201
|
Ge B, Zhang X, Zhou W, Mo Y, Su Z, Xu G, Chen Q. LINC00265 Promotes Metastasis and Progression of Hepatocellular Carcinoma by Interacting with E2F1 at The Promoter of CDK2. CELL JOURNAL 2022; 24:294-301. [PMID: 35892231 PMCID: PMC9315211 DOI: 10.22074/cellj.2022.8035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/18/2021] [Indexed: 11/04/2022]
Abstract
Objective This study aimed to explore biological function of long intergenic non-protein coding RNA 265 (LINC00265) in hepatocellular carcinoma (HCC) cells, and evaluate its potential function as a biomarker. Materials and Methods In this experimental study, GEPIA database and Kaplan-Meier Plotter database were employed to analyze LINC00265 expression in HCC tissue samples and its predicting value for prognosis. LINC00265 expression in HCC tissues and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). After overexpressing and knocking-down of LINC00265 in HCC cells, cell counting kit-8 (CCK-8) and 5-Ethynyl-2'- deoxyuridine (EdU) assays were adopted to detect proliferation of HCC cells. Transwell assay was used to detect migration and invasion of HCC cells. Interaction of LINC00265 with E2F transcription factor 1 (E2F1) was verified by the catRAPID online analysis tool, RNA pull-down experiment and RNA binding protein immunoprecipitation (RIP) assay. Binding of E2F1 to the promoter region of cyclin-dependent kinases 2 (CDK2) was detected by dual-luciferase reporter assay and chromatin immunoprecipitation. Regulatory effects of LINC00265 and E2F1 on CDK2 expression were probed by Western blot. Results LINC00265 expression was increased in HCC tissues and cells. LINC00265 overexpression promoted proliferation, migration and invasion of HCC cells, and knocking-down LINC00265 worked oppositely. LINC00265 could bind to E2F1 and it could enhance combination of E2F1 and CDK2 promoter regions, thus promoting CDK2 transcription. LINC00265 overexpression promoted expression of CDK2 in HCC cells. Conclusion Our data suggested that LINC00265 can promote malignant behaviors of HCC cells by recruiting E2F1 to the promoter region of CDK2.
Collapse
Affiliation(s)
- Beihai Ge
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Xian Zhang
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Wei Zhou
- Department of Neurosurgery, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Yun Mo
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Zhou Su
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Guolong Xu
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Qiang Chen
- Department of Psychiatry, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China ,Department of PsychiatryGuangxi Zhuang Autonomous Region Brain HospitalLiuzhouGuangxiChina
| |
Collapse
|
202
|
Pei X, Wu Y, Yu H, Li Y, Zhou X, Lei Y, Lu W. Protective Role of lncRNA TTN-AS1 in Sepsis-Induced Myocardial Injury Via miR-29a/E2F2 Axis. Cardiovasc Drugs Ther 2022; 36:399-412. [PMID: 34519914 DOI: 10.1007/s10557-021-07244-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Approximately 50% of patients with sepsis encounter myocardial injury. The mortality of septic patients with cardiac dysfunction (approx. 70%) is much higher than that of patients with sepsis only (20%). A large number of studies have suggested that lncRNA TTN-AS1 promotes cell proliferation in a variety of diseases. This study delves into the function and mechanism of TTN-AS1 in sepsis-induced myocardial injury in vitro and in vivo. METHODS LPS was used to induce sepsis in rats and H9c2 cells. Cardiac function of rats was assessed by an ultrasound system. Myocardial injury was revealed by hematoxylin-eosin (H&E) staining. Gain and loss of function of TTN-AS1, miR-29a, and E2F2 was achieved in H9c2 cells before LPS treatment. The expression levels of inflammatory cytokines and cTnT were monitored by ELISA. The expression levels of cardiac enzymes as well as reactive oxygen species (ROS) activity and mitochondrial membrane potential (MMP) were measured using the colorimetric method. The expression levels of TTN-AS1, miR-29a, E2F2, and apoptosis-related proteins were measured by RT-qPCR and/or western blotting. The proliferation and apoptosis of H9c2 cells were separately detected by CCK-8 and flow cytometry. Luciferase reporter assay was used to verify the targeting relationships among TTN-AS1, miR-29a and E2F2, and RIP assay was further used to confirm the binding between miR-29a and E2F2. RESULTS TTN-AS1 was lowly expressed, while miR-29a was overexpressed in the cell and animal models of sepsis. Overexpression of TTN-AS1 or silencing of miR-29a reduced the expression levels of CK, CK-MB, LDH, TNF-B, IL-1B, and IL-6 in the supernatant of LPS-induced H9c2 cells, attenuated mitochondrial ROS activity, and enhanced MMP. Consistent results were observed in septic rats injected with OE-TTN-AS1. Knockdown of TTN-AS1 or overexpression of miR-29a increased LPS-induced inflammation and injury in H9c2 cells. TTN-AS1 regulated the expression of E2F2 by targeting miR-29a. Overexpression of miR-29a or inhibition of E2F2 abrogated the suppressive effect of TTN-AS1 overexpression on myocardial injury. CONCLUSION This study indicates TTN-AS1 attenuates sepsis-induced myocardial injury by regulating the miR-29a/E2F2 axis and sheds light on lncRNA-based treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xinghua Pei
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Yanhong Wu
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Haiming Yu
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Yuji Li
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Xu Zhou
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Yanjun Lei
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Wu Lu
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China.
| |
Collapse
|
203
|
Wang D, Gao Y, Sun S, Li L, Wang K. Expression Profiles and Characteristics of Apple lncRNAs in Roots, Phloem, Leaves, Flowers, and Fruit. Int J Mol Sci 2022; 23:ijms23115931. [PMID: 35682639 PMCID: PMC9180697 DOI: 10.3390/ijms23115931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022] Open
Abstract
LncRNAs impart crucial effects on various biological processes, including biotic stress responses, abiotic stress responses, fertility and development. The apple tree is one of the four major fruit trees in the world. However, lncRNAs's roles in different tissues of apple are unknown. We identified the lncRNAs in five tissues of apples including the roots, phloem, leaves, flowers, and fruit, and predicted the intricate regulatory networks. A total of 9440 lncRNAs were obtained. LncRNA target prediction revealed 10,628 potential lncRNA-messenger RNA (mRNA) pairs, 9410 pairs functioning in a cis-acting fashion, and 1218 acting in a trans-acting fashion. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to photosynthesis-antenna proteins, single-organism metabolic process and glutathione metabolism. Additionally, a total of 88 lncRNAs have various functions related to microRNAs (miRNAs) as miRNA precursors. Interactions between lncRNAs and miRNAs were predicted, 1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were identified. MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2, and MSTRG.9870.3 could participate in the functions in roots as competing endogenous RNAs (ceRNAs). MSTRG.11457.2, MSTRG.138614.2, and MSTRG.60895.2 could adopt special functions in the fruit by working with miRNAs. A further analysis showed that different tissues formed special lncRNA-miRNA-mRNA networks. MSTRG.60895.2-mdm-miR393-MD17G1009000 may participate in the anthocyanin metabolism in the fruit. These findings provide a comprehensive view of potential functions for lncRNAs, corresponding target genes, and related lncRNA-miRNA-mRNA networks, which will increase our knowledge of the underlying development mechanism in apple.
Collapse
Affiliation(s)
| | | | | | | | - Kun Wang
- Correspondence: ; Tel.: +86-429-359-8120
| |
Collapse
|
204
|
Zhang YY, Zhang WY, Xin XH, Du PF. dbEssLnc: A manually curated database of human and mouse essential lncRNA genes. Comput Struct Biotechnol J 2022; 20:2657-2663. [PMID: 35685362 PMCID: PMC9162909 DOI: 10.1016/j.csbj.2022.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in many biological processes. Knocking out or knocking down some lncRNAs will lead to lethality or infertility. These lncRNAs are called essential lncRNAs. Knowledges of essential lncRNAs are important in establishing minimal genomes of living cells, developing drug therapies and early diagnostic approaches for complex diseases. However, existing databases focus on collecting essential coding genes. Essential non-coding gene records are rare in existing databases. A comprehensive collection of essential non-coding genes, particularly essential lncRNA genes, is demanded. We manually curated 207 essential lncRNAs from literatures for establishing a database on essential lncRNAs, which is named as dbEssLnc (Database of essential lncRNAs). The dbEssLnc database has a web-based user-friendly interface for the users to browse, to search, to visualize and to blast search records in the database. The dbEssLnc database is freely accessible at https://esslnc.pufengdu.org. All data and source codes for mirroring the dbEssLnc database have been deposited in GitHub (https://github.com/yyZhang14/dbEssLnc).
Collapse
Affiliation(s)
- Ying-Ying Zhang
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Wen-Ya Zhang
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Xiao-Hong Xin
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| |
Collapse
|
205
|
Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022; 21:115. [PMID: 35581586 PMCID: PMC9112456 DOI: 10.1186/s12943-022-01591-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China
| | - Jumin Niu
- Department of Gynecology, Shenyang Women's and Children's Hospital, Shenyang, 110011, People's Republic of China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
206
|
Yang F, Jing F, Li Y, Kong S, Zhang S, Huo Y, Huang X, Yu S. Plasma lncRNA LOC338963 and mRNA AP3B2 are upregulated in paraneoplastic Lambert-Eaton myasthenic syndrome. Muscle Nerve 2022; 66:216-222. [PMID: 35508598 DOI: 10.1002/mus.27571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune neuromuscular junction disorder. Long noncoding RNA (lncRNA) can regulate the expression of mRNA and is involved in the development of autoimmune diseases, but few genetic studies are available. In this study we aimed to explore the lncRNA and mRNA changes of LEMS. METHODS Plasma lncRNA and mRNA expression profiles of three LEMS patients with small cell lung cancer (SCLC) and three matched healthy controls were analyzed by microarray. Differentially expressed lncRNAs and adjacent mRNAs were jointly analyzed, and candidates were verified by quantitative real-time polymerase chain reaction (qRT-PCR). The identified genes were subsequently evaluated in 9, 8, and 4 patients with paraneoplastic LEMS, nontumor LEMS, and SCLC, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine possible functions. RESULTS A total of 320 lncRNA and 168 mRNAs were differentially expressed in the three LEMS with SCLC and compared with healthy controls. Among these, lncRNA LOC338963 and its neighboring mRNA AP3B2 were upregulated jointly, which was confirmed by qRT-PCR. qRT-PCR revealed significant upregulation of the two genes in patients with paraneoplastic LEMS compared with nontumor LEMS or SCLC. GO analysis of AP3B2 identified the enrichment terms anterograde synaptic vesicle transport and establishment of synaptic vesicle localization. KEEG analysis showed that AP3B2 was enriched in lysosomal pathways. DISCUSSION LOC338963 and AP3B2 were upregulated in patients with paraneoplastic LEMS, suggesting their involvement in pathogenesis. These genes could be targets for exploring the pathomechanism of paraneoplastic LEMS.
Collapse
Affiliation(s)
- Fei Yang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Feng Jing
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shanshan Kong
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shimin Zhang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yunyun Huo
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
207
|
Peng T, Liu X, Tian F, Xu H, Yang F, Chen X, Gao X, Lv Y, Li J, Pan Y, Shang Q. Functional investigation of lncRNAs and target cytochrome P450 genes related to spirotetramat resistance in Aphis gossypii Glover. PEST MANAGEMENT SCIENCE 2022; 78:1982-1991. [PMID: 35092151 DOI: 10.1002/ps.6818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Spirotetramat is a tetramic acid derivative insecticide with novel modes of action for controlling Aphis gossypii Glover in the field. Previous studies have shown that long noncoding RNAs (lncRNAs) and cytochrome P450 monooxygenases (P450s) are involved in the detoxification process. However, the functions of lncRNAs in regulating P450 gene expression in spirotetramat resistance in A. gossypii are unknown. RESULTS In this study, we found CYP4CJ1, CYP6CY7 and CYP6CY21 expression levels to be significantly upregulated in a spirotetramat-resistant (SR) strain compared with a susceptible (SS) strain. Furthermore, knockdown of CYP4CJ1, CYP6CY7 and CYP6CY21 increased nymph and adult mortality in the SR strain following exposure to spirotetramat. Drosophila ectopically expressing CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 showed significantly decreased mortality after spirotetramat exposure, and CYP380C6, CYP4CJ1 and CYP6CY21 are putative targets of six lncRNAs. Silencing of lncRNAs MSTRG.36649.2/5 and MSTRG.71880.1 changed CYP6CY21 and CYP380C6 expression, altering the sensitivity of the SR strain to spirotetramat. Moreover, MSTRG.36649.2/5 did not compete for microRNA (miRNA) binding to regulate CYP6CY21 expression. CONCLUSION Our results confirm that CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 are potentially involved in the development of spirotetramat resistance in A. gossypii, and MSTRG.36649.2/5 and MSTRG.71880.1 probably regulate CYP6CY21 and CYP380C6 expression other than through the "sponge effect" of competing for miRNA binding. Our results provide a favorable molecular basis for studying cotton aphid P450 genes and lncRNA functions in spirotetramat resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun, China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
208
|
Sammallahti H, Sarhadi VK, Kokkola A, Ghanbari R, Rezasoltani S, Asadzadeh Aghdaei H, Puolakkainen P, Knuutila S. Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules 2022; 12:652. [PMID: 35625579 PMCID: PMC9171580 DOI: 10.3390/biom12050652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a dismal prognosis. To improve patient survival, the development of screening methods for early diagnosis is pivotal. Oncogenomic alterations present in tumor tissue are a suitable target for non-invasive screening efforts, as they can be detected in tumor-derived cells, cell-free nucleic acids, and extracellular vesicles, which are present in several body fluids. Since stool is an easily accessible source, which enables convenient and cost-effective sampling, it could be utilized for the screening of these traces. Herein, we explore the various oncogenomic changes that have been detected in PC tissue, such as chromosomal aberrations, mutations in driver genes, epigenetic alterations, and differentially expressed non-coding RNA. In addition, we briefly look into the role of altered gut microbiota in PC and their possible associations with oncogenomic changes. We also review the findings of genomic alterations in stool of PC patients, and the potentials and challenges of their future use for the development of stool screening tools, including the possible combination of genomic and microbiota markers.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1411713135, Iran;
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
209
|
Cheng L, Wang H, Maboh R, Mao G, Wu X, Chen H. LncRNA LINC00281/Annexin A2 Regulates Vascular Smooth Muscle Cell Phenotype Switching via the Nuclear Factor-Kappa B Signaling Pathway. J Cardiovasc Transl Res 2022; 15:971-984. [PMID: 35478454 DOI: 10.1007/s12265-022-10242-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022]
Abstract
Abnormal phenotype switch in vascular smooth muscle cells (VSMCs) plays an important role in the initiation and progression of vascular proliferative diseases. Annexin A2 (ANXA2), related to the pro-inflammatory response, contributes to the proliferation and migration of VSMCs. This study explored the mechanisms involved in the regulation of VSMC phenotype modulation via ANXA2. The results revealed that ANXA2 promotes the phosphorylation of p65 and co-translocates with p65 into the nucleus, resulting in VSMC proliferation, migration, and dedifferentiation. Based on bioinformatics predictions and RNA immunoprecipitation assays, LINC00281 was confirmed to be an upstream regulator of ANXA2. Taken together, ANXA2, which is negatively regulated by the long noncoding RNA (lncRNA) LINC00281, has significant importance in the regulation of VSMC proliferation, migration, and phenotype switching via the nuclear factor-kappa B (NF-кB) p65 signaling pathway. This indicates that the lncRNA LINC00281/ANXA2/NF-кB p65 signaling pathway might be a new therapeutic target for vascular proliferative diseases.
Collapse
Affiliation(s)
- Lan Cheng
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - ReneNfornah Maboh
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Gaowei Mao
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xiaoying Wu
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Hui Chen
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
210
|
Choudhury J, Pandey D, Chaturvedi PK, Gupta S. Epigenetic regulation of epithelial to mesenchymal transition: a trophoblast perspective. Mol Hum Reprod 2022; 28:6572349. [PMID: 35451485 DOI: 10.1093/molehr/gaac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
Epigenetic changes alter expression of genes at both pre- and post-transcriptional levels without changing their DNA sequence. Accumulating evidence suggests that such changes can modify cellular behaviour and characteristics required during development and in response to various extracellular stimuli. Trophoblast cells develop from the outermost trophectoderm layer of the blastocyst and undergo many phenotypic changes as the placenta develops. One such phenotypic change is differentiation of the epithelial natured cytotrophoblasts into the mesenchymal natured extravillous trophoblasts. The extravillous trophoblasts are primarily responsible for invading into the maternal decidua and thus establishing connection with the maternal spiral arteries. Any dysregulation of this process can have adverse effects on the pregnancy outcome. Hence, tight regulation of this epithelial-mesenchymal transition is critical for successful pregnancy. This review summarizes the recent research on the epigenetic regulation of the epithelial-mesenchymal transition occurring in the trophoblast cells during placental development. The functional significance of chemical modifications of DNA and histone, which regulate transcription, as well as non-coding RNAs, which control gene expression post-transcriptionally, is discussed in relation to trophoblast biology.
Collapse
Affiliation(s)
- Jaganmoy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Pradeep Kumar Chaturvedi
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| |
Collapse
|
211
|
Jia L, Wang J, Luoreng Z, Wang X, Wei D, Yang J, Hu Q, Ma Y. Progress in Expression Pattern and Molecular Regulation Mechanism of LncRNA in Bovine Mastitis. Animals (Basel) 2022; 12:ani12091059. [PMID: 35565486 PMCID: PMC9105470 DOI: 10.3390/ani12091059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Bovine mastitis is an inflammatory disease of the mammary glands that causes serious harm to cow health and huge economic losses. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate a variety of diseases of humans and animals, especially the immune response and inflammatory disease process. This paper reviews the role of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of lncRNA expression and the molecular regulatory mechanism in bovine mastitis, and looks forward to the research and application prospect of lncRNA in bovine mastitis, intending to provide a reference for scientific researchers to systematically understand this research field. Abstract Bovine mastitis is an inflammatory disease caused by pathogenic microbial infection, trauma, or other factors. Its morbidity is high, and it is difficult to cure, causing great harm to the health of cows and the safety of dairy products. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are a class of endogenous non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate the immune response of humans and animals on three levels (transcription, epigenetic modification, and post-transcription), and are widely involved in the pathological process of inflammatory diseases. Over the past few years, extensive findings revealed basic roles of lncRNAs in inflammation, especially bovine mastitis. This paper reviews the expression pattern and mechanism of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of the lncRNA expression pattern and molecular regulatory mechanism in bovine mastitis, analyzes the molecular regulatory network of differentially expressed lncRNAs, and looks forward to the research and application prospect of lncRNA in bovine mastitis, laying a foundation for molecular breeding and the biological therapy of bovine mastitis.
Collapse
Affiliation(s)
- Li Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qichao Hu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
212
|
Li X, Zhang Y, Su L, Cai L, Zhang C, Zhang J, Sun J, Chai M, Cai M, Wu Q, Zhang C, Yan X, Wang L, Huang X. FGF21 alleviates pulmonary hypertension by inhibiting mTORC1/EIF4EBP1 pathway via H19. J Cell Mol Med 2022; 26:3005-3021. [PMID: 35437883 PMCID: PMC9097832 DOI: 10.1111/jcmm.17318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) play a significant role in pulmonary hypertension (PH). Our preliminary data showed that hypoxia‐induced PH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the regulatory role of long non‐coding RNAs in PH treated with FGF21. RNA sequencing analysis and real‐time PCR identified a significantly up‐regulation of the H19 after FGF21 administration. Moreover, gain‐ and loss‐of‐function assays demonstrated that FGF21 suppressed hypoxia‐induced proliferation of pulmonary artery smooth muscle cells partially through upregulation of H19. In addition, FGF21 deficiency markedly exacerbated hypoxia‐induced increases of pulmonary artery pressure and pulmonary vascular remodelling. In addition, AAV‐mediated H19 overexpression reversed the malignant phenotype of FGF21 knockout mice under hypoxia expose. Further investigation uncovered that H19 also acted as an orchestra conductor that inhibited the function of mechanistic target of rapamycin complex 1 (mTORC1) by disrupting the interaction of mTORC1 with eukaryotic translation initiation factor 4E–binding protein 1 (EIF4EBP1). Our work highlights the important role of H19 in PH treated with FGF21 and suggests a mechanism involving mTORC1/EIF4EBP1 inhibition, which may provide a fundamental for clinical application of FGF21 in PH.
Collapse
Affiliation(s)
- Xiuchun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Yaxin Zhang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Lihuang Su
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Luqiong Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Chi Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jianhao Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Junwei Sun
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Mengyu Chai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Mengsi Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Qian Wu
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications at Department of Pharmacy, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications at Department of Pharmacy, Wenzhou Medical University, Wenzhou, P.R. China
| | - Liangxing Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| |
Collapse
|
213
|
Chen X, Wu G, Qing J, Li C, Chen X, Shen J. LINC00240 knockdown inhibits nasopharyngeal carcinoma progress by targeting miR-26a-5p. J Clin Lab Anal 2022; 36:e24424. [PMID: 35421264 PMCID: PMC9102631 DOI: 10.1002/jcla.24424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Objective This study intended to explore the regulatory functions of LINC00240 on nasopharyngeal carcinoma (NPC). Methods MiR‐26a‐5p inhibitor, mimic, and siLINC00240 were transfected into NPC cells. QRT‐PCR was employed to assess miR‐26a‐5p and LINC00240 expressions. The targeting relationship of LINC00240 and miR‐26a‐5p was analyzed through dual luciferase reporter and RNA immunoprecipitation assay. Cell counting kit‐8 assay, colony formation assay, flow cytometry assay, wound healing assay, Transwell assay and in vitro angiogenesis assay were adopted for the evaluation of the effects of LINC00240 or miR‐26a‐5p and LINC00240 on NPC cells regarding cell proliferation, apoptosis and cycle, migration, invasion, and angiogenesis. EZH2, cell cycle, and epithelial‐mesenchymal transition (EMT)‐related protein expression was tested through Western blot. Results LINC00240 had a high expression in NPC tissues and cell lines. Silenced LINC00240 significantly suppressed the 5‐8F and HK1 cell proliferation, invasion, migration, and angiogenesis, but raised cell apoptosis, and cells were blocked in G0/G1 phase. MiR‐26a‐5p was a target of LINC00240. MiR‐26a‐5p upregulation suppressed the NPC cell proliferation, migration, invasion, angiogenesis, N‐cadherin and EZH2 expression, while it elevated apoptosis and p21, p27 and E‐cadherin expressions, whereas miR‐26a‐5p downregulation performed conversely. LINC00240 knockdown partially offset the effects of miR‐26a‐5p downregulation on cell proliferation, migration, invasion, angiogenesis, apoptosis, and EZH2. Conclusion LINC00240 knockdown restrained cell proliferation, invasion, migration, and angiogenesis, while it advanced apoptosis via miR‐26a‐5p in NPC by EZH2 inhibition.
Collapse
Affiliation(s)
- Xing Chen
- Department of Otorhinolaryngology, Ningbo First Hospital, Ningbo City, China
| | - Guixiang Wu
- Department of Respiratory Medicine, Ningbo Ximen Wangchun Community Health Service Center, Ningbo City, China
| | - Jing Qing
- Department of Otorhinolaryngology, Ningbo First Hospital, Ningbo City, China
| | - Chunlin Li
- Department of Otorhinolaryngology, Ningbo First Hospital, Ningbo City, China
| | - Xudong Chen
- Department of Otorhinolaryngology, Ningbo First Hospital, Ningbo City, China
| | - Jian Shen
- Department of Anesthesiology, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
214
|
Chen P, Zeng Z, Wang J, Cao W, Song C, Lei S, Li Y, Ren Z. Long noncoding RNA LINC00857 promotes pancreatic cancer proliferation and metastasis by regulating the miR-130b/RHOA axis. Cell Death Discov 2022; 8:198. [PMID: 35418193 PMCID: PMC9008000 DOI: 10.1038/s41420-022-01008-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) is involved in the pathogenesis and progression of pancreatic cancer (PC). In the current study, we investigated the role and molecular mechanism of LINC00857 in PC. The expression of LINC00857 in PC was analyzed by bioinformatics analysis and qRT-PCR, and the relationship between LINC00857 expression and clinical characteristics of patients of PC was analyzed by Fisher's exact test. Gain- and loss-of-function assays were performed to determine the biological function of LINC00857 in PC. The relationship between LINC00857, miR-130b, and RHOA were determined by RNA pull-down assay, luciferase assay, and qRT-PCR. Our results demonstrated that LINC00857 expression was elevated in PC, and high expression of LINC00857 was positively associated with tumor diameter, T stage, and lymph node metastasis. LINC00857 promoted the proliferation and mobility of PC cells in vitro and in vivo. Mechanistically, LINC00857 acts as a sponge for miR-130b and decreases its expression. miR-130b exhibits tumor suppressor functions in PC, and RHOA was identified as the key target gene of miR-130b. The functions induced by LINC00857 in PC cells were dependent on the miR-130b/RHOA axis. In conclusion, the current study indicated that LINC00857 promotes PC tumorigenesis and metastasis by modulating the miR-130b/RHOA axis, implying that LINC00857 might be a new therapeutic target for PC.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, Guang'an People's Hospital, Guang'an, Sichuan, China
| | - Zhirui Zeng
- Basic Medical College of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenpeng Cao
- Basic Medical College of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chunzhuo Song
- Department of Hepatobiliary Surgery, The Second affiliated Hospital of Army Medical University, Chongqing, China
| | - Shan Lei
- Basic Medical College of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yichuan Li
- Department of General Surgery, Guang'an People's Hospital, Guang'an, Sichuan, China.
| | - Zhangxia Ren
- Department of General Surgery, Guang'an People's Hospital, Guang'an, Sichuan, China.
| |
Collapse
|
215
|
Zhang T, Luo JY, Liu F, Zhang XH, Luo F, Yang YN, Li XM. Long noncoding RNA MALAT1 polymorphism predicts MACCEs in patients with myocardial infarction. BMC Cardiovasc Disord 2022; 22:152. [PMID: 35392816 PMCID: PMC8991554 DOI: 10.1186/s12872-022-02590-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) participates in the occurrence and development of cardiovascular and cerebrovascular diseases such as stroke and coronary heart disease by regulating inflammatory reactions, programmed cell death, and other pathological processes. Previous studies revealed that the MALAT1 gene polymorphism was associated with cardiac and cerebrovascular diseases. However, the prognostic role of the MALAT1 polymorphism in major adverse cardiac and cerebrovascular events (MACCEs) remains unknown. Therefore, this study intends to explore the association between the MALAT1 rs3200401 polymorphism and MACCEs. Method We enrolled 617 myocardial infarction (MI) patients and 1125 control participants who attended the First Affiliated Hospital of Xinjiang Medical University from January 2010 to 2018. SNPscan™ typing assays were used to detect the MALAT1 rs3200401 genotype. During the follow-up, MACCEs were recorded. Kaplan–Meier curves and univariate and multivariate Cox survival analyses were used to explore the correlation between MALAT1 gene polymorphisms and the occurrence of MACCEs. Results Among the total participants and MI patients, the frequencies of the T allele (total Participants 19.5% vs. 15.3%, P = 0.047, MI patients 20.7% vs. 14.1%, P = 0.014) and CT + TT genotypes (total Participants 37.4% vs. 28.1%, P = 0.013, MI patients 39.5% vs. 25.8%, P = 0.003) were significantly higher in subjects with MACCEs than in subjects without MACCEs. However, in control participants, the frequencies of the T allele (16.6% vs. 16.0%, P = 0.860) and CT + TT genotypes (31.4% vs. 29.3%, P = 0.760) were not higher in subjects with MACCEs than in subjects without MACCEs. In addition, among the total participants and MI patients, the Kaplan–Meier curve analysis indicated that the subjects with rs3200401 CT + TT genotypes had a higher incidence of MACCEs than CC genotype carriers (P = 0.015, P = 0.001). Nevertheless, similar results were not observed in the control participants (P = 0.790). Multivariate Cox regression indicated that compared with patients with the CC genotype, patients with CT + TT genotypes had a 1.554-fold increase in MACCE risk (hazard ratio: 1.554, 95% confidence interval: 1.060–2.277, P = 0.024). Conclusions The MALAT1 rs3200401 CT + TT genotypes could be a risk factor for MACCEs in MI patients, suggesting that the MALAT1 gene may become a biomarker for poor prognosis in MI patients.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Jun-Yi Luo
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, Xinjiang, China
| | - Xue-He Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Fan Luo
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Yi-Ning Yang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, Xinjiang, China. .,People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830054, Xinjiang, China.
| | - Xiao-Mei Li
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
216
|
Ruskovska T, Morand C, Bonetti CI, Gebara KS, Cardozo Junior EL, Milenkovic D. Multigenomic modifications in human circulating immune cells in response to consumption of polyphenol rich extract of yerba mate ( Ilex paraguariensis A. St.-Hil.) are suggestive of cardiometabolic protective effects. Br J Nutr 2022; 129:1-60. [PMID: 35373729 DOI: 10.1017/s0007114522001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mate is a traditional drink obtained from the leaves of yerba mate and rich in a diversity of plant bioactive compounds including polyphenols, particularly chlorogenic acids. Studies, even though limited, suggest that consumption of mate is associated with health effects, including prevention of cardiometabolic disorders. Molecular mechanisms underlying the potential health properties are still largely unknown, especially in humans. The aim of this study was to investigate nutrigenomic effects of mate consumption and identify regulatory networks potentially mediating cardiometabolic health benefits. Healthy middle-aged men at risk for cardiovascular disease consumed a standardized mate extract or placebo for 4 weeks. Global gene expression, including protein coding and non-coding RNAs profiles were determined using microarrays. Biological function analyses were performed using integrated bioinformatic tools. Comparison of global gene expression profiles showed significant change following mate consumption with 2635 significantly differentially expressed genes, among which 6 are miRNAs and 244 are lncRNAs. Functional analyses showed that these genes are involved in regulation of cell interactions and motility, inflammation or cell signaling. Transcription factors, such as MEF2A, MYB or HNF1A, could have their activity modulated by mate consumption either by direct interaction with polyphenol metabolites or by interactions of metabolites with cell signaling proteins, like p38 or ERK1/2, that could modulate transcription factor activity and regulate expression of genes observed. Correlation analysis suggests that expression profile is inversely associated with gene expression profiles of patients with cardiometabolic disorders. Therefore, mate consumption may exert cardiometabolic protective effects by modulating gene expression towards a protective profile.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia
| | - Christine Morand
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63003 Clermont-Ferrand, France
| | - Carla Indianara Bonetti
- Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, 3636 J. Prada, Toledo 85903-170, PR, Brazil
| | - Karimi Sater Gebara
- Grande Dourados University Center, UNIGRAN, R. Balbina de Matos, 2121 - J. Universitario, Dourados 79824-900, MS, Brazil
| | - Euclides Lara Cardozo Junior
- Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, 3636 J. Prada, Toledo 85903-170, PR, Brazil
| | - Dragan Milenkovic
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63003 Clermont-Ferrand, France
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
217
|
Hu Y, Wang X, Ding F, Liu C, Wang S, Feng T, Meng S. Periostin renders cardiomyocytes vulnerable to acute myocardial infarction via pro-apoptosis. ESC Heart Fail 2022; 9:977-987. [PMID: 35104050 PMCID: PMC8934967 DOI: 10.1002/ehf2.13675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
AIMS As a severe cardiovascular disease, acute myocardial infarction (AMI) could trigger congestive heart failure. Periostin (Postn) has been elucidated to be dramatically up-regulated in myocardial infarction. Abundant expression of Postn was also observed in the infarct border of human and mouse hearts with AMI. This work is dedicated to explore the mechanism through which Postn exerts its functions on AMI. METHODS AND RESULTS The expression of Postn in AMI mice and hypoxia-treated neonatal mouse cardiomyocytes (NMCMs) was quantified by qRT-PCR. The biological functions of Postn in AMI were explored by trypan blue, TUNEL, flow cytometry analysis, and JC-1 assays. Luciferase activity or MS2-RIP or RNA pull-down assay was performed to study the interaction between genes. Postn exhibited up-regulated expression in AMI mice and hypoxia-treated NMCMs. Functional assays indicated that cell apoptosis in NMCMs was promoted via the treatment of hypoxia. And Postn shortage could alleviate cell apoptosis in hypoxia-induced NMCMs. Postn was verified to bind to mmu-miR-203-3p and be down-regulated by miR-203-3p overexpression. Postn and miR-203-3p were spotted to coexist with small nucleolar RNA host gene 8 (Snhg8) in RNA-induced silencing complex. The affinity between Snhg8 and miR-203-3p was confirmed. Afterwards, Snhg8 was validated to promote cell apoptosis in hypoxia-induced NMCMs partially dependent on Postn. Furthermore, vascular endothelial growth factor A (Vegfa) was revealed to bind to miR-203-3p and be implicated in the Snhg8-mediated AML cell apoptosis and angiogenesis. CONCLUSIONS miR-203-3p availability is antagonized by Snhg8 for Postn and Vegfa-induced AMI progression.
Collapse
Affiliation(s)
- Yanlei Hu
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Xiaohang Wang
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Fuyan Ding
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Chao Liu
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Shupeng Wang
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Tao Feng
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| | - Shuping Meng
- Department of Cardiovascular Surgery ICUHeart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou UniversityNo. 1 Fuwai Avenue, Zhengdong New DistrictZhengzhouHenan451464China
| |
Collapse
|
218
|
He ZZ, Zhao T, Qimuge N, Tian T, Yan W, Yi X, Jin J, Cai R, Yu T, Yang G, Pang W. COPS3 AS lncRNA enhances myogenic differentiation and maintains fast-type myotube phenotype. Cell Signal 2022; 95:110341. [DOI: 10.1016/j.cellsig.2022.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
|
219
|
Sun J, Jin T, Niu Z, Guo J, Guo Y, Yang R, Wang Q, Gao H, Zhang Y, Li T, He W, Li Z, Ma W, Su W, Li L, Fan X, Shan H, Liang H. LncRNA DACH1 protects against pulmonary fibrosis by binding to SRSF1 to suppress CTNNB1 accumulation. Acta Pharm Sin B 2022; 12:3602-3617. [PMID: 36176913 PMCID: PMC9513499 DOI: 10.1016/j.apsb.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with unknown etiology and limited therapeutic options. Activation of fibroblasts is a prominent feature of pulmonary fibrosis. Here we report that lncRNA DACH1 (dachshund homolog 1) is downregulated in the lungs of IPF patients and in an experimental mouse model of lung fibrosis. LncDACH1 knockout mice develop spontaneous pulmonary fibrosis, whereas overexpression of LncDACH1 attenuated TGF-β1-induced aberrant activation, collagen deposition and differentiation of mouse lung fibroblasts. Similarly, forced expression of LncDACH1 not only prevented bleomycin (BLM)-induced lung fibrosis, but also reversed established lung fibrosis in a BLM model. Mechanistically, LncDACH1 binding to the serine/arginine-rich splicing factor 1 (SRSF1) protein decreases its activity and inhibits the accumulation of Ctnnb1. Enhanced expression of SRSF1 blocked the anti-fibrotic effect of LncDACH1 in lung fibroblasts. Furthermore, loss of LncDACH1 promoted proliferation, differentiation, and extracellular matrix (ECM) deposition in mouse lung fibroblasts, whereas such effects were abolished by silencing of Ctnnb1. In addition, a conserved fragment of LncDACH1 alleviated hyperproliferation, ECM deposition and differentiation of MRC-5 cells driven by TGF-β1. Collectively, LncDACH1 inhibits lung fibrosis by interacting with SRSF1 to suppress CTNNB1 accumulation, suggesting that LncDACH1 might be a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Zhihui Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Ruoxuan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Qianqian Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Huiying Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Wenxin He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Zhixin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Wenchao Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Liangliang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
- Corresponding author.
| |
Collapse
|
220
|
Li C, Pan B, Wang X, Liu X, Qin J, Gao T, Sun H, Pan Y, Wang S. Upregulated LINC01088 facilitates malignant phenotypes and immune escape of colorectal cancer by regulating microRNAs/G3BP1/PD-L1 axis. J Cancer Res Clin Oncol 2022; 148:1965-1982. [PMID: 35357586 DOI: 10.1007/s00432-022-03981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Long intergenic non-coding RNA LINC01088 is a newly discovered long non-coding RNA (lncRNA). Its biological function in colorectal cancer (CRC) remains unknown. METHODS Here, 36 paired CRC and para-cancerous tissues were collected. In vitro, fluorescence in situ hybridization (FISH) assay, qPCR, western blotting analysis and cellular functional experiments, RNA immunoprecipitation (RIP) assay and dual-luciferase reporter system analysis were performed. In vivo, xenograft tumor mouse models were generated. Besides, patient-derived intestinal organoid (PDO) was generated ex vivo. RESULTS We found that LINC01088 was significantly upregulated in colorectal cancer tissues and CRC cell lines compared to adjacent normal tissues and colonic epithelial cells. High LINC01088 levels were correlated with adverse outcomes in patients with CRC. LINC01088 was mainly located in the cytoplasm. LINC01088 knockdown suppressed the proliferation, migration, invasion, and immune escape of colorectal cancer cells. Mechanistically, LINC01088 bound directly to miR-548b-5p and miR-548c-5p that were significantly upregulated Ras GTPase-activating protein-binding proteins 1 (G3BP1) and programmed death ligand 1 (PD-L1) expression, altering CRC cell phenotypes. In mouse xenograft models, LINC01088 knockdown restrained CRC tumor growth and lung metastasis. Furthermore, G3BP1 overexpression reversed LINC01088-knockdown-mediated inhibitory effects on tumor growth. Notably, LINC01088 knockdown downregulated PD-L1 expression, while G3BP1 overexpression restored PD-L1 expression in xenograft tumors. Besides, LINC01088 knockdown repressed CRC organoid growth ex vivo. CONCLUSION Overall, these findings suggested that LINC01088 directly targeted miR-548b-5p and miR-548c-5p, promoting G3BP1 and PD-L1 expression, which facilitated colorectal cancer progression and immune escape.
Collapse
Affiliation(s)
- Chenmeng Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Bei Pan
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xuhong Wang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xiangxiang Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Tianyi Gao
- General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China. .,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China. .,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China. .,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| |
Collapse
|
221
|
Xu SM, Curry-Hyde A, Sytnyk V, Janitz M. RNA polyadenylation patterns in the human transcriptome. Gene 2022; 816:146133. [PMID: 34998928 DOI: 10.1016/j.gene.2021.146133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
The eukaryotic transcriptome undergoes various post-transcriptional modifications which assists gene expression. Polyadenylation is a molecular process occurring at the 3'-end of the RNA molecule which involves the poly(A) polymerase attaching adenine monophosphate molecules in a chain-like fashion to assemble a poly(A) tail. Multiple RNA isoforms are produced with differing 3'-UTR and exonic compositions through alternative polyadenylation (APA) which enhances the diversification of alternatively spliced mRNA transcripts. To study polyadenylation patterns, novel methods have been developed using short-read and long-read sequencing technologies to analyse the 3'-ends of the transcript. Recent studies have identified unique polyadenylation patterns in different cellular functions, including oncogenic activity, which could prove valuable in the understanding of medical genetics, particularly in the discovery of biomarkers in diseased states. We present a review of current literature reporting on polyadenylation and the biological relevance in the mammalian transcriptome, with a focus on the human transcriptome. Additionally, we have explored the various methods available to detect polyadenylation patterns using second and third generation sequencing technologies.
Collapse
Affiliation(s)
- Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
222
|
Liu J, Pan C, Lu R, Zhang S. Long noncoding RNA ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 antisense RNA 1 recruits enhancer of zeste 2 polycomb repressive complex 2 subunit to promote the proliferation, migration and invasion of lung adenocarcinoma cells. Bioengineered 2022; 13:7868-7880. [PMID: 35291911 PMCID: PMC9208492 DOI: 10.1080/21655979.2022.2050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The detailed function of ARAP1-AS1, the antisense RNA of Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1), in lung adenocarcinoma (LUAD) has not been clearly elucidated and required further investigation. Our study is committed to exploring the role of ARAP1-AS1 in LUAD. Gene expression in LUAD was measured by real-time quantitative polymerase-chain reaction (RT-qPCR). The influence of ARAP1-AS1 on LUAD cell malignant behaviors was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, Transwell invasion assay and wound healing assay. Subcellular fractionation assay detected the cellular localization of ARAP1-AS1 in LUAD. The protein levels were subjected to western blotting. RNA immunoprecipitation (RIP) and luciferase reporter assay were employed to verify the interaction between ARAP1-AS1, ARAP1 and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). Our investigation identified that ARAP1-AS1 was upregulated in LUAD cells and tissues. ARAP1-AS1 silencing repressed LUAD cell growth and migration. Furthermore, ARAP1-AS1 knockdown altered the expression of its sense mRNA, ARAP1. ARAP1-AS1 could recruit EZH2 to inhibit ARAP1 expression. Additionally, the downregulation of ARAP1 reversed ARAP1-AS1 downregulation-induced repression of cell growth and migration in LUAD. In conclusion, ARAP1-AS1 recruited EZH2 to silence ARAP1, facilitating cell proliferation, migration and invasion in LUAD. Our study demonstrated the possibility of ARAP1-AS1 to be a novel therapeutic target for LUAD.
![]() ![]()
Collapse
Affiliation(s)
| | | | | | - Shijiang Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
223
|
Wen J, Li H, Li D, Dong X. Clinicopathological and prognostic significance of long non-coding RNA EWSAT1 in human cancers: A review and meta analysis. PLoS One 2022; 17:e0265264. [PMID: 35286362 PMCID: PMC8920262 DOI: 10.1371/journal.pone.0265264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Ewing sarcoma-associated transcript 1 (lncRNA EWSAT1) is reported to have a close relationship with the overall survival in many cancers. However, the role of its prognosis and correlations with the clinicopathological features in different cancers haven’t been explored yet. Herein, we intend to assess the prognostic value and correlations with the clinicopathological features in several cancers.
Methods
PubMed, Embase, Web of Science, and The Cochrane Library were searched for literature review from inception to October 25, 2021. Valid data was extracted to make forest and sensitivity analysis plots using Review Manager 5.4 and Stata software. Hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was used to evaluate the relationship between different expression of EWSAT1 and patients’ prognosis and clinicopathological features.
Results
7 studies were screened for this review, including 550 samples. Meta-analysis showed that high expression of lncRNA EWSAT1 was associated with poor overall survival (OS) (HR = 2.10, 95% CI, 1.60–2.75, p < 0.0001) in cancers reported. In addition, patients in high expression group of EWAST1 tended to have more metastasis (OR = 2.20, 95% CI 1.47–3.31, p = 0.0001), and higher TNM stage (I+II vs. III: OR = 0.34, 95% CI 0.21–0.56, p < 0.0001), but in the same time with higher differentiation (well + moderate vs. Poor: OR = 2.21, 95% CI 1.02–4.76, p = 0.04). Age (OR = 1.47, 95% CI 0.94–2.30, p = 0.09) was not significantly different in patients with aberrant expression of EWSAT1.
Conclusions
Our study shows that high expression of EWSAT1 may indicate poor overall survival and associated with several clinicopathological features, which can be used as a potential prognosis biomarker for multiple cancers.
Collapse
Affiliation(s)
- Jian Wen
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haima Li
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Dongdong Li
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xieping Dong
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- * E-mail:
| |
Collapse
|
224
|
Li P, Zeng Y, Chen Y, Huang P, Chen X, Zheng W. LRP11-AS1 promotes the proliferation and migration of triple negative breast cancer cells via the miR-149-3p/NRP2 axis. Cancer Cell Int 2022; 22:116. [PMID: 35279146 PMCID: PMC8917722 DOI: 10.1186/s12935-022-02536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Breast cancer is the most commonly diagnosed cancer in women. Triple negative breast cancer (TNBC) is the most difficult subtype of breast cancer to treat due to the deficiency in drug-targetable receptors. LRP11-AS1, a newly identified oncogenic long noncoding RNA (lncRNA) was found to be significantly overexpressed in TNBC cells. The aim of this study is to investigate the malignant roles and the oncogenic mechanisms of LRP11-AS1 in TNBC. Methods CCK-8, colony formation, transwell migration and transwell invasion assays were performed to study the functions of LRP11-AS1. Quantitative PCR and western blot were used to determine the gene expression. Bioinformatics analysis and dual-luciferase reporter assay were conducted to study lncRNA and miRNA interactions. Results LRP11-AS1 was found to be significantly overexpressed in TNBC cells compared to the non-TNBC cells and normal mammary epithelial cells. Knockdown of LRP11-AS1 could inhibit the growth and metastasis of TNBC cells and regulate cell cycle. Mechanistically, LRP11-AS1 was found to act as a competing endogenous RNA (ceRNA) to sponge miR-149-3p. Silencing of LRP11-AS1 increased the expression of miR-149-3p and overexpression of miR-149-3p suppressed the expression of LRP11-AS1. Inhibition of miR-149-3p could reverse the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Moreover, Neuropilin-2 (NRP2) was found to be the target of miR-149-3p. Rescue experiments revealed that NRP2 overexpression could rescue the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Conclusion LRP11-AS1 overexpressed in TNBC showed the oncogenic effects possibly by sponging miR-149-3p and regulating the miR-149-3p/NRP2 axis, which indicated LRP11-AS1 as a potential diagnostic biomarker and therapeutic target in TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02536-8.
Collapse
|
225
|
Wang J, Dong Z, Sheng Z, Cai Y. Hypoxia-induced PVT1 promotes lung cancer chemoresistance to cisplatin by autophagy via PVT1/miR-140-3p/ATG5 axis. Cell Death Dis 2022; 8:104. [PMID: 35256612 PMCID: PMC8901807 DOI: 10.1038/s41420-022-00886-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 01/05/2023]
Abstract
Lung cancer is one of the most common and lethal malignant tumors and the cases increased rapidly. Elevated chemoresistance during chemotherapy resistance remains a challenge. Hypoxia is one of the components that lead to chemoresistance. PVT1 participates in various tumor drug resistance and is associated with hypoxia conditions. The present study aimed to analyze the regulatory relationship of hypoxia and PVT1 and the mechanism of PVT1 in the hypoxia-induced chemoresistance process of lung cancer. The expression of PVT1 in lung cancer and adjacent tissues, and cell lines were analyzed using the TCGA database and qPCR. The regulatory relationship between hypoxia and PVT1 was validated and analyzed with qPCR, luciferase reporter system, and CHIP-qPCR. The role of PVT1 in chemoresistance ability induced by hypoxia was analyzed with CCK-8 assay and flow cytometry. The roles of PVT1, hypoxia, and chemoresistance were also analyzed with LC3-GFP transfection, WB, and IHC. Finally, the results were further validated in xenograft models. PVT1 is highly expressed in lung cancer and cell lines, and the expression of PVT1 is regulated by HIF-1α, and the luciferase reporter assay and CHIP-qPCR analysis indicated that HIF-1α could bind to the promoter region of PVT1 and regulate PVT1 expression. PVT1 participated in hypoxia-induced chemoresistance and induced higher viability and lower apoptosis rate by the autophagy signaling pathway via PVT1/miR-140-3p/ATG5 axis. All the findings were validated in the xenograft models. In conclusion, these results suggest that the expression of PVT1 is regulated by HIF-1α and participates in hypoxia-induced chemoresistance.
Collapse
Affiliation(s)
- Jiying Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Zhiyi Dong
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Zhaoying Sheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
226
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
227
|
Zhang J, Hao X, Chi R, Liu J, Shang X, Deng X, Qi J, Xu T. Whole Transcriptome Mapping Identifies an Immune- and Metabolism-Related Non-coding RNA Landscape Remodeled by Mechanical Stress in IL-1β-Induced Rat OA-like Chondrocytes. Front Genet 2022; 13:821508. [PMID: 35309149 PMCID: PMC8927047 DOI: 10.3389/fgene.2022.821508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Osteoarthritis (OA) is a common degenerative joint disease. The aims of this study are to explore the effects of mechanical stress on whole transcriptome landscape and to identify a non-coding transcriptome signature of mechanical stress. Methods: Next-generation RNA sequencing (RNA-seq) was performed on IL-1β-induced OA-like chondrocytes stimulated by mechanical stress. Integrated bioinformatics analysis was performed and further verified by experimental validations. Results: A total of 5,022 differentially expressed mRNAs (DEMs), 88 differentially expressed miRNAs (DEMIs), 1,259 differentially expressed lncRNAs (DELs), and 393 differentially expressed circRNAs (DECs) were identified as the transcriptome response to mechanical stress. The functional annotation of the DEMs revealed the effects of mechanical stress on chondrocyte biology, ranging from cell fate, metabolism, and motility to endocrine, immune response, and signaling transduction. Among the DELs, ∼92.6% were identified as the novel lncRNAs. According to the co-expressing DEMs potentially regulated by the responsive DELs, we found that these DELs were involved in the modification of immune and metabolism. Moreover, immune- and metabolism-relevant DELs exhibited a notable involvement in the competing endogenous RNA (ceRNA) regulation networks. Silencing lncRNA TCONS_00029778 attenuated cellular senescence induced by mechanical stress. Moreover, the expression of Cd80 was elevated by mechanical stress, which was rescued by silencing TCONS_00029778. Conclusion: The transcriptome landscape of IL-1β-induced OA-like chondrocytes was remarkably remodeled by mechanical stress. This study identified an immune- and metabolism-related ncRNA transcriptome signature responsive to mechanical stress and provides an insight of ncRNAs into chondrocyte biology and OA.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Qi, ; Tao Xu,
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Qi, ; Tao Xu,
| |
Collapse
|
228
|
He B, Pan H, Zheng F, Chen S, Bie Q, Cao J, Zhao R, Liang J, Wei L, Zeng J, Li H, Cui X, Ding Y, Chao W, Xiang T, Cheng Y, Qiu G, Huang S, Tang L, Chang J, Luo D, Yang J, Zhang B. Long noncoding RNA LINC00930 promotes PFKFB3-mediated tumor glycolysis and cell proliferation in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:77. [PMID: 35209949 PMCID: PMC8867671 DOI: 10.1186/s13046-022-02282-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Background Metabolic reprogramming is a hallmark of cancer. However, the roles of long noncoding RNAs (lncRNAs) in cancer metabolism, especially glucose metabolism remain largely unknown. Results In this study, we identified and functionally characterized a novel metabolism-related lncRNA, LINC00930, which was upregulated and associated with tumorigenesis, lymphatic invasion, metastasis, and poor prognosis in nasopharyngeal carcinoma (NPC). Functionally, LINC00930 was required for increased glycolysis activity and cell proliferation in multiple NPC models in vitro and in vivo. Mechanistically, LINC00930 served as a scaffold to recruit the RBBP5 and GCN5 complex to the PFKFB3 promoter and increased H3K4 trimethylation and H3K9 acetylation levels in the PFKFB3 promoter region, which epigenetically transactivating PFKFB3, and thus promoting glycolytic flux and cell cycle progression. Clinically, targeting LINC00930 and PFKFB3 in combination with radiotherapy induced tumor regression. Conclusions Collectively, LINC00930 is mechanistically, functionally and clinically oncogenic in NPC. Targeting LINC00930 and its pathway may be meaningful for treating patients with NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02282-9.
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China. .,Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Hongli Pan
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.,Department of Reproductive Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengque Zheng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Saiqiong Chen
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jinghe Cao
- Department of Reproductive Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Li Wei
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jianchao Zeng
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Hui Li
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Cui
- Department of Otolaryngology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yixuan Ding
- Department of Pathology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wei Chao
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Tiantian Xiang
- Experimental Center of Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuhe Cheng
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gui Qiu
- Medical Science Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shishun Huang
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Libo Tang
- Medical Science Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiansheng Chang
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Experimental Center of Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Delan Luo
- Department of Gastroenterology, the First People's Hospital of Neijiang City, Neijiang, Sichuan, China
| | - Jie Yang
- Department of Hematology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
229
|
METTL3-mediated LINC00657 promotes osteogenic differentiation of mesenchymal stem cells via miR-144-3p/BMPR1B axis. Cell Tissue Res 2022; 388:301-312. [PMID: 35192037 DOI: 10.1007/s00441-022-03588-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in the progression of osteoporosis (OP). The study aimed to explore the effects of methyltransferase-like 3 (METTL3) in OP. The levels of METTL3, LINC00657, miR-144-3p and BMPR1B were detected using qPCR. Osteogenesis was assessed using alizarin red and alkaline phosphatase (ALP) staining assays. The protein expression of Bglap, Runx2 and Col1a1 was measured by western blot. The targets of LINC00657 and miR-144-3p were screened by bioinformatic analysis. The interaction between miR-144-3p and LINC00657 or BMPR1B was analyzed by dual-luciferase reporter assay and RNA pull-down assay. The results showed that METTL3 was downregulated in OP. METTL3 mediated m6A methylation of LINC00657 to promote the development of osteogenesis. Further study indicated that LINC00657 functioned as a ceRNA to upregulate BMPR1B via sponging miR-144-3p. Additionally, BMPR1B knockdown alleviated the effects of METTL3 on osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Taken together, METTL3 facilitated osteogenic differentiation of BMSCs via the LINC00657/miR-144-3p/BMPR1B axis. Our findings may provide a novel insight of m6A methylation in the development of OP.
Collapse
|
230
|
Xu F, Hu QF, Li J, Shi CJ, Luo JW, Tian WC, Pan LW. SOX4-activated lncRNA MCM3AP-AS1 aggravates osteoarthritis progression by modulating miR-149-5p/Notch1 signaling. Cytokine 2022; 152:155805. [PMID: 35202986 DOI: 10.1016/j.cyto.2022.155805] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To clarify the expression and underlying network of long non-coding RNA (lncRNA) MCM3AP-AS1 in osteoarthritis (OA). METHODS Human articular cartilage samples, OA model rats and IL-1β-treated C28/I2 cells were used in this study. The expression changes of genes and proteins were assessed by real-time quantitative PCR (qRT-PCR) and western blot. Cell viability, apoptosis, autophagy and extracellular matrix (ECM) degradation were assessed by Cell Counting Kit-8 (CCK-8), immunohistochemistry (IHC), flow cytometry, immunofluorescence and western blot assays, respectively. Molecule interactions were validated by dual luciferase and Chromatin immunoprecipitation (ChIP) assays. H&E staining was used to detect the pathological changes of cartilage. RESULTS MCM3AP-AS1 was upregulated in OA patients and IL-1β-induced chondrocytes. Knockdown of MCM3AP-AS1 enhanced autophagy, while alleviated ECM degradation and cartilage injury. Mechanistically, overexpression of SOX4 boosted the transcription of MCM3AP-AS1. Moreover, MCM3AP-AS1 functioned as a molecular sponge or epigenetic regulator of miR-149-5p to facilitate Notch1 expression. Functional rescue experiments showed that either inhibition of miR-149-5p nor ectopic expression of Notch1 dramatically weakened the biological impacts of MCM3AP-AS1 silencing. CONCLUSION These finding demonstrated that SOX4-activated MCM3AP-AS1 aggravated OA progression by modulating autophagy and ECM degradation via targeting miR-149-5p/Notch1 axis. These data supported that inhibition of MCM3AP-AS1 might be a potential treatment strategy of OA.
Collapse
Affiliation(s)
- Fei Xu
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, People's Republic of China.
| | - Qun-Fang Hu
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, People's Republic of China
| | - Jia Li
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, People's Republic of China
| | - Chang-Jiang Shi
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, People's Republic of China
| | - Jin-Wei Luo
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, People's Republic of China
| | - Wei-Chao Tian
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, People's Republic of China
| | - Li-Wei Pan
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, People's Republic of China
| |
Collapse
|
231
|
Zhang Y, Xu W, Wang Y, Li J, He G, Guan M, Zeng X, Bian W, Song Y, Liu J. Oncogenic lncRNA ZNFX1 antisense RNA 1 promotes osteosarcoma cells proliferation and metastasis by stabilizing serine and arginine‑rich splicing factor 3. Bioengineered 2022; 13:5962-5974. [PMID: 35184675 PMCID: PMC8974064 DOI: 10.1080/21655979.2022.2036900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies have demonstrated that lncRNAs play an important role in cancers, particularly osteosarcoma. ZFAS1 is a newly identified and characterized lncRNA linked to a variety of cancers. The role of ZFAS1 in osteosarcoma is mainly unknown. This study discovered that ZFAS1 was upregulated in osteosarcoma patient tissues, which correlates with elevated SRSF3 protein levels. Higher levels of ZFAS1 or SRSF3 were linked to a poor prognosis of osteosarcoma. ZFAS1 knockdown decreased SRSF3 protein levels but had a negligible effect on SRSF3 mRNA expression. Further research indicated that ZFAS1 could bind to the SRSF3 protein directly and prevent degrading. Functional studies revealed that ZFAS1 knockdown inhibited osteosarcoma cell proliferation as measured by the CCK-8 assay, colony formation assay, and Ki-67 immunofluorescence staining. Furthermore, ZFAS1 knockdown reduced the expression of PCNA, CDK1, CDK4, and CDK6, increasing p53 and p16. IT has also been observed that ZFAS1 knockdown inhibited osteosarcoma cell migration and invasion as measured by the wound healing assay and the trans-well assay with or without Matrigel. Furthermore, exogenous SRSF3 expression in ZFAS1-depleted osteosarcoma cells restored SRSF3 expression while simultaneously inhibiting cell proliferation and metastasis. Our findings show that ZFAS1 plays an essential role in osteosarcoma progression by stabilizing the SRSF3 protein. Our study provides novel insight into the role of ZFAS1 in osteosarcoma. ZFAS1 has the potential to be used as a prognostic biomarker as well as a therapeutic target in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Wenbo Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Yanlong Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Jianming Li
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Guanyi He
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Mingyan Guan
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Xiangyu Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Wei Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Yan Song
- Department of Operating Room, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Jianyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
232
|
Han X, Zhang S. Role of Long Non-Coding RNA LINC00641 in Cancer. Front Oncol 2022; 11:829137. [PMID: 35155216 PMCID: PMC8828736 DOI: 10.3389/fonc.2021.829137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with more than 200 nucleic acids in length. When lncRNAs are located in the nucleus, they regulate chromosome structure, participate in chromatin remodeling, and act as transcription regulators. When lncRNAs are exported to the cytoplasm, they regulate mRNA stability, regulate translation, and interfere with post-translational modification. In recent years, more and more evidences have shown that lncRNA can regulate the biological processes of tumor proliferation, apoptosis, invasion and metastasis, and can participate in a variety of tumor signaling pathways. Long-gene non-protein coding RNA641 (LINC00641), located on human chromosome 14q11.2, is differentially expressed in a variety of tumors and is related to overall survival and prognosis, etc. Interfering the expression of LINC00641 can lead to changes in tumor cell proliferation, invasion, metastasis, apoptosis and other biological behaviors. Therefore, LINC00641 is a promising new biomarker and potential clinical therapeutic target. In this review, the biological functions, related mechanisms and clinical significance of LINC00641 in many human cancers are described in detail.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
233
|
Lin Y, Tang Z, Jin L, Yang Y. The Expression and Regulatory Roles of Long Non-Coding RNAs in Periodontal Ligament Cells: A Systematic Review. Biomolecules 2022; 12:biom12020304. [PMID: 35204802 PMCID: PMC8869287 DOI: 10.3390/biom12020304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal ligament (PDL) cells play a pivotal role in periodontal and bone homeostasis and have promising potential for regenerative medicine and tissue engineering. There is compelling evidence that long non-coding RNAs (lncRNAs) are differentially expressed in PDL cells compared to other cell types and that these lncRNAs are involved in a variety of biological processes. This study systematically reviews the current evidence regarding the expression and regulatory functions of lncRNAs in PDL cells during various biological processes. A systematic search was conducted on PubMed, the Web of Science, Embase, and Google Scholar to include articles published up to 1 July 2021. Original research articles that investigated the expression or regulation of lncRNAs in PDL cells were selected and evaluated for a systematic review. Fifty studies were ultimately included, based on our eligibility criteria. Thirteen of these studies broadly explored the expression profiles of lncRNAs in PDL cells using microarray or RNA sequencing. Nineteen studies investigated the mechanisms by which lncRNAs regulate osteogenic differentiation in PDL cells. The remaining 18 studies investigated the mechanism by which lncRNAs regulate the responses of PDL cells to various stimuli, namely, lipopolysaccharide-induced inflammation, tumor necrosis factor alpha-induced inflammation, mechanical stress, oxidative stress, or hypoxia. We systematically reviewed studies on the expression and regulatory roles of lncRNAs in diverse biological processes in PDL cells, including osteogenic differentiation and cellular responses to inflammation, mechanical stress, and other stimuli. These results provide new insights that may guide the development of lncRNA-based therapeutics for periodontal and bone regeneration.
Collapse
Affiliation(s)
- Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
| | - Zhongyuan Tang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China;
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
- Correspondence:
| |
Collapse
|
234
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
235
|
Wang T, Yu Q, Zhang W, Gao L. Comprehensive Analysis of the PROSER2-AS1-Related ceRNA Network and Immune Cell Infiltration in Papillary Thyroid Carcinoma. Int J Gen Med 2022; 15:1647-1663. [PMID: 35210835 PMCID: PMC8858959 DOI: 10.2147/ijgm.s338019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is a malignant tumor of the endocrine system, and distant metastasis leads to poor prognosis for patients with PTC. The competitive endogenous RNA (ceRNA) network and tumor-infiltrating immune cells might participate in tumor prognosis and distant metastasis. However, few studies have focused on ceRNAs and immune cells in PTC. Methods We identified differentially expressed lncRNAs (DELs) using the GEO2R tool of the GEO database. Through comprehensive analysis, we selected lncRNA PROSER2-AS1 and constructed a PROSER2-AS1-mediated ceRNA network. Survival was analyzed with a Kaplan-Meier (KM) curve. Gene set enrichment analysis (GSEA) was performed to determine the function of PROSER2-AS1 in the ceRNA network using TCGA database. Moreover, the relationship between PROSER2-AS1 and immune cell infiltration was analyzed with ssGSEA using the “GSVA” package in R. Results Comprehensive analysis of the GSE66783 dataset revealed 105 significantly differentially expressed lncRNAs. Univariate and multivariate Cox regression analyses were performed to assess the prognostic significance of the DELs, and we identified lncRNA PROSER2-AS1 as an independent factor for prognosis in PTC (p < 0.05). Considering the online tools LncRNASNP2 and miRWalk3.0, we constructed a PROSER2-AS1-related ceRNA network. Furthermore, the GSEA results suggested that PROSER2-AS1 may be involved in immune cell infiltration and that PROSER2-AS1 was correlated with 14 types of tumor-infiltrating immune cells. PROSER2-AS1 might function through TGFBR3. Conclusion lncRNA PROSER2-AS1 and related mRNAs (TGFBR3) may be potential prognostic biomarkers in PTC and may correlate with immune infiltrates.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji’nan, 250014, People’s Republic of China
- Correspondence: Tingting Wang, Email
| | - Qian Yu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Wei Zhang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji’nan, 250014, People’s Republic of China
| | - Li Gao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji’nan, 250014, People’s Republic of China
| |
Collapse
|
236
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
237
|
LncCDH5-3:3 Regulates Apoptosis, Proliferation, and Aggressiveness in Human Lung Cancer Cells. Cells 2022; 11:cells11030378. [PMID: 35159188 PMCID: PMC8834634 DOI: 10.3390/cells11030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Lung cancer (both small cell and non-small cell) is the leading cause of new deaths associated with cancers globally in men and women. Long noncoding RNAs (lncRNAs) are associated with tumorigenesis in different types of tumors, including lung cancer. Herein, we discuss: (1) An examination of the expression profile of lncCDH5-3:3 in non-small cell lung cancer (NSCLC), and an evaluation of its functional role in lung cancer development and progression using in vitro models; (2) A quantitative real-time polymerase chain reaction assay that confirms lncCDH5-3:3 expression in tumor samples resected from 20 NSCLC patients, and that shows its statistically higher expression levels at stage III NSCLC, compared to stages I and II. Moreover, knockout (KO) and overexpression, as well as molecular and biochemical techniques, were used to investigate the biological functions of lncCDH5-3:3 in NSCLC cells, with a focus on the cells’ proliferation and migration; (3) The finding that lncCDH5-3:3 silencing promotes apoptosis and probably regulates the cell cycle and E-cadherin expression in adenocarcinoma cell lines. In comparison, lncCDH5-3:3 overexpression increases the expression levels of proliferation and epithelial-to-mesenchymal transition markers, such as EpCAM, Akt, and ERK1/2; however, at the same time, it also stimulates the expression of E-cadherin, which conversely inhibits the mobility capabilities of lung cancer cells; (4) The results of this study, which provide important insights into the role of lncRNAs in lung cancer. Our study shows that lncCDH5-3:3 affects important features of lung cancer cells, such as their viability and motility. The results support the idea that lncCDH5-3:3 is probably involved in the oncogenesis of NSCLC through the regulation of apoptosis and tumor cell metastasis formation.
Collapse
|
238
|
Zhang S, Wang Q, Li W, Chen J. MIR100HG Regulates CALD1 Gene Expression by Targeting miR-142-5p to Affect the Progression of Bladder Cancer Cells in vitro, as Revealed by Transcriptome Sequencing. Front Mol Biosci 2022; 8:793493. [PMID: 35127818 PMCID: PMC8814626 DOI: 10.3389/fmolb.2021.793493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background/Aim: The role of long non-coding RNA (lncRNA) and competing endogenous RNAs (ceRNA) networks in bladder cancer, especially the function of lncRNA-miRNA-mRNA regulatory network in bladder cancer, are still relatively poorly understood. This research mainly used transcriptome sequencing to screen key lncRNAs and ceRNAs, explore their pathogenic mechanism in bladder cancer, and search for potential diagnostic and therapeutic targets. Methods: High-throughput transcriptome sequencing, combined with the limma package, Kaplan-Meier curve analysis, lncRNA-mRNA coexpression network, univariate Cox analysis, multivariate Cox analysis, protein-protein interaction (PPI), functional enrichment, weighed gene co-expression network analysis (WGCNA), ceRNA network and quantitative PCR (qPCR) analyses were performed to assess and screen differentially expressed lncRNAs and mRNAs. Then, the effects of MIR100HG on the proliferation, migration and invasion of the bladder cancer cell line 5,637 were evaluated using cell counting kit-8(CCK-8), wound-healing and transwell assays, respectively. A dual luciferase reporter assay was used to validate the MIR100HG/miR-142-5p and miR-142-5p/CALD1 targeting relationship, and the regulatory relationship among MIR100HG/miR-142-5p/CALD1 expression was explored using qPCR and western blot. Results: A total of 127 differentially expressed lncRNAs and 620 differentially expressed mRNAs were screened. Based on the survival prognosis analysis, Cox analysis, lncRNA-mRNA network, PPI network and WGCNA, we obtained 3 key lncRNAs and 13 key mRNAs, as well as the MIR100HG/miR-142-5p/CALD1 key regulatory axis. qPCR results showed that compared with the adjacent tissues, the expression of MIR100HG and CALD1 was up-regulated, and the expression of miR-142-5p was down-regulated. Moreover, MIR100HG expression was positively correlated with the tumor grade and clinical grade of patients with bladder cancer. Overexpression of MIR100HG effectively promoted the proliferation, migration and invasion of 5,637 cells, inhibited the expression of miR-142-5p, and induced the expression of CALD1 in 5,637 cells. In addition, miR-142-5p inhibited CALD1 expression in bladder cancer cells through a direct association, and reversed the proliferation and CALD1 expression in 5,637 cells overexpressing of MIR100HG. Conclusion: MIR100HG regulates CALD1 expression by targeting miR-142-5p to inhibit the proliferation, migration and invasion of bladder cancer cells. MIR100HG is an independent prognostic factor for bladder cancer, with potential as a biomarker for the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Sheng Zhang
- Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- *Correspondence: Sheng Zhang, ; Jinzhong Chen,
| | - Qin Wang
- Shanghai University of Engineering Science, Shanghai, China
| | - Wenfeng Li
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Sheng Zhang, ; Jinzhong Chen,
| |
Collapse
|
239
|
Gao H, Zhang Y, Xue H, Zhang Q, Zhang Y, Shen Y, Bing X. Long Non-coding RNA Peg13 Alleviates Hypoxic-Ischemic Brain Damage in Neonatal Mice via miR-20a-5p/XIAP Axis. Neurochem Res 2022; 47:656-666. [PMID: 35043374 DOI: 10.1007/s11064-021-03474-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Long noncoding RNA (LncRNA) Peg13 has been demonstrated to protect against neurological diseases. However, its underlying mechanism in the progression of hypoxic-ischemic brain damage (HIBD) has not been well investigated. The expression of target genes was determined in neonatal mice with HIBD and in mouse hippocampal neurons during oxygen-glucose deprivation (OGD) using quantitative real-time PCR (qRT-PCR) and immunoblotting. Functional assays, including CCK-8 cell viability and apoptotic cell detection using TdT mediated dUTP nick ending labeling (TUNEL) assay were used to examine the neuroprotective role of Peg13 in mouse hippocampal neurons. Luciferase assays were performed to determine the regulatory mechanism of Peg13 in OGD-induced neuronal apoptosis. Peg13 was reduced in HIBD mice and OGD-treated mouse hippocampal neurons. Altered Peg13 expression relieved OGD-induced neuronal apoptosis. Mechanistically, Peg13 may serve as a sponge for miR-20a-5p to increase the expression of X chromosome-linked inhibitor of apoptosis (XIAP), a downstream target of miR-20a-5p. Our study showed that Peg13 fulfilled its anti-apoptotic function in neurons through suppressing XIAP expression by sponging miR-20a-5p. Together, Peg13 binds to miR-20a-5p to upregulate XIAP and alleviate HIBD in neonatal mice. The Peg13/miR-20a-5p/XIAP competing endogenous RNA (ceRNA) axis could be a potential therapeutic target for HIBD.
Collapse
Affiliation(s)
- Huan Gao
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yue Zhang
- Department of Ophthalmonogy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Huijing Xue
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qifei Zhang
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Zhang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yusi Shen
- Second Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaosan Bing
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
240
|
Nyati KK, Kishimoto T. Recent Advances in the Role of Arid5a in Immune Diseases and Cancer. Front Immunol 2022; 12:827611. [PMID: 35126382 PMCID: PMC8809363 DOI: 10.3389/fimmu.2021.827611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 12/09/2022] Open
Abstract
AT-rich interactive domain 5a (Arid5a) is a nucleic acid binding protein. In this review, we highlight recent advances in the association of Arid5a with inflammation and human diseases. Arid5a is known as a protein that performs dual functions. In in vitro and in vivo studies, it was found that an inflammation-dependent increase in Arid5a expression mediates both transcriptional and post-transcriptional regulatory effects that are implicated in immune regulation and cellular homeostasis. A series of publications demonstrated that inhibiting Arid5a augmented several processes, such as preventing septic shock, experimental autoimmune encephalomyelitis, acute lung injury, invasion and metastasis, immune evasion, epithelial-to-mesenchymal transition, and the M1-like tumor-associated macrophage (TAM) to M2-like TAM transition. In addition, Arid5a controls adipogenesis and obesity in mice to maintain metabolic homeostasis. Taken together, recent progress indicates that Arid5a exhibits multifaceted, both beneficial and detrimental, roles in health and disease and suggest the relevance of Arid5a as a potential therapeutic target.
Collapse
|
241
|
Wang H, Li J, Xu W, Li C, Wu K, Chen G, Cui J. The mechanism underlying arsenic-induced PD-L1 upregulation in transformed BEAS-2B cells. Toxicol Appl Pharmacol 2022; 435:115845. [PMID: 34953898 DOI: 10.1016/j.taap.2021.115845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022]
Abstract
Chronic exposure to arsenic promotes lung cancer. Human studies have identified immunosuppression as a risk factor for cancer development. The immune checkpoint pathway of Programmed cell death 1 ligand (PD-L1) and its receptor (programmed cell death receptor 1, PD-1) is the most studied mechanism of immunosuppression. We have previously shown that prolonged arsenic exposure induced cell transformation of BEAS-2B cells, a human lung epithelial cell line. More recently our study further showed that arsenic induced PD-L1 up-regulation, inhibited T cell effector function, and enhanced lung tumor formation in the mice. In the current study, using arsenic-induced BEAS-2B transformation as a model system we investigated the mechanism underlying PD-L1 up-regulation by arsenic. Our data suggests that Lnc-DC, a long non-coding RNA, and signal transducer and activator of transcription 3 (STAT3) mediates PD-L1 up-regulation by arsenic.
Collapse
Affiliation(s)
- Hongsen Wang
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Jiaqi Li
- Department of Clinical Medicine, Dali University, Dali, Yunnan 671003, China
| | - Wenhua Xu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neurology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chunming Li
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Kuaiying Wu
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Gang Chen
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China.
| |
Collapse
|
242
|
Ye C, Qin S, Guo F, Yang Y, Wang H, Zhang C, Yang B. LncRNA EIF3J-AS1 functions as an oncogene by regulating MAFG to promote prostate cancer progression. J Cancer 2022; 13:146-152. [PMID: 34976178 PMCID: PMC8692703 DOI: 10.7150/jca.60676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) can modulate various biological processes and behaviors in most human cancers. LncRNA EIF3J-AS1 has been reported as an oncogene in various tumors, but whether it exerts functions in malignant progression and gene expression in prostate cancer (PCa) remains unknown. In this study, we investigated the high level of EIF3J‐AS1 in PCa tissues and cells, and used functional assays to show that knocking down EIF3J‐AS1 inhibited PCa cell proliferation and metastatic ability. A preliminary mechanistic investigation also showed that EIF3J‐AS1 may increase the expression of MAF bZIP transcription Factor G (MAFG) in PCa. The expression correlation between EIF3J‐AS1 and MAFG was found to be positive in PCa tissues. Finally, rescue assays showed that MAFG might be involved in the EIF3J-AS1-mediated malignant phenotype in PCa cells. This study demonstrated that EIF3J-AS1/MAFG may play a key role in facilitating PCa progression.
Collapse
Affiliation(s)
- Chen Ye
- Department of Urology, Shanghai Changhai Hospital, P. R. China, Shanghai 200433, China
| | - Shengfei Qin
- Department of Urology, Shanghai Changhai Hospital, P. R. China, Shanghai 200433, China
| | - Fei Guo
- Department of Urology, Shanghai Changhai Hospital, P. R. China, Shanghai 200433, China
| | - Yue Yang
- Department of Urology, Shanghai Changhai Hospital, P. R. China, Shanghai 200433, China
| | - Huiqing Wang
- Department of Urology, Shanghai Changhai Hospital, P. R. China, Shanghai 200433, China
| | - Chao Zhang
- Department of Urology, Shanghai Changhai Hospital, P. R. China, Shanghai 200433, China
| | - Bo Yang
- Department of Urology, Shanghai Changhai Hospital, P. R. China, Shanghai 200433, China
| |
Collapse
|
243
|
Xu B, Yang R, Yang B, Li L, Chen J, Fu J, Qu X, Huo D, Tan C, Chen H, Peng Z, Wang X. Long non-coding RNA lncC11orf54-1 modulates neuroinflammatory responses by activating NF-κB signaling during meningitic Escherichia coli infection. Mol Brain 2022; 15:4. [PMID: 34980188 PMCID: PMC8722204 DOI: 10.1186/s13041-021-00890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Escherichia coli is the most common gram-negative pathogenic bacterium causing meningitis. It penetrates the blood–brain barrier (BBB) and activates nuclear factor kappa B (NF-κB) signaling, which are vital events leading to the development of meningitis. Long non-coding RNAs (lncRNAs) have been implicated in regulating neuroinflammatory signaling, and our previous study showed that E. coli can induce differential expression of lncRNAs, including lncC11orf54-1, in human brain microvascular endothelial cells (hBMECs). The hBMECs constitute the structural and functional basis for the BBB, however, it is unclear whether lncRNAs are involved in the regulation of inflammatory responses of hBMECs during meningitic E. coli infection. In this study, we characterized an abundantly expressed lncRNA, lncC11orf54-1, which was degraded by translocated coilin to produce mgU2-19 and mgU2-30 in hBMECs during E. coli infection. Functionally, lncC11orf54-1-originated non-coding RNA mgU2-30 interacted with interleukin-1 receptor-associated kinase 1 (IRAK1) to induce its oligomerization and autophosphorylation, thus promoting the activation of NF-κB signaling and facilitating the production of pro-inflammatory cytokines. In summary, our study uncovers the involvement of lncC11orf54-1 in IRAK1–NF-κB signaling, and it functions as a positive regulator of inflammatory responses in meningitic E. coli-induced neuroinflammation, which may be a valuable therapeutic and diagnostic target for bacterial meningitis.
Collapse
Affiliation(s)
- Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinyi Qu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dong Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China. .,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China.
| |
Collapse
|
244
|
Yu W, Wang M, Zhang Y. Construction of lncRNA-ceRNA Networks to Reveal the Potential Role of Lfng/Notch1 Signaling Pathway in Alzheimer's Disease. Curr Alzheimer Res 2022; 19:772-784. [PMID: 36453506 DOI: 10.2174/1567205020666221130090103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) develops through a complex pathological process, in which many genes play a synergistic or antagonistic role. LncRNAs represent a kind of noncoding RNA, which can regulate gene expression at the epigenetic, transcriptional and posttranscriptional levels. Multiple lncRNAs have been found to have important regulatory functions in AD. Thus, their expression patterns, targets and functions should be explored as therapeutic targets. METHODS We used deep RNA-seq analysis to detect the dysregulated lncRNAs in the hippocampus of APP/PS1 mice. We performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to predict the biological roles and potential signaling pathways of dysregulated lncRNAs. Finally, we constructed lncRNA-miRNA-mRNA and lncRNA-mRNA co-expression networks to reveal the potential regulator roles in AD pathogenesis. RESULTS Our findings revealed 110 significantly dysregulated lncRNAs. GO and KEGG annotations showed the dysregulated lncRNAs to be closely related to the functions of axon and protein digestion and absorption. The lncRNA-mRNA network showed that 19 lncRNAs regulated App, Prnp, Fgf10 and Il33, while 5 lncRNAs regulated Lfng via the lncRNA-miR-3102-3p-Lfng axis. Furthermore, we preliminarily demonstrated the important regulatory role of the Lfng/Notch1 signaling pathway through lncRNA-ceRNA networks in AD. CONCLUSION We revealed the important regulatory roles of dysregulated lncRNAs in the etiopathogenesis of AD through lncRNA expression profiling. Our results showed that the mechanism involves the regulation of the Lfng/Notch1 signaling pathway.
Collapse
Affiliation(s)
- Wanpeng Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, P.R. China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, P.R. China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, P.R. China
| |
Collapse
|
245
|
Wang W, Chen X, Li C, Zhao R, Zhang J, Qin H, Wang M, Su Y, Tang M, Han L, Sun N. The single nucleotide polymorphism rs1814521 in long non-coding RNA ADGRG3 associates with the susceptibility to silicosis: a multi-stage study. Environ Health Prev Med 2022; 27:5. [PMID: 35289324 PMCID: PMC9093617 DOI: 10.1265/ehpm.21-00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study aimed to evaluate the correlation between long non-coding RNA (lncRNA)-related single nucleotide polymorphisms (SNPs) and susceptibility to silicosis. Methods First, RNA-sequencing (RNA-seq) data were comprehensively analyzed in the peripheral blood lymphocytes of eight participants (four silicosis cases and four healthy controls) exposed to silica dust to identify differentially expressed lncRNAs (DE-lncRNAs). The functional SNPs in the identified DE-lncRNAs were then identified using several databases. Finally, the association between functional SNPs and susceptibility to silicosis was evaluated by a two-stage case-control study. The SNPs of 155 silicosis cases and 141 healthy silica-exposed controls were screened by genome-wide association study (GWAS), and the candidate SNPs of 194 silicosis cases and 235 healthy silica-exposed controls were validated by genotyping using the improved Mutiligase Detection Reaction (iMLDR) system. Results A total of 76 DE-lncRNAs were identified by RNA-seq data analysis (cut-offs: fold change > 2 or fold change < 0.5, P < 0.05), while 127 functional SNPs among those 76 DE-lncRNAs were identified through multiple public databases. Furthermore, five SNPs were found to be significantly correlated with the risk of silicosis by GWAS screening (P < 0.05), while the results of GWAS and iMLDR validation indicated that the variant A allele of rs1814521 was associated with a reduced risk of silicosis (OR = 0.76, 95% CI = 0.62–0.94, P = 0.011). Conclusion The presence of the SNP rs1814521 in the lncRNA ADGRG3 is associated with susceptibility to silicosis. Moreover, ADGRG3 was found to be lowly expressed in silicosis cases. The underlying biological mechanisms by which lncRNA ADGRG3 and rs1814521 regulate the development of silicosis need further study. Supplementary information The online version contains supplementary material available at https://doi.org/10.1265/ehpm.21-00338.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi
| | - Xiaofeng Chen
- Department of Quality Management, Center for Disease Control and Prevention of Wuxi
| | - Chunping Li
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi
| | - Rui Zhao
- Department of respiratory medicine, Wuxi Eighth People's Hospital
| | - Jinlong Zhang
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi
| | - Hong Qin
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi
| | - Miaomiao Wang
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi
| | - Yao Su
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi
| | - Minzhu Tang
- Department of respiratory medicine, Wuxi Eighth People's Hospital
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control
| | - Na Sun
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi
| |
Collapse
|
246
|
Tan Y, Liu L, Zhang X, Xue Y, Gao J, Zhao J, Chi N, Zhu Y. THUMPD3-AS1 is correlated with gastric cancer and regulates cell function through miR-1252-3p and CXCL17. Crit Rev Eukaryot Gene Expr 2022; 32:69-80. [DOI: 10.1615/critreveukaryotgeneexpr.2022042848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
247
|
Zhou G, Zhang M, Zhang J, Feng Y, Xie Z, Liu S, Zhu D, Luo Y. The gene regulatory role of non-coding RNAs in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2022; 13:959487. [PMID: 36060931 PMCID: PMC9436424 DOI: 10.3389/fendo.2022.959487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs are classified as small non-coding RNAs, long non-coding RNAs and circular RNAs, which are involved in a variety of biological processes, including cell differentiation, proliferation, apoptosis and pathological conditions of various diseases. Many studies have shown that non-coding RNAs are related to spermatogenesis, maturation, apoptosis, function, etc. In addition, the expression of non-coding RNAs in testicular tissue and semen of patients with non-obstructive azoospermia was different. However, the role of non-coding RNAs in the pathogenesis of non-obstructive azoospermia has not been fully elucidated, and the role of non-coding RNAs in non-obstructive azoospermia is rarely reviewed. Here we summarize the research progress of non-coding RNAs in the pathogenesis of non-obstructive azoospermia.
Collapse
Affiliation(s)
- Guanqing Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mimi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingzhi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaofeng Feng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhishen Xie
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Siyi Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Detu Zhu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yumei Luo, ; Detu Zhu,
| | - Yumei Luo
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yumei Luo, ; Detu Zhu,
| |
Collapse
|
248
|
Singh AP, Luo H, Matur M, Eshelman MA, Hamamoto K, Sharma A, Lesperance J, Huang S. A coordinated function of lncRNA HOTTIP and miRNA-196b underpinning leukemogenesis by targeting FAS signaling. Oncogene 2022; 41:718-731. [PMID: 34845377 PMCID: PMC8810734 DOI: 10.1038/s41388-021-02127-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/07/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) may modulate more than 60% of human coding genes and act as negative regulators, whereas long noncoding RNAs (lncRNAs) regulate gene expression on multiple levels by interacting with chromatin, functional proteins, and RNAs such as mRNAs and microRNAs. However, the crosstalk between HOTTIP lncRNA and miRNAs in leukemogenesis remains elusive. Using combined integrated analyses of global miRNA expression profiling and state-of-the-art genomic analyses of chromatin such as ChIRP-seq (HOTTIP binding in genomewide), ChIP-seq, and ATAC-seq, we found that some miRNA genes are directly controlled by HOTTIP. Specifically, the HOX cluster miRNAs (miR-196a, miR-196b, miR-10a, and miR-10b), located cis and trans, were most dramatically regulated and significantly decreased in HOTTIP-/- AML cells. HOTTIP bound to the miR-196b promoter and HOTTIP deletion reduced chromatin accessibility and enrichment of active histone modifications at HOX cluster-associated miRNAs in AML cells, whereas reactivation of HOTTIP restored miR gene expression and chromatin accessibility in the CTCF-boundary-attenuated AML cells. Inactivation of HOTTIP or miR-196b promotes apoptosis by altering the chromatin signature at the FAS promoter and increasing FAS expression. Transplantation of miR-196b knockdown MOLM13 cells in NSG mice increased overall survival of mice compared to wild-type cells transplanted into mice. Thus, HOTTIP remodels the chromatin architecture around miRNAs to promote their transcription and consequently represses tumor suppressors and promotes leukemogenesis.
Collapse
Affiliation(s)
- Ajeet P Singh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Meghana Matur
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Melanie A Eshelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Karina Hamamoto
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
249
|
Mai S, Liang L, Mai G, Liu X, Diao D, Cai R, Liu L. Development and Validation of Lactate Metabolism-Related lncRNA Signature as a Prognostic Model for Lung Adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:829175. [PMID: 35422758 PMCID: PMC9004472 DOI: 10.3389/fendo.2022.829175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer has been a prominent research focus in recent years due to its role in cancer-related fatalities globally, with lung adenocarcinoma (LUAD) being the most prevalent histological form. Nonetheless, no signature of lactate metabolism-related long non-coding RNAs (LMR-lncRNAs) has been developed for patients with LUAD. Accordingly, we aimed to develop a unique LMR-lncRNA signature to determine the prognosis of patients with LUAD. METHOD The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to derive the lncRNA expression patterns. Identification of LMR-lncRNAs was accomplished by analyzing the co-expression patterns between lncRNAs and LMR genes. Subsequently, the association between lncRNA levels and survival outcomes was determined to develop an effective signature. In the TCGA cohort, Cox regression was enlisted to build an innovative signature consisting of three LMR-lncRNAs, which was validated in the GEO validation cohort. GSEA and immune infiltration analysis were conducted to investigate the functional annotation of the signature and the function of each type of immune cell. RESULTS Fourteen differentially expressed LMR-lncRNAs were strongly correlated with the prognosis of patients with LUAD and collectively formed a new LMR-lncRNA signature. The patients could be categorized into two cohorts based on their LMR-lncRNA signatures: a low-risk and high-risk group. The overall survival of patients with LUAD in the high-risk group was considerably lower than those in the low-risk group. Using Cox regression, this signature was shown to have substantial potential as an independent prognostic factor, which was further confirmed in the GEO cohort. Moreover, the signature could anticipate survival across different groups based on stage, age, and gender, among other variables. This signature also correlated with immune cell infiltration (including B cells, neutrophils, CD4+ T cells, CD8+ T cells, etc.) as well as the immune checkpoint blockade target CTLA-4. CONCLUSION We developed and verified a new LMR-lncRNA signature useful for anticipating the survival of patients with LUAD. This signature could give potentially critical insight for immunotherapy interventions in patients with LUAD.
Collapse
Affiliation(s)
- Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genghui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiguang Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingwei Diao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijun Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Le Liu, ; Ruijun Cai,
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Le Liu, ; Ruijun Cai,
| |
Collapse
|
250
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|