201
|
Yu S, Li X. Mild synthesis of chalcones via rhodium(III)-catalyzed C-C coupling of arenes and cyclopropenones. Org Lett 2014; 16:1220-3. [PMID: 24517589 DOI: 10.1021/ol500140e] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A Rh(III)-catalyzed aryl C-H bond insertion into cyclopropenones via a C-H activation pathway has been reported. A series of arenes bearing directing groups such as 2-pyridyl, 2-pyrimidyl, N-pyrazyl, and oxime can be applicable, providing chalcones in excellent yields under mild conditions. Several possible Rh(III) intermediates in this reaction were investigated.
Collapse
Affiliation(s)
- Songjie Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | | |
Collapse
|
202
|
High-throughput screen of natural product libraries for hsp90 inhibitors. BIOLOGY 2014; 3:101-38. [PMID: 24833337 PMCID: PMC4009755 DOI: 10.3390/biology3010101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties. To identify new potential Hsp90 inhibitors, we have utilized a high-throughput assay based on measuring Hsp90-dependent refolding of thermally denatured luciferase to screen natural compound libraries. Over 4,000 compounds were screen with over 100 hits. Data mining of the literature indicated that 51 compounds had physiological effects that Hsp90 inhibitors also exhibit, and/or the ability to downregulate the expression levels of Hsp90-dependent proteins. Of these 51 compounds, seven were previously characterized as Hsp90 inhibitors. Four compounds, anthothecol, garcinol, piplartine, and rottlerin, were further characterized, and the ability of these compounds to inhibit the refolding of luciferase, and reduce the rate of growth of MCF7 breast cancer cells, correlated with their ability to suppress the Hsp90-dependent maturation of the heme-regulated eIF2α kinase, and deplete cultured cells of Hsp90-dependent client proteins. Thus, this screen has identified an additional 44 compounds with known beneficial pharmacological properties, but with unknown mechanisms of action as possible new inhibitors of the Hsp90 chaperone machine.
Collapse
|
203
|
de Queiroz AC, Alves HDS, Cavalcante-Silva LHA, Dias TDLMF, Santos MDS, Melo GMDA, Campesatto EA, Chaves MCDO, Alexandre-Moreira MS. Antinociceptive and anti-inflammatory effects of flavonoids PMT1 and PMT2 isolated from Piper montealegreanum Yuncker (Piperaceae) in mice. Nat Prod Res 2014; 28:403-6. [PMID: 24479832 DOI: 10.1080/14786419.2013.867444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we identified the antinociceptive and anti-inflammatory effects of two flavonoids (PMT1 and PMT2) from Piper montealegreanum. The antinociceptive effect was evaluated using the classical tests: acetic acid-induced writhing, formalin and hot plate test. PMT1 and PMT2 (0.1, 1, 30 and 100 μmol/kg, i.p.) reduced the writhings, with an ID50 of 0.58 and 0.44 μmol/kg, respectively. Moreover, these flavonoids (100 μmol/kg, i.p.) inhibited paw-licking time in the neurogenic phase of the formalin test, but only PMT2 was active in the inflammatory phase. However, PMT1 and PMT2 (100 μmol/kg, i.p.) did not increase the latency time of the animals in the hot plate. In order to evaluate the anti-inflammatory effect of these flavonoids, capsaicin-induced ear oedema was carried out. Both flavonoids (100 μmol/kg, i.p.) were active in this model. These results suggest that PMT1 and PMT2 have antinociceptive and anti-inflammatory activities.
Collapse
Affiliation(s)
- Aline Cavalcanti de Queiroz
- a Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas , Av. Lourival Melo Mota, s/n, Cidade Universitária, Maceió , AL , CEP: 57072-900 Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
Cardamonin, as shown by the increasing number of publications, has received growing attention from the scientific community due to the expectations toward its benefits to human health. In this study, research on cardamonin is reviewed, including its natural sources, health promoting aspects, and analytical methods for its determination. Therefore, this article hopes to aid current and future researchers on the search for reliable answers concerning cardamonin's value in medicine.
Collapse
Affiliation(s)
- Luís Moreira Gonçalves
- Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Porto, Portugal
| | | | | |
Collapse
|
205
|
Qi Z, Liu M, Liu Y, Zhang M, Yang G. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells. PLoS One 2014; 9:e106206. [PMID: 25180593 PMCID: PMC4152132 DOI: 10.1371/journal.pone.0106206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/03/2014] [Indexed: 12/30/2022] Open
Abstract
In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.
Collapse
Affiliation(s)
- Zihao Qi
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingming Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Meiqin Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- * E-mail: (MZ); (GY)
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- * E-mail: (MZ); (GY)
| |
Collapse
|
206
|
Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells. Food Chem Toxicol 2013; 62:99-106. [DOI: 10.1016/j.fct.2013.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022]
|
207
|
Stompor M, Potaniec B, Szumny A, Zieliński P, Żołnierczyk AK, Anioł M. Microbial synthesis of dihydrochalcones using Rhodococcus and Gordonia species. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
208
|
Capacity of HSYA to inhibit nitrotyrosine formation induced by focal ischemic brain injury. Nitric Oxide 2013; 35:144-51. [PMID: 24126016 DOI: 10.1016/j.niox.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
Abstract
Peroxynitrite-mediated protein tyrosine nitration represents a crucial pathogenic mechanism of stroke. Hydroxysafflor yellow A (HSYA) is the most important active component of the safflower plant. Here we assess the neuroprotective efficacy of HSYA and investigate the mechanism through anti-nitrative pathway. Rats were subjected to 60-min ischemia followed by reperfusion. HSYA (2.5-10mg/kg) was injected at 1h after ischemia onset. Other groups received HSYA (10mg/kg) treatment at 3-9h after onset. Infarct volume, brain edema, and neurological score were evaluated at 24h after ischemia. Nitrotyrosine and inducible NO synthase (iNOS) expression, as well as NO level (nitrate/nitrite) in ischemic cortex was examined within 24h after ischemia. The ability of HSYA to scavenge peroxynitrite was evaluated in vitro. Infarct volume was significantly decreased by HSYA (P<0.05), with a therapeutic window of 3h after ischemia at dose of 10mg/kg. HSYA treatment also reduced brain edema and improved neurological score (P<0.05). Nitrotyrosine formation was dose- and time-dependently inhibited by HSYA. The time window of HSYA in decreasing protein tyrosine nitration paralleled its action in infarct volume. HSYA also greatly reduced iNOS expression and NO content at 24h after ischemia, suggesting prevention of peroxynitrite generation from iNOS. In vitro, HSYA blocked authentic peroxynitrite-induced tyrosine nitration in bovine serum albumin and primary cortical neurons. Collectively, our results indicated that post-ischemic HSYA treatment attenuates brain ischemic injury which is at least partially due to reducing nitrotyrosine formation, possibly by the combined mechanism of its peroxynitrite scavenging ability and its reduction in iNOS production.
Collapse
|
209
|
Lim J, Lee SH, Cho S, Lee IS, Kang BY, Choi HJ. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol Cells 2013; 36:340-6. [PMID: 24046186 PMCID: PMC3887984 DOI: 10.1007/s10059-013-0123-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 12/23/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.
Collapse
Affiliation(s)
- Juhee Lim
- College of Pharmacy, CHA University, Seongnam 463-836, Korea
| | | | | | | | | | - Hyun Jin Choi
- College of Pharmacy, CHA University, Seongnam 463-836, Korea
| |
Collapse
|
210
|
Protective and antioxidant effects of a chalconoid from Pulicaria incisa on brain astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:694398. [PMID: 24069503 PMCID: PMC3771428 DOI: 10.1155/2013/694398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/23/2022]
Abstract
Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.
Collapse
|
211
|
Yoon H, Ahn S, Park M, Kim DW, Kim SH, Koh D, Lim Y. 1H and 13C NMR spectral assignments of chalcones bearing pyrazoline-carbothioamide groups. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:500-508. [PMID: 23784987 DOI: 10.1002/mrc.3971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
Chalcones are known to act on various physiological targets. As a result, structural modifications of chalcones have been studied extensively. Benzochalcones, in which the A-ring of chalcone is substituted with a naphthalene unit, inhibits breast cancer resistance protein. Chalcones in which the α,β-unsaturated carbonyl group is switched with a pyrazoline moiety are potent cytotoxic agents against various cancer cell lines, and chalcones with a pyrazoline-1-carbothioamide group instead of an α,β-unsaturated carbonyl group exhibit antimicrobial activities. The present report describes hybrid molecules designed from benzochalcone and pyrazoline-carbothioamide. Methoxylation of plant-derived polyphenols alters their hydrophobicity, resulting in changes in biological function and intracellular compartmentation. In the current study, 22 novel methoxylated 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide derivatives were prepared. This report provides complete assignments of their (1)H and (13)C NMR data, which can be used to subsequently identify chalcones bearing pyrazoline-carbothioamide groups.
Collapse
Affiliation(s)
- Hyuk Yoon
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 143-701, Korea
| | | | | | | | | | | | | |
Collapse
|
212
|
Probing antioxidant activity of 2'-hydroxychalcones: crystal and molecular structures, in vitro antiproliferative studies and in vivo effects on glucose regulation. Biochimie 2013; 95:1954-63. [PMID: 23851195 DOI: 10.1016/j.biochi.2013.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 07/02/2013] [Indexed: 11/20/2022]
Abstract
In order to better understand the antioxidant behavior of a series of polyphenolic 2'-hydroxychalcones, we describe the results of several chemical and biological studies, in vitro and in vivo. Single crystal X-ray methods elucidated their molecular structures and important intermolecular interactions such as H-bonding and molecular stacking in the crystal structures that contribute to our knowledge in explaining antioxidant activity. The results of experiments using the 1,1-diphenyl-2-dipicrylhydrazyl (DPPH) UV-vis spectroscopic method indicate that a hydroxyl group in position 5' induces the highest antioxidant activity. Consequently, 2,2',5'-trihydroxychalcone was selected for further study in vitro towards ROS scavenging in L-6 myoblasts and THP-1 human monocytes, where it shows an excellent antioxidant activity in a concentration range lower than that reported by most studies of related molecules. In addition, this chalcone shows a very selective activity: it inhibits the proliferation of leukemic cells, but it does not affect the normal L-6 myoblasts and human fibroblasts. In studying 2,2',5'-trihydroxychalcone's effect on weight gain and serum glucose and insulin levels in Zucker fatty (fa(-)/fa(-)) rats we found that supplementing the diet with a 10 mg/kg dose of this chalcone (3 times weekly) blunted the increase in glucose that co-occurs with weight gain over the 6-week treatment period. It is concluded that 2,2',5'-trihydroxychalcone has the potential to serve as a protective agent for some debilitating diseases.
Collapse
|
213
|
Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M. Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and anti-invasive potential via the inhibition of NF-κB activity. Bioorg Med Chem 2013; 21:3850-8. [DOI: 10.1016/j.bmc.2013.04.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/02/2013] [Accepted: 04/06/2013] [Indexed: 11/26/2022]
|
214
|
Flavonoid naringenin: a potential immunomodulator for Chlamydia trachomatis inflammation. Mediators Inflamm 2013; 2013:102457. [PMID: 23766556 PMCID: PMC3676976 DOI: 10.1155/2013/102457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis, the agent of bacterial sexually transmitted infections, can manifest itself as either acute cervicitis, pelvic inflammatory disease, or a chronic asymptomatic infection. Inflammation induced by C. trachomatis contributes greatly to the pathogenesis of disease. Here we evaluated the anti-inflammatory capacity of naringenin, a polyphenolic compound, to modulate inflammatory mediators produced by mouse J774 macrophages infected with live C. trachomatis. Infected macrophages produced a broad spectrum of inflammatory cytokines (GM-CSF, TNF, IL-1β, IL-1α, IL-6, IL-12p70, and IL-10) and chemokines (CCL4, CCL5, CXCL1, CXCL5, and CXCL10) which were downregulated by naringenin in a dose-dependent manner. Enhanced protein and mRNA gene transcript expressions of TLR2 and TLR4 in addition to the CD86 costimulatory molecule on infected macrophages were modulated by naringenin. Pathway-specific inhibition studies disclosed that p38 mitogen-activated-protein kinase (MAPK) is involved in the production of inflammatory mediators by infected macrophages. Notably, naringenin inhibited the ability of C. trachomatis to phosphorylate p38 in macrophages, suggesting a potential mechanism of its attenuation of concomitantly produced inflammatory mediators. Our data demonstrates that naringenin is an immunomodulator of inflammation triggered by C. trachomatis, which possibly may be mediated upstream by modulation of TLR2, TLR4, and CD86 receptors on infected macrophages and downstream via the p38 MAPK pathway.
Collapse
|
215
|
Ivanova L, Varinska L, Pilatova M, Gal P, Solar P, Perjesi P, Smetana K, Ostro A, Mojzis J. Cyclic chalcone analogue KRP6 as a potent modulator of cell proliferation: an in vitro study in HUVECs. Mol Biol Rep 2013; 40:4571-80. [PMID: 23666054 DOI: 10.1007/s11033-013-2547-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/29/2013] [Indexed: 01/22/2023]
Abstract
In the present investigation a novel series of chalcone analogues were synthesized and evaluated for their anti-proliferative activity in human umbilical vein endothelial cells (HUVECs). Among 14 tested compounds, chalcone analogue (E)-3-(2'-methoxybenzylidene)-4-chromanone (KRP6) exhibited the most potent activity with IC50 19 μM. Moreover, HUVECs exhibited divergent, even opposing concentration-dependent responses to KRP6. This compound was the most potent inhibitor of cell proliferation and extracellular matrix formation (fibronectin and type IV collagen) at higher concentrations (20-50 μM). In contrast, KRP6 stimulated the compensatory increase in proliferative activity including extracellular matrix formation at low concentrations (1, 10 μM). KRP6 concentration-dependently modulated phosphorylation of Akt and mitogen-activated protein kinases such as extracellular signal-regulated kinase-1/-2 and p38 kinase, suggesting that these pathways play a role in the effect mediated by this compound. In addition, we found a selective effect on activated endothelial cells, in particular with resting endothelial cells. In conclusion, KRP6 is a potent modulator of selected steps of the angiogenic process in vitro. Accordingly, further in vivo research should be performed to facilitate its use in clinical practice.
Collapse
Affiliation(s)
- Lenka Ivanova
- Department of Pharmacology, Faculty of Medicine, P. J. Safarik University, Kosice, Slovak Republic,
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Yang M, Li N, Li F, Zhu Q, Liu X, Han Q, Wang Y, Chen Y, Zeng X, Lv Y, Zhang P, Yang C, Liu Z. Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri. Int Immunopharmacol 2013; 16:466-74. [PMID: 23669332 DOI: 10.1016/j.intimp.2013.04.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/30/2013] [Accepted: 04/23/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection in Tupaia belangeri (Tupaia) represents an important model of HCV infection. Xanthohumol (XN), a major prenylated chalcone from hops, has various biological activities including hepatopreventive and anti-viral activities. In this study, Tupaias infected with HCV RNA positive serum were used to evaluate the effects of XN on liver damage, oxidative reaction, apoptosis and viral protein expression in liver tissues. The Tupaias inoculated with HCV positive serum had elevated serum aminotransferase levels and inflammation, especially hepatic steatosis, and HCV core protein expression in liver tissue. In the animals inoculated with HCV positive serum, XN significantly decreased aminotransferase levels, histological activity index, hepatic steatosis score and transforming growth factor β1 expression in liver tissue compared with the animals without XN intervention. XN reduced HCV core protein expression in liver tissue compared with those without XN intervention but the difference was not significant. XN significantly decreased malondialdehyde, potentiated superoxide dismutase and glutathione peroxidase, reduced Bax expression, promoted Bcl-xL and inhibited caspase 3 activity in liver tissues compared with the animals without XN intervention. These results indicate that XN may effectively improve hepatic inflammation, steatosis and fibrosis induced by HCV in Tupaias primarily through inhibition of oxidative reaction and regulation of apoptosis and possible suppression of hepatic stellate cell activation. The anti-HCV potential of XN needs further investigation.
Collapse
Affiliation(s)
- Mingbo Yang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Butein inhibits NF-κB activation and reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 2013; 542:87-91. [DOI: 10.1016/j.neulet.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 11/22/2022]
|
218
|
Kesarwani P, Murali AK, Al-Khami AA, Mehrotra S. Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2013; 18:1497-534. [PMID: 22938635 PMCID: PMC3603502 DOI: 10.1089/ars.2011.4073] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are thought to have effects on T-cell function and proliferation. Low concentrations of ROS in T cells are a prerequisite for cell survival, and increased ROS accumulation can lead to apoptosis/necrosis. The cellular redox state of a T cell can also affect T-cell receptor signaling, skewing the immune response. Various T-cell subsets have different redox statuses, and this differential ROS susceptibility could modulate the outcome of an immune response in various disease states. Recent advances in T-cell redox signaling reveal that ROS modulate signaling cascades such as the mitogen-activated protein kinase, phosphoinositide 3-kinase (PI3K)/AKT, and JAK/STAT pathways. Also, tumor microenvironments, chronic T-cell stimulation leading to replicative senescence, gender, and age affect T-cell susceptibility to ROS, thereby contributing to diverse immune outcomes. Antioxidants such as glutathione, thioredoxin, superoxide dismutase, and catalase balance cellular oxidative stress. T-cell redox states are also regulated by expression of various vitamins and dietary compounds. Changes in T-cell redox regulation may affect the pathogenesis of various human diseases. Many strategies to control oxidative stress have been employed for various diseases, including the use of active antioxidants from dietary products and pharmacologic or genetic engineering of antioxidant genes in T cells. Here, we discuss the existence of a complex web of molecules/factors that exogenously or endogenously affect oxidants, and we relate these molecules to potential therapeutics.
Collapse
Affiliation(s)
- Pravin Kesarwani
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
219
|
An update on antitumor activity of naturally occurring chalcones. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:815621. [PMID: 23690855 PMCID: PMC3652162 DOI: 10.1155/2013/815621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
Chalcones, which have characteristic 1,3-diaryl-2-propen-1-one skeleton, are mainly produced in roots, rhizomes, heartwood, leaves, and seeds of genera Angelica, Sophora, Glycyrrhiza, Humulus, Scutellaria, Parartocarpus, Ficus, Dorstenia, Morus, Artocarpus, and so forth. They have become of interest in the research and development of natural antitumor agents over the past decades due to their broad range of mechanisms including anti-initiation, induction of apoptosis, antiproliferation, antimetastasis, antiangiogenesis, and so forth. This review summarizes the studies on the antitumor activity of naturally occurring chalcones and their underlying mechanisms in detail during the past decades.
Collapse
|
220
|
Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, Ming-Tatt L, Israf DA, Sulaiman MR. Peripheral antinociception of a chalcone, flavokawin B and possible involvement of the nitric oxide/cyclic guanosine monophosphate/potassium channels pathway. Molecules 2013; 18:4209-20. [PMID: 23612473 PMCID: PMC6270115 DOI: 10.3390/molecules18044209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when l-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
Collapse
Affiliation(s)
- Mohd Nasier Kamaldin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Muhammad Nadeem Akhtar
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Malaysia; E-Mail:
| | - Azam Shah Mohamad
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Nordin Lajis
- Scientific Chairs Unit, Al-Jazeerah Building, Taibah University, Madinah al-Munawarah 41311, Saudi Arabia; E-Mail:
| | - Enoch Kumar Perimal
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Ahmad Akira
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Lee Ming-Tatt
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Daud Ahmad Israf
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Mohd Roslan Sulaiman
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-8947-2346; Fax: +603-8947-2585
| |
Collapse
|
221
|
Kim SY, Lee IS, Moon A. 2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells. Chem Biol Interact 2013; 203:565-72. [PMID: 23562496 DOI: 10.1016/j.cbi.2013.03.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/12/2013] [Accepted: 03/21/2013] [Indexed: 11/16/2022]
Abstract
Breast cancer is estimated as one of the most common causes of cancer death among women. In particular, triple negative breast cancers (TNBCs), which do not express the genes for estrogen/progesterone receptors (ER/PR) and human epidermal growth factor receptor 2 (HER2), have been associated with poor prognosis and metastasis. Chalcones, the biosynthetic precursors of flavonoids present in edible plants, exert cytotoxic and chemopreventive activities. Although mounting evidence suggests the anticancer properties of chalcones, limited information is available regarding the inhibitory effects of chalcones on the aggressiveness of breast cancer cells. The present study aimed to investigate the effects of chalcone and its derivatives on the growth and the invasiveness of TNBC cells. Here, we showed that treatment with chalcone, 2-hydroxychalcone, and xanthohumol for 24h inhibited the growth of MDA-MB-231 cells with IC50 values of 18.1, 4.6, and 6.7 μM, respectively. Similarly, Chalcone, 2-hydroxychalcone, and xanthohumol also exerted cytotoxicity in another TNBC cell line, Hs578T. Neohesperidin dihydrochalcone, 4-methoxychalcone, and hesperidin methylchalcone did not show the cytotoxicity on the MDA-MB-231 cells. Xanthohumol and 2-hydroxychalcone induced apoptosis by Bcl-2 downregulation. Importantly, 2-hydroxychalcone and xanthohumol exerted more potent inhibitory effects on the proliferation, MMP-9 expression and invasive phenotype of MDA-MB-231 than chalcone. These results suggest a potential application of these chalcones as anticancer agents that can alleviate malignant progression of TNBC.
Collapse
Affiliation(s)
- Sun Young Kim
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea
| | | | | |
Collapse
|
222
|
Payton-Stewart F, Ravi Kiran Pingali S, Donahue JP. The chalcone derivative (E)-1-(4-fluoro-phen-yl)-3-(4-hy-droxy-3-meth-oxy-phen-yl)prop-2-en-1-one monohydrate. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o558-9. [PMID: 23634097 PMCID: PMC3629610 DOI: 10.1107/s160053681300696x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/12/2013] [Indexed: 11/21/2022]
Abstract
The title compound, C16H13FO3·H2O, has a cis disposition of the carbonyl and olefin bonds about the enone single bond. The arene rings are inclined to one another by 10.05 (6) Å. In the crystal, molecules are linked via O—H⋯O hydrogen bonds involving the water molecules, forming loops which are, in turn, linked via O—H.·O and C—H⋯F hydrogen bonds, forming sheets lying parallel to (103). These networks are linked via π–π interactions [centroid–centroid distance = 3.641 (1) Å] involving inversion-related 4-fluorophenyl and 4-hydroxy-3-methoxyphenyl rings.
Collapse
Affiliation(s)
- Florastina Payton-Stewart
- Department of Chemistry, Xavier University of New Orleans, 1 Drexel Drive, Box 114, New Orleans, Louisiana 70125, USA
| | | | | |
Collapse
|
223
|
Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br J Nutr 2013; 110:599-608. [PMID: 23506745 DOI: 10.1017/s0007114512005594] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Naringenin, one of the most abundant flavonoids in citrus, grapefruits and tomatoes, has been used as a traditional anti-inflammatory agent for centuries. However, the molecular mechanism of naringenin in intestinal inflammation remains unknown so far. The present study investigated a molecular basis for the protective effect of naringenin in dextran sulphate sodium-induced murine colitis. Pre-administration of naringenin significantly reduced the severity of colitis and resulted in down-regulation of pro-inflammatory mediators (inducible NO synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), cyclo-oxygenase-2 (Cox2), TNF-α and IL-6 mRNA) in the colon mucosa. The decline in the production of pro-inflammatory cytokines, specifically TNF-α and IL-6, correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) mRNA and protein. Phospho-NF-κB p65 protein was significantly decreased, which correlated with a similar decrease in phospho-IκBα protein. Consistent with the in vivo results, naringenin exposure blocked lipopolysaccharide-stimulated nuclear translocation of NF-κB p65 in mouse macrophage RAW264.7 cells. In addition, in vitro NF-κB reporter assays performed on human colonic HT-29 cells exposed to naringenin demonstrated a significant inhibition of TNF-α-induced NF-κB luciferase expression. Thus, for the first time, the present study indicates that targeted inhibition of the TLR4/NF-κB signalling pathway might be an important mechanism for naringenin in abrogating experimental colitis.
Collapse
|
224
|
Xu J, Jia YY, Chen SR, Ye JT, Bu XZ, Hu Y, Ma YZ, Guo JL, Liu PQ. (E)-1-(4-ethoxyphenyl)-3-(4-nitrophenyl)-prop-2-en-1-one suppresses LPS-induced inflammatory response through inhibition of NF-κB signaling pathway. Int Immunopharmacol 2013; 15:743-51. [PMID: 23499680 DOI: 10.1016/j.intimp.2013.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/10/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
Abstract
Flavonoids are a class of compounds that exist in nature with the structure of 2-phenyl-chromone. In Chinese traditional medicine, herbal drugs containing flavonoids are widely used for the treatment of inflammation, cardiovascular disease, tumor and so on. In this study, we investigated the anti-inflammatory effect and related mechanisms of a novel synthetic flavonoid, (E)-1-(4-ethoxyphenyl)-3-(4-nitrophenyl)-prop-2-en-1-one (ETH) in lipopolysaccharide (LPS) stimulated macrophages. Our results showed that ETH inhibited LPS-induced TNF-α and IL-6 release in a dose-dependent manner, and decreased TNF-α, IL-1β, IL-6 and iNOS mRNA production. LPS-induced expression of cyclooxygenase-2 (COX-2) was also significantly attenuated by ETH. Pretreatment with ETH reduced the I-κBα phosphorylation, p65 nuclear translocation as well as NF-κB-dependent transcriptional activity. In addition, ETH exhibited a significant protection against LPS-induced inflammatory mortality in mice. Taken together, these findings suggest that ETH can inhibit LPS-induced inflammation via suppressing NF-κB signaling pathway, indicating that ETH may be a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Jian Xu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Lorusso V, Marech I. Novel plant-derived target drugs: a step forward from licorice? Expert Opin Ther Targets 2013; 17:333-5. [PMID: 23425066 DOI: 10.1517/14728222.2013.773312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Isoliquiritigenin (ISL) is a chalcone compound with valuable pharmacological properties such as antioxidant, anti-inflammatory, anticancer and anti-allergic activities. With regard to anticancer property, ISL was able to suppress HIF-1α level, VEGF expression and secretion, cell migration and to decrease the expression and secretion of MMP-9/-2. These effects may be mediated through inhibition of p38, PI3K/Akt and NF-κB signaling pathways. Thus, low concentration of ISL may have therapeutic potential in the treatment of aggressive breast carcinoma and other neoplasms.
Collapse
|
226
|
|
227
|
Isa NM, Abdul AB, Abdelwahab SI, Abdullah R, Sukari MA, Kamalidehghan B, Hadi AHA, Mohan S. Boesenbergin A, a chalcone from Boesenbergia rotunda induces apoptosis via mitochondrial dysregulation and cytochrome c release in A549 cells in vitro: Involvement of HSP70 and Bcl2/Bax signalling pathways. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
228
|
Lee YH, Jeon SH, Kim SH, Kim C, Lee SJ, Koh D, Lim Y, Ha K, Shin SY. A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp Mol Med 2012; 44:369-77. [PMID: 22382990 PMCID: PMC3389075 DOI: 10.3858/emm.2012.44.6.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IκB and p65/RelA NF-κB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-κB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, and IL-1β, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant-active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IκB kinase (IKK)/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Young Han Lee
- Department of Biomedical Science and Technology, Research Center for Transcription Control, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:534934. [PMID: 23304254 PMCID: PMC3529869 DOI: 10.1155/2012/534934] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/03/2012] [Accepted: 11/08/2012] [Indexed: 12/27/2022]
Abstract
The chemotherapeutical treatment is very limited for malignant melanoma, a highly lethal disease occurs globally. Natural products derived from traditional Chinese medicine licorice are attractive in quest new treatments due to their anti-tumor activities. A new dietary flavonoid isoliquiritigenin (ISL) were thus investigated to indentify its anti-melanoma activities on mouse melanoma B16F0 cells in present study. Using biochemical and free radical biological experiments in vitro, we identified the pro-differentiated profiles of ISL and evaluated the role of reactive oxygen species (ROS) during B16F0 cell differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of B16F0 differentiation in terms of morphology changes and melanogenesis. The accumulated intercellular ROS during exposure are necessary to support ISL-induced differentiation, which was proven by additional redox modulators. It was confirmed further by the relative activities of enzymes and genes modulated melanogenesis in ISL-treatments with or without ROS modulators. The tumorigenicity of ISL-treated cells was limited significantly by using the colony formation assay in vitro and an animal model assay in vivo respectively. Our research demonstrated that isoliquiritigenin is a differentiation-inducing agent, and its mechanisms involve ROS accumulation facilitating melanogenesis.
Collapse
|
230
|
Zhang L, Chong L, Cho J, Liao PC, Shen F, Leung YF. Drug Screening to Treat Early-Onset Eye Diseases: Can Zebrafish Expedite the Discovery? ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2012; 1:374-83. [PMID: 26107731 DOI: 10.1097/apo.0b013e31827a9969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular basis of many early-onset eye diseases has been uncovered, but the number of available drug treatments for improving deteriorated vision is still scarce. Consequently, there is a high demand for new drugs to treat these diseases. This review first provides a brief synopsis of the use of zebrafish model for screening drugs with vision benefits. In particular, visual-motor response, the activity response of larvae to a change in light stimuli, is proposed to serve as a simple and efficient tool for screening drugs that may improve vision in various zebrafish visual mutants. The second part of the review discusses the identification of novel drug candidates, with particular emphasis on naturally derived chemicals including traditional Chinese medicines and nutritional therapies on retinal degenerative diseases. Many of these chemicals have been used in neuroprotection and/or have been consumed by many populations for good health and vision; thus, the screening of these chemicals with various zebrafish visual mutants would expedite the development of novel drugs for treating early-onset eye diseases.
Collapse
Affiliation(s)
- Liyun Zhang
- From the *Department of Biological Sciences, Purdue University; and †Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, IN
| | | | | | | | | | | |
Collapse
|
231
|
A systems biology approach to understanding the mechanisms of action of chinese herbs for treatment of cardiovascular disease. Int J Mol Sci 2012. [PMID: 23202964 PMCID: PMC3497338 DOI: 10.3390/ijms131013501] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Traditional Chinese Medicine (TCM) involves a broad range of empirical testing and refinement and plays an important role in the health maintenance for people all over the world. However, due to the complexity of Chinese herbs, a full understanding of TCM’s action mechanisms is still unavailable despite plenty of successful applications of TCM in the treatment of various diseases, including especially cardiovascular diseases (CVD), one of the leading causes of death. Thus in the present work, by incorporating the chemical predictors, target predictors and network construction approaches, an integrated system of TCM has been constructed to systematically uncover the underlying action mechanisms of TCM. From three representative Chinese herbs, i.e., Ligusticum chuanxiong Hort., Dalbergia odorifera T. Chen and Corydalis yanhusuo WT Wang which have been widely used in CVD treatment, by combinational use of drug absorption, distribution, metabolism and excretion (ADME) screening and network pharmacology techniques, we have generated 64 bioactive ingredients and identified 54 protein targets closely associated with CVD, of which 29 are common targets (52.7%) of the three herbs. The result provides new information on the efficiency of the Chinese herbs for the treatment of CVD and also explains one of the basic theories of TCM, i.e., “multiple herbal drugs can treat one disease”. The predicted potential targets were then mapped to target-disease and target-signal pathway connections, which revealed the relationships of the active ingredients with their potential targets, diseases and signal systems. This means that for the first time, the action mechanism of these three important Chinese herbs for the treatment of CVD is uncovered, by generating and identifying both their active ingredients and novel targets specifically related to CVD, which clarifies some of the common conceptions in TCM, and thus provides clues to modernize such specific herbal medicines.
Collapse
|
232
|
Effect of Alpinia katsumadai Hayata on House Dust Mite-Induced Atopic Dermatitis in NC/Nga Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:705167. [PMID: 23082085 PMCID: PMC3467941 DOI: 10.1155/2012/705167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/18/2022]
Abstract
We evaluated the effects of Alpinia katsumadai Hayata (AKH, Zingiberaceae) extract on the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in RAW 264.7 cells, thymus- and-activation-regulated chemokine (TARC/CCL17) in HaCaT cells, and histamine level in HMC-1 cells. In an in vivo experiment, atopic dermatitis was induced by topical application of house dust mites for 4 weeks, and the protective effects of AKH was investigated by measuring the severity of the skin reaction on the back and ears, and plasma levels of immunoglobulin E (IgE) and histamine. AKH extract suppressed the production of NO and PGE(2) in RAW 264.7 cells, TARC in HaCaT cells, and histamine in HMC-1 cells in a dose-dependent manner. In in vivo experiments, the severity of dermatitis, including erythema/hemorrhage, edema, erosion and scaling, and plasma levels of IgE, and histamine were lower in NC/Nga mice with atopic dermatitis, treated with AKH extract than in untreated mice. AKH extract reduced the histological manifestations of atopic dermatitis-like skin lesions such as erosion, hyperplasia of the epidermis and dermis, and inflammatory cell infiltration on the skin of the back and ear. These results suggest that AKH inhibits the development of house dust mite-induced atopic dermatitis in NC/Nga mice.
Collapse
|
233
|
Dell’agli M, Di Lorenzo C, Badea M, Sangiovanni E, Dima L, Bosisio E, Restani P. Plant Food Supplements with Anti-Inflammatory Properties: A Systematic Review (I). Crit Rev Food Sci Nutr 2012; 53:403-13. [DOI: 10.1080/10408398.2012.682123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mario Dell’agli
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Chiara Di Lorenzo
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Mihaela Badea
- b Faculty of Medicine , Transilvania University of Brasov, Str. Nicolae Balcescu 56 , Brasov , Romania
| | - Enrico Sangiovanni
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Lorena Dima
- b Faculty of Medicine , Transilvania University of Brasov, Str. Nicolae Balcescu 56 , Brasov , Romania
| | - Enrica Bosisio
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Patrizia Restani
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| |
Collapse
|
234
|
Izumi Y, Matsumura A, Wakita S, Akagi KI, Fukuda H, Kume T, Irie K, Takada-Takatori Y, Sugimoto H, Hashimoto T, Akaike A. Isolation, identification, and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var. crispa f. viridis). Free Radic Biol Med 2012; 53:669-79. [PMID: 22749808 DOI: 10.1016/j.freeradbiomed.2012.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a cellular defense system against oxidative stress. Activation of this pathway increases expression of antioxidant enzymes. Epidemiological studies have demonstrated that the consumption of fruits and vegetables is associated with reduced risk of contracting a variety of human diseases. The aim of this study is to find Nrf2-ARE activators in dietary fruits and vegetables. We first attempted to compare the potency of ARE activation in six fruit and six vegetables extracts. Green perilla (Perilla frutescens var. crispa f. viridis) extract exhibited high ARE activity. We isolated the active fraction from green perilla extract through bioactivity-guided fractionation. Based on nuclear magnetic resonance and mass spectrometric analysis, the active ingredient responsible for the ARE activity was identified as 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC). DDC induced the expression of antioxidant enzymes, such as γ-glutamylcysteine synthetase (γ-GCS), NAD(P)H: quinone oxidoreductase-1 (NQO1), and heme oxygenase-1. DDC inhibited the formation of intracellular reactive oxygen species and the cytotoxicity induced by 6-hydroxydopamine. Inhibition of the p38 mitogen-activated protein kinase pathway abolished ARE activation, the induction of γ-GCS and NQO1, and the cytoprotective effect brought about by DDC. Thus, this study demonstrated that DDC contained in green perilla enhanced cellular resistance to oxidative damage through activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Choi Y, Kim MS, Hwang JK. Inhibitory Effects of Panduratin A on Allergy-Related Mediator Production in Rat Basophilic Leukemia Mast Cells. Inflammation 2012; 35:1904-15. [DOI: 10.1007/s10753-012-9513-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
236
|
Carvalho AM, Gonçalves LM, Valente IM, Rodrigues JA, Barros AA. Analysis of cardamonin by square wave voltammetry. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:396-399. [PMID: 22025454 DOI: 10.1002/pca.1370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Several biochemical studies have already shown that cardamonin has health promoting properties, such is in agreement with typical characteristics of chalcones. Although being a very promising compound for the nutraceutical field there is a lack of studies concerning its electroanalytical properties. OBJECTIVE To develop an electroanalytical methodology for the quantification of cardamonin in cardamom. METHODOLOGY Cardamonin was analysed electrochemically by means of a hanging mercury drop electrode (HMDE) using square wave voltammetry (SWV). It was extracted from cardamom spice and quantified thereafter using the standard additions method to overcome matrix effects. RESULTS A limit of detection (LOD) of 0.15 mg/L and good linearity (r² = 0.9998) were obtained. Decoction using ethanol as the extraction solvent appears to be the simplest extraction technique. Spectrophotometric analysis (maximum absorbance peak was found in ethanol at 344 nm with a value of molar extinction coefficient of (2.8 ± 0.1) × 10⁴ L mol⁻¹ cm⁻¹) and mass spectrometry analysis by electrospray in the positive ion mode were also performed. CONCLUSION Cardamonin was detected voltammetrically. The LOD and limit of quantification (LOQ) of the proposed voltammetric methodology are adequate for trace analysis of this compound in several phytochemical matrices.
Collapse
Affiliation(s)
- Ana M Carvalho
- Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre No. 687, 4169-007 Porto, Portugal
| | | | | | | | | |
Collapse
|
237
|
Orlikova B, Schnekenburger M, Zloh M, Golais F, Diederich M, Tasdemir D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol Rep 2012; 28:797-805. [PMID: 22710558 PMCID: PMC3583578 DOI: 10.3892/or.2012.1870] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 01/30/2023] Open
Abstract
Histone deacetylase enzymes (HDACs) are emerging as a promising biological target for cancer and inflammation. Using a fluorescence assay, we tested the in vitro HDAC inhibitory activity of twenty-one natural chalcones, a widespread group of natural products with well-known anti-inflammatory and antitumor effects. Since HDACs regulate the expression of the transcription factor NF-κB, we also evaluated the inhibitory potential of the compounds on NF-κB activation. Only four chalcones, isoliquiritigenin (no. 10), butein (no. 12), homobutein (no. 15) and the glycoside marein (no. 21) showed HDAC inhibitory activity with IC50 values of 60–190 μM, whereas a number of compounds inhibited TNFα-induced NF-κB activation with IC50 values in the range of 8–41 μM. Interestingly, three chalcones (nos. 10, 12 and 15) inhibited both TNFα-induced NF-κB activity and total HDAC activity of classes I, II and IV. Molecular modeling and docking studies were performed to shed light into dual activity and to draw structure-activity relationships among chalcones (nos. 1–21). To the best of our knowledge this is the first study that provides evidence for HDACs as potential drug targets for natural chalcones. The dual inhibitory potential of the selected chalcones on NF-κB and HDACs was investigated for the first time. This study demonstrates that chalcones can serve as lead compounds in the development of dual inhibitors against both targets in the treatment of inflammation and cancer.
Collapse
Affiliation(s)
- B Orlikova
- Laboratory of Molecular and Cellular Biology of Cancer, Cancer and Blood Research Foundation, Kirchberg Hospital, Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
238
|
Yuan X, Zhang B, Chen N, Chen XY, Liu LL, Zheng QS, Wang ZP. Isoliquiritigenin treatment induces apoptosis by increasing intracellular ROS levels in HeLa cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2012; 14:789-798. [PMID: 22694287 DOI: 10.1080/10286020.2012.694873] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study focuses on the relationship between the apoptosis induced by isoliquiritigenin (ISL) and the production of reactive oxygen species (ROS). Cell viability was evaluated using sulforhodamine B assay. The apoptotic rate was determined via flow cytometry. Intracellular ROS level was assessed using the 2,7-dichlorofluorescein probe assay. Poly-ADP-ribose polymerase (PARP) protein expression was examined using Western blot analysis. The results showed that ISL treatment inhibited cell proliferation by inducing apoptosis. The increased apoptotic rate and ROS production induced by ISL were inhibited by the co-treatment of ISL and free radical scavenger N-acetyl-cysteine (NAC), catalase (CAT), and 4,5-dihydroxyl-1,3-benzededisulfonic acid (Tiron). On the contrary, the increased apoptotic rate and the ROS production were compensated by the co-treatment of ISL and l-buthionine-(S,R)-sulfoximine (BSO). ISL treatment increased the degradation of PARP, which was counteracted by antioxidants (NAC or CAT), whereas the combination treatment of ISL and pro-oxidant (BSO) enhanced the PARP degradation induced by ISL. Our findings suggested that ISL treatment induced apoptosis by increasing intracellular ROS levels in HeLa cells.
Collapse
Affiliation(s)
- Xuan Yuan
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
239
|
Hsieh CT, Hsieh TJ, El-Shazly M, Chuang DW, Tsai YH, Yen CT, Wu SF, Wu YC, Chang FR. Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg Med Chem Lett 2012; 22:3912-5. [PMID: 22608392 DOI: 10.1016/j.bmcl.2012.04.108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 12/26/2022]
|
240
|
Cui Z, Song E, Hu DN, Chen M, Rosen R, McCormick SA. Butein induces apoptosis in human uveal melanoma cells through mitochondrial apoptosis pathway. Curr Eye Res 2012; 37:730-9. [PMID: 22578288 DOI: 10.3109/02713683.2012.671436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To study the cytotoxic effects and related signaling pathways of butein on human uveal melanoma cells in vitro. MATERIALS AND METHODS Three human uveal melanoma cell lines (M17, SP6.5, and C918), retinal pigment epithelial (RPE) cells and scleral fibroblasts were treated with butein at different dosages. The effects of butein on cell viability were assessed by using the MTT assay. Cell apoptosis was determined using annexin V-FITC/ethidium homodimer III flow cytometry. Mitochondrial transmembrane potential changes were assessed by using the JC-1 fluorescent reader, cytosol cytochrome c levels, and the activities of caspase-3, -8, and -9 were measured by using an enzyme-linked immunosorbent assay or colorimetric assay. RESULTS Butein reduced the cell viability of cultured human uveal melanoma cells in a dose-dependent manner (10, 30, and 100 μM), with IC50 at 13.3 μM and 15.8 μM in SP6.5 and M17 cell lines, respectively. Similar effects were also found in a highly aggressive and metastatic C918 cell line (IC50 16.7 μM). Butein at lower concentrations (10-30 μM) selectively reduced the cell viability of uveal melanoma cells, without affecting cell viability of RPE cells and fibroblasts. Butein-induced apoptosis of melanoma cells, increased mitochondrial permeability and the level of cytosol cytochrome c, caspase-9 and -3 activities (but not caspase-8) in a dose-dependent manner. CONCLUSIONS Butein has selectively potent pro-apoptotic effects on cultured human uveal melanoma cells via the intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Zhihua Cui
- Department of Ophthalmology, The First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | |
Collapse
|
241
|
Issaenko OA, Amerik AY. Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes. Cell Cycle 2012; 11:1804-17. [PMID: 22510564 DOI: 10.4161/cc.20174] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is usurped by many if not all cancers to regulate their survival, proliferation, invasion, angiogenesis and metastasis. Bioflavonoids curcumin and chalcones exhibit anti-neoplastic selectivity through inhibition of the 26S proteasome-activity within the UPS. Here, we provide evidence for a novel mechanism of action of chalcone-based derivatives AM146, RA-9 and RA-14, which exert anticancer activity by targeting deubiquitinating enzymes (DUB) without affecting 20S proteasome catalytic-core activity. The presence of the α,β-unsaturated carbonyl group susceptible to nucleophilic attack from the sulfhydryl of cysteines in the active sites of DUB determines the capacity of novel small-molecules to act as cell-permeable, partly selective DUB inhibitors and induce rapid accumulation of polyubiquitinated proteins and deplete the pool of free ubiquitin. These chalcone-derivatives directly suppress activity of DUB UCH-L1, UCH-L3, USP2, USP5 and USP8, which are known to regulate the turnover and stability of key regulators of cell survival and proliferation. Inhibition of DUB-activity mediated by these compounds downregulates cell-cycle promoters, e.g., cyclin D1 and upregulates tumor suppressors p53, p27(Kip1) and p16(Ink4A). These changes are associated with arrest in S-G 2/M, abrogated anchorage-dependent growth and onset of apoptosis in breast, ovarian and cervical cancer cells without noticeable alterations in primary human cells. Altogether, this work provides evidence of antitumor activity of novel chalcone-based derivatives mediated by their DUB-targeting capacity; supports the development of pharmaceuticals to directly target DUB as a most efficient strategy compared with proteasome inhibition and also provides a clear rationale for the clinical evaluation of these novel small-molecule DUB inhibitors.
Collapse
Affiliation(s)
- Olga A Issaenko
- Russian Academy of Science, St. Petersburg, Russia; University of Minnesota, Minneapolis, MN USA.
| | | |
Collapse
|
242
|
Yang EJ, Min JS, Ku HY, Choi HS, Park MK, Kim MK, Song KS, Lee DS. Isoliquiritigenin isolated from Glycyrrhiza uralensis protects neuronal cells against glutamate-induced mitochondrial dysfunction. Biochem Biophys Res Commun 2012; 421:658-64. [PMID: 22538371 DOI: 10.1016/j.bbrc.2012.04.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 12/31/2022]
Abstract
Glutamate-mediated excitotoxicity, which is associated with reactive oxygen species (ROS), is hypothesized to be a major contributor to pathological cell death in the mammalian central nervous system, and to be involved in many acute and chronic brain diseases. Here, we showed that isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis (Gu), one of the most frequently prescribed oriental herbal medicines, protected HT22 hippocampal neuronal cells from glutamate-induced oxidative stress. In addition, we clarified the molecular mechanisms by which it protects against glutamate-induced neuronal cell death. ISL reversed glutamate-induced ROS production and mitochondrial depolarization, as well as glutamate-induced changes in expression of the apoptotic regulators Bcl-2 and Bax. Pretreatment of HT22 cells with ISL suppresses the release of apoptosis-inducing factor from mitochondria into the cytosol. Taken together, our results suggest that ISL may protect against mitochondrial dysfunction by limiting glutamate-induced oxidative stress. In conclusion, our results demonstrated that ISL isolated from Gu has protective effects against glutamate-induced mitochondrial damage and hippocampal neuronal cell death. We expect ISL to be useful in the development of drugs to prevent or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Ju Yang
- BK21 Research Team for Developing Functional Health and Food Materials, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
244
|
Jungbauer A, Medjakovic S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 2012; 71:227-39. [DOI: 10.1016/j.maturitas.2011.12.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 01/07/2023]
|
245
|
Muanprasat C, Sirianant L, Soodvilai S, Chokchaisiri R, Suksamrarn A, Chatsudthipong V. Novel Action of the Chalcone Isoliquiritigenin as a Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Inhibitor: Potential Therapy for Cholera and Polycystic Kidney Disease. J Pharmacol Sci 2012; 118:82-91. [DOI: 10.1254/jphs.11153fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022] Open
|
246
|
Choi SH, Kim HR, Kim HJ, Lee IS, Kozukue N, Levin CE, Friedman M. Free amino acid and phenolic contents and antioxidative and cancer cell-inhibiting activities of extracts of 11 greenhouse-grown tomato varieties and 13 tomato-based foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12801-12814. [PMID: 22070764 DOI: 10.1021/jf202791j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tomato (Solanum lycopersicum) plants synthesize nutrients, pigments, and bioactive compounds that benefit nutrition and human health. The nature and concentrations of these compounds are strongly influenced by varietal factors such as size and color as well as by processing. To better understand how these factors affect the concentration of nutrients and bioactive compounds, we analyzed 11 Korean tomato varieties grown under the same greenhouse conditions and 13 processed commercial tomato products for free amino acids and amino acid metabolites by HPLC, for individual phenolics by HPLC-MS, for total phenolics by the Folin-Ciocalteu method, for antioxidative activity by the FRAP and DPPH methods, and for cancer cell-inhibiting effects by the MTT assay. We also determined the protein content of the tomatoes by an automated Kjeldahl method. The results show that there is a broad range of bioactive compounds across tomato varieties and products. Small tomatoes had higher contents of bioactive compounds than the large ones. The content of phenolic compounds of processed products was lower than that of fresh tomatoes. Tomato extracts promoted growth in normal liver (Chang) cells, had little effect in normal lung (Hel299) cells, mildly inhibited growth of lung cancer (A549) cells, and first promoted and then, at higher concentrations, inhibited growth in lymphoma (U937) cells. The relationship of cell growth to measured constituents was not apparent. Dietary and health aspects of the results are discussed.
Collapse
Affiliation(s)
- Suk-Hyun Choi
- Department of Food Service Industry, Seowon University, Cheongju-city 361-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
247
|
Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Biol 2011; 8:185-96. [PMID: 22198733 PMCID: PMC3262058 DOI: 10.1038/nchembio.763] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/14/2011] [Indexed: 12/24/2022]
Abstract
Protein homeostasis (proteostasis) is essential for cellular and organismal health. Stress, aging, and the chronic expression of misfolded proteins, however, challenge the proteostasis machinery and the vitality of the cell. Enhanced expression of molecular chaperones, regulated by heat shock transcription factor-1 (HSF-1), has been shown to restore proteostasis in a variety of conformational disease models, suggesting a promising therapeutic approach. We describe the results of a ∼900,000 small molecule screen that identified novel classes of small molecule proteostasis regulators (PRs) that induce HSF-1-dependent chaperone expression and restore protein folding in multiple conformational disease models. The beneficial effects to proteome stability are mediated by HSF-1, DAF-16/FOXO, SKN-1/Nrf-2, and the chaperone machinery through mechanisms that are distinct from current known small molecule activators of the HSR. We suggest that modulation of the proteostasis network by PRs represents a promising therapeutic approach for the treatment of a variety of protein conformational diseases.
Collapse
|
248
|
Wu J, Li J, Cai Y, Pan Y, Ye F, Zhang Y, Zhao Y, Yang S, Li X, Liang G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J Med Chem 2011; 54:8110-23. [PMID: 21988173 DOI: 10.1021/jm200946h] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Major anti-inflammatory agents, steroids and cyclooxygenase, were proved to have serious side effects. Here, a series of chalcone derivatives were synthesized and screened for anti-inflammatory activities. QSAR study revealed that the presence of electron-withdrawing groups in B-ring and electron-donating groups in A-ring of chalcones was important for inhibition of LPS-induced IL-6 expression. Further, compounds 22, 23, 26, 40, and 47 inhibited TNF-α and IL-6 release in a dose-dependent manner and decreased LPS-induced TNF-α, IL-1β, IL-6, IL-12, and COX-2 mRNA production. Mechanistically, compounds 23 and 26 interfered with JNK/NF-κB signaling and dose-dependently prevented ERK and p38 activation. In addition, 23 and 26 exhibited a significant protection against LPS-induced death and were able to block high glucose-activated cytokine profiles in macrophages. Together, these data show a series of anti-inflammatory chalcones with potential therapeutic effects in inflammatory diseases.
Collapse
Affiliation(s)
- Jianzhang Wu
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Vijaya Bhaskar Reddy M, Shen YC, Ohkoshi E, Bastow KF, Qian K, Lee KH, Wu TS. Bis-chalcone analogues as potent NO production inhibitors and as cytotoxic agents. Eur J Med Chem 2011; 47:97-103. [PMID: 22115618 DOI: 10.1016/j.ejmech.2011.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 12/13/2022]
Abstract
Chalcones have a distinctive 1,3-diarylpropenone skeleton and exert numerous biological effects. Using a one-step Claisen-Schmidt condensation, we synthesized eleven bis-chalcones (3-13) and three acetyl chalcones (14-16) from substituted aldehydes and diacetylresorcinol. The compounds were tested for in vitro cytotoxic activity against four human cancer cell lines (A549, DU145, KB, and KB-VIN) and inhibition of NO production in lipopolysaccharide (LPS)-activated microglial cells. Among them, four compounds (3, 5, 6, and 13) showed significant cytotoxic activity with EC(50) values ranging from 1.57 to 5.14 μM, and seven compounds (3, 5-8, 10, and 13) displayed potent anti-inflammatory activity by inhibiting NO production with IC(50) values ranging from 0.95 to 8.65 μM. A mechanism of action study of active compounds 6 and 7 discovered that these compounds down-regulated iNOS expression by inhibiting p65 NF-κB activation/nuclear translocation due to prevention of IκBα degradation. Structure-activity relationship (SAR) findings are also discussed.
Collapse
|
250
|
3'-Chloro-5,7-dimethoxyisoflavone inhibits TNFα-induced CXCL10 gene transcription by suppressing the NF-κB pathway in HCT116 human colon cancer cells. Int Immunopharmacol 2011; 11:2104-11. [PMID: 21945666 DOI: 10.1016/j.intimp.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 11/23/2022]
Abstract
Tumor necrosis factor α (TNFα) is a major inflammatory cytokine that plays important roles in progression of tumorigenesis in the tumor microenvironment. CXC chemokine ligand 10 (CXCL10), expression of which is stimulated by TNFα, is involved in tumor migration, invasion, and metastasis. 3'-Chloro-5,7-dimethoxyisoflavone (CDMF) is a synthetic isoflavone derivative. Here, we found that CDMF inhibits TNFα-induced invasive motility of human colon cancer cells. We tested whether CDMF would inhibit TNFα-induced CXCL10 expression using reverse transcription-PCR, quantitative real-time PCR, and enzyme-linked immunosorbent assay in HCT116 cells. CXCL10 expression, stimulated by TNFα, was suppressed by CDMF. The transcription factor nuclear factor-κB (NF-κB) is involved in TNFα-induced transcriptional activation of the CXCL10 gene promoter. Point mutation of the NF-κB binding site abolished TNFα-induced CXCL10 promoter activity. We next examined the effect of CDMF on TNFα-induced NF-κB activity. CDMF strongly inhibited both TNFα-induced IκB phosphorylation on Ser-32 and p65/RelA phosphorylation on Ser-536. Additionally, CDMF almost blocked TNFα-induced NF-κB-dependent transcriptional activity, as demonstrated by a NF-κB cis-acting reporter assay. Overall, our results indicate that CDMF suppresses production of CXCL10, by TNFα, through inhibition of NF-κB in HCT116 cells. We propose that CDMF may have beneficial effects in reducing TNFα-induced inflammatory responses, which are essential for tumor development in the colorectal tumor microenvironment.
Collapse
|