted.
Collapse
Affiliation(s)
- Yingxia Yao
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Andi Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China. and Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
228
|
Gautam R, Yang S, Maharjan A, Jo J, Acharya M, Heo Y, Kim C. Prediction of Skin Sensitization Potential of Silver and Zinc Oxide Nanoparticles Through the Human Cell Line Activation Test. FRONTIERS IN TOXICOLOGY 2021; 3:649666. [PMID: 35295130 PMCID: PMC8915822 DOI: 10.3389/ftox.2021.649666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The development of nanotechnology has propagated the use of nanoparticles (NPs) in various fields including industry, agriculture, engineering, cosmetics, or medicine. The use of nanoparticles in cosmetics and dermal-based products is increasing owing to their higher surface area and unique physiochemical properties. Silver (Ag) NPs' excellent broad-spectrum antibacterial property and zinc oxide (ZnO) NPs' ability to confer better ultraviolet (UV) protection has led to their maximal use in cosmetics and dermal products. While the consideration for use of nanoparticles is increasing, concerns have been raised regarding their potential negative impacts. Although used in various dermal products, Ag and ZnO NPs' skin sensitization (SS) potential has not been well-investigated using in vitro alternative test methods. The human Cell Line Activation Test (h-CLAT) that evaluates the ability of chemicals to upregulate the expression of CD86 and CD54 in THP-1 cell line was used to assess the skin sensitizing potential of these NPs. The h-CLAT assay was conducted following OECD TG 442E. NPs inducing relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% in at least two out of three independent runs were predicted to be positive. Thus, Ag (20, 50, and 80 nm) NPs and ZnO NPs were all predicted to be positive in terms of SS possibility using the h-CLAT prediction model. Although further confirmatory tests addressing other key events (KEs) of SS adverse outcome pathway (AOP) should be carried out, this study gave an insight into the need for cautious use of Ag and ZnO NPs based skincare or dermal products owing to their probable skin sensitizing potency.
Collapse
Affiliation(s)
- Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| | - ChangYul Kim
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
229
|
Bandeira M, Chee BS, Frassini R, Nugent M, Giovanela M, Roesch-Ely M, Crespo JDS, Devine DM. Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. MATERIALS 2021; 14:ma14112889. [PMID: 34072271 PMCID: PMC8198200 DOI: 10.3390/ma14112889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Wound infections are the main complication when treating skin wounds. This work reports a novel antimicrobial material using green synthesized zinc oxide nanoparticles (ZnONPs) incorporated in polymeric fibers for wound healing purposes. ZnONPs are a promising antimicrobial nanomaterial with high activity against a range of microorganisms, including drug-resistant bacteria. The electrospun fibers were obtained using polyacrylic acid (PAA) and polyallylamine hydrochloride (PAH) and were loaded with ZnONPs green synthesized from Ilex paraguariensis leaves with a spherical shape and ~18 nm diameter size. The fibers were produced using the electrospinning technique and SEM images showed a uniform morphology with a diameter of ~230 nm. EDS analysis proved a consistent dispersion of Zn in the fiber mat, however, particle agglomerates with varying sizes were observed. FTIR spectra confirmed the interaction of PAA carboxylic groups with the amine of PAH molecules. Although ZnONPs presented higher antimicrobial activity against S. aureus than E. coli, resazurin viability assay revealed that the PAA/PAH/ZnONPs composite successfully inhibited both bacteria strains growth. Photomicrographs support these results where bacteria clusters were observed only in the control samples. The PAA/PAH/ZnONPs composite developed presents antimicrobial activity and mimics the extracellular matrix morphology of skin tissue, showing potential for wound healing treatments.
Collapse
Affiliation(s)
- Marina Bandeira
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
- Correspondence: (M.B.); (D.M.D.)
| | - Bor Shin Chee
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Rafaele Frassini
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Michael Nugent
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Mariana Roesch-Ely
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Declan M. Devine
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Correspondence: (M.B.); (D.M.D.)
| |
Collapse
|
230
|
El-Hawwary SS, Abd Almaksoud HM, Saber FR, Elimam H, Sayed AM, El Raey MA, Abdelmohsen UR. Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Adv 2021; 11:18009-18025. [PMID: 35480186 PMCID: PMC9033216 DOI: 10.1039/d1ra01725j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, the biosynthesis of metal nanoparticles, particularly from plants, has been gaining interest. In the present work, the methanolic extracts of leaves, fruits, and the pollen grains of Sabal blackburniana were used for the green synthesis of ZnO nanoparticles, which were early detected by the formation of precipitate and further confirmed by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy and zeta potential (ZP) studies. TEM analysis has shown different shapes, predominantly irregular small spherical narrow particles included in hexagonal structures with size ranging from 2.23 to 49.56 nm. The XRD pattern confirmed that all synthesized ZnO nanoparticles have wurtzite hexagonal structure with crystalline nature. The average particle crystallite sizes were 47.21, 47.67 and 47.8 nm. The UV-visible spectra showed λ max in the range of 354-368 nm, which indicated the presence of ZnO nanoparticles. The FT-IR analysis identifies the characteristic functional groups present on the surface of ZnO nanoparticles. The ZP determination demonstrated that all representative selected synthesized ZnONPs exhibited acceptable ZP values of -30.8 to -45.9 mV, which indicated their good stability. In addition, the anti-Alzheimer potential of the selected extracts and ZnONPs was evaluated by assessing acetylcholinesterase inhibitory activity in vitro according to the improved Ellman method. The results indicated that the selected extracts have acetylcholinesterase inhibitory activity, and highlighted the promising inhibitory potential of green-synthesized ZnONPs using pollen grains, fruits and leaves extracts; they exhibited a potent inhibitory effect with IC50 values 63.78 ± 1.04651, 81.985 ± 3.075 and 117.95 ± 6.858 ng ml-1 respectively in comparison to donepezil as standard (IC50 = 50.7 ± 5.769 ng ml-1). Dereplication analysis of the selected extracts was performed using LC-MS; metabolic profiling revealed the presence of 41 compounds belonging to various chemical classes: flavonoids, steroidal saponins, terpenoids, alkaloids, lignans, sterols and fatty acids. Docking these dereplicated metabolites against the human AChE showed that the non-glycosylated flavonoid class of compounds was able to achieve interesting binding modes inside the AChE active site; they are suggested to be associated with the observed anti-AChE activity of Sabal extracts. This study is the first report to shed light on the acetylcholinesterase inhibitory activity of green-synthesized ZnO nanoparticles of S. blackburniana metabolites.
Collapse
Affiliation(s)
- Seham S El-Hawwary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | | | - Fatema R Saber
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City Sadat City 32897 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Mohamed A El Raey
- Phytochemistry and Plant systematics Department, Pharmaceutical Division, National Research Centre Dokki Cairo Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone, 61111 New Minia City Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|
231
|
Zhang L, Zou L, Jiang X, Cheng S, Zhang J, Qin X, Qin Z, Chen C, Zou Z. Stabilization of Nrf2 leading to HO-1 activation protects against zinc oxide nanoparticles-induced endothelial cell death. Nanotoxicology 2021; 15:779-797. [PMID: 33971103 DOI: 10.1080/17435390.2021.1919330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the abundant production and wide application of zinc oxide nanoparticles (ZnONPs), the potential health risks of ZnONPs have raised serious concerns. Oxidative stress is recognized as the most important outcome of the toxicity induced by ZnONPs. The Nrf2-Keap1 system and its downstream antioxidative genes are the fundamental protective mechanisms for redox hemeostasis. However, the detailed mechanisms of Nrf2 activation in ZnONPs-treated endothelial cells and murine blood vessels have yet to be elucidated. Herein, we show that Nrf2 was activated and played a negative role in cell death induced by ZnONPs. Moreover, we demonstrate that HO-1 was the most extensively upregulated antioxidative gene-activated by Nrf2. Forced overexpression of HO-1, pharmacological activation of HO-1 with the agonists RTA-408 (omaveloxolone, an FDA-approved drug) and RTA-402 repressed cell death, and treatment with HO-1 antagonist SnPP exacerbated the cell death. Importantly, loss of HO-1 diminished the cytoprotective role induced by Nrf2 in ZnONPs-treated HUVEC cells, indicating that the Nrf2-HO-1 axis was the crucial regulatory mechanism for the antioxidative response in the context of ZnONPs-induced endothelial damage. Mechanistically, we demonstrate that the p62-Keap1 axis was not involved in the activation of Nrf2. Intriguingly, the degradation half-life of Nrf2 in HUVEC cells was increased from less than 1 h under quiescent conditions to approximately 6 h under ZnONPs treatment condition; moreover, ZnONPs treatment induced activation of Nrf2/HO-1 and accumulation of ubiquitin in the aorta ventralis of mouse, suggesting that the ubiquitin-proteasome system had been perturbed, which subsequently led to the stabilization of Nrf2 and activation of HO-1. This study might contribute to a better understanding of ZnONPs-associated toxicity.
Collapse
Affiliation(s)
- Longbin Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Liyong Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhexue Qin
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
232
|
Blanco-Fernandez B, Castaño O, Mateos-Timoneda MÁ, Engel E, Pérez-Amodio S. Nanotechnology Approaches in Chronic Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:234-256. [PMID: 32320364 PMCID: PMC8035922 DOI: 10.1089/wound.2019.1094] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.
Collapse
Affiliation(s)
- Barbara Blanco-Fernandez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oscar Castaño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Bioelectronics Unit and Nanobioengineering Lab, Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Miguel Ángel Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| |
Collapse
|
233
|
Desai D, Guerrero YA, Balachandran V, Morton A, Lyon L, Larkin B, Solomon DE. Towards a microfluidics platform for the continuous manufacture of organic and inorganic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102402. [PMID: 33932590 DOI: 10.1016/j.nano.2021.102402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
In the last decade, microfluidics has opened new avenues for the synthesis of nanomaterials. However, the adoption of this production technique has been limited to a few high-value, low-production-volume organic nanoparticles. While there are several technical factors that can be attributed to this slow adoption, an important aspect to consider is the lack of a unified platform capable of producing a wide range of nanomaterials. In this work, we highlight a micro-mixing platform that can manufacture both organic and in-organic nanoparticles over a wide size range (nm-μm). We show that the platform can predictably and reproducibly create size and shape-controlled formulations with high homogeneity through input flow parameters. We further explore parallelization of this platform and discuss key technical constraints for high-volume production. We believe that the platform presented in this work can accelerate the adoption of nanomaterials relevant to a range of industries that encompass pharmaceutics, diagnostics, and cosmeceuticals.
Collapse
|
234
|
Ahamed M, Javed Akhtar M, Majeed Khan MA, Alhadlaq HA. Facile green synthesis of ZnO-RGO nanocomposites with enhanced anticancer efficacy. Methods 2021; 199:28-36. [PMID: 33930572 DOI: 10.1016/j.ymeth.2021.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/16/2023] Open
Abstract
Drug resistance and inability to distinguish between cancerous and non-cancerous cells are important obstacles in the treatment of cancer. Zinc oxide nanoparticles (ZnO NPs) is now emerging as a crucial material to challenge this global issue due to its tunable properties. Developing an effective, inexpensive, and eco-friendly method in order to tailor the properties of ZnO NPs with enhanced anticancer efficacy is still challenging. For the first time, we reported a facile, inexpensive, and eco-friendly approach for green synthesis of ZnO-reduced graphene oxide nanocomposites (ZnO-RGO NCs) using garlic clove extract. Garlic has been playing one of the most important dietary and medicinal roles for humans since centuries. We aimed to minimize the use of toxic chemicals and enhance the anticancer potential of ZnO-RGO NCs with minimum side effects to normal cells. Aqueous extract of garlic clove was used as reducing and stabilizing agent for green synthesis of ZnO-RGO NCs from the zinc nitrate and graphene oxide (GO) precursors. A potential mechanism of ZnO-RGO NCs synthesis with garlic clove extract was also proposed. Preparation of pure ZnO NPs and ZnO-RGO NCs was confirmed by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS). The in vitro study showed that ZnO-RGO NCs induce two-fold higher cytotoxicity in human breast cancer (MCF7) and human colorectal cancer (HCT116) cells as compared to pure ZnO NPs. Besides, biocompatibility of ZnO-RGO NCs in non-cancerous human normal breast (MCF10A) and normal colon epithelial (NCM460) cells was higher than those of pure ZnO NPs. This work highlighted a facile and inexpensive green approach for the preparation of ZnO-RGO NCs with enhanced anticancer activity and improved biocompatibility.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
235
|
Naser R, Abu-Huwaij R, Al-khateeb I, Abbas MM, Atoom AM. Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: antimicrobial and anticancer activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01837-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
236
|
Liang Z, Pan X, Li W, Kou E, Kang Y, Lei B, Song S. Dose-Dependent Effect of ZnO Quantum Dots for Lettuce Growth. ACS OMEGA 2021; 6:10141-10149. [PMID: 34056168 PMCID: PMC8153660 DOI: 10.1021/acsomega.1c00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
As the cadmium-free semiconductor quantum dots, ZnO quantum dots (ZnO QDs) have wide potential applications in agriculture. However, the effects of ZnO quantum dots on crop growth and nutritional quality have not been fully studied. In this work, the lettuce was sprayed with different concentrations of ZnO QDs from 50 to 500 mg·L-1 to evaluate their influence on lettuce antioxidant, biomass, and nutritional quality. The results showed that ZnO QDs existed in the lettuce in the form of Zn2+. Lettuce treated with 500 mg·L-1 ZnO QDs would produce a large amount of reactive oxygen species (ROS), which adversely affected the absorption of nutrients, soluble protein content, and chlorophyll content, thus reducing plant biomass. When the concentrations range from 50 to 200 mg·L-1, the antioxidant enzyme systems of lettuce were triggered to counteract the damage caused by excessive ROS. Moreover, ZnO QDs at this level promoted Ca, Mg, Fe, Mn, Zn, and B absorption and accumulation; increased soluble sugar content; and improved the lettuce biomass and nutritional quality.
Collapse
Affiliation(s)
- Zhihao Liang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Xiaoqin Pan
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Erfeng Kou
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
| | - Yunyan Kang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, P. R. China
- Maoming
Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P. R. China
| | - Shiwei Song
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| |
Collapse
|
237
|
Alavi M, Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov Today 2021; 26:1953-1962. [PMID: 33845219 DOI: 10.1016/j.drudis.2021.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Ag and ZnO nanoparticles (NP) can be prepared by physical, chemical, or eco-friendly methods. The biosynthesis of metal and metal oxide NPs by plants, fungi, and bacteria could be a promising way to obtain biocompatible NPs that have desirable antibacterial activities. However, the uniformity of shape, size, and size distribution of NPs are crucial to producing significant antibacterial results, particularly in physiological conditions such as infected wounds or septicemia. In this review, we discuss recent progress and challenges in the use of novel approaches for the biosynthesis of Ag and ZnO nanoparticles that have antibacterial activities.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Faculty of Science, Razi University, Iran.
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
238
|
Faisal S, Jan H, Shah SA, Shah S, Khan A, Akbar MT, Rizwan M, Jan F, Wajidullah, Akhtar N, Khattak A, Syed S. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS OMEGA 2021; 6:9709-9722. [PMID: 33869951 PMCID: PMC8047667 DOI: 10.1021/acsomega.1c00310] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 06/28/2023]
Abstract
In the present work, bioaugmented zinc oxide nanoparticles (ZnO-NPs) were prepared from aqueous fruit extracts of Myristica fragrans. The ZnO-NPs were characterized by different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The crystallites exhibited a mean size of 41.23 nm measured via XRD and were highly pure, while SEM and TEM analyses of synthesized NPs confirmed their spherical or elliptical shape. The functional groups responsible for stabilizing and capping of ZnO-NPs were confirmed using FTIR analysis. The ζ-size and ζ-potential of synthesized ZnO-NPs were reported as 66 nm and -22.1 mV, respectively, via the DLS technique can be considered as moderate stable colloidal solution. Synthesized NPs were used to evaluate for their possible antibacterial, antidiabetic, antioxidant, antiparasitic, and larvicidal properties. The NPs were found to be highly active against bacterial strains both coated with antibiotics and alone. Klebsiella pneumoniae was found to be the most sensitive strain against NPs (27 ± 1.73) and against NPs coated with imipinem (26 ± 1.5). ZnO-NPs displayed outstanding inhibitory potential against enzymes protein kinase (12.23 ± 0.42), α-amylase (73.23 ± 0.42), and α-glucosidase (65.21 ± 0.49). Overall, the synthesized NPs have shown significant larvicidal activity (77.3 ± 1.8) against Aedes aegypti, the mosquitoes involved in the transmission of dengue fever. Similarly, tremendous leishmanicidal activity was also observed against both the promastigote (71.50 ± 0.70) and amastigote (61.41 ± 0.71) forms of the parasite. The biosynthesized NPs were found to be excellent antioxidant and biocompatible nanomaterials. Biosynthesized ZnO-NPs were also used as photocatalytic agents, resulting in 88% degradation of methylene blue dye in 140 min. Owing to their eco-friendly synthesis, nontoxicity, and biocompatible nature, ZnO-NPs synthesized from M. fragrans can be exploited as potential candidates for biomedical and environmental applications.
Collapse
Affiliation(s)
- Shah Faisal
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
| | - Hasnain Jan
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sajjad Ali Shah
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
| | - Sumaira Shah
- Department
of Botany, Bacha Khan University, Charsadda 24460, KPK, Pakistan
| | - Adnan Khan
- Institute
of Chemical Sciences, University of Peshawar, Peshawar 25120, KPK, Pakistan
| | - Muhammad Taj Akbar
- Department
of Microbiology, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Muhammad Rizwan
- Center for
Biotechnology and Microbiology, University
of Swat, Mingora 19130,KPK, Pakistan
| | - Faheem Jan
- Programmatic
Management of Drug Resistant T.B. Unit, Ayub Teaching Hospital, Abbotabad 22040, Pakistan
| | - Wajidullah
- Department
of Chemistry, Bacha Khan University, Charsadda 24460, KPK, Pakistan
| | - Noreen Akhtar
- Department
of Microbiology, Khyber Medical University, Peshawar 25100, KPK, Pakistan
| | - Aishma Khattak
- Department
of Bioinformatics, Shaheed Benazir Bhutto
University, Peshawar, KPK, Pakistan
| | - Suliman Syed
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
| |
Collapse
|
239
|
Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z, Yu C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 2021; 17:4266-4285. [PMID: 33843441 PMCID: PMC8726675 DOI: 10.1080/15548627.2021.1911016] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) hold great promise for biomedical applications. Previous studies have revealed that ZnONPs exposure can induce toxicity in endothelial cells, but the underlying mechanisms have not been fully elucidated. In this study, we report that ZnONPs can induce ferroptosis of both HUVECs and EA.hy926 cells, as evidenced by the elevation of intracellular iron levels, lipid peroxidation and cell death in a dose- and time-dependent manner. In addition, both the lipid reactive oxygen species (ROS) scavenger ferrostatin-1 and the iron chelator deferiprone attenuated ZnONPs-induced cell death. Intriguingly, we found that ZnONPs-induced ferroptosis is macroautophagy/autophagy-dependent, because the inhibition of autophagy with a pharmacological inhibitor or by ATG5 gene knockout profoundly mitigated ZnONPs-induced ferroptosis. We further demonstrated that NCOA4 (nuclear receptor coactivator 4)-mediated ferritinophagy (autophagic degradation of the major intracellular iron storage protein ferritin) was required for the ferroptosis induced by ZnONPs, by showing that NCOA4 knockdown can reduce the intracellular iron level and lipid peroxidation, and subsequently alleviate ZnONPs-induced cell death. Furthermore, we showed that ROS originating from mitochondria (mtROS) probably activated the AMPK-ULK1 axis to trigger ferritinophagy. Most importantly, pulmonary ZnONPs exposure caused vascular inflammation and ferritinophagy in mice, and ferrostatin-1 supplementation significantly reversed the vascular injury induced by pulmonary ZnONPs exposure. Overall, our study indicates that ferroptosis is a novel mechanism for ZnONPs-induced endothelial cytotoxicity, and that NCOA4-mediated ferritinophagy is required for ZnONPs-induced ferroptotic cell death.
Collapse
Affiliation(s)
- Xia Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung‑Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China.,Lead Contact
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
240
|
Noman MT, Amor N, Petru M, Mahmood A, Kejzlar P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers (Basel) 2021; 13:polym13081227. [PMID: 33920272 PMCID: PMC8070503 DOI: 10.3390/polym13081227] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc oxide (ZnO) in various nano forms (nanoparticles, nanorods, nanosheets, nanowires and nanoflowers) has received remarkable attention worldwide for its functional diversity in different fields i.e., paints, cosmetics, coatings, rubber and composites. The purpose of this article is to investigate the role of photocatalytic activity (role of photogenerated radical scavengers) of nano ZnO (nZnO) for the surface activation of polymeric natural fibres especially cotton and their combined effect in photocatalytic applications. Photocatalytic behaviour is a crucial property that enables nZnO as a potential and competitive candidate for commercial applications. The confirmed features of nZnO were characterised by different analytical tools, i.e., scanning electron microscopy (SEM), field emission SEM (FESEM) and elemental detection spectroscopy (EDX). These techniques confirm the size, morphology, structure, crystallinity, shape and dimensions of nZnO. The morphology and size play a crucial role in surface activation of polymeric fibres. In addition, synthesis methods, variables and some of the critical aspects of nZnO that significantly affect the photocatalytic activity are also discussed in detail. This paper delineates a vivid picture to new comers about the significance of nZnO in photocatalytic applications.
Collapse
Affiliation(s)
- Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
- Correspondence: ; Tel.: +420-776396302
| | - Nesrine Amor
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
| | - Michal Petru
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
| | - Aamir Mahmood
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic;
| | - Pavel Kejzlar
- Department of Material Science, Faculty of Mechanical Engineering, Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic;
| |
Collapse
|
241
|
Apoptotic Signalling of Huh7 Cancer Cells by Biofabricated Zinc Oxide Nanoparticles. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01852-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
242
|
Mahmoud MAM, Yahia D, Abdel-Magiud DS, Darwish MHA, Abd-Elkareem M, Mahmoud UT. Broiler welfare is preserved by long-term low-dose oral exposure to zinc oxide nanoparticles: preliminary study. Nanotoxicology 2021; 15:605-620. [PMID: 33792477 DOI: 10.1080/17435390.2021.1905099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The potential public health risk through utilizing of zinc oxide nanoparticles (ZnO NPs) in food constitutes the major obstacle to the expansion of nanoparticle (NP) in food industry. Liver histology, bone marrow and liver genotoxicity, immunity, and oxidant status were investigated upon long-term ZnO NPs feed supplementation. One hundred and sixty male IR (Indian River) chicks were randomly allocated to one of the four dietary treatments: control, ZnO NPs at 10, 20, or 40 mg/kg for 42 days. This study revealed non-significant hepatic histopathological alterations and DNA damage and the treatment had no influence on body and organ weights, liver enzymes, lipid peroxidation (MDA), IgG, IgM, and interferon gamma (IFN-γ). This study suggests that low-dose (< 40 mg/kg diet) long-term ZnO NPs supplementation to broiler chicks has no observed potential adverse effects on normal histology of the liver, blood physiology, immune system, and DNA damage of liver and bone marrows, which are critical features for validating ZnO NPs for use in food. Further studies are required to evaluate the probable withdrawal period of ZnO NPs before approval as a dietary supplement in broiler or livestock diets.
Collapse
Affiliation(s)
- Manal A M Mahmoud
- Department of Animal Hygiene and Environmental sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa S Abdel-Magiud
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Madeha H A Darwish
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Usama T Mahmoud
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
243
|
Utilizing of (Zinc Oxide Nano-Spray) for Disinfection against “SARS-CoV-2” and Testing Its Biological Effectiveness on Some Biochemical Parameters during (COVID-19 Pandemic)—”ZnO Nanoparticles Have Antiviral Activity against (SARS-CoV-2)”. COATINGS 2021. [DOI: 10.3390/coatings11040388] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A newly synthesized zinc (II) oxide nanoparticle (ZnO-NPs) has been used as a disinfectant Nano-spray for the emerging corona virus (SARS-CoV-2). The synthesized obtained nanomaterial of (ZnO) was fully chemically characterized by using different spectroscopic analysis (FT-IR, UV and XRD) and surface analysis techniques. ZnO-Nps surface morphology and chemical purity has been investigated by transmission electron microscope (TEM), high resolution transmission electron microscope (HR-TEM), scanning electron microscopy (SEM) as well as energy dispersive X-ray analysis (EDX), Additionally Zeta potential and Zeta size distribution were measured and evaluated to confirm its nano-range scale. The synthesized Zno-NPs have been tested using 10% DMSO and ddH2O for estimation of antiviral activity against (SARS-CoV-2) by using cytotoxicity assay (CC50) and inhibitory concentration (IC50). The results revealed that (Zno-NPs) has high anti-SARS-CoV-2 activity at cytotoxic concentrations in vitro with non-significant selectivity index (CC50/IC50 ≤ 1). The current study results demonstrated the (ZnO-NPs) has potent antiviral activity at low concentration (IC50 = 526 ng/mL) but with some cytotoxic effect to the cell host by (CC50 = 292.2 ng/mL). We recommend using of (ZnO-NPs) as potent disinfectant against (SARS-Cov-2), but there are slight side effects on the cellular host, so we recommend more prospective studies on complexation of other compounds with (ZnO-NPs) in different concentrations to reduce its cellular toxicity and elevate its antiviral activity against SARS-CoV-2 activities.
Collapse
|
244
|
Jamil S, Tariq T, Khan SR, Ehsan MA, Rehman A, Janjua MRSA. Structural Characterization, Synthesis and Application of Zincite Nanoparticles as Fuel Additive. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02047-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
245
|
Hamdi M, Abdel-Bar HM, Elmowafy E, El-khouly A, Mansour M, Awad GA. Investigating the Internalization and COVID-19 Antiviral Computational Analysis of Optimized Nanoscale Zinc Oxide. ACS OMEGA 2021; 6:6848-6860. [PMID: 33748599 PMCID: PMC7970579 DOI: 10.1021/acsomega.0c06046] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Global trials are grappling toward identifying prosperous remediation against the ever-emerging and re-emerging pathogenic respiratory viruses. Battling coronavirus, as a model respiratory virus, via repurposing existing therapeutic agents could be a welcome move. Motivated by its well-demonstrated curative use in herpes simplex and influenza viruses, utilization of the nanoscale zinc oxide (ZnO) would be an auspicious approach. In this direction, ZnO nanoparticles (NPs) were fabricated herein and relevant aspects related to the formulation such as optimization, structure, purity, and morphology were elucidated. In silico molecular docking was conducted to speculate the possible interaction between ZnO NPs and COVID-19 targets including the ACE2 receptor, COVID-19 RNA-dependent RNA polymerase, and main protease. The cellular internalization of ZnO NPs using human lung fibroblast cells was also assessed. Optimized hexagonal and spherical ZnO nanostructures of a crystallite size of 11.50 ± 0.71 nm and positive charge were attained. The pure and characteristic hexagonal wurtzite P63mc crystal structure was also observed. Interestingly, felicitous binding of ZnO NPs with the three tested COVID-19 targets, via hydrogen bond formation, was detected. Furthermore, an enhanced dose-dependent cellular uptake was demonstrated. The obtained results infer a rationale, awaiting validation from further biological and therapeutic studies.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Hend Mohamed Abdel-Bar
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Enas Elmowafy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed El-khouly
- Department
of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jerash, Jordan
| | - Mai Mansour
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gehanne A.S. Awad
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
246
|
Ongsri P, Leeyaphan C, Limphoka P, Kiratiwongwan R, Bunyaratavej S. Effectiveness and safety of zinc oxide nanoparticle-coated socks compared to uncoated socks for the prevention of pitted keratolysis: a double-blinded, randomized, controlled trial study. Int J Dermatol 2021; 60:864-867. [PMID: 33665813 DOI: 10.1111/ijd.15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pitted keratolysis (PK) and bromodosis have negative impacts on the quality of life especially for military personnel. The antibacterial efficacy and safety of zinc oxide nanoparticles (ZnO-NPs) make them a suitable additive for textiles. We aim to establish the ability of ZnO-NP-coated socks to prevent PK and bromodosis in a real-life setting. MATERIALS AND METHODS A double-blinded, randomized, controlled trial was conducted in January 2019. Naval cadets assigned to a 14-day field training course were randomly allocated to either a ZnO-NP-coated or an uncoated-sock group. They completed questionnaires evaluating behavioral risk factors and self-assessed foot odor levels using a visual analogue scale (VAS); intervention-blinded dermatologists also performed foot examinations. They reassessed their odor levels and had their feet re-examined upon completion of the training course. RESULTS The 148 cadets enrolled for the study were allocated to two groups of 74 each. The ZnO-NP-coated sock participants demonstrated significantly less PK development than uncoated socks (P = 0.05). There was a reduction of the foot odor levels in both groups, as measured by the VAS, without statistical difference. However, the uncoated sock group experienced more foot odor with a significantly greater negative effect on their daily lives (P = 0.04) than the ZnO-NP-coated sock group. CONCLUSIONS ZnO-NP-coated socks proved their efficacy in inhibiting the development of PK for military personnel.
Collapse
Affiliation(s)
- Punyawee Ongsri
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Charussri Leeyaphan
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pichaya Limphoka
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rungsima Kiratiwongwan
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sumanas Bunyaratavej
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
247
|
Alkazazz FF, Taher ZA. A Review on nanoparticles as a promising approach to improving diabetes mellitus. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 1853:012056. [DOI: 10.1088/1742-6596/1853/1/012056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Diabetes mellitus (DM) is a chronic disease condition that causes multiple complications in various organs such as kidney, reproductive system, and liver. It is mainly characterized by high blood glucose, insulin secretion deficiency or insulin resistance. In conventional diabetes, medications of insulin production and increased insulin sensitivity usually cause undesirable side effects and lead to poor adherence and therapy failure. In addition to insulin and oral hypoglycemic agents, there are different healthy ways to treat diabetes. Nanoparticles (NPs) such as zinc oxide (ZnO) NPs, selenium (Se) NPs, magnesium oxide (MgO) NPs, Copper (Cu) NPs, and cerium oxide (CeO2) NPs play an important role in controlling diabetes. The results reviewed here presented antidiabetic activity of CeO2 NPs, Se NPs, ZnO NPs, Cu NPs, and MgO NPs with fewer side effects when compared to antioxidant enzymes, glucose use, or increased insulin sensitivity, as these showed complications with diabetes.
Collapse
|
248
|
Fuster E, Candela H, Estévez J, Vilanova E, Sogorb MA. Titanium Dioxide, but Not Zinc Oxide, Nanoparticles Cause Severe Transcriptomic Alterations in T98G Human Glioblastoma Cells. Int J Mol Sci 2021; 22:ijms22042084. [PMID: 33669859 PMCID: PMC7923231 DOI: 10.3390/ijms22042084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Titanium dioxide and zinc oxide are two of the most widely used nanomaterials. We assessed the effects of noncytotoxic doses of both nanomaterials on T98G human glioblastoma cells by omic approaches. Surprisingly, no effects on the transcriptome of T98G cells was detected after exposure to 5 µg/mL of zinc oxide nanoparticles during 72 h. Conversely, the transcriptome of the cells exposed to 20 µg/mL of titanium dioxide nanoparticles during 72 h revealed alterations in lots of biological processes and molecular pathways. Alterations to the transcriptome suggests that exposure to titanium dioxide nanoparticles might, potentially, compromise the integrity of the blood brain barrier integrity and cause neuroinflammation. The latter issue was further confirmed phenotypically with a proteomic analysis and by recording the release of interleukin 8. Titanium dioxide also caused autophagy, which was demonstrated through the increase in the expression of the autophagy-related 3 and microtubule associated protein 1 light chain 3 alpha genes. The proteomic analysis revealed that titanium dioxide nanoparticles might have anticancerigen properties by downregulating genes involved in the detoxication of anthracyclines. A risk assessment resulting from titanium dioxide exposure, focusing on the central nervous system as a potential target of toxicity, is necessary.
Collapse
|
249
|
Reda FM, El-Saadony MT, El-Rayes TK, Attia AI, El-Sayed SA, Ahmed SY, Madkour M, Alagawany M. Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1886001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fayiz M. Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Talaat K. El-Rayes
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Adel I. Attia
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sabry A.A El-Sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sarah Y.A Ahmed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Giza, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
250
|
Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:460. [PMID: 33670161 PMCID: PMC7916858 DOI: 10.3390/nano11020460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
In the past few decades, curcumin, a natural polyphenolic phytochemical, has been studied for treating a wide variety of diseases. It has shown promising results as a potential curative agent for a variety of diseases. However, its inherent limitations, such as poor aqueous solubility, poor absorbability, fast metabolic rate, and quick elimination from the body, have limited its application beyond preclinical studies. A huge number of studies have been made to address the issues of curcumin and to maximally utilize its potentials. Many review articles have tried to assess and summarize different nanocarriers, especially organic nanocarriers, for nanoformulations with curcumin. Nevertheless, few exclusive reviews on the progress in nanoformulation of curcumin with inorganic nanomaterials have been made. In this review, we present an exclusive summary of the progress in nanoformulation of curcumin with metal oxide nanoparticles. The beneficial feature of the metal oxide nanoparticles used in the curcumin nanoformulation, the different approaches followed in formulating curcumin with the metal oxides, and the corresponding results, protective effect of curcumin from different metal oxide caused toxicities, and concluding remarks are presented in the review.
Collapse
Affiliation(s)
- Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
- School of Chemical and Bioengineering, Addis Ababa Institute of Technology (AAiT), King George VI St., Addis Ababa 1000, Ethiopia
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| |
Collapse
|