201
|
Antibacterial Effects of MicroRepair®BIOMA-Based Toothpaste and Chewing Gum on Orthodontic Elastics Contaminated In Vitro with Saliva from Healthy Donors: A Pilot Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several new products with innovative formulations are being proposed to facilitate oral care. Here, we evaluated the effects of a commercially available product, a toothpaste and chewing gum named Biorepair Peribioma, on oral microorganisms of healthy subjects. Saliva from six volunteers was collected during 20 min of mastication of a traditional gum (gum A) and the Biorepair Peribioma gum (gum P). Orthodontic elastics (OE) were in vitro contaminated with salivary samples, both A and P, and subsequently exposed or not to a Biorepair Peribioma toothpaste-conditioned supernatant (Tp-SUP). The salivary samples were tested for initial microbial load; hence, the contaminated OE were assessed for microbial growth, adhesion, biofilm formation and persistence; moreover, species identification was assessed. We found that the salivary samples A and P had similar microbial load; upon contamination, microbial adhesion onto the OE was detected to a lower extent when using saliva P with respect to saliva A. Microbial growth and biofilm formation, assessed at 24 h, remained at lower levels in OE exposed to saliva P, compared to saliva A. This difference between salivary samples A and P was confirmed when measuring biofilm persistence (48 h), while it was lost in terms of microbial re-growth (48 h). The Tp-SUP treatment drastically affected microbial load at 24 h and strongly impaired biofilm formation/persistence, in OE exposed to both salivary samples A and P. Finally, such treatment resulted in consistent overgrowth of Lactobacilli, bacterial species originally present both in the Biorepair Peribioma toothpaste and gum. In conclusion, by an in vitro pilot study, we show that the Biorepair Peribioma toothpaste and gum deeply affect oral microorganisms’ behavior, drastically impairing their ability to contaminate and produce plaque onto orthodontic devices.
Collapse
|
202
|
Kennedy MS, Chang EB. The microbiome: Composition and locations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:1-42. [PMID: 33814111 DOI: 10.1016/bs.pmbts.2020.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human body is home to a diverse and functionally important assemblage of symbiotic microbes that varies predictably over different spatial scales, both within and across body sites. The composition of these spatially distinct microbial consortia can be impacted by a variety of stochastic and deterministic forces, including dispersal from different source communities, and selection by regionally-specific host processes for the enrichment of physiologically significant taxa. In this chapter, we review the composition, function, and assembly of the healthy human gastrointestinal, skin, vaginal, and respiratory microbiomes, with special emphasis on the regional distribution of microbes throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Megan S Kennedy
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States; Department of Ecology & Evolution, The University of Chicago, Chicago, IL, United States
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
203
|
Xu HY, Dong F, Zhai X, Meng KF, Han GK, Cheng GF, Wu ZB, Li N, Xu Z. Mediation of Mucosal Immunoglobulins in Buccal Cavity of Teleost in Antibacterial Immunity. Front Immunol 2020; 11:562795. [PMID: 33072100 PMCID: PMC7539626 DOI: 10.3389/fimmu.2020.562795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
The buccal mucosa (BM) of vertebrates is a critical mucosal barrier constantly exposed to rich and diverse pathogens from air, water, and food. While mammals are known to contain a mucosal associated lymphoid tissue (MALT) in the buccal cavity which induces B-cells and immunoglobulins (Igs) responses against bacterial pathogens, however, very little is known about the evolutionary roles of buccal MALT in immune defense. Here we developed a bath infection model that rainbow trout experimentally exposed to Flavobacterium columnare (F. columnare), which is well known as a mucosal pathogen. Using this model, we provided the first evidence for the process of bacterial invasion in the fish BM. Moreover, strong pathogen-specific IgT responses and accumulation of IgT+ B-cells were induced in the buccal mucus and BM of infected trout with F. columnare. In contrast, specific IgM responses were for the most part detected in the fish serum. More specifically, we showed that the local proliferation of IgT+ B-cells and production of pathogen-specific IgT within the BM upon bacterial infection. Overall, our findings represent the first demonstration that IgT is the main Ig isotype specialized for buccal immune responses against bacterial infection in a non-tetrapod species.
Collapse
Affiliation(s)
- Hao-Yue Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gao-Feng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Ben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
204
|
Radaic A, Ye C, Parks B, Gao L, Kuraji R, Malone E, Kamarajan P, Zhan L, Kapila YL. Modulation of pathogenic oral biofilms towards health with nisin probiotic. J Oral Microbiol 2020; 12:1809302. [PMID: 32944159 PMCID: PMC7482728 DOI: 10.1080/20002297.2020.1809302] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Oral dysbiosis is an imbalance in the oral microbiome and is associated with a variety of oral and systemic diseases, including periodontal disease, caries, and head and neck/oral cancer. Although antibiotics can be used to control this dysbiosis, they can lead to adverse side effects and superinfections. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents, since they are considered safe for humans and the environment. Specifically, the Gram-positive Lactococcus lactis, a species present in the oral and gut microbiota, is able to produce nisin, which has been used worldwide for food preservation. Objective The objective of this study was to test whether a nisin probiotic can promote a healthier oral microbiome in pathogen-spiked oral biofilms. Results We found that L. lactis can prevent oral biofilm formation and disrupt 24-h and 48-h pre-formed biofilms. Finally, we demonstrate that both treatments, a nisin-producing L. lactis probiotic and nisin can decrease the levels of pathogens in the biofilms and return the diversity levels back to control or ‘healthy’ levels. Conclusion A nisin-producing probiotic, can be used to treat ‘disease-altered’ biofilms and promote healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Brett Parks
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
205
|
Raju SC, Viljakainen H, Figueiredo RAO, Neuvonen PJ, Eriksson JG, Weiderpass E, Rounge TB. Antimicrobial drug use in the first decade of life influences saliva microbiota diversity and composition. MICROBIOME 2020; 8:121. [PMID: 32825849 PMCID: PMC7441731 DOI: 10.1186/s40168-020-00893-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/13/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The human microbiota contributes to health and well-being. Antimicrobials (AM) have an immediate effect on microbial diversity and composition in the gut, but next to nothing is known about their long-term contribution to saliva microbiota. Our objectives were to investigate the long-term impact of AM use on saliva microbiota diversity and composition in preadolescents. We compared the lifetime effects by gender and AMs. We used data from 808 randomly selected children in the Finnish Health In Teens (Fin-HIT) cohort with register-based data on AM purchases from the Social Insurance Institution of Finland. Saliva microbiota was assessed with 16S rRNA (V3-V4) sequencing. The sequences were aligned to the SILVA ribosomal RNA database and classified and counted using the mothur pipeline. Associations between AM use and alpha-diversity (Shannon index) were identified with linear regression, while associations between beta-diversity (Bray-Curtis dissimilarity) and low, medium or high AM use were identified with PERMANOVA. RESULTS Of the children, 53.6% were girls and their mean age was 11.7 (0.4) years. On average, the children had 7.4 (ranging from 0 to 41) AM prescriptions during their lifespan. The four most commonly used AMs were amoxicillin (n = 2622, 43.7%), azithromycin (n = 1495, 24.9%), amoxicillin-clavulanate (n = 1123, 18.7%) and phenoxymethylpenicillin (n = 408, 6.8%). A linear inverse association was observed between the use of azithromycin and Shannon index (b - 0.015, p value = 0.002) in all children, the effect was driven by girls (b - 0.032, p value = 0.001), while not present in boys. Dissimilarities were marked between high, medium and low users of all AMs combined, in azithromycin users specifically, and in boys with amoxicillin use. Amoxicillin and amoxicillin-clavulanate use was associated with the largest decrease in abundance of Rikenellaceae. AM use in general and phenoxymethylpenicillin specifically were associated with a decrease of Paludibacter and pathways related to amino acid degradations differed in proportion between high and low AM users. CONCLUSIONS A systematic approach utilising reliable registry data on lifetime use of AMs demonstrated long-term effects on saliva microbiota diversity and composition. These effects are gender- and AM-dependent. We found that frequent lifelong use of AMs shifts bacterial profiles years later, which might have unforeseen health impacts in the future. Our findings emphasise a concern for high azithromycin use, which substantially decreases bacterial diversity and affects composition as well. Further studies are needed to determine the clinical implications of our findings. Video Abstract.
Collapse
Affiliation(s)
- Sajan C Raju
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heli Viljakainen
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rejane A O Figueiredo
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johan G Eriksson
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Trine B Rounge
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland.
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
- Department of Informatics, University of Oslo, Oslo, Norway.
| |
Collapse
|
206
|
Complete Genome Sequence of Streptococcus mutans Strain MD, Which Produces Highly Potent Mutacins. Microbiol Resour Announc 2020; 9:9/33/e00616-20. [PMID: 32817148 PMCID: PMC7427186 DOI: 10.1128/mra.00616-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Streptococcus mutans strain MD, which produces potent mutacins capable of inhibiting streptococci. MD is a relatively uncharacterized strain whose genome information was unavailable. This study provides useful information for comparative genomic study and for understanding the repertoire of mutacins in S. mutans. Here, we report the complete genome sequence of Streptococcus mutans strain MD, which produces potent mutacins capable of inhibiting streptococci. MD is a relatively uncharacterized strain whose genome information was unavailable. This study provides useful information for comparative genomic study and for understanding the repertoire of mutacins in S. mutans.
Collapse
|
207
|
Huang X, Zheng H, An J, Chen S, Xiao E, Zhang Y. Microbial Profile During Pericoronitis and Microbiota Shift After Treatment. Front Microbiol 2020; 11:1888. [PMID: 32849467 PMCID: PMC7422626 DOI: 10.3389/fmicb.2020.01888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023] Open
Abstract
The microflora of the distal pocket is considered as the major cause of pericoronitis. How the oral microflora changes during pericoronitis and whether different types of impacted third molar harbor the same microflora are still unknown. Saliva, subgingival plaque, and gingival plaque of mandibular third molars (M3Ms) were collected from twelve patients with acute pericoronitis. They were given local irrigation or local irrigation + antibiotics according to symptoms. Samples were harvested at the first visit with pericoronitis, 1 week after treatment, and 6 weeks after treatment. 16S rRNA gene polymerase chain reaction products were generated and sequenced after DNA isolation. Comparison of three sampling sites showed that, the subgingival plaque of M3Ms had most remarkable changes in symptomatic period, including a significant increase in microbial richness, and a convergent trend in microbial composition. After treatment, the subgingival microbiome was altered and largely returned to the state in asymptomatic period. In summary, the distal subgingival microbiota of M3M was most likely to be associated with the pathogenesis of pericoronitis. The post-treatment microbiota shift of M3M proved the effectiveness of treatment. The inclination type of impacted M3Ms and treatment method would also make a difference to the pericoronal microbiota.
Collapse
Affiliation(s)
- Xiuling Huang
- Third Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, yBeijing, China
| | - Hui Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingang An
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, yBeijing, China.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuo Chen
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, yBeijing, China.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, yBeijing, China.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,The First People's Hospital of Jinzhong, Jinzhong, China
| | - Yi Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, yBeijing, China.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
208
|
Kitamoto S, Nagao-Kitamoto H, Hein R, Schmidt T, Kamada N. The Bacterial Connection between the Oral Cavity and the Gut Diseases. J Dent Res 2020; 99:1021-1029. [PMID: 32464078 PMCID: PMC7375741 DOI: 10.1177/0022034520924633] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 100 trillion symbiotic microorganisms constitutively colonize throughout the human body, including the oral cavity, the skin, and the gastrointestinal tract. The oral cavity harbors one of the most diverse and abundant microbial communities within the human body, second to the community that resides in the gastrointestinal tract, and is composed of >770 bacterial species. Advances in sequencing technologies help define the precise microbial landscape in our bodies. Environmental and functional differences render the composition of resident microbiota largely distinct between the mouth and the gut and lead to the development of unique microbial ecosystems in the 2 mucosal sites. However, it is apparent that there may be a microbial connection between these 2 mucosal sites in the context of disease pathogenesis. Accumulating evidence indicates that resident oral bacteria can translocate to the gastrointestinal tract through hematogenous and enteral routes. The dissemination of oral microbes to the gut may exacerbate various gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel disease, and colorectal cancer. However, the precise role that oral microbes play in the extraoral organs, including the gut, remains elusive. Here, we review the recent findings on the dissemination of oral bacteria to the gastrointestinal tract and their possible contribution to the pathogenesis of gastrointestinal diseases. Although little is known about the mechanisms of ectopic colonization of the gut by oral bacteria, we also discuss the potential factors that allow the oral bacteria to colonize the gut.
Collapse
Affiliation(s)
- S. Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - H. Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - R. Hein
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - T.M. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - N. Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
209
|
Miller EM. Predictors of interleukin-1β and interleukin-1 receptor antagonist in infant saliva. Am J Hum Biol 2020; 33:e23477. [PMID: 32734698 DOI: 10.1002/ajhb.23477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES This study assesses the feasibility of measuring interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1ra) in infant salivary samples as representative of pro- and anti-inflammatory processes, and explores predictors of these biomarkers in a US population. METHODS Data were collected from 73 US mother-infant pairs. Salivary samples were collected with an infant swab and analyzed for IL-1β, IL-1ra, and immunoglobulin A (IgA) using ELISA. Household, maternal, infant, and anthropometric predictors were selected using stepwise regression to build final multivariate models. RESULTS Both IL-1β and IL-1ra can be feasibly measured in infant saliva. The predictors in the final IL-1β model were IL-1ra and reported infant illness. IL-1β, IgA, infant age, household income, maternal BMI, and infant weight-for-age z-score were significant in the final model for IL-1ra. CONCLUSIONS IL-1β and IL-ra are useful biomarkers of immune function for infants. In particular, IL-1ra has the potential to address the relationship between immune function and body composition in the mother-infant dyad.
Collapse
Affiliation(s)
- Elizabeth M Miller
- Department of Anthropology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
210
|
Rosier BT, Buetas E, Moya-Gonzalvez EM, Artacho A, Mira A. Nitrate as a potential prebiotic for the oral microbiome. Sci Rep 2020; 10:12895. [PMID: 32732931 PMCID: PMC7393384 DOI: 10.1038/s41598-020-69931-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The salivary glands actively concentrate plasma nitrate, leading to high salivary nitrate concentrations (5–8 mM) after a nitrate-rich vegetable meal. Nitrate is an ecological factor that can induce rapid changes in structure and function of polymicrobial communities, but the effects on the oral microbiota have not been clarified. To test this, saliva of 12 healthy donors was collected to grow in vitro biofilms with and without 6.5 mM nitrate. Samples were taken at 5 h (most nitrate reduced) and 9 h (all nitrate reduced) of biofilm formation for ammonium, lactate and pH measurements, as well as 16S rRNA gene Illumina sequencing. Nitrate did not affect biofilm growth significantly, but reduced lactate production, while increasing the observed ammonium production and pH (all p < 0.01). Significantly higher levels of the oral health-associated nitrate-reducing genera Neisseria (3.1 ×) and Rothia (2.9 ×) were detected in the nitrate condition already after 5 h (both p < 0.01), while several caries-associated genera (Streptococcus, Veillonella and Oribacterium) and halitosis- and periodontitis-associated genera (Porphyromonas, Fusobacterium, Leptotrichia, Prevotella, and Alloprevotella) were significantly reduced (p < 0.05 at 5 h and/or 9 h). In conclusion, the addition of nitrate to oral communities led to rapid modulation of microbiome composition and activity that could be beneficial for the host (i.e., increasing eubiosis or decreasing dysbiosis). Nitrate should thus be investigated as a potential prebiotic for oral health.
Collapse
Affiliation(s)
- B T Rosier
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - E Buetas
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - E M Moya-Gonzalvez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - A Artacho
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Avenida de Catalunya 21, 46020, Valencia, Spain.
| |
Collapse
|
211
|
Comparison of Oral Microbiota Collected Using Multiple Methods and Recommendations for New Epidemiologic Studies. mSystems 2020; 5:5/4/e00156-20. [PMID: 32636335 PMCID: PMC7343307 DOI: 10.1128/msystems.00156-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We compared four different oral collection methods for studying the human oral microbiome: an OMNIgene ORAL kit, Scope mouthwash, nonethanol mouthwash, and Saccomanno’s fixative. Our study shows that the type of the collection method can have a large impact on the results of an oral microbiome analysis. We recommend that one consistent oral collection method should be used for all oral microbiome comparisons. While Scope and nonethanol mouthwashes are less expensive and provide results similar to those with OMNIgene, Saccomanno’s fixative may be unfavorable due to the microbial differences detected in this study. Our results will help guide the design of future oral microbiome studies. Epidemiologic studies use various biosample collection methods to study associations between human oral microbiota and health outcomes. However, the agreement between the different methods is unclear. We compared a commercially available OMNIgene ORAL kit to three alternative collection methods: Saccomanno’s fixative, Scope mouthwash, and nonethanol mouthwash. Oral samples were collected from 40 individuals over 4 visits. Two samples were collected from each subject per visit: one with OMNIgene and one with an alternative method. DNA was extracted using the DSP DNA Virus Pathogen kit, and the V4 region of the 16S rRNA gene was PCR amplified and sequenced using MiSeq. Oral collection methods were compared based on alpha and beta diversity metrics and phylum- and genus-level relative abundances. All alpha diversity metrics were significantly lower for Saccomanno’s fixative than for OMNIgene (P < 0.001), whereas the two mouthwashes were more similar to OMNIgene. Principal-coordinate analysis (PCoA) using the Bray-Curtis and weighted UniFrac beta diversity matrices showed large differences in the microbial compositions of samples collected with Saccomanno’s compared to those with OMNIgene and the mouthwashes. Clustering by collection method was not observed in unweighted UniFrac PCoA plots, suggesting differences in relative abundances but not specific taxa detected by the collection methods. Relative abundances of most taxa were significantly different between OMNIgene and the other methods at each taxonomic level, with Saccomanno’s showing the least agreement with OMNIgene. There were clear differences in oral microbial communities between the four oral collection methods, particularly for Saccomanno’s fixative. IMPORTANCE We compared four different oral collection methods for studying the human oral microbiome: an OMNIgene ORAL kit, Scope mouthwash, nonethanol mouthwash, and Saccomanno’s fixative. Our study shows that the type of the collection method can have a large impact on the results of an oral microbiome analysis. We recommend that one consistent oral collection method should be used for all oral microbiome comparisons. While Scope and nonethanol mouthwashes are less expensive and provide results similar to those with OMNIgene, Saccomanno’s fixative may be unfavorable due to the microbial differences detected in this study. Our results will help guide the design of future oral microbiome studies.
Collapse
|
212
|
Relationship between the Oral and Vaginal Microbiota of South African Adolescents with High Prevalence of Bacterial Vaginosis. Microorganisms 2020; 8:microorganisms8071004. [PMID: 32635588 PMCID: PMC7409319 DOI: 10.3390/microorganisms8071004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
Bacterial vaginosis (BV) and periodontal disease (PD) are characterised as bacterial dysbioses. Both are associated with an increased risk of poor pregnancy outcomes, yet it is unknown whether PD and BV are related. We characterised the oral microbiota of young South African females with a high prevalence of BV and investigated the association between oral communities and vaginal microbiota. DNA was extracted from vaginal lateral wall, saliva and supragingival plaque samples from 94 adolescent females (aged 15–19 years). 16S rRNA gene sequencing of the V4 hypervariable region was performed for analysis of the oral and vaginal microbiota and BV status was determined by Nugent scoring. The core oral microbiota was predominately comprised of Firmicutes followed by Proteobacteria and Bacteroidetes. The salivary microbiota of participants with BV was more diverse than those with lactobacillus-dominated communities (p = 0.030). PD-associated bacterial species, including Prevotella intermedia and Porphyromonas endodontalis were enriched in the supragingival microbiota of women with non-optimal vaginal communities compared to those with Lactobacillus-dominant communities, while Pseudomonas aeruginosa and Prevotella intermedia were enriched in the saliva of women with non-optimal vaginal microbiota. These data suggest a relationship between oral and vaginal dysbiosis, warranting further investigation into whether they are casually related.
Collapse
|
213
|
Assessment of the antibacterial, antivirulence, and action mechanism of Copaifera pubiflora oleoresin and isolated compounds against oral bacteria. Biomed Pharmacother 2020; 129:110467. [PMID: 32603890 DOI: 10.1016/j.biopha.2020.110467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023] Open
Abstract
The microorganisms that constitute the oral microbiome can cause oral diseases, including dental caries and endodontic infections. The use of natural products could help to overcome bacterial resistance to the antimicrobials that are currently employed in clinical therapy. This study assessed the antimicrobial activity of the Copaifera pubiflora oleoresin and of the compounds isolated from this resin against oral bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays provided values ranging from 6.25 to > 400 μg/mL for the C. pubiflora oleoresin and its isolated compounds. The fractional inhibitory concentration index (FICI) assay showed that the oleoresin and chlorhexidine did not act synergistically. All the tested bacterial strains formed biofilms. MICB50 determination revealed inhibitory action: values varied from 3.12-25 μg/mL for the oleoresin, and from 0.78 to 25 μg/mL for the ent-hardwickiic acid. Concerning biofilm eradication, the C. pubiflora oleoresin and hardwickiic acid eradicated 99.9 % of some bacterial biofilms. Acid resistance determination showed that S. mutans was resistant to acid in the presence of the oleoresin and ent-hardwickiic acid at pH 4.0, 4.5, and 5.0 at all the tested concentrations. Analysis of DNA/RNA and protein release by the cell membrane demonstrated that the oleoresin and hardwiickic acid damaged the bacterial membrane irreversibly, which affected membrane integrity. Therefore, the C. pubiflora oleoresin and ent-hardwickiic acid have potential antibacterial effect and can be used as new therapeutic alternatives to treat oral diseases such as dental caries and endodontic infections.
Collapse
|
214
|
Clinical Detection of Chronic Rhinosinusitis through Next-Generation Sequencing of the Oral Microbiota. Microorganisms 2020; 8:microorganisms8060959. [PMID: 32604855 PMCID: PMC7356624 DOI: 10.3390/microorganisms8060959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is the chronic inflammation of the sinus cavities of the upper respiratory tract, which can be caused by a disrupted microbiome. However, the role of the oral microbiome in CRS is not well understood. Polymicrobial and anaerobic infections of CRS frequently increased the difficulty of cultured and antibiotic therapy. This study aimed to elucidate the patterns and clinical feasibility of the oral microbiome in CRS diagnosis. Matched saliva and nasal swabs were collected from 18 CRS patients and 37 saliva specimens from normal volunteers were collected for 16S rRNA sequencing. The α-diversity of the saliva displayed no significant difference between control and CRS patients, whereas the β-diversity was significantly different (p = 0.004). Taxonomic indices demonstrated that Veillonella dispar, Rothia mucilaginosa, and Porphyromonas endodontalis were enriched, while Campylobacter and Cardiobacterium were reduced in the saliva of CRS patients. These microbial markers could significantly distinguish CRS patients from control (AUC = 0.939). It is noted that the 16S rRNA results of the nasal swab were consistent with the nasopharynx aerobic culture, and additionally detected multiple pathogens in CRS patients. In summary, these results indicated these oral microbiomes may provide a novel signal for CRS detection and that NGS may be an alternative approach for CRS diagnosis.
Collapse
|
215
|
Rouanet A, Bolca S, Bru A, Claes I, Cvejic H, Girgis H, Harper A, Lavergne SN, Mathys S, Pane M, Pot B, Shortt C, Alkema W, Bezulowsky C, Blanquet-Diot S, Chassard C, Claus SP, Hadida B, Hemmingsen C, Jeune C, Lindman B, Midzi G, Mogna L, Movitz C, Nasir N, Oberreither M, Seegers JFML, Sterkman L, Valo A, Vieville F, Cordaillat-Simmons M. Live Biotherapeutic Products, A Road Map for Safety Assessment. Front Med (Lausanne) 2020; 7:237. [PMID: 32637416 PMCID: PMC7319051 DOI: 10.3389/fmed.2020.00237] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Recent developments in the understanding of the relationship between the microbiota and its host have provided evidence regarding the therapeutic potential of selected microorganisms to prevent or treat disease. According to Directive 2001/83/EC, in the European Union (EU), any product intended to prevent or treat disease is defined as a medicinal product and requires a marketing authorization by competent authorities prior to commercialization. Even if the pharmaceutical regulatory framework is harmonized at the EU level, obtaining marketing authorisations for medicinal products remains very challenging for Live Biotherapeutic Products (LBPs). Compared to other medicinal products currently on the market, safety assessment of LBPs represents a real challenge because of their specific characteristics and mode of action. Indeed, LBPs are not intended to reach the systemic circulation targeting distant organs, tissues, or receptors, but rather exert their effect through direct interactions with the complex native microbiota and/or the modulation of complex host-microbiota relation, indirectly leading to distant biological effects within the host. Hence, developers must rely on a thorough risk analysis, and pharmaceutical guidelines for other biological products should be taken into account in order to design relevant non-clinical and clinical development programmes. Here we aim at providing a roadmap for a risk analysis that takes into account the specificities of LBPs. We describe the different risks associated with these products and their interactions with the patient. Then, from that risk assessment, we propose solutions to design non-clinical programmes and First in Human (FIH) early clinical trials appropriate to assess LBP safety.
Collapse
Affiliation(s)
- Alice Rouanet
- Pharmabiotic Research Institute - PRI, Narbonne, France
| | | | | | | | - Helene Cvejic
- Accelsiors CRO, Budapest, Hungary
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Ashton Harper
- Medical Affairs Department, ADM Protexin Ltd., Somerset, United Kingdom
| | | | | | | | - Bruno Pot
- Science Department, Yakult Europe BV, Almere, Netherlands
- Research Group of Industrial Microbiology and Food Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colette Shortt
- Johnson & Johnson Consumer Services EAME Ltd., Foundation Park, Maidenhead, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Garikai Midzi
- Medical Affairs Department, ADM Protexin Ltd., Somerset, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Complete Genome Sequences of Two Mutacin-Producing Streptococcus mutans Strains, T8 and UA140. Microbiol Resour Announc 2020; 9:9/24/e00469-20. [PMID: 32527777 PMCID: PMC7291102 DOI: 10.1128/mra.00469-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Streptococcus mutans is known to produce various antimicrobial peptides called mutacins. Two clinical isolates, T8 and UA140, are well characterized regarding their mutacin production, but genome sequence information was previously unavailable. Complete genome sequences of these two mutacin-producing strains are reported here. Streptococcus mutans is known to produce various antimicrobial peptides called mutacins. Two clinical isolates, T8 and UA140, are well characterized regarding their mutacin production, but genome sequence information was previously unavailable. Complete genome sequences of these two mutacin-producing strains are reported here.
Collapse
|
217
|
DI Pierro F, Lo Russo P, Danza ML, Basile I, Soardo S, Capocasale G, Paparone SB, Paletta V, Lanza C, Schiavone E, Risso P, Colombo M. Use of a probiotic mixture containing Bifidobacterium animalis subsp. lactis BB-12 and Enterococcus faecium L3 as prophylaxis to reduce the incidence of acute gastroenteritis and upper respiratory tract infections in children. Minerva Pediatr (Torino) 2020; 73:222-229. [PMID: 32506882 DOI: 10.23736/s2724-5276.20.05925-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND For healthy children, attending communities such as nurseries, kindergartens or schools, exposes them to the risk of acute gastroenteritis (AGE) and/or upper respiratory tract infections (URTIs). We therefore evaluated whether the use of a well-documented probiotic formula could act as prophylaxis for AGE and URTIs, reducing the risk of occurrence. METHODS In a randomized study, we tested a probiotic mixture containing Bifidobacterium animalis subspecies lactis BB-12 and Enterococcus faecium L3 on 94 healthy children, comparing the incidence and duration of episodes of AGE and the incidence of URTIs to those of a control group of 109 healthy, untreated subjects. In a subgroup consisting of 34 healthy, treated children, we also evaluated salivary IgA levels. RESULTS The use of the probiotic formula significantly reduced the incidence and duration of episodes of AGE by 82% and 45%, respectively, and the incidence and duration of episodes of URTIs by 84% and 50%. Salivary IgA levels significantly increased three-fold after 90 days of probiotic treatment. The probiotic formula was well tolerated and no side effects occurred. CONCLUSIONS According to our results, use of the probiotic strains BB-12 and L3 statistically reduced the risk of AGE and URTIs in healthy children and increased levels of salivary IgA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Paolo Risso
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | |
Collapse
|
218
|
Nomura Y, Otsuka R, Hasegawa R, Hanada N. Oral Microbiome of Children Living in an Isolated Area in Myanmar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17114033. [PMID: 32517039 PMCID: PMC7312721 DOI: 10.3390/ijerph17114033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Several studies have shown that the oral microbiome is related to systemic health, and a co-relation with several specific diseases has been suggested. The oral microbiome depends on environmental- and community-level factors. In this observational study, the oral microbiomes of children of isolated mountain people were analyzed with respect to the core oral microbiome and etiology of dental caries. We collected samples of supragingival plaque from children (age 9–13) living in the Chin state of Myanmar. After DNA extraction and purification, next-generation sequencing of the V3–V4 hypervariable regions of the 16S rRNA was conducted. From thirteen subjects, 263,458 valid reads and 640 operational taxonomic units were generated at a 97% identity cut-off value. At the phylum level, Proteobacteria was the most abundant, followed by Firmicutes and Bacteroides. Forty-four bacteria were detected in total from all the subjects. For children without dental caries, Proteobacteria was abundant. In contrast, in children with dental caries, Firmicutes and Bacteroides were abundant. The oral microbiome of children living in an isolated area may be affected by environmental- and community-level factors. Additionally, the composition of the oral microbiome may affect the risk of dental caries.
Collapse
|
219
|
Gagnon CM. Exploring oral paleopathology in the Central Andes: A review. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 29:24-34. [PMID: 31711738 DOI: 10.1016/j.ijpp.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
This targeted review of oral paleopathology in the Central Andes explores research that focuses on a set of interrelated, multifactorial processes: dental caries, macrowear, alveolar abscess, antemortem tooth loss (AMTL), periodontal disease, and the presence of dental calculus. These conditions help characterize oral health because they result from the culturally mediated interaction of individuals' oral cavity with their external environment. To better understand how osteologists working in the Central Andes have interpreted the frequencies of these conditions, I review the etiology of each, as well as discuss the important issues in their analyses. I then highlight studies that integrate of a number of oral paleopathological conditions, that examine associations between oral conditions and other skeletal indicators of health, or that use multivariate statistical techniques to analyze conditions. In the Central Andes, these proxies for oral health have generally focused on several key research themes including the introduction of domesticated foods may have occurred earlier than expected, but that populations may have maintained mixed subsistence strategies for a significant period. Researchers have also identified that changes accompanying Inca imperialism were likely not as detrimental to local populations as was Spanish colonialism. Finally, the long-practiced, culturally important, activity of chewing coca has been shown to create an identifiable pattern of oral paleopathological conditions.
Collapse
|
220
|
Re K, Patel S, Gandhi J, Suh Y, Reid I, Joshi G, Smith NL, Khan SA. Clinical utility of hyperbaric oxygen therapy in dentistry. Med Gas Res 2020; 9:93-100. [PMID: 31249258 PMCID: PMC6607863 DOI: 10.4103/2045-9912.260651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This fuller impact of the use of hyperbaric oxygen therapy within dentistry is taking greater notice with newer research findings. There are new advancements in research regarding postradiotherapy cases, osteonecrosis of the jaw, osteomyelitis, periodontal disease, and dental implants. Hyperbaric oxygen therapy can even be used in conjunction with other procedures such as bone grafting. Although the research and clinical utility has come a long way, there are several complications to be mindful of during the application of hyperbaric oxygen therapy.
Collapse
Affiliation(s)
- Kaitlyn Re
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Shrey Patel
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA; Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Yiji Suh
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Inefta Reid
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY, USA
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY, USA
| | | | - Sardar Ali Khan
- Department of Physiology and Biophysics; Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
221
|
Influence of the FIV Status and Chronic Gingivitis on Feline Oral Microbiota. Pathogens 2020; 9:pathogens9050383. [PMID: 32429494 PMCID: PMC7281021 DOI: 10.3390/pathogens9050383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022] Open
Abstract
Feline chronic gingivostomatitis (FCGS) has an unclear pathogenesis with the oral microbiome and viral infections, such as feline immunodeficiency virus (FIV), thought to contribute. Although the relationship between the FIV status and FCGS is not clear, one theory is FIV-induced immune dysregulation could contribute to oral dysbiosis, promoting FCGS development. To further understand the relationship between FCGS, FIV infection, and the oral microbiome, oral cavities of forty cats fitting within 4 groups (FIV- without gingivitis, FIV+ without gingivitis, FIV- with gingivitis, FIV+ with gingivitis) were swabbed. Next generation sequencing targeting the V4 region of the 16s rRNA gene was performed for bacterial community profiling. No differences in diversity were observed, however, analysis of the data in terms of gingivitis revealed differences in the relative abundance of taxa and predicted functional output. Odoribacter spp., a bacteria associated with oral disease, was found in higher relative abundances in cats with the highest gingivitis grade. Cats with gingivitis were also found to harbor communities more involved in production of short-chain fatty acids, which have been connected with oral disease. Significant findings associated with the FIV status were few and of low impact, suggesting any connection between the FIV status and FCGS is likely not related to the oral microbiota.
Collapse
|
222
|
Heyman O, Horev Y, Koren N, Barel O, Aizenbud I, Aizenbud Y, Brandwein M, Shapira L, Hovav A, Wilensky A. Niche Specific Microbiota-Dependent and Independent Bone Loss around Dental Implants and Teeth. J Dent Res 2020; 99:1092-1101. [DOI: 10.1177/0022034520920577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oral mucosal homeostasis is achieved by complex immunologic mechanisms, orchestrating host immunity to adapt to the physiologic functions of the various specialized niches in the oral cavity. Dental implants introduce a novel mucosal niche to the immune system to deal with. Nevertheless, the immune mechanisms engaged toward implants and whether they have broader effects are not well defined. Using a murine model, we found an accumulation of neutrophils and RANKL-expressing T and B lymphocytes in the implant-surrounding mucosa, accompanied by local bone loss. Surprisingly, the presence of implants had an impact on remote periodontal sites, as elevated inflammation and accelerated bone loss were detected in intact distant teeth. This was due to microbial dysbiosis induced by the implants, since antibiotic treatment prevented bone loss around teeth. However, antibiotic treatment failed to prevent the loss of implant-supporting bone, highlighting the distinct mechanisms mediating bone loss at each site. Further analysis revealed that implants induced chronic lymphocyte activation and increased mRNA expression of IFN-α and accumulation of IFN-α–producing plasmacytoid dendritic cells, which we previously reported as bone-destructive immune responses. Collectively, this study demonstrates that implants have a strong and broad impact on oral mucosal homeostasis, inducing periodontal bone loss in a niche-specific manner that is both microbiota dependent and independent.
Collapse
Affiliation(s)
- O. Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University–Hadassah Medical Center, Jerusalem, Israel
| | - Y. Horev
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University–Hadassah Medical Center, Jerusalem, Israel
| | - N. Koren
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - O. Barel
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - I. Aizenbud
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Y. Aizenbud
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - M. Brandwein
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - L. Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University–Hadassah Medical Center, Jerusalem, Israel
| | - A.H. Hovav
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - A. Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University–Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
223
|
Lee DS, Lee SA, Kim M, Nam SH, Kang MS. Reduction of Halitosis by a Tablet Containing Weissella cibaria CMU: A Randomized, Double-Blind, Placebo-Controlled Study. J Med Food 2020; 23:649-657. [PMID: 32379992 DOI: 10.1089/jmf.2019.4603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Halitosis is referred to as an unpleasant odor coming from the mouth. Recently, probiotics have been studied as an alternative prevention for halitosis. The aim of this study was to evaluate the effects of probiotic bacterium Weissella cibaria Chonnam Medical University (CMU)-containing tablets (1 × 108 colony forming units [CFU]/g) on oral malodor. The randomized, double-blind, placebo-controlled trial was conducted in 92 healthy adults (20-39 years of age) with bad breath. All subjects were randomly assigned to a test (probiotic, n = 49) or control (placebo, n = 43) group after dental scaling and root planing. The tablets were taken once daily for 8 weeks. Measurements included an organoleptic test (OLT), volatile sulfur compounds (VSC), bad breath improvement (BBI) scores, and the oral colonization of W. cibaria CMU. This study also assessed safety variables of adverse reactions, vital signs, and the findings of hematology and blood chemistry. Most of the variables were measured at baseline, 4, and 8 weeks. Safety-related variables were measured at baseline and 8 weeks. At week 4, a significant decrease in OLT and VSC results was observed in the test group while BBI scores were significantly reduced at week 8 (P < .05). Statistically significant intergroup differences were observed for changes in W. cibaria number at weeks 4 and 8. No safety issues were encountered in either group. These results indicate that W. cibaria CMU tablets could be a safe and useful oral care product for controlling bad breath.
Collapse
Affiliation(s)
- Dong-Suk Lee
- School of Nursing, Kangwon National University, Chuncheon, Korea
| | - Seung-Ah Lee
- School of Nursing, Kangwon National University, Chuncheon, Korea
| | - Myoungsuk Kim
- School of Nursing, Kangwon National University, Chuncheon, Korea
| | - Seoul-Hee Nam
- Department of Dental Hygiene, School of Health Science, Kangwon National University, Samcheok, Korea
| | - Mi-Sun Kang
- R&D Department, Research Institute, OraPharm, Inc., Seoul, Korea
| |
Collapse
|
224
|
Al-ani A, MacDonald DA, Ahmad M. Salivary sIgA and PRAP-1 Protein in Relation to Dental Caries: A Comparative Study. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820913746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aim: Certain individuals are more prone to dental caries than others are. Caries risk may be related in the secretion of certain defensive salivary proteins including secretory IgA (sIgA) and proline-rich acidic protein (PRAP-1). In this study, we investigated the relationship between PRAP-1 and sIgA leading to the susceptibility of development of dental caries in adults and explored the differences in the levels of sIgA and PRAP-1 between men and women. Materials and Methods: Unstimulated saliva samples were collected from 28 patients with high caries risk and 32 control subjects with low caries risk according to caries management by risk assessment guidelines. sIgA and PRAP-1 levels in clarified saliva samples were measured using the enzyme-linked immunosorbent assay. Results: According to our results, sIgA and PRAP-1 levels did not demonstrate statistically significant differences as a function of caries risk or gender, even when potential confounding variables such as age and numbers of teeth were taken into consideration. Estimates of effect size, however, revealed small- to medium-sized effects and suggest that significant results may have been found if larger sample sizes were used. Conclusion: The results of this study indicate that caries risk and salivary levels of sIgA and PRAP-1 do not appear to be significantly associated. Statistically significant findings could emerge if the sample size was larger.
Collapse
Affiliation(s)
- Aseel Al-ani
- Division of Integrated Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, 2700 Martin Luther King Jr. Boulevard, Detroit, MI, USA
| | - Douglas A. MacDonald
- Division of Integrated Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, 2700 Martin Luther King Jr. Boulevard, Detroit, MI, USA
| | - Maha Ahmad
- Division of Integrated Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, 2700 Martin Luther King Jr. Boulevard, Detroit, MI, USA
| |
Collapse
|
225
|
Bittner-Eddy PD, Fischer LA, Costalonga M. Transient Expression of IL-17A in Foxp3 Fate-Tracked Cells in Porphyromonas gingivalis-Mediated Oral Dysbiosis. Front Immunol 2020; 11:677. [PMID: 32391008 PMCID: PMC7190800 DOI: 10.3389/fimmu.2020.00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 01/26/2023] Open
Abstract
In periodontitis Porphyromonas gingivalis contributes to the development of a dysbiotic oral microbiome. This altered ecosystem elicits a diverse innate and adaptive immune response that simultaneously involves Th1, Th17, and Treg cells. It has been shown that Th17 cells can alter their gene expression to produce interferon-gamma (IFN-γ). Forkhead box P3 (Foxp3) is considered the master regulator of Treg cells that produce inhibitory cytokines like IL-10. Differentiation pathways that lead to Th17 and Treg cells from naïve progenitors are considered antagonistic. However, it has been reported that Treg cells expressing IL-17A as well as IFN-γ producing Th17 cells have been observed in several inflammatory conditions. Each scenario appears plausible with T cell transdifferentiation resulting from persistent microbial challenge and consequent inflammation. We established that oral colonization with P. gingivalis drives an initial IL-17A dominated Th17 response in the oral mucosa that is dependent on intraepithelial Langerhans cells (LCs). We hypothesized that Treg cells contribute to this initial IL-17A response through transient expression of IL-17A and that persistent mucosal colonization with P. gingivalis drives Th17 cells toward an IFN-γ phenotype at later stages of infection. We utilized fate-tracking mice where IL-17A- or Foxp3-promoter activity drives the permanent expression of red fluorescent protein tdTomato to test our hypothesis. At day 28 of infection timeline, Th17 cells dominated in the oral mucosa, outnumbering Th1 cells by 3:1. By day 48 this dominance was inverted with Th1 cells outnumbering Th17 cells by nearly 2:1. Tracking tdTomato+ Th17 cells revealed only sporadic transdifferentiation to an IFN-γ-producing phenotype by day 48; the appearance of Th1 cells at day 48 was due to a late de novo Th1 response. tdTomato+ Foxp3+ T cells were 35% of the total live CD4+T cells in the oral mucosa and 3.9% of them developed a transient IL-17A-producing phenotype by day 28. Interestingly, by day 48 these IL-17A-producing Foxp3+ T cells had disappeared. Therefore, persistent oral P. gingivalis infection stimulates an initial IL-17A-biased response led by Th17 cells and a small but significant number of IL-17A-expressing Treg cells that changes into a late de novo Th1 response with only sporadic transdifferentiation of Th17 cells.
Collapse
|
226
|
Slazhneva ES, Tikhomirova EA, Atrushkevich VG. Periodontopathogens: a new view. Systematic review. Part 1. Pediatr Dent 2020. [DOI: 10.33925/1683-3031-2020-20-1-70-76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Relevance. The modern view of periodontitis as a dysbiotic disease that occurs as a result of changes in the microbial composition of the subgingival region is considered in a systematic review. Purpose. To study a new paradigm of development of generalized periodontitis. Materials and methods. Randomized controlled trials (RCTS) were selected for the study, including cluster RCTS, controlled (non-randomized) microbiological and clinical studies of the oral microbiome in adult patients with generalized periodontitis over the past 10 years. Results. The development of periodontal dysbiosis occurs over a period of time, which slowly turns the symbiotic association of the host and microbe into a pathogenic one. This review examines the current paradigm of periodontitis progression, which calls into question the traditional concept of a disease induced by several particular periodontal pathogens belonging to the red complex.Conclusions. As follows from modern literature periodontitis is to a certain extent caused by the transition from a harmonious symbiotic bacterial community to a dysbiotic one. Recent scientific studies have shown that not single microorganism is not able to cause disease but the microbial community as a whole leads to the development of pathology.
Collapse
Affiliation(s)
- E. S. Slazhneva
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
| | - E. A. Tikhomirova
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
| | - V. G. Atrushkevich
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
| |
Collapse
|
227
|
Comparative proteomic analysis on acquired enamel pellicle at two time points in caries-susceptible and caries-free subjects. J Dent 2020; 94:103301. [DOI: 10.1016/j.jdent.2020.103301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 01/19/2023] Open
|
228
|
Willis JR, Gabaldón T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020; 8:microorganisms8020308. [PMID: 32102216 PMCID: PMC7074908 DOI: 10.3390/microorganisms8020308] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract: The human oral cavity is home to an abundant and diverse microbial community (i.e., the oral microbiome), whose composition and roles in health and disease have been the focus of intense research in recent years. Thanks to developments in sequencing-based approaches, such as 16S ribosomal RNA metabarcoding, whole metagenome shotgun sequencing, or meta-transcriptomics, we now can efficiently explore the diversity and roles of oral microbes, even if unculturable. Recent sequencing-based studies have charted oral ecosystems and how they change due to lifestyle or disease conditions. As studies progress, there is increasing evidence of an important role of the oral microbiome in diverse health conditions, which are not limited to diseases of the oral cavity. This, in turn, opens new avenues for microbiome-based diagnostics and therapeutics that benefit from the easy accessibility of the oral cavity for microbiome monitoring and manipulation. Yet, many challenges remain ahead. In this review, we survey the main sequencing-based methodologies that are currently used to explore the oral microbiome and highlight major findings enabled by these approaches. Finally, we discuss future prospects in the field.
Collapse
Affiliation(s)
- Jesse R. Willis
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
229
|
Non-significant association between - 330 T/G polymorphism in interleukin-2 gene and chronic periodontitis: findings from a meta-analysis. BMC Oral Health 2020; 20:58. [PMID: 32075624 PMCID: PMC7031920 DOI: 10.1186/s12903-020-1034-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/31/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chronic periodontitis (CP) is an immune-inflammatory disease that promotes tissue damage around the teeth. Among the several inflammatory mediators that orchestrate the periodontitis, there is the interleukin (IL)-2. Genetic variations in IL2 gene may be associated with the risk and severity of the disease. Contrary results are available in the literature with inconclusive findings and none meta-analysis to gather these data. METHODS A literature search was performed for studies published before June 11, 2019 in diverse scientific and educational databases. The data was extracted by two investigators and the statistical evaluation was performed by Review Manager statistical program with heterogeneity (I2) and Odds Ratio (OR) with 95% of Confidence Intervals (CI) calculations and a sensitive analysis to assess the accuracy of the obtained results. The publication bias was evaluated by Begg' and Egger's test with Comprehensive meta-analysis software. The value of P < 0.05 was considered as significant. RESULTS Five studies were identified in diverse ethnical groups with 1425 participants. The - 330 T/G polymorphism in IL2 gene was not significantly associated with CP in allelic evaluation (P > 0.05) as well as in the genotypic comparisons (P = 0.15). The Begg's test and the linear regression Egger's test did not show any evidence of publication bias risk (P > 0.05) which was corroborated by the absence of obvious asymmetry in Funnel plot graphic. CONCLUSIONS This meta-analysis showed a non-significant association between - 330 T/G polymorphism in IL2 gene and CP in any allelic evaluation.
Collapse
|
230
|
Du Q, Fu M, Zhou Y, Cao Y, Guo T, Zhou Z, Li M, Peng X, Zheng X, Li Y, Xu X, He J, Zhou X. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Sci Rep 2020; 10:2961. [PMID: 32076013 PMCID: PMC7031525 DOI: 10.1038/s41598-020-59733-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/30/2020] [Indexed: 02/05/2023] Open
Abstract
Sucrose has long been regarded as the most cariogenic carbohydrate. However, why sucrose causes severer dental caries than other sugars is largely unknown. Considering that caries is a polymicrobial infection resulting from dysbiosis of oral biofilms, we hypothesized that sucrose can introduce a microbiota imbalance favoring caries to a greater degree than other sugars. To test this hypothesis, an in vitro saliva-derived multispecies biofilm model was established, and by comparing caries lesions on enamel blocks cocultured with biofilms treated with sucrose, glucose and lactose, we confirmed that this model can reproduce the in vivo finding that sucrose has the strongest cariogenic potential. In parallel, compared to a control treatment, sucrose treatment led to significant changes within the microbial structure and assembly of oral microflora, while no significant difference was detected between the lactose/glucose treatment group and the control. Specifically, sucrose supplementation disrupted the homeostasis between acid-producing and alkali-producing bacteria. Consistent with microbial dysbiosis, we observed the most significant disequilibrium between acid and alkali metabolism in sucrose-treated biofilms. Taken together, our data indicate that the cariogenicity of sugars is closely related to their ability to regulate the oral microecology. These findings advance our understanding of caries etiology from an ecological perspective.
Collapse
Affiliation(s)
- Qian Du
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Fu
- University of Chinese Academy Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yuan Zhou
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yangpei Cao
- The Department of Endodontics and the Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA, 90033, USA
| | - Zhou Zhou
- Clinical Skills Training Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyun Li
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zheng
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Xu
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jinzhi He
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Xuedong Zhou
- The state key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
231
|
Balanced oral pathogenic bacteria and probiotics promoted wound healing via maintaining mesenchymal stem cell homeostasis. Stem Cell Res Ther 2020; 11:61. [PMID: 32059742 PMCID: PMC7023757 DOI: 10.1186/s13287-020-1569-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives The homeostasis of oral pathogenic bacteria and probiotics plays a crucial role in maintaining the well-being and healthy status of human host. Our previous study confirmed that imbalanced oral microbiota could impair mesenchymal stem cell (MSC) proliferation capacity and delay wound healing. However, the effects of balanced oral pathogenic bacteria and probiotics on MSCs and wound healing are far from clear. Here, the balance of pathogenic bacteria Porphyromonas gingivalis and probiotics Lactobacillus reuteri extracts was used to investigate whether balanced oral microbiota modulate the physiological functions of MSCs and promote wound healing. Methods The effects of balanced pathogenic bacteria P. gingivalis and probiotics L. reuteri extracts on gingival MSCs (GMSCs) were tested using the migration, alkaline phosphatase activity, alizarin red staining, cell counting kit-8, real-time PCR, and western blot assays. To investigate the role of balanced pathogenic bacteria P. gingivalis and probiotics L. reuteri extracts in the wound of mice, the wounds were established in the mucosa of palate and were inoculated with bacteria every 2 days. Results We found that the balance between pathogenic bacteria and probiotics enhanced the migration, osteogenic differentiation, and cell proliferation of MSCs. Additionally, local inoculation of the mixture of L. reuteri and P. gingivalis promoted the process of wound healing in mice. Mechanistically, we found that LPS in P. gingivalis could activate NLRP3 inflammasome and inhibit function of MSCs, thereby accelerating MSC dysfunction and delaying wound healing. Furthermore, we also found that reuterin was the effective ingredient in L. reuteri which maintained the balance of pathogenic bacteria and probiotics by neutralizing LPS in P. gingivalis, thus inhibiting inflammation and promoting wound healing. Conclusions This study revealed that the homeostasis of oral microbiomes played an indispensable role in maintaining oral heath, provided hopeful methods for the prevention and treatment of oral diseases, and had some referential value for other systemic diseases caused by dysfunction of microbiota and MSCs.
Collapse
|
232
|
Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice. Arch Oral Biol 2020; 112:104679. [PMID: 32062102 DOI: 10.1016/j.archoralbio.2020.104679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The overall objective of this study was to investigate the effects of hinokitiol on periodontal bone loss in a murine model of experimental periodontitis and evaluate the anti-inflammatory activity of hinokitiol in vitro. DESIGN Periodontitis was induced by tying a silk ligature around the maxillary second molar of mice for 8 days. Hinokitiol was injected once a day for 7 days into the palatal gingiva of the ligated molar. Periodontal bone loss was then assessed morphometrically in the maxillary second molar, and the number of tartrate-resistant acid phosphatase positive multinucleated giant cells around the molar was quantified. The bacterial load of the silk ligature was calculated by counting the number of colony-forming units, while the transcription levels of proinflammatory cytokine-related genes in the palatal gingiva were evaluated by real-time qPCR. The activity of hinokitiol against LPS-induced transcription of proinflammatory genes in RAW 264.7 macrophages was also examined. RESULTS Local treatment with hinokitiol significantly inhibited the alveolar bone loss and osteoclast differentiation induced by tooth ligation. In addition, hinokitiol treatment decreased the oral bacterial load of the silk ligature and downregulated the mRNA levels of inflammatory cytokine-related genes, both in vitro and in vivo. CONCLUSION The results indicated that hinokitiol exhibits antibacterial and anti-inflammatory activity and exerts a protective effect against periodontitis.
Collapse
|
233
|
Osypchuk NО, Nastenko VB, Shirobokov VP, Korotkyi YV. Sensitivity of antifungal preparations of Сandida isolates from sub-biotopes of the human oral cavity. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Candidiasis is the commonest opportunistic infection of the oral cavity. As a result of immune-deficiency of the organism, yeasts of Candida genus by acting as commensal organisms transmute into pathogenic organisms. The article presents frequency of isolation, topographic peculiarities, species range, sensitivity of the Candida yeasts to antimycotics and newly-synthesized derivatives of amino alcohols isolated from the sub-biotopes of the oral cavity of patients with oncopathologies. The survey of the material included microscopic, mycologic, statistical-analytical methods. For all the clinical isolates the sensitivity to antifungal preparations was determined. Over the study 492 sub-biotopes of the oral cavity were examined. The extraction of the material was made from the mucous membrane of the cheek, angle of the mouth, mucous membrane of the surface of the tongue and the palate. According to the results of the conducted studies, the level of candidal carriage on the mucous membrane of the oral cavity in the patients with oncopathologies without clinical signs of candidiasis equaled 25.0%, active candidiasis infection was found in 47.0% of cases. Among the clinical strains, we isolated: C. albicans, C. glabrata, C. tropicalis and C. krusei. Among all the isolated strains, in all 4 sub-biotopes C. albicans dominated accounting for 73.1%. In 4 sub-biotopes we detected the association of two species of Candida. Analysis of the obtained results of the susceptibility of strains to modern antymicotics and newly-synthesized substances revealed that the representatives of non-albicans are more resistant to the antifungal preparations. Among the commercial preparations, amphotericin B exerted the highest activity against the clinical isolates of yeast-like fungi. The concentration of 0.97 µg/mL inhibited 50.0% of representatives of non-albicans, and also 75.0% of isolates of C. albicans. Fluconazole exhibited activity in the concentration of 1 µg/mL towards 17.0% of non-albicans and 25.0% of С. albicans. Itraconazole was observed to have no significant antifungal activity. Among the newly-synthesized aryl acyclic amino alcohols, compound Kc22 displayed high activity against both groups of Candida (experimental and control) making it promising for creating new therapeutic preparations. The parameters of resistance of clinical isolates to modern antimycotics indicate the necessity of constant monitoring of the sensitivity of the pathogens of candidiasis and precise species identification for rational use of antifungal preparations and prevention of the development of antimycotic resistance.
Collapse
|
234
|
Budai-Szűcs M, Léber A, Cui L, Józó M, Vályi P, Burián K, Kirschweng B, Csányi E, Pukánszky B. Electrospun PLA Fibers Containing Metronidazole for Periodontal Disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:233-242. [PMID: 32021107 PMCID: PMC6970621 DOI: 10.2147/dddt.s231748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022]
Abstract
Purpose Electrospun PLA fiber devices were investigated in the form of fiber mats and disks. Metronidazole was used as an active agent; its concentration was 12.2 and 25.7 wt% in the devices. Methods The structure was studied by X-ray diffraction and scanning electron microscopy, drug release by dissolution measurements, while the antimicrobial efficiency was tested on five bacterial strains. Results The XRD study showed that the polymer was partially crystalline in both devices, but a part of metronidazole precipitated and was in the form of crystals among and within the fibers. Liquid penetration and dissolution were different in the two devices, they were faster in disks and slower in fiber mats, due to the morphology of the device and the action of capillary forces. Disks released the drug much faster than fiber mats. Although the release study indicated fast drug dissolution, the concentration achieved a plateau value in 24 hrs for the disks; the inhibition effect lasted much longer, 13 days for bacteria sensitive to metronidazole. The longer inhibition period could be explained by the slower diffusion of metronidazole located inside the fibers of the device. Conclusion The results suggest that the devices may be effective in the treatment of periodontitis.
Collapse
Affiliation(s)
- Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Attila Léber
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Lu Cui
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest H-1521, Hungary.,Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1519, Hungary
| | - Muriel Józó
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest H-1521, Hungary.,Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1519, Hungary
| | - Péter Vályi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Kirschweng
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest H-1521, Hungary.,Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1519, Hungary
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Béla Pukánszky
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest H-1521, Hungary.,Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1519, Hungary
| |
Collapse
|
235
|
Boehlke C, Rupf S, Tenniswood M, Chittur SV, Hannig C, Zierau O. Caries and periodontitis associated bacteria are more abundant in human saliva compared to other great apes. Arch Oral Biol 2020; 111:104648. [PMID: 31927405 DOI: 10.1016/j.archoralbio.2020.104648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/29/2019] [Accepted: 01/01/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Caries and periodontitis are uncommon in free ranging great apes but a major oral disease in humans. The aim was to analyze abundance and diversity of oral bacteria of western humans and their closest relatives, to examine if zoo apes feeding on diet other than in their natural habitat show caries and periodontitis associated salivary bacteria and comparable susceptibility for oral civilization diseases as humans. DESIGN Bacterial composition of human and great ape saliva samples were compared by analyzing the V3 region of the bacteria 16S rRNA gene by Next Generation Sequencing with Ion Torrent. RESULTS Results show species-specific differences in the salivary bacteria phyla and genera composition among all apes. Moreover, salivary bacterial composition within non-human apes showed higher intra-individual differences than within humans. Human saliva exhibited lowest bacteria diversity. Different behavioral patterns including (oral) hygiene standards of humans and non-human apes might cause differences. All species differed in diversity and abundance of caries associated bacteria genera. Human saliva revealed higher abundance of caries and periodontitis relevant bacteria in contrast to other great apes, which might be supported by higher consume of refined cariogenic food items, possibly raising their risk for oral disease susceptibility. CONCLUSIONS The study offers first clues on caries and periodontitis relevant bacteria of captive great ape species in comparison to humans. Higher susceptibility to oral diseases for humans than for their closest relatives, leads to the question, if the oral microbiome changed during evolution and how it is influenced by the human life style.
Collapse
Affiliation(s)
- Carolin Boehlke
- Faculty of Biology, Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01217 Dresden, Germany; Policlinic of Operative and Pediatric Dentistry, Faculty of Medicine ´Carl Gustav Carus´, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg/Saar, Germany.
| | - Martin Tenniswood
- Department of Biomedical Sciences, School of Public Health, University at Albany, Rensselaer, NY, 12144-2345, USA.
| | - Sridar V Chittur
- Department of Biomedical Sciences, School of Public Health, University at Albany, Rensselaer, NY, 12144-2345, USA; Center for Functional Genomics, University at Albany, Rensselaer, NY, 12144-2345, USA.
| | - Christian Hannig
- Policlinic of Operative and Pediatric Dentistry, Faculty of Medicine ´Carl Gustav Carus´, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Oliver Zierau
- Faculty of Biology, Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01217 Dresden, Germany.
| |
Collapse
|
236
|
Gofur NRP, Handono K, Nurdiana N, Kalim H, Barlianto W. Oral Hygiene and Dental Caries Status on Systemic Lupus Erythematosus Patients: A Cross-Sectional Study. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
237
|
Rapid Multiplex Real-Time PCR Method for the Detection and Quantification of Selected Cariogenic and Periodontal Bacteria. Diagnostics (Basel) 2019; 10:diagnostics10010008. [PMID: 31877891 PMCID: PMC7168300 DOI: 10.3390/diagnostics10010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Dental caries and periodontal diseases are associated with a shift from symbiotic microbiota to dysbiosis. The aim of our study was to develop a rapid, sensitive, and economical method for the identification and quantification of selected cariogenic and periodontal oral bacteria. Original protocols were designed for three real-time multiplex PCR assays to detect and quantify the ratio of 10 bacterial species associated with dental caries (“cariogenic” complex) or periodontal diseases (red complex, orange complex, and Aggregatibacter actinomycetemcomitans). A total number of 60 samples from 30 children aged 2–6 years with severe early childhood caries and gingivitis were tested. In multiplex assays, the quantification of total bacterial (TB) content for cariogenic bacteria and red complex to eliminate differences in quantities caused by specimen collection was included. The mean counts for the TB load and that of ten evaluated specimens corresponded to previously published results. We found a significant difference between the microbial compositions obtained from the area of control and the affected teeth (p < 0.05). Based on this comprehensive microbiological examination, the risk of dental caries or periodontal inflammation may be determined. The test could also be used as a tool for behavioral intervention and thus prevention of the above-mentioned diseases.
Collapse
|
238
|
Haraszthy VI, Raylae CC, Sreenivasan PK. Antimicrobial effects of a stannous fluoride toothpaste in distinct oral microenvironments. J Am Dent Assoc 2019; 150:S14-S24. [PMID: 30797255 DOI: 10.1016/j.adaj.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical research has shown a relationship between microbial accumulations and oral diseases such as gingivitis and caries. The mouth harbors large densities of bacteria in distinct oral microenvironments, that is, dental plaque on teeth, saliva, and soft tissues such as the tongue, cheek, and gingiva. In this home-use study, the authors compared the effects of brushing with a newly formulated stannous fluoride toothpaste and a sodium monofluorophosphate dentifrice on bacteria of distinct oral microenvironments. METHODS Adult participants completed a washout phase before baseline sampling of dental plaque, saliva, and scrapings from tongue, cheek, and gingiva, which were used for microbiological analysis. Treatments were randomly assigned: test (62 participants) and control (67 participants) for twice-daily toothbrushing over 8 weeks. After 4 weeks and 8 weeks, posttreatment samples 12 hours after brushing were collected for analysis. At these posttreatment visits, participants brushed in the dental clinic, and an additional sample was collected 4 hours later for microbiological analysis. RESULTS Relative to the control, 12 hours after brushing, the test toothpaste showed greater reductions of bacteria (ranging from 14% to 27%) at the 4-week evaluation, which increased to 27% to 41% after 8 weeks of brushing. Correspondingly, 4 hours after brushing with the test toothpaste at the 4-week evaluation, there were greater reductions of bacteria in the range of 22% to 59%, which increased to a range of 33% to 61% at the 8-week assessment for participants completing the study. CONCLUSIONS The stannous fluoride toothpaste provided bacterial reductions in all oral microenvironments 12 hours after brushing. In addition, the authors observed microbial reductions 4 hours after brushing, which increased after extended use. PRACTICAL IMPLICATIONS The results are appropriate for oral hygiene recommendations by dental professionals.
Collapse
|
239
|
Liu G, Chen F, Cai Y, Chen Z, Luan Q, Yu X. Measuring the subgingival microbiota in periodontitis patients: Comparison of the surface layer and the underlying layers. Microbiol Immunol 2019; 64:99-112. [PMID: 31793046 DOI: 10.1111/1348-0421.12759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/21/2019] [Accepted: 11/09/2019] [Indexed: 12/15/2022]
Abstract
Periodontitis is a major cause of tooth loss in adults that initially results from dental plaque. Subgingival plaque pathogenesis is affected by both community composition and plaque structures, although limited data are available concerning the latter. To bridge this knowledge gap, subgingival plaques were obtained using filter paper (the fourth layer) and curette (the first-third layers) sequentially and the phylogenetic differences between the first-third layers and the fourth layer were characterized by sequencing the V3-V4 regions of 16S rRNA. A total of 11 phyla, 148 genera, and 308 species were obtained by bioinformatic analysis, and no significant differences between the operational taxonomic unit numbers were observed for these groups. In both groups, the most abundant species were Porphyromonas gingivalis and Fusobacterium nucleatum. Actinomyces naeslundii, Streptococcus intermedius, and Prevotella intermedia possessed relatively high proportions in the first-third layers; while in the fourth layer, both traditional pathogens (Treponema denticola and Campylobacter rectus) and novel pathobionts (Eubacterium saphenum, Filifactor alocis, Treponema sp. HOT238) were prominent. Network analysis showed that either of them exhibited a scale-free property and was constructed by two negatively correlated components (the pathogen component and the nonpathogen component), while the synergy in the nonpathogen component was lower in the first-third layers than that in the fourth layer. After merging these two parts into a whole plaque group, the negative/positive correlation ratio increased. With potential connections, the first-third layers and the fourth layer showed characteristic key nodes in bacterial networks.
Collapse
Affiliation(s)
- Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yu Cai
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhibin Chen
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
240
|
Yang W, Shao L, Heizhati M, Wu T, Yao X, Wang Y, Wang L, Li N. Oropharyngeal Microbiome in Obstructive Sleep Apnea: Decreased Diversity and Abundance. J Clin Sleep Med 2019; 15:1777-1788. [PMID: 31855163 PMCID: PMC7099180 DOI: 10.5664/jcsm.8084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022]
Abstract
STUDY OBJECTIVES To explore and analyze diversity and abundance of oropharyngeal microbiota in patients with obstructive sleep apnea (OSA). METHODS This was a cross-sectional study. Middle-aged men, suspected to have OSA, referred to full-night polysomnography, and willing to provide oropharyngeal swab samples, were consecutively enrolled. OSA severity was assessed by apnea-hypopnea index (AHI) as non-OSA (AHI < 5 events/h) and OSA (AHI ≥ 15 events/h). Bacterial DNA of oropharyngeal samples was extracted and quality test performed. Oropharyngeal microbiota was analyzed using 16S ribosomal DNA (rDNA) sequencing, and bioinformatic analysis carried out after sequencing. RESULTS Samples from 51 men (25 in the non-OSA group and 26 in the OSA group) were sent for examination. Of these, 40 samples were found to have sufficient concentration of DNA and were analyzed for bioinformatics. In alpha diversity analysis, the OSA group exhibited significantly lower sobs (198.33 ± 21.71 versus 216.57 ± 26.21, P = .022), chao (221.30 ± 26.62 versus 243.86 ± 26.20, P = .014), ace (222.17 ± 27.15 versus 242.42 ± 25.81, P = .028) and shannon index (3.14 ± 0.23 versus 3.31 ± 0.26, P = .035), suggesting a reduction in microbial species diversity. We further divided participants into non-OSA, moderate OSA, and severe OSA groups and observed a significant decrease in the bacterial biodiversity of OSA groups compared with the non-OSA group, with the most significant decrease occurring in the moderate OSA group. Principal coordinate analysis showed two extremely different oropharyngeal microbial communities in non-OSA and OSA groups. More interestingly, proportion of Neisseria was slightly higher in the severe OSA group (20.64%), followed by the moderate OSA and non-OSA groups (12.57% and 9.69%, respectively). Glaciecola was not detected in the OSA groups compared to the non-OSA group (0 versus 0.772 ± 0.4754, P < .001). CONCLUSIONS Middle-aged men with OSA showed less oropharyngeal species diversity and altered abundance, on which further confirmation is warranted.
Collapse
Affiliation(s)
- Wenbo Yang
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
- Contributed equally
| | - Liang Shao
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
- Contributed equally
| | - Mulalibieke Heizhati
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
| | - Ting Wu
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
| | - Xiaoguang Yao
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
| | - Yingchun Wang
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
| | - Lei Wang
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
| | - Nanfang Li
- Hypertension Center of the People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, China
| |
Collapse
|
241
|
Long-term impact of oral surgery with or without amoxicillin on the oral microbiome-A prospective cohort study. Sci Rep 2019; 9:18761. [PMID: 31822712 PMCID: PMC6904678 DOI: 10.1038/s41598-019-55056-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p < 0.05). No significant change in relative abundance of bacteria and β-lactamase resistance genes (TEM-1) was observed over 6 months for any group (adjusted p > 0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted.
Collapse
|
242
|
Peri-Implantitis Diagnosis and Prognosis Using Biomarkers in Peri-Implant Crevicular Fluid: A Narrative Review. Diagnostics (Basel) 2019; 9:diagnostics9040214. [PMID: 31817894 PMCID: PMC6963443 DOI: 10.3390/diagnostics9040214] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Dental implant diseases, peri-implantitis (PI) and peri-implant mucositis (PIM), have shown wide prevalence in recent studies. Despite the prevalence, diagnosing peri-implant disease (PID) remains challenging as common diagnostic methods of periodontal probing and radiographs may be inaccurate. These methods only document pre-existing destruction rather than current disease activity. Furthermore, there is no current model to predict the progression of PID. Though a predictive model is lacking, biomarkers may offer some potential. Biomarkers are commonly used in medicine to objectively determine disease state, or responses to a therapeutic intervention. Gingival crevicular fluid (GCF) biomarkers have moderate diagnostic validity in periodontitis. Biomarkers in peri-implant crevicular fluid (PICF) also show promising results in regard to their diagnostic and prognostic value. The aim of this review is to summarize the current knowledge of PICF biomarkers in the diagnosis of PID and evaluate their validity to predict disease progression. This review found that PICF studies utilize different methods of sampling and interpretation with varying validity (sensitivity and specificity). A number of promising diagnostic techniques were identified. Commercially available chair-side tests for MMP-8 to diagnose periodontal disease and PID activity are now available. Future directions include proteomics and metabolomics for accurate, site-specific diagnosis and prediction of PID progression. Although more research is needed, this review concludes that the assessment of proinflammatory cytokines (IL-1β, TNFα, MMP-8) in the PICF may be of value to diagnose PI and PIM but current research remains insufficient to indicate whether biomarkers predict peri-implant disease progression.
Collapse
|
243
|
Luu I, Sharma A, Guaderrama M, Peru M, Nation J, Page N, Carvalho D, Magit A, Jiang W, Leuin S, Bliss M, Bothwell M, Brigger M, Kearns D, Newbury R, Pransky S, Gilbert JA, Broderick L. Immune Dysregulation in the Tonsillar Microenvironment of Periodic Fever, Aphthous Stomatitis, Pharyngitis, Adenitis (PFAPA) Syndrome. J Clin Immunol 2019; 40:179-190. [PMID: 31807979 DOI: 10.1007/s10875-019-00724-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/24/2019] [Indexed: 01/10/2023]
Abstract
Periodic Fever, Aphthous stomatitis, Pharyngitis and Adenitis (PFAPA) syndrome is an inflammatory disorder of childhood classically characterized by recurrent fevers, pharyngitis, stomatitis, cervical adenitis, and leukocytosis. While the mechanism is unclear, previous studies have shown that tonsillectomy can be a therapeutic option with improvement in quality of life in many patients with PFAPA, but the mechanisms behind surgical success remain unknown. In addition, long-term clinical follow-up is lacking. In our tertiary care center cohort, 62 patients with PFAPA syndrome had complete resolution of symptoms after surgery (95.3%). Flow cytometric evaluation demonstrates an inflammatory cell population, distinct from patients with infectious pharyngitis, with increased numbers of CD8+ T cells (5.9% vs. 3.8%, p < 0.01), CD19+ B cells (51% vs. 35%, p < 0.05), and CD19+CD20+CD27+CD38-memory B cells (14% vs. 7.7%, p < 0.01). Cells are primed at baseline with increased percentage of IL-1β positive cells compared to control tonsil-derived cells, which require exogenous LPS stimulation. Gene expression analysis demonstrates a fivefold upregulation in IL1RN and TNF expression in whole tonsil compared to control tonsils, with persistent activation of the NF-κB signaling pathway, and differential microbial signatures, even in the afebrile period. Our data indicates that PFAPA patient tonsils have localized, persistent inflammation, in the absence of clinical symptoms, which may explain the success of tonsillectomy as an effective surgical treatment option. The differential expression of several genes and microbial signatures suggests the potential for a diagnostic biomarker for PFAPA syndrome.
Collapse
Affiliation(s)
- Irene Luu
- Department of Pediatrics, Division of Allergy, Immunology and Kawasaki Disease, University of California San Diego, La Jolla, CA, USA
| | - Anukriti Sharma
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Marisela Guaderrama
- Department of Pediatrics, Division of Allergy, Immunology and Kawasaki Disease, University of California San Diego, La Jolla, CA, USA
| | - Michelle Peru
- Department of Pediatrics, Division of Allergy, Immunology and Kawasaki Disease, University of California San Diego, La Jolla, CA, USA
| | - Javan Nation
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Nathan Page
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Daniela Carvalho
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Anthony Magit
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Wen Jiang
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Shelby Leuin
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Morgan Bliss
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Marcella Bothwell
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Matthew Brigger
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Donald Kearns
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Robert Newbury
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seth Pransky
- Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.,Department of Surgery, Division of Otolaryngology, University of California San Diego, La Jolla, CA, USA
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lori Broderick
- Department of Pediatrics, Division of Allergy, Immunology and Kawasaki Disease, University of California San Diego, La Jolla, CA, USA. .,Rady Children's Foundation, Rady Children's Hospital, San Diego, San Diego, CA, 92123, USA.
| |
Collapse
|
244
|
Oral Microbiota Composition and Antimicrobial Antibody Response in Patients with Recurrent Aphthous Stomatitis. Microorganisms 2019; 7:microorganisms7120636. [PMID: 31805744 PMCID: PMC6955784 DOI: 10.3390/microorganisms7120636] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Recurrent aphthous stomatitis (RAS) is the most common disease of the oral mucosa, and it has been recently associated with bacterial and fungal dysbiosis. To study this link further, we investigated microbial shifts during RAS manifestation at an ulcer site, in its surroundings, and at an unaffected site, compared with healed mucosa in RAS patients and healthy controls. We sampled microbes from five distinct sites in the oral cavity. The one site with the most pronounced differences in microbial alpha and beta diversity between RAS patients and healthy controls was the lower labial mucosa. Detailed analysis of this particular oral site revealed strict association of the genus Selenomonas with healed mucosa of RAS patients, whereas the class Clostridia and genera Lachnoanaerobaculum, Cardiobacterium, Leptotrichia, and Fusobacterium were associated with the presence of an active ulcer. Furthermore, active ulcers were dominated by Malassezia, which were negatively correlated with Streptococcus and Haemophilus and positively correlated with Porphyromonas species. In addition, RAS patients showed increased serum levels of IgG against Mogibacterium timidum compared with healthy controls. Our study demonstrates that the composition of bacteria and fungi colonizing healthy oral mucosa is changed in active RAS ulcers, and that this alteration persists to some extent even after the ulcer is healed.
Collapse
|
245
|
Prevalence of periodontal pathogenic bacteria at different oral sites of patients with tongue piercing — results of a cross sectional study. Diagn Microbiol Infect Dis 2019; 95:114888. [DOI: 10.1016/j.diagmicrobio.2019.114888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|
246
|
Redondoviridae, a Family of Small, Circular DNA Viruses of the Human Oro-Respiratory Tract Associated with Periodontitis and Critical Illness. Cell Host Microbe 2019; 25:719-729.e4. [PMID: 31071295 DOI: 10.1016/j.chom.2019.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
The global virome is largely uncharacterized but is now being unveiled by metagenomic DNA sequencing. Exploring the human respiratory virome, in particular, can provide insights into oro-respiratory diseases. Here, we use metagenomics to identify a family of small circular DNA viruses-named Redondoviridae-associated with human diseases. We first identified two redondovirus genomes from bronchoalveolar lavage samples from human lung donors. We then queried thousands of metagenomic samples and recovered 17 additional complete redondovirus genomes. Detections were exclusively in human samples and mostly from respiratory tract and oro-pharyngeal sites, where Redondoviridae was the second most prevalent eukaryotic DNA virus family. Redondovirus sequences were associated with periodontal disease, and abundances decreased with treatment. Some critically ill patients in a medical intensive care unit were found to harbor high levels of redondoviruses in respiratory samples. These results suggest that redondoviruses colonize human oro-respiratory sites and can bloom in several human disorders.
Collapse
|
247
|
Fischer LA, Demerath E, Bittner-Eddy P, Costalonga M. Placental colonization with periodontal pathogens: the potential missing link. Am J Obstet Gynecol 2019; 221:383-392.e3. [PMID: 31051120 DOI: 10.1016/j.ajog.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
Observational studies demonstrate that women with severe periodontitis have a higher risk of adverse pregnancy outcomes like preterm birth and low birthweight. Standard treatment for periodontitis in the form of scaling and root planing during the second trimester failed to reduce the risk of preterm or low birthweight. It is premature to dismiss the association between periodontitis and adverse pregnancy outcomes because one explanation for the failure of scaling and root planing to reduce the risk of adverse pregnancy outcomes is that periodontal pathogens spread to the placental tissue prior to periodontal treatment. In the placenta, orally derived organisms could cause direct tissue damage or mediate a maternal immune response that impairs the growth of the developing fetus. Sequencing studies demonstrate the presence of organisms derived from the oral microbiome in the placenta, but DNA-based sequencing studies should not be the only technique to evaluate the placental microbiome because they may not detect important shifts in the metabolic capability of the microbiome. In humans, polymerase chain reaction and histology have detected periodontal pathogens in placental tissue in association with multiple adverse pregnancy outcomes. We conclude that both placental and oral microbiomes may play a role in periodontitis-associated adverse pregnancy outcomes. However, the measure to determine the association between periodontal pathogens in the placenta and adverse pregnancy outcomes should be the amount and prevalence, not the mere presence of such microorganisms. Placental colonization with periodontal pathogens thus potentially represents the missing link between periodontitis and adverse pregnancy outcomes.
Collapse
|
248
|
Periodontal Pathogens as Risk Factors of Cardiovascular Diseases, Diabetes, Rheumatoid Arthritis, Cancer, and Chronic Obstructive Pulmonary Disease-Is There Cause for Consideration? Microorganisms 2019; 7:microorganisms7100424. [PMID: 31600905 PMCID: PMC6843669 DOI: 10.3390/microorganisms7100424] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases, chronic obstructive pulmonary diseases, diabetes, rheumatoid arthritis, and cancer are the most common noncommunicable diseases (NCDs). These NCDs share risk factors with periodontal disease (PD), a preventable risk factor linked to lifestyle. The discussion regarding the association between these chronic diseases is more complex. There is still a significant knowledge gap particularly of the causal relationship between PD and NCDs. In this paper, we present fundamental knowledge of the mechanisms and roles of putative periodontal bacteria to gather several hypotheses, evidence that clinical studies thus far have not produced. Although the causal hypotheses are not yet clearly established on a biological basis, prevention and prophylactic measures are recommended to prevent even the possibility of such potential risk factors.
Collapse
|
249
|
Rabelo MDS, El-Awady A, Moura Foz A, Hisse Gomes G, Rajendran M, Meghil MM, Lowry S, Romito GA, Cutler CW, Susin C. Influence of T2DM and prediabetes on blood DC subsets and function in subjects with periodontitis. Oral Dis 2019; 25:2020-2029. [PMID: 31541516 DOI: 10.1111/odi.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the myeloid and plasmacytoid DC counts and maturation status among subjects with/without generalized periodontitis (GP) and type 2 diabetes mellitus (T2DM). METHODS The frequency and maturation status of myeloid and plasmacytoid blood DCs were analyzed by flow cytometry in four groups of 15 subjects: healthy controls, T2DM with generalized CP (T2DM + GP), prediabetes with GP (PD + GP), and normoglycemics with GP (NG + GP). RT-PCR was used to determine levels of Porphyromonas gingivalis in the oral biofilms and within panDCs. The role of exogenous glucose effects on differentiation and apoptosis of healthy human MoDCs was explored in vitro. RESULTS Relative to controls and to NG + GP, T2DM + GP showed significantly lower CD1c + and CD303 + DC counts, while CD141 + DCs were lower in T2DM + GP relative to controls. Blood DC maturation required for mobilization and immune responsiveness was not observed. A statistically significant trend was observed for P. gingivalis levels in the biofilms of groups as follows: controls <NG+GP < PD+GP < T2DM+GP. Moreover, significantly higher P. gingivalis levels were observed in blood DCs of NG + GP than controls, whereas no differences were observed between controls and PD + GP/T2DM + GP. In vitro differentiation of MoDCs was significantly decreased, and apoptosis was increased by physiologically relevant glucose levels. CONCLUSION Type 2 diabetes mellitus appears to inhibit important DC immune homeostatic functions, including expansion and bacterial scavenging, which might be mediated by hyperglycemia.
Collapse
Affiliation(s)
- Mariana de Sousa Rabelo
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Ahmed El-Awady
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Adriana Moura Foz
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Giovane Hisse Gomes
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Mythilpriya Rajendran
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed M Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Lowry
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Giuseppe Alexandre Romito
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Christopher W Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Cristiano Susin
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
250
|
Fetal Weight Outcomes in C57BL/6J and C57BL/6NCrl Mice after Oral Colonization with Porphyromonas gingivalis. Infect Immun 2019; 87:IAI.00280-19. [PMID: 31331955 DOI: 10.1128/iai.00280-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis is considered a keystone pathogen that contributes to the initiation and progression of periodontitis in humans. P. gingivalis has also been detected in human placentas associated with adverse pregnancy outcomes. The spread of P. gingivalis from the oral cavity to the reproductive tract thus represents a potential mechanism whereby periodontitis can lead to adverse pregnancy outcomes. In a murine model of pregnancy and oral infection with P. gingivalis, C57BL/6J mice developed low fetal weight, whereas C57BL/6NCrl mice did not. Although C57BL/6NCrl mice harbor segmented filamentous bacteria that drive a Th17 response, fetal weight was independent of frequency of Th17 or Th1 in either substrain. Low fetal weight was instead correlated with increasing amounts of P. gingivalis DNA in the placentas of the C57BL/6J dams. In contrast, fetal weight in C57BL/6NCrl mice was independent of P. gingivalis in the placenta. Differences in genetics or microbiome that influence the ability of P. gingivalis to colonize the placenta may drive differential fetal weight outcomes between C57BL/6J and C57BL/6NCrl mice and, potentially, between diverse human populations.
Collapse
|