201
|
Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5 -/- mice. Nat Commun 2019; 10:1492. [PMID: 30940817 PMCID: PMC6445090 DOI: 10.1038/s41467-019-09525-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5−/− and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5−/− mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5−/− mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth. RNF5 is a ubiquitin ligase regulating ER stress response. Here the authors show that Rnf5 deficiency potentiates immune response against melanoma via altered microbiota, and isolate bacterial strains that confer the same phenotype to wild type mice.
Collapse
|
202
|
Ye L, Zhang Q, Liuyu T, Xu Z, Zhang MX, Luo MH, Zeng WB, Zhu Q, Lin D, Zhong B. USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. PLoS Pathog 2019; 15:e1007680. [PMID: 30943264 PMCID: PMC6464240 DOI: 10.1371/journal.ppat.1007680] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/15/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
Mediator of IRF3 activation (MITA, also known as STING and ERIS) is an essential adaptor protein for cytoplasmic DNA-triggered signaling and involved in innate immune responses, autoimmunity and tumorigenesis. The activity of MITA is critically regulated by ubiquitination and deubiquitination. Here, we report that USP49 interacts with and deubiquitinates MITA after HSV-1 infection, thereby turning down cellular antiviral responses. Knockdown or knockout of USP49 potentiated HSV-1-, cytoplasmic DNA- or cGAMP-induced production of type I interferons (IFNs) and proinflammatory cytokines and impairs HSV-1 replication. Consistently, Usp49-/- mice exhibit resistance to lethal HSV-1 infection and attenuated HSV-1 replication compared to Usp49+/+ mice. Mechanistically, USP49 removes K63-linked ubiquitin chains from MITA after HSV-1 infection which inhibits the aggregation of MITA and the subsequent recruitment of TBK1 to the signaling complex. These findings suggest a critical role of USP49 in terminating innate antiviral responses and provide insights into the complex regulatory mechanisms of MITA activation.
Collapse
Affiliation(s)
- Liya Ye
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhigao Xu
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng-Xin Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
203
|
Abstract
The Interferon regulatory factors (IRFs) are a family of transcription factors that play pivotal roles in many aspects of the immune response, including immune cell development and differentiation and regulating responses to pathogens. Three family members, IRF3, IRF5, and IRF7, are critical to production of type I interferons downstream of pathogen recognition receptors that detect viral RNA and DNA. A fourth family member, IRF9, regulates interferon-driven gene expression. In addition, IRF4, IRF8, and IRF5 regulate myeloid cell development and phenotype, thus playing important roles in regulating inflammatory responses. Thus, understanding how their levels and activity is regulated is of critical importance given that perturbations in either can result in dysregulated immune responses and potential autoimmune disease. This review will focus the role of IRF family members in regulating type I IFN production and responses and myeloid cell development or differentiation, with particular emphasis on how regulation of their levels and activity by ubiquitination and microRNAs may impact autoimmune disease.
Collapse
Affiliation(s)
- Caroline A Jefferies
- Department of Medicine, Division of Rheumatology and Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
204
|
Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin Ligases in Cancer Immunotherapy - Balancing Antitumor and Autoimmunity. Trends Mol Med 2019; 25:428-443. [PMID: 30898473 DOI: 10.1016/j.molmed.2019.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Considerable progress has been made in understanding the contribution of E3 ubiquitin ligases to health and disease, including the pathogenesis of immunological disorders. Ubiquitin ligases exert exquisite spatial and temporal control over protein stability and function, and are thus crucial for the regulation of both innate and adaptive immunity. Given that immune responses can be both detrimental (autoimmunity) and beneficial (antitumor immunity), it is vital to understand how ubiquitin ligases maintain immunological homeostasis. Such knowledge could reveal novel mechanisms underlying immune regulation and identify new therapeutic approaches to enhance antitumor immunity and safeguard against autoimmunity.
Collapse
Affiliation(s)
- Yu Fujita
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Present address: Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yan Li
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Ze'ev A Ronai
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
205
|
Zhang MX, Cai Z, Zhang M, Wang XM, Wang Y, Zhao F, Zhou J, Luo MH, Zhu Q, Xu Z, Zeng WB, Zhong B, Lin D. USP20 Promotes Cellular Antiviral Responses via Deconjugating K48-Linked Ubiquitination of MITA. THE JOURNAL OF IMMUNOLOGY 2019; 202:2397-2406. [PMID: 30814308 DOI: 10.4049/jimmunol.1801447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
Mediator of IRF3 activation ([MITA] also known as STING) is a direct sensor of cyclic dinucleotide and critically mediates cytoplasmic DNA--triggered innate immune signaling. The activity of MITA is extensively regulated by ubiquitination and deubiquitination. In this study, we report that USP20 interacts with and removes K48-linked ubiquitin chains from MITA after HSV-1 infection, thereby stabilizing MITA and promoting cellular antiviral responses. Deletion of USP20 accelerates HSV-1-induced degradation of MITA and impairs phosphorylation of IRF3 and IκBα as well as subsequent induction of type I IFNs and proinflammatory cytokines after HSV-1 infection or cytoplasmic DNA challenge. Consistently, Usp20 -/- mice produce decreased type I IFNs and proinflammatory cytokines, exhibit increased susceptibility to lethal HSV-1 infection, and aggravated HSV-1 replication compared with Usp20 +/+ mice. In addition, complement of MITA into Usp20 -/- cells fully restores HSV-1-triggered signaling and inhibits HSV-1 infection. These findings suggest a crucial role of USP20 in maintaining the stability of MITA and promoting innate antiviral signaling.
Collapse
Affiliation(s)
- Meng-Xin Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zeng Cai
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Man Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xiao-Meng Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fei Zhao
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Zhou
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhigao Xu
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; and
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Bo Zhong
- College of Life Sciences, Wuhan University, Wuhan 430072, China; .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
206
|
Abe T, Marutani Y, Shoji I. Cytosolic DNA-sensing immune response and viral infection. Microbiol Immunol 2019; 63:51-64. [PMID: 30677166 PMCID: PMC7168513 DOI: 10.1111/1348-0421.12669] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
How host cells recognize many kinds of RNA and DNA viruses and initiate innate antiviral responses against them has not yet been fully elucidated. Over the past decade, investigations into the mechanisms underlying these antiviral responses have focused extensively on immune surveillance sensors that recognize virus‐derived components (such as lipids, sugars and nucleic acids). The findings of these studies have suggested that antiviral responses are mediated by cytosolic or intracellular compartment sensors and their adaptor molecules (e.g., TLR, myeloid differentiation primary response 88, retinoic acid inducible gene‐I, IFN‐β promoter stimulator‐1, cyclic GMP‐AMP synthase and stimulator of IFN genes axis) for the primary sensing of virus‐derived nucleic acids, leading to production of type I IFNs, pro‐inflammatory cytokines and chemokines by the host cells. Thus, host cells have evolved an elaborate host defense machinery to recognize and eliminate virus infections. In turn, to achieve sustained viral infection and induce pathogenesis, viruses have also evolved several counteracting strategies for achieving immune escape by targeting immune sensors, adaptor molecules, intracellular kinases and transcription factors. In this review, we discuss recent discoveries concerning the role of the cytosolic nucleic acid‐sensing immune response in viral recognition and control of viral infection. In addition, we consider the regulatory machinery of the cytosolic nucleic acid‐sensing immune response because these immune surveillance systems must be tightly regulated to prevent aberrant immune responses to self and non‐self‐nucleic acids.
Collapse
Affiliation(s)
- Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Yuki Marutani
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| |
Collapse
|
207
|
Coevolution pays off: Herpesviruses have the license to escape the DNA sensing pathway. Med Microbiol Immunol 2019; 208:495-512. [PMID: 30805724 DOI: 10.1007/s00430-019-00582-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/20/2023]
Abstract
Early detection of viral invasion by pattern recognition receptors (PRR) is crucial for the induction of a rapid and efficient immune response. Cytosolic DNA sensors are the most recently described class of PRR, and induce transcription of type I interferons (IFN) and proinflammatory cytokines via the key adaptor protein stimulator of interferon genes (STING). Herpesviruses are a family of large DNA viruses widely known for their immense arsenal of proteins dedicated to manipulating and evading host immune responses. Tantamount to the significant role played by DNA sensors and STING in innate immune responses, herpesviruses have in turn evolved a range of mechanisms targeting virtually every step of this key signaling pathway. Strikingly, some herpesviruses also take advantage of this pathway to promote their own replication. In this review, we will summarize the current understanding of DNA sensing and subsequent induction of signaling and transcription, and showcase the close adaptation of herpesviruses to their host reflected by the myriad of viral proteins dedicated to modulating this critical innate immune pathway.
Collapse
|
208
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
209
|
Garcia-Moreno M, Noerenberg M, Ni S, Järvelin AI, González-Almela E, Lenz CE, Bach-Pages M, Cox V, Avolio R, Davis T, Hester S, Sohier TJM, Li B, Heikel G, Michlewski G, Sanz MA, Carrasco L, Ricci EP, Pelechano V, Davis I, Fischer B, Mohammed S, Castello A. System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Mol Cell 2019; 74:196-211.e11. [PMID: 30799147 PMCID: PMC6458987 DOI: 10.1016/j.molcel.2019.01.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 12/23/2022]
Abstract
The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed “comparative RIC” and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells. A quarter of the RBPome changes upon SINV infection Alterations in RBP activity are largely explained by changes in RNA availability Altered RBPs are crucial for viral infection efficacy GEMIN5 binds to the 5′ end of SINV RNAs and regulates viral gene expression
Collapse
Affiliation(s)
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Shuai Ni
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Esther González-Almela
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Caroline E Lenz
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Marcel Bach-Pages
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Victoria Cox
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Rosario Avolio
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Thomas Davis
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Thibault J M Sohier
- Université de Lyon, ENSL, UCBL, CNRS, INSERM, LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Bingnan Li
- SciLifeLab, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Gregory Heikel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK; Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Gracjan Michlewski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK; Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Zhejiang University-University of Edinburgh Institute, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, People's Republic of China
| | - Miguel A Sanz
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Emiliano P Ricci
- Université de Lyon, ENSL, UCBL, CNRS, INSERM, LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Bernd Fischer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK.
| |
Collapse
|
210
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
211
|
Suppression of the SAP18/HDAC1 complex by targeting TRIM56 and Nanog is essential for oncogenic viral FLICE-inhibitory protein-induced acetylation of p65/RelA, NF-κB activation, and promotion of cell invasion and angiogenesis. Cell Death Differ 2019; 26:1970-1986. [PMID: 30670829 DOI: 10.1038/s41418-018-0268-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
Kaposi's sarcoma (KS), a highly invasive and angiogenic tumor of endothelial spindle-shaped cells, is the most common AIDS-associated cancer caused by KS-associated herpesvirus (KSHV) infection. KSHV-encoded viral FLICE-inhibitory protein (vFLIP) is a viral oncogenic protein, but its role in the dissemination and angiogenesis of KSHV-induced cancers remains unknown. Here, we report that vFLIP facilitates cell migration, invasion, and angiogenesis by downregulating the SAP18-HDAC1 complex. vFLIP degrades SAP18 through a ubiquitin-proteasome pathway by recruiting E3 ubiquitin ligase TRIM56. Further, vFLIP represses HDAC1, a protein partner of SAP18, by inhibiting Nanog occupancy on the HDAC1 promoter. Notably, vFLIP impairs the interaction between the SAP18/HDAC1 complex and p65 subunit, leading to enhancement of p65 acetylation and NF-κB activation. Our data suggest a novel mechanism of vFLIP activation of the NF-κB by decreasing the SAP18/HDAC1 complex to promote the acetylation of p65 subunit, which contributes to vFLIP-induced activation of the NF-κB pathway, cell invasion, and angiogenesis. These findings advance our understanding of the mechanism of KSHV-induced pathogenesis, and providing a rationale for therapeutic targeting of the vFLIP/SAP18/HDAC1 complex as a novel strategy of AIDS-KS.
Collapse
|
212
|
Abstract
Tripartite motif (TRIM) proteins have been found in a variety of physiological processes; however, the role of TRIM proteins in host defense to viral infection is emerging in recent years. TRIM proteins have been shown to restrict viruses at various stages of viral life cycle through common and distinct mechanisms. TRIM proteins restrict viral infection by directly interacting with viral proteins. Furthermore, TRIM proteins regulate innate immunity and adaptive immunity to impede viral infection. To subvert host defense, viruses also evolve a new evasion strategy by targeting TRIM proteins. In this review, we highlight recent advances which deepen our understanding of the role of TRIM proteins in host defense and the diverse antiviral mechanisms of TRIM proteins.
Collapse
Affiliation(s)
- Girish Patil
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Shitao Li
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
213
|
Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, Sehgal SA, Wang X, Wang J, Shang Y, Jiang Z, Liu L, Chen Q. STING directly activates autophagy to tune the innate immune response. Cell Death Differ 2018; 26:1735-1749. [PMID: 30568238 DOI: 10.1038/s41418-018-0251-z] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/28/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
STING (stimulator of interferon genes) is a central molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase (cGAS) to activate innate immunity against microbial infection. Here we report that STING harbors classic LC-3 interacting regions (LIRs) and mediates autophagy through its direct interaction with LC3. We observed that poly(dA:dT), cGAMP, and HSV-1 induced STING-dependent autophagy and degradation of STING immediately after TBK1 activation. STING induces non-canonical autophagy that is dependent on ATG5, whereas other autophagy regulators such as Beclin1, Atg9a, ULK1, and p62 are dispensable. LIR mutants of STING abolished its interaction with LC3 and its activation of autophagy. Also, mutants that abolish STING dimerization and cGAMP-binding diminished the STING-LC3 interaction and subsequent autophagy, suggesting that STING activation is indispensable for autophagy induction. Our results thus uncover dual functions of STING in activating the immune response and autophagy, and suggest that STING is involved in ensuring a measured innate immune response.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chenguang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yanjun Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huabin Tian
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Sami Siraj
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sheikh Arslan Sehgal
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhengfan Jiang
- College of Life Sciences, Peking University, Beijing, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
214
|
Zhang L, Wei N, Cui Y, Hong Z, Liu X, Wang Q, Li S, Liu H, Yu H, Cai Y, Wang Q, Zhu J, Meng W, Chen Z, Wang C. The deubiquitinase CYLD is a specific checkpoint of the STING antiviral signaling pathway. PLoS Pathog 2018; 14:e1007435. [PMID: 30388174 PMCID: PMC6235404 DOI: 10.1371/journal.ppat.1007435] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023] Open
Abstract
Stimulator of interferon genes (STING) is critical for cytosolic DNA-triggered innate immunity. STING is modified by several types of polyubiquitin chains. Here, we report that the deubiquitinase CYLD sustains STING signaling by stabilizing the STING protein. CYLD deficiency promoted the K48-linked polyubiquitination and degradation of STING, attenuating the induction of IRF3-responsive genes after HSV-1 infection or the transfection of DNA ligands. Additionally, CYLD knockout mice were more susceptible to HSV-1 infection than their wild-type (WT) littermates. Mechanistically, STING translocated from the ER to the Golgi upon HSV-1 stimulation; CYLD partially accumulated with STING and interacted selectively with K48-linked polyubiquitin chains on STING, specifically removing the K48-linked polyubiquitin chains from STING and ultimately boosting the innate antiviral response. Our study reveals that CYLD is a novel checkpoint in the cGAS-STING signaling pathway and sheds new light on the dynamic regulation of STING activity by ubiquitination.
Collapse
Affiliation(s)
- Lele Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Wei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Ye Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ze Hong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Xing Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Senlin Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huansha Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanni Cai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- * E-mail: (ZC); (CW)
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
- * E-mail: (ZC); (CW)
| |
Collapse
|
215
|
Yang F. Post-translational Modification Control of HBV Biological Processes. Front Microbiol 2018; 9:2661. [PMID: 30443247 PMCID: PMC6222169 DOI: 10.3389/fmicb.2018.02661] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus infection remains a global healthy issue that needs to be urgently solved. Novel strategies for anti-viral therapy are based on exploring the effective diagnostic markers and therapeutic targets of diseases caused by hepatitis B virus (HBV) infection. It is well-established that not only viral proteins themselves but also key factors from the host control the biological processes associated with HBV, including replication, transcription, packaging, and secretion. Protein post-translational modifications (PTMs), such as phosphorylation, acetylation, methylation, and ubiquitination, have been shown to control protein activity, regulate protein stability, promote protein interactions and alter protein subcellular localization, leading to the modulation of crucial signaling pathways and affected cellular processes. This review focuses on the functions and effects of diverse PTMs in regulating important processes in the HBV life cycle. The potential roles of PTMs in the pathogenesis of HBV-associated liver diseases are also discussed.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
216
|
Abstract
In mammals, cytosolic detection of nucleic acids is critical in initiating innate antiviral responses against invading pathogens (like bacteria, viruses, fungi and parasites). These programs are mediated by multiple cytosolic and endosomal sensors and adaptor molecules (c-GAS/STING axis and TLR9/MyD88 axis, respectively) and lead to the production of type I interferons (IFNs), pro-inflammatory cytokines, and chemokines. While the identity and role of multiple pattern recognition receptors (PRRs) have been elucidated, such immune surveillance systems must be tightly regulated to limit collateral damage and prevent aberrant responses to self- and non-self-nucleic acids. In this review, we discuss recent advances in our understanding of how cytosolic sensing of DNA is controlled during inflammatory immune responses.
Collapse
Affiliation(s)
- Takayuki Abe
- Department of Systems Biology, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Columbia University, New York, NY, United States.
| |
Collapse
|
217
|
Abstract
Microbial nucleic acids are major signatures of invading pathogens, and their recognition by various host pattern recognition receptors (PRRs) represents the first step toward an efficient innate immune response to clear the pathogens. The nucleic acid-sensing PRRs are localized at the plasma membrane, the cytosol, and/or various cellular organelles. Sensing of nucleic acids and signaling by PRRs involve recruitment of distinct signaling components, and PRRs are intensively regulated by cellular organelle trafficking. PRR-mediated innate immune responses are also heavily regulated by posttranslational modifications, including phosphorylation, polyubiquitination, sumoylation, and glutamylation. In this review, we focus on our current understanding of recognition of microbial nucleic acid by PRRs, particularly on their regulation by organelle trafficking and posttranslational modifications. We also discuss how sensing of self nucleic acids and dysregulation of PRR-mediated signaling lead to serious human diseases.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| |
Collapse
|
218
|
Garcia-Moreno M, Järvelin AI, Castello A. Unconventional RNA-binding proteins step into the virus-host battlefront. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1498. [PMID: 30091184 PMCID: PMC7169762 DOI: 10.1002/wrna.1498] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
The crucial participation of cellular RNA‐binding proteins (RBPs) in virtually all steps of virus infection has been known for decades. However, most of the studies characterizing this phenomenon have focused on well‐established RBPs harboring classical RNA‐binding domains (RBDs). Recent proteome‐wide approaches have greatly expanded the census of RBPs, discovering hundreds of proteins that interact with RNA through unconventional RBDs. These domains include protein–protein interaction platforms, enzymatic cores, and intrinsically disordered regions. Here, we compared the experimentally determined census of RBPs to gene ontology terms and literature, finding that 472 proteins have previous links with viruses. We discuss what these proteins are and what their roles in infection might be. We also review some of the pioneering examples of unorthodox RBPs whose RNA‐binding activity has been shown to be critical for virus infection. Finally, we highlight the potential of these proteins for host‐based therapies against viruses. This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes
Collapse
Affiliation(s)
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
219
|
Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, Xiao J, Chen X, Xia H, Wu Y, Zhou Z, Guo X, Hu C, Yang C, Cheng X, Chen C, Qi X. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest 2018; 128:4148-4162. [PMID: 29920190 DOI: 10.1172/jci120406] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Lysine-63-linked (K63-linked) polyubiquitination of TRAF3 coordinates the engagement of pattern-recognition receptors with recruited adaptor proteins and downstream activator TBK1 in pathways that induce type I IFN. Whether autoubiquitination or other E3 ligases mediate K63-linked TRAF3 polyubiquitination remains unclear. We demonstrated that mice deficient in the E3 ligase gene Hectd3 remarkably increased host defense against infection by intracellular bacteria Francisella novicida, Mycobacterium, and Listeria by limiting bacterial dissemination. In the absence of HECTD3, type I IFN response was impaired during bacterial infection both in vivo and in vitro. HECTD3 regulated type I IFN production by mediating K63-linked polyubiquitination of TRAF3 at residue K138. The catalytic domain of HECTD3 regulated TRAF3 K63 polyubiquitination, which enabled TRAF3-TBK1 complex formation. Our study offers insights into mechanisms of TRAF3 modulation and provides potential therapeutic targets against infections by intracellular bacteria and inflammatory diseases.
Collapse
Affiliation(s)
- Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Yang Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and.,Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and.,Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanjie Kong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Ji Xiao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Houjun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Yingying Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Xiaomin Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and.,Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chunmiao Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and.,Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Xu Cheng
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and.,Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
220
|
Tan G, Song H, Xu F, Cheng G. When Hepatitis B Virus Meets Interferons. Front Microbiol 2018; 9:1611. [PMID: 30072974 PMCID: PMC6058040 DOI: 10.3389/fmicb.2018.01611] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection imposes a severe burden on global public health. Currently, there are no curative therapies for millions of chronic HBV-infected patients (Lok et al., 2017). Interferon (IFN; including pegylated IFN) is an approved anti-HBV drug that not only exerts direct antiviral activity, but also augments immunity against HBV infection. Through a systematic review of the literature, here we summarize and present recent progress in research regarding the interactions between IFN and HBV as well as dissect the antiviral mechanisms of IFN. We focus on inhibition of HBV replication by IFN-stimulated genes (ISGs) as well as inhibition of IFN signaling by HBV and viral proteins. Finally, we briefly discuss current IFN-based HBV treatment strategies. This review may help to better understand the mechanisms involved in the therapeutic action of IFN as well as the crosstalk between IFN and HBV, and facilitate the development of both direct-acting and immunology-based new HBV drugs.
Collapse
Affiliation(s)
- Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
221
|
Parvatiyar K, Pindado J, Dev A, Aliyari SR, Zaver SA, Gerami H, Chapon M, Ghaffari AA, Dhingra A, Cheng G. A TRAF3-NIK module differentially regulates DNA vs RNA pathways in innate immune signaling. Nat Commun 2018; 9:2770. [PMID: 30018345 PMCID: PMC6050272 DOI: 10.1038/s41467-018-05168-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/30/2018] [Indexed: 02/07/2023] Open
Abstract
Detection of viral genomes by the innate immune system elicits an antiviral gene program mediated by type I interferons (IFNs). While viral RNA and DNA species induce IFN via separate pathways, the mechanisms by which these pathways are differentially modulated are unknown. Here we show that the positive regulator of IFN in the RNA pathway, TRAF3, has an inhibitory function in the DNA pathway. Loss of TRAF3 coincides with increased expression of the alternative NF-κB-inducing molecule, NIK, which interacts with the DNA pathway adaptor, STING, to enhance IFN induction. Cells lacking NIK display defective IFN activation in the DNA pathway due to impaired STING signaling, and NIK-deficient mice are more susceptible to DNA virus infection. Mechanistically, NIK operates independently from alternative NF-κB signaling components and instead requires autophosphorylation and oligomerization to activate STING. Thus a previously undescribed pathway for NIK exists in activating IFN in the DNA pathway.
Collapse
Affiliation(s)
- Kislay Parvatiyar
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Jose Pindado
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Anurupa Dev
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Saba Roghiyh Aliyari
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Shivam A Zaver
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Hoda Gerami
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Maxime Chapon
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Amir A Ghaffari
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine UCLA, Los Angeles, CA, 90095, USA
| | - Anant Dhingra
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
222
|
Wei Y, Chen S, Wang M, Cheng A. Tripartite motif-containing proteins precisely and positively affect host antiviral immune response. Scand J Immunol 2018; 87:e12669. [PMID: 29706026 DOI: 10.1111/sji.12669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/22/2018] [Indexed: 12/17/2022]
Abstract
The tripartite motif-containing proteins (TRIMs) comprise a large family of proteins with over 70 members in humans. Recent studies have shown that TRIMs play unexpected roles in the antiviral immune responses to infections by HIV, MLV, EMCV, AIV and other viruses. There are two mechanisms used by TRIMs in the inhibition of virus infections: (1) TRIMs target the produced viruses for ubiquitination, which induces proteasome-dependent degradation, or they interact with host proteins to inhibit viral infection in various periods of the viral life cycle. (2) TRIMs activate innate immune signalling pathways, such as RLR and TLR, which induce IFN production. In this study, we will review recent studies regarding the means by which TRIMs function as inhibitors in viral infection through the mechanisms described above.
Collapse
Affiliation(s)
- Y Wei
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - S Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - M Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - A Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
223
|
Xu T, Chu Q, Cui J. Rhabdovirus-Inducible MicroRNA-210 Modulates Antiviral Innate Immune Response via Targeting STING/MITA in Fish. THE JOURNAL OF IMMUNOLOGY 2018; 201:982-994. [DOI: 10.4049/jimmunol.1800377] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
|
224
|
Luo WW, Shu HB. Delicate regulation of the cGAS-MITA-mediated innate immune response. Cell Mol Immunol 2018; 15:666-675. [PMID: 29456253 PMCID: PMC6123429 DOI: 10.1038/cmi.2016.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022] Open
Abstract
Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.
Collapse
Affiliation(s)
- Wei-Wei Luo
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan, 430071, China
| | - Hong-Bing Shu
- Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
225
|
TRIM21 Promotes Innate Immune Response to RNA Viral Infection through Lys27-Linked Polyubiquitination of MAVS. J Virol 2018; 92:JVI.00321-18. [PMID: 29743353 DOI: 10.1128/jvi.00321-18] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Human innate immunity responds to viral infection by activating the production of interferons (IFNs) and proinflammatory cytokines. The mitochondrial adaptor molecule MAVS plays a critical role in innate immune response to viral infection. In this study, we show that TRIM21 (tripartite motif-containing protein 21) interacts with MAVS to positively regulate innate immunity. Under viral infection, TRIM21 is upregulated through the IFN/JAK/STAT signaling pathway. Knockdown of TRIM21 dramatically impairs innate immune response to viral infection. Moreover, TRIM21 interacts with MAVS and catalyzes its K27-linked polyubiquitination, thereby promoting the recruitment of TBK1 to MAVS. Specifically, the PRY-SPRY domain of TRIM21 is the key domain for its interaction with MAVS, while the RING domain of TRIM21 facilitates the polyubiquitination chains of MAVS. In addition, the MAVS-mediated innate immune response is enhanced by both the PRY-SPRY and RING domains of TRIM21. Mutation analyses of all the lysine residues of MAVS further revealed that Lys325 of MAVS is catalyzed by TRIM21 for the K27-linked polyubiquitination. Overall, this study reveals a novel mechanism by which TRIM21 promotes the K27-linked polyubiquitination of MAVS to positively regulate innate immune response, thereby inhibiting viral infection.IMPORTANCE Activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. MAVS plays a critical role in innate immune response to RNA viral infection. In this study, we demonstrated that TRIM21 targets MAVS to positively regulate innate immunity. Notably, TRIM21 targets and catalyzes K27-linked polyubiquitination of MAVS and then promotes the recruitment of TBK1 to MAVS, leading to upregulation of innate immunity. Our study outlines a novel mechanism by which the IFN signaling pathway blocks RNA virus to escape immune elimination.
Collapse
|
226
|
Abstract
Tripartite motif (TRIM) proteins are a versatile family of ubiquitin E3 ligases involved in a multitude of cellular processes. Studies in recent years have demonstrated that many TRIM proteins play central roles in the host defense against viral infection. While some TRIM proteins directly antagonize distinct steps in the viral life cycle, others regulate signal transduction pathways induced by innate immune sensors, thereby modulating antiviral cytokine responses. Furthermore, TRIM proteins have been implicated in virus-induced autophagy and autophagy-mediated viral clearance. Given the important role of TRIM proteins in antiviral restriction, it is not surprising that several viruses have evolved effective maneuvers to neutralize the antiviral action of specific TRIM proteins. Here, we describe the major antiviral mechanisms of TRIM proteins as well as viral strategies to escape TRIM-mediated host immunity.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
227
|
Yang L, Wang L, Ketkar H, Ma J, Yang G, Cui S, Geng T, Mordue DG, Fujimoto T, Cheng G, You F, Lin R, Fikrig E, Wang P. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun 2018; 9:2329. [PMID: 29899553 PMCID: PMC5998066 DOI: 10.1038/s41467-018-04759-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
The ubiquitin regulatory X domain-containing proteins (UBXNs) are likely involved in diverse biological processes. Their physiological functions, however, remain largely unknown. Here we present physiological evidence that UBXN3B positively regulates stimulator-of-interferon genes (STING) signaling. We employ a tamoxifen-inducible Cre-LoxP approach to generate systemic Ubxn3b knockout in adult mice as the Ubxn3b-null mutation is embryonically lethal. Ubxn3b-/-, like Sting-/- mice, are highly susceptible to lethal herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection, which is correlated with deficient immune responses when compared to Ubxn3b+/+ littermates. HSV-1 and STING agonist-induced immune responses are also reduced in several mouse and human Ubxn3b-/- primary cells. Mechanistic studies demonstrate that UBXN3B interacts with both STING and its E3 ligase TRIM56, and facilitates STING ubiquitination, dimerization, trafficking, and consequent recruitment and phosphorylation of TBK1. These results provide physiological evidence that links the UBXN family with antiviral immune responses.
Collapse
Affiliation(s)
- Long Yang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0004 1936 8649grid.14709.3bLady Davis Institute-Jewish General Hospital, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E2 Canada
| | - Leilei Wang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0000 9678 1884grid.412449.eDepartment of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 110004 Shenyang City, Liaoning Province China
| | - Harshada Ketkar
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Jinzhu Ma
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0004 1808 3449grid.412064.5College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing City, Heilongjiang Province China
| | - Guang Yang
- 0000 0004 1790 3548grid.258164.cDepartment of Parasitology, School of Medicine, Jinan University, 510610 Guangzhou City, Guangdong Province China
| | - Shuang Cui
- 0000 0001 2256 9319grid.11135.37Beijing Key Laboratory of Tumor Systems Biology, Department of Immunology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Tingting Geng
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Dana G. Mordue
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Toyoshi Fujimoto
- 0000 0001 0943 978Xgrid.27476.30Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550 Japan
| | - Gong Cheng
- 0000 0001 0662 3178grid.12527.33Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, 100084 Beijing, China
| | - Fuping You
- 0000 0001 2256 9319grid.11135.37Beijing Key Laboratory of Tumor Systems Biology, Department of Immunology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Rongtuan Lin
- 0000 0004 1936 8649grid.14709.3bLady Davis Institute-Jewish General Hospital, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E2 Canada
| | - Erol Fikrig
- 0000000419368710grid.47100.32Section of Infectious Diseases, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA ,0000 0001 2167 1581grid.413575.1Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815 USA
| | - Penghua Wang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| |
Collapse
|
228
|
Sueyoshi T, Kawasaki T, Kitai Y, Ori D, Akira S, Kawai T. Hu Antigen R Regulates Antiviral Innate Immune Responses through the Stabilization of mRNA for Polo-like Kinase 2. THE JOURNAL OF IMMUNOLOGY 2018; 200:3814-3824. [PMID: 29678949 DOI: 10.4049/jimmunol.1701282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/03/2018] [Indexed: 12/29/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), RIG-I, and melanoma differentiation-associated gene 5 (MDA5) play a critical role in inducing antiviral innate immune responses by activating IFN regulatory factor 3 (IRF3) and NF-κB, which regulates the transcription of type I IFN and inflammatory cytokines. Antiviral innate immune responses are also regulated by posttranscriptional and translational mechanisms. In this study, we identified an RNA-binding protein HuR as a regulator for RLR signaling. Overexpression of HuR, but not of other Hu members, increased IFN-β promoter activity. HuR-deficient macrophage cells exhibited decreased Ifnb1 expression after RLR stimulation, whereas they showed normal induction after stimulation with bacterial LPS or immunostimulatory DNA. Moreover, HuR-deficient cells displayed impaired nuclear translocation of IRF3 after RLR stimulation. In HuR-deficient cells, the mRNA expression of Polo-like kinase (PLK) 2 was markedly reduced. We found that HuR bound to the 3' untranslated region of Plk2 mRNA and increased its stabilization. PLK2-deficient cells also showed reduced IRF3 nuclear translocation and Ifnb mRNA expression during RLR signaling. Together, these findings suggest that HuR bolsters RLR-mediated IRF3 nuclear translocation by controlling the stability of Plk2 mRNA.
Collapse
Affiliation(s)
- Takuya Sueyoshi
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; and.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
| |
Collapse
|
229
|
Zhang Y, Li LF, Munir M, Qiu HJ. RING-Domain E3 Ligase-Mediated Host-Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Front Immunol 2018; 9:1083. [PMID: 29872431 PMCID: PMC5972323 DOI: 10.3389/fimmu.2018.01083] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research.
Collapse
Affiliation(s)
- Yuexiu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, City of Lancaster, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
230
|
Intracellular calcium is a rheostat for the STING signaling pathway. Biochem Biophys Res Commun 2018; 500:497-503. [PMID: 29673589 DOI: 10.1016/j.bbrc.2018.04.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022]
Abstract
Stimulator of IFN genes (STING) is essential for the DNA-sensing innate immune pathway. Recently, evidence is emerging that suggests STING also plays important roles in autoimmunity, cancer therapy, and senescence. Although a multitude of post-translational modifications that regulate the STING pathway have been discovered, the cellular events that guide STING translocation remain unclear. Here, we show, paradoxically, that both BAPTA-AM-mediated calcium depletion and ionomycin-induced calcium elevation suppress STING translocation and STING-mediated IFN-β production. We demonstrate that the mitochondria fission mediator DRP1 is crucial for ionomycin-induced inhibition of IFN-β production. Furthermore, knockout of DRP1 suppressed ionomycin-induced increases in calcium as well as mitochondrial fragmentation. Collectively, our findings reveal that the induction of STING signaling is contingent on a fine-tuning of intracellular calcium levels.
Collapse
|
231
|
Koch PD, Miller HR, Yu G, Tallarico JA, Sorger PK, Wang Y, Feng Y, Thomas JR, Ross NT, Mitchison T. A High Content Screen in Macrophages Identifies Small Molecule Modulators of STING-IRF3 and NFkB Signaling. ACS Chem Biol 2018; 13:1066-1081. [PMID: 29553248 DOI: 10.1021/acschembio.7b01060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We screened a library of bioactive small molecules for activators and inhibitors of innate immune signaling through IRF3 and NFkB pathways with the goals of advancing pathway understanding and discovering probes for immunology research. We used high content screening to measure the translocation from the cytoplasm to nucleus of IRF3 and NFkB in primary human macrophages; these transcription factors play a critical role in the activation of STING and other pro-inflammatory pathways. Our pathway activator screen yielded a diverse set of hits that promoted nuclear translocation of IRF3 and/or NFkB, but the majority of these compounds did not cause activation of downstream pathways. Screening for antagonists of the STING pathway yielded multiple kinase inhibitors, some of which inhibit kinases not previously known to regulate the activity of this pathway. Structure-activity relationships (SARs) and subsequent chemical proteomics experiments suggested that MAPKAPK5 (PRAK) is a kinase that regulates IRF3 translocation in human macrophages. Our work establishes a high content screening approach for measuring pro-inflammatory pathways in human macrophages and identifies novel ways to inhibit such pathways; among the targets of the screen are several molecules that may merit further development as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Peter D. Koch
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, United States
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Howard R. Miller
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Gary Yu
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - John A. Tallarico
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Peter K. Sorger
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, United States
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Yuan Wang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Yan Feng
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Jason R. Thomas
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Nathan T. Ross
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Timothy Mitchison
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, United States
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
232
|
Hopcraft SE, Damania B. Tumour viruses and innate immunity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0267. [PMID: 28893934 DOI: 10.1098/rstb.2016.0267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Host cells sense viral infection through pattern recognition receptors (PRRs), which detect pathogen-associated molecular patterns (PAMPs) and stimulate an innate immune response. PRRs are localized to several different cellular compartments and are stimulated by viral proteins and nucleic acids. PRR activation initiates signal transduction events that ultimately result in an inflammatory response. Human tumour viruses, which include Kaposi's sarcoma-associated herpesvirus, Epstein-Barr virus, human papillomavirus, hepatitis C virus, hepatitis B virus, human T-cell lymphotropic virus type 1 and Merkel cell polyomavirus, are detected by several different PRRs. These viruses engage in a variety of mechanisms to evade the innate immune response, including downregulating PRRs, inhibiting PRR signalling, and disrupting the activation of transcription factors critical for mediating the inflammatory response, among others. This review will describe tumour virus PAMPs and the PRRs responsible for detecting viral infection, PRR signalling pathways, and the mechanisms by which tumour viruses evade the host innate immune system.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Sharon E Hopcraft
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
233
|
Innate responses to gene knockouts impact overlapping gene networks and vary with respect to resistance to viral infection. Proc Natl Acad Sci U S A 2018; 115:E3230-E3237. [PMID: 29559532 DOI: 10.1073/pnas.1720464115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: (i) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. (ii) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Collapse
|
234
|
TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discov 2018; 4:13. [PMID: 29581886 PMCID: PMC5859251 DOI: 10.1038/s41421-018-0010-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/02/2018] [Indexed: 02/05/2023] Open
Abstract
Innate immune system is armed by several lines of pattern recognition receptors to sense various viral infection and to initiate antiviral immune response. This process is under a tight control and the negative feedback induced by infection and/or inflammation is critical to maintain immune homoeostasis and to prevent autoimmune disorders, however, the molecular mechanism is not fully understood. Here we report TRIM29, a ubiquitin E3 ligase, functions as an inducible negative regulator of innate immune response triggered by DNA virus and cytosolic DNA. DNA virus and cytosolic DNA stimulation induce TRIM29 expression robustly in macrophages and dendritic cells, although the basal level of TRIM29 is undetectable in those cells. TRIM29 deficiency elevates IFN-I and proinflammatory cytokine production upon viral DNA and cytosolic dsDNA stimulation. Consistently, in vivo experiments show that TRIM29-deficient mice are more resistant to HSV-1 infection than WT controls, indicated by better survival rate and reduced viral load in organs. Mechanism studies suggest that STING-TBK1-IRF3 signaling pathway in TRIM29 KO cells is significantly enhanced and the degradation of STING is impaired. Furthermore, we identify that TRIM29 targets STING for K48 ubiquitination and degradation. This study reveals TRIM29 as a crucial negative regulator in immune response to DNA virus and cytosolic DNA, preventing potential damage caused by overcommitted immune responses.
Collapse
|
235
|
Xiong M, Wang S, Wang YY, Ran Y. The Regulation of cGAS. Virol Sin 2018; 33:117-124. [PMID: 29546673 PMCID: PMC5934468 DOI: 10.1007/s12250-018-0005-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
The cGAS-MITA pathway of cytosolic DNA sensing plays essential roles in immune response against pathogens that contain DNA or with DNA production in their life cycles. The cGAS-MITA pathway also detects leaked or aberrant accumulated self DNA in the cytoplasm under certain pathological conditions, such as virus induced cell death, DNA damage, mitochondria damage, gene mutations, which results in autoimmune diseases. Therefore, the cGAS-MITA pathway must be tightly controlled to ensure proper immune response against pathogens and to avoid autoimmune diseases. The regulation of cGAS-MITA pathway at MITA-level have been extensively explored and reviewed elsewhere, here we provide a summary and perspective on recent advances in understanding of the cGAS regulation.
Collapse
Affiliation(s)
- Meiguang Xiong
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Suyun Wang
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Yong Ran
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China.
| |
Collapse
|
236
|
Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, Reinert L, Cai Y, Jensen SB, Skouboe MK, Nyengaard JR, Thompson CB, Lebbink RJ, Sen GC, van Loo G, Nielsen R, Komatsu M, Nejsum LN, Jakobsen MR, Gyrd-Hansen M, Paludan SR. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J 2018; 37:embj.201797858. [PMID: 29496741 DOI: 10.15252/embj.201797858] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.
Collapse
Affiliation(s)
- Thaneas Prabakaran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Chiranjeevi Bodda
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark.,Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Christian Krapp
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Maria H Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Chenglong Sun
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Line Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Søren B Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Morten K Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center, Utrecht, The Netherlands
| | - Ganes C Sen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Geert van Loo
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Mads Gyrd-Hansen
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark .,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| |
Collapse
|
237
|
Dampened STING-Dependent Interferon Activation in Bats. Cell Host Microbe 2018; 23:297-301.e4. [PMID: 29478775 PMCID: PMC7104992 DOI: 10.1016/j.chom.2018.01.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/16/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Compared with terrestrial mammals, bats have a longer lifespan and greater capacity to co-exist with a variety of viruses. In addition to cytosolic DNA generated by these viral infections, the metabolic demands of flight cause DNA damage and the release of self-DNA into the cytoplasm. However, whether bats have an altered DNA sensing/defense system to balance high cytosolic DNA levels remains an open question. We demonstrate that bats have a dampened interferon response due to the replacement of the highly conserved serine residue (S358) in STING, an essential adaptor protein in multiple DNA sensing pathways. Reversing this mutation by introducing S358 restored STING functionality, resulting in interferon activation and virus inhibition. Combined with previous reports on bat-specific changes of other DNA sensors such as TLR9, IFI16, and AIM2, our findings shed light on bat adaptation to flight, their long lifespan, and their unique capacity to serve as a virus reservoir.
Collapse
|
238
|
Abstract
Innate immunity is traditionally thought of as the first line of defense against pathogens that enter the body. It is typically characterized as a rather weak defense mechanism, designed to restrict pathogen replication until the adaptive immune response generates a tailored response and eliminates the infectious agent. However, intensive research in recent years has resulted in better understanding of innate immunity as well as the discovery of many effector proteins, revealing its numerous powerful mechanisms to defend the host. Furthermore, this research has demonstrated that it is simplistic to strictly separate adaptive and innate immune functions since these two systems often work synergistically rather than sequentially. Here, we provide a broad overview of innate pattern recognition receptors in antiviral defense, with a focus on the TRIM family, and discuss their signaling pathways and mechanisms of action with special emphasis on the intracellular antibody receptor TRIM21.
Collapse
Affiliation(s)
| | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
239
|
Seo GJ, Kim C, Shin WJ, Sklan EH, Eoh H, Jung JU. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 2018; 9:613. [PMID: 29426904 PMCID: PMC5807518 DOI: 10.1038/s41467-018-02936-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Intracellular nucleic acid sensors often undergo sophisticated modifications that are critical for the regulation of antimicrobial responses. Upon recognition of DNA, the cytosolic sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the second messenger cGAMP, which subsequently initiates downstream signaling to induce interferon-αβ (IFNαβ) production. Here we report that TRIM56 E3 ligase-induced monoubiquitination of cGAS is important for cytosolic DNA sensing and IFNαβ production to induce anti-DNA viral immunity. TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a marked increase of its dimerization, DNA-binding activity, and cGAMP production. Consequently, TRIM56-deficient cells are defective in cGAS-mediated IFNαβ production upon herpes simplex virus-1 (HSV-1) infection. Furthermore, TRIM56-deficient mice show impaired IFNαβ production and high susceptibility to lethal HSV-1 infection but not to influenza A virus infection. This adds TRIM56 as a crucial component of the cytosolic DNA sensing pathway that induces anti-DNA viral innate immunity. The protein cGAS responds to the presence of cytosolic DNA by producing the second messenger cGAMP, which triggers antiviral interferon responses. Here, Seo et al. show that ubiquitination by the E3 ligase TRIM56 enhances cGAS activity and is important for the immune response against DNA viruses.
Collapse
Affiliation(s)
- Gil Ju Seo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Charlotte Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ella H Sklan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
240
|
Li K, Zhong B. Regulation of Cellular Antiviral Signaling by Modifications of Ubiquitin and Ubiquitin-like Molecules. Immune Netw 2018; 18:e4. [PMID: 29503737 PMCID: PMC5833123 DOI: 10.4110/in.2018.18.e4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
The initiation of cellular antiviral signaling depends on host pattern-recognition receptors (PRRs)-mediated recognition of viral nucleic acids that are known as classical pathogen-associated molecular patterns (PAMPs). PRRs recruit adaptor proteins and kinases to activate transcription factors and epigenetic modifiers to regulate transcription of hundreds of genes, the products of which collaborate to elicit antiviral responses. In addition, PRRs-triggered signaling induces activation of various inflammasomes which leads to the release of IL-1β and inflammation. Recent studies have demonstrated that PRRs-triggered signaling is critically regulated by ubiquitin and ubiquitin-like molecules. In this review, we first summarize an updated understanding of cellular antiviral signaling and virus-induced activation of inflammasome and then focus on the regulation of key components by ubiquitin and ubiquitin-like molecules.
Collapse
Affiliation(s)
- Kang Li
- Department of Immunology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bo Zhong
- Department of Immunology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
241
|
Chen Y, Zhao J, Li D, Hao J, He P, Wang H, Zhang M. TRIM56 Suppresses Multiple Myeloma Progression by Activating TLR3/TRIF Signaling. Yonsei Med J 2018; 59:43-50. [PMID: 29214775 PMCID: PMC5725363 DOI: 10.3349/ymj.2018.59.1.43] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Tripartite-motif-containing protein 56 (TRIM56) has been found to exhibit a broad antiviral activity, depending upon E3 ligase activity. Here, we attempted to evaluate the function of TRIM56 in multiple myeloma (MM) and its underlying molecular basis. MATERIALS AND METHODS TRIM56 expression at the mRNA and protein level was measured by qRT PCR and western blot analysis. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry analysis was performed to investigate the effect of TRIM56 on MM cell proliferation and apoptosis. The concentrations of interferon (IFN)-β, interleukin (IL)-6, and tumor necrosis factor-α in MM cell culture supernatants were detected with respective commercial ELISA kits. Western blot was employed to determine the effect of TRIM56 on toll-like receptor 3 (TLR3)/toll-IL-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) signaling pathway. RESULTS TRIM56 expression was prominently decreased in MM cells. Poly (dA:dT)-induced TRIM56 overexpression in U266 cells suppressed proliferation, induced apoptosis, and enhanced inflammatory cytokine production, while TRIM56 knockdown improved growth, diminished apoptosis, and inhibited inflammatory cytokine secretion in RPMI8226 cells. Moreover, TRIM56 knockdown blocked TLR3 signaling pathway. Furthermore, poly (I:C), a TLR3 agonist, markedly abolished TRIM56 depletion-induced increase of proliferation, decrease of apoptosis, and reduction of inflammatory factor in MM cells. CONCLUSION TRIM56 may act as a tumor suppressor in MM through activation of TLR3/TRIF signaling pathway, contributing to a better understanding of the molecular mechanism of TRIM56 involvement in MM pathogenesis and providing a promising therapy strategy for patients with MM.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Jing Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Dengzhe Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Jinxia Hao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China.
| |
Collapse
|
242
|
Chen Y, Cao S, Sun Y, Li C. Gene expression profiling of the TRIM protein family reveals potential biomarkers for indicating tuberculosis status. Microb Pathog 2017; 114:385-392. [PMID: 29225091 DOI: 10.1016/j.micpath.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
Tripartite motif (TRIM) family proteins play important regulatory roles in innate immune responses, the dysregulation of which cause several infectious diseases. However, the role and function of TRIM family proteins during tuberculosis (TB) infection remains unclear. In this study, we employed real-time quantitative PCR to profile the transcript levels of 72 TRIM genes from a cohort of 5 active TB patients, 5 latent tuberculosis infection (LTBI) subjects, and 5 healthy controls (HCs) in an initial discovery phase. The notable TRIM genes were assessed by in vitro cell infection experiments and further validated in another independent cohort (36 active TB, 24 LTBI and 28 HCs). The receiver operating characteristic (ROC) was used to analyze the diagnostic power of these TRIM genes. Our results revealed that 20 TRIM genes were decreased in active TB compared to LTBI and HCs. In addition, TRIM4, 16, 27, 32, 35, 46, 47, 65 and 68 were further shown to be downregulated in Mycobacterium smegmatis-infected macrophages and were found to be closely correlated with infection time and initial bacteria loads. Furthermore, the ROC analyses showed that TRIM4, 27 and 65 all exhibited the highest areas under the curve (AUC) values of 1.00 in discriminating active TB from LTBI and HCs. Moreover, TRIM27 combined with TRIM32 for an improved AUC value of 0.81 in discriminating LTBI from HCs. These results suggest that TRIM gene dysregulation might be involved in the pathogenesis of TB and that these genes could serve as potential biomarkers for indicating TB status.
Collapse
Affiliation(s)
- Yanqing Chen
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Shuhui Cao
- Department of Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yong Sun
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
243
|
Crosse KM, Monson EA, Beard MR, Helbig KJ. Interferon-Stimulated Genes as Enhancers of Antiviral Innate Immune Signaling. J Innate Immun 2017; 10:85-93. [PMID: 29186718 DOI: 10.1159/000484258] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022] Open
Abstract
The ability of a host to curb a viral infection is heavily reliant on the effectiveness of an initial antiviral innate immune response, resulting in the upregulation of interferon (IFN) and, subsequently, IFN-stimulated genes (ISGs). ISGs serve to mount an antiviral state within a host cell, and although the specific antiviral function of a number of ISGs has been characterized, the function of many of these ISGs remains to be determined. Recent research has uncovered a novel role for a handful of ISGs, some of them directly induced by IFN regulatory factor 3 in the absence of IFN itself. These ISGs, most with potent antiviral activity, are also able to augment varying arms of the innate immune response to viral infection, thereby strengthening this response. This new understanding of the role of ISGs may, in turn, help the recent advancement of novel therapeutics aiming to augment innate signaling pathways in an attempt to control viral infection and pathogenesis.
Collapse
Affiliation(s)
- Keaton M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
244
|
Abstract
Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are recognized by different cellular pathogen recognition receptors (PRRs), which are expressed on cell membrane or in the cytoplasm of cells of the innate immune system. Nucleic acids derived from pathogens or from certain cellular conditions represent a large category of PAMPs/DAMPs that trigger production of type I interferons (IFN-I) in addition to pro-inflammatory cytokines, by specifically binding to intracellular Toll-like receptors or cytosolic receptors. These cytosolic receptors, which are not related to TLRs and we call them “Toll-free” receptors, include the RNA-sensing RIG-I like receptors (RLRs), the DNA-sensing HIN200 family, and cGAS, amongst others. Viruses have evolved myriad strategies to evoke both host cellular and viral factors to evade IFN-I-mediated innate immune responses, to facilitate their infection, replication, and establishment of latency. This review outlines these “Toll-free” innate immune pathways and recent updates on their regulation, with focus on cellular and viral factors with enzyme activities.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
245
|
Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) suppresses STING-mediated DNA sensing pathway through inducing mitochondrial fission. Biochem Biophys Res Commun 2017; 493:737-743. [DOI: 10.1016/j.bbrc.2017.08.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022]
|
246
|
Sparrer KMJ, Gableske S, Zurenski MA, Parker ZM, Full F, Baumgart GJ, Kato J, Pacheco-Rodriguez G, Liang C, Pornillos O, Moss J, Vaughan M, Gack MU. TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol 2017; 2:1543-1557. [PMID: 28871090 PMCID: PMC5658249 DOI: 10.1038/s41564-017-0017-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Autophagy and interferon (IFN)-mediated innate immunity are critical antiviral defence mechanisms, and recent evidence indicated that tripartite motif (TRIM) proteins are important regulators of both processes. Although the role of TRIM proteins in modulating antiviral cytokine responses has been well established, much less is known about their involvement in autophagy in response to different viral pathogens. Through a targeted RNAi screen examining the relevance of selected TRIM proteins in autophagy induced by herpes simplex virus 1 (HSV-1), encephalomyocarditis virus (EMCV) and influenza A virus (IAV), we identified several TRIM proteins that regulate autophagy in a virus-species-specific manner, as well as a few TRIM proteins that were essential for autophagy triggered by all three viruses and rapamycin, among them TRIM23. TRIM23 was critical for autophagy-mediated restriction of multiple viruses, and this activity was dependent on both its RING E3 ligase and ADP-ribosylation factor (ARF) GTPase activity. Mechanistic studies revealed that unconventional K27-linked auto-ubiquitination of the ARF domain is essential for the GTP hydrolysis activity of TRIM23 and activation of TANK-binding kinase 1 (TBK1) by facilitating its dimerization and ability to phosphorylate the selective autophagy receptor p62. Our work identifies the TRIM23-TBK1-p62 axis as a key component of selective autophagy and further reveals a role for K27-linked ubiquitination in GTPase-dependent TBK1 activation.
Collapse
Affiliation(s)
| | - Sebastian Gableske
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Matthew A Zurenski
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Zachary M Parker
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Florian Full
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Gavin J Baumgart
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiro Kato
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gustavo Pacheco-Rodriguez
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martha Vaughan
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
247
|
Xing J, Zhang A, Zhang H, Wang J, Li XC, Zeng MS, Zhang Z. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun 2017; 8:945. [PMID: 29038422 PMCID: PMC5643338 DOI: 10.1038/s41467-017-00101-w] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Many double-stranded DNA viruses, such as Epstein-Barr virus, can establish persistent infection, but the underlying virus-host interactions remain poorly understood. Here we report that in human airway epithelial cells Epstein-Barr virus induces TRIM29, a member of the TRIM family of proteins, to inhibit innate immune activation. Knockdown of TRIM29 in airway epithelial cells enhances type I interferon production, and in human nasopharyngeal carcinoma cells results in almost complete Epstein-Barr virus clearance. TRIM29 is also highly induced by cytosolic double-stranded DNA in myeloid dendritic cells. TRIM29 -/- mice have lower adenovirus titers in the lung, and are resistant to lethal herpes simplex virus-1 infection due to enhanced production of type I interferon. Mechanistically, TRIM29 induces K48-linked ubiquitination of Stimulator of interferon genes, a key adaptor in double-stranded DNA-sensing pathway, followed by its rapid degradation. These data demonstrate that Epstein-Barr virus and possible other double-stranded DNA viruses use TRIM29 to suppress local innate immunity, leading to the persistence of DNA virus infections.Proteins of the TRIM family have regulatory functions in immune signaling, often via ubiquitination of target proteins. Here, the authors show that TRIM29 is induced upon infection with DNA viruses, resulting in degradation of STING, decreased interferon signaling and increased pathogenicity in mice.
Collapse
Affiliation(s)
- Junji Xing
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ao Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xian Chang Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
248
|
Fang R, Wang C, Jiang Q, Lv M, Gao P, Yu X, Mu P, Zhang R, Bi S, Feng JM, Jiang Z. NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 199:3222-3233. [PMID: 28939760 DOI: 10.4049/jimmunol.1700699] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In this article, we report that lower FBS concentrations in culture medium conferred high sensitivities to dsDNA in otherwise unresponsive cells, whereas higher FBS levels abrogated this sensitivity. Based on this finding, we demonstrated genetically that NEMO was critically involved in the cGAS-STING pathway. Cytosolic DNA activated TRIM32 and TRIM56 to synthesize ubiquitin chains that bound NEMO and subsequently activated IKKβ. Activated IKKβ, but not IKKα, was required for TBK1 and NF-κB activation. In contrast, TBK1 was reciprocally required for NF-κB activation, probably by directly phosphorylating IKKβ. Thus, our findings identified a unique innate immune activation cascade in which TBK1-IKKβ formed a positive feedback loop to assure robust cytokine production during cGAS-STING activation.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Pengfei Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Xiaoyu Yu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Ping Mu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Sheng Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Ji-Ming Feng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China; .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| |
Collapse
|
249
|
Zhao L, Zhang P, Su XJ, Zhang B. The ubiquitin ligase TRIM56 inhibits ovarian cancer progression by targeting vimentin. J Cell Physiol 2017; 233:2420-2425. [PMID: 28771721 DOI: 10.1002/jcp.26114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023]
Abstract
Tumor metastasis is responsible for 90% of all cancer-related deaths. Epithelial to mesenchymal transition (EMT) is an important prerequisite for tumor metastasis. One of the important mediators of EMT and cancer progression in ovarian cancer is the vimentin protein. The objective of the current study was to evaluate the molecular mechanism that regulates vimentin expression in ovarian cancer cells. Vimentin was robustly induced in the ovarian cancer cell line SKOV-3 compared to normal ovarian epithelial cell line Moody and the induction was not due to transcriptional upregulation. Treatment with the proteasomal inhibitor MG-132 revealed that vimentin is actively degraded by the proteasome in Moody cells and stabilized in the SKOV-3 cell line. Mass spectrometric analysis of vimentin immunoprecipitate of MG-132 treated Moody cells revealed candidate ubiquitin ligases associated with vimentin. RNAi mediated silencing of the candidate ubiquitin in Moody cells and concurrent overexpression of the candidate ubiquitin ligases in SKOV-3 confirmed that TRIM56 is the ubiquitin ligase that is degrading vimentin in Moody cells. RNAi mediated silencing of TRIM56 in Moody cells and ectopic overexpression of TRIM56 in SKOV-3 cells, respectively, significantly up- and down-regulated in vitro migration and invasion in these cells. Analysis of TRIM56 transcript level and vimentin protein expression in 25 patients with ovarian carcinoma confirmed an inverse correlation between TRIM56 and vimentin expression. Cumulatively, our data reveals for the first time a novel post-translational regulatory mechanism of regulating vimentin expression, EMT, and metastatic progression in ovarian cancer cells.
Collapse
Affiliation(s)
- Lei Zhao
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| | - Ping Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| | - Xiao-Jie Su
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| | - Bing Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| |
Collapse
|
250
|
Abstract
Host anti-viral innate-immune signalling pathways are regulated by a variety of post-translation modifications including ubiquitination, which is critical to regulate various signalling pathways for synthesis of anti-viral molecules. A homeostasis of host immune responses, induced due to viral infection and further ubiquitination, is maintained by the action of deubiquitinases (DUB). Infecting viruses utilize the process of deubiquitination for tricking host immune system wherein viral DUBs compete with host DUBs for inhibition of innate-immune anti-viral signalling pathways, which instead of maintaining an immune homeostasis bring about virus-mediated pathogenesis. This suggests that viruses co-evolve with their hosts to acquire similar machinery for tricking immune surveillance and establishing infection.
Collapse
Affiliation(s)
- Puja Kumari
- a Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal , India
| | - Himanshu Kumar
- a Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal , India
| |
Collapse
|