201
|
Li K, Wang B, Wang W, Liu G, Ge W, Zhang M, Yue B, Kong M. Microencapsulation of Lactobacillus casei BNCC 134415 under lyophilization enhances cell viability during cold storage and pasteurization, and in simulated gastrointestinal fluids. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
202
|
SIANG SC, WAI LK, LIN NK, PHING PL. Effect of added prebiotic (Isomalto-oligosaccharide) and Coating of Beads on the Survival of Microencapsulated Lactobacillus rhamnosus GG. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.27518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
203
|
Haldar L, Gandhi DN. Development of vacuum‐dried probiotic milk powder with
Bacillus coagulans. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lopamudra Haldar
- Department of Dairy Microbiology F/O Dairy Technology West Bengal University of Animal & Fishery Sciences Mohanpur Nadia 741252 West Bengal India
| | - D N Gandhi
- Dairy Microbiology Division National Dairy Research Institute Karnal Haryana 132001 India
| |
Collapse
|
204
|
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2019; 8:1020-1044. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral drug delivery remains the most preferred approach due to its multiple advantages. Recently there has been increasing interest in the development of advanced vehicles for oral delivery of different therapeutics. Among them, biomimetic and bioinspired strategies are emerging as novel approaches that are promising for addressing biological barriers encountered by traditional drug delivery systems. Herein we provide a state-of-the-art review on the current progress of biomimetic particulate oral delivery systems. Different biomimetic nanoparticles used for oral drug delivery are first discussed, mainly including ligand/antibody-functionalized nanoparticles, transporter-mediated nanoplatforms, and nanoscale extracellular vesicles. Then we describe bacteria-derived biomimetic systems, with respect to oral delivery of therapeutic proteins or antigens. Subsequently, yeast-derived oral delivery systems, based on either chemical engineering or bioengineering approaches are discussed, with emphasis on the treatment of inflammatory diseases and cancer as well as oral vaccination. Finally, bioengineered plant cells are introduced for oral delivery of biological agents. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of currently developed biomimetic oral therapies.
Collapse
Affiliation(s)
- Xiankang Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Guoyu Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China. and The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
205
|
Alehosseini A, Gómez-Mascaraque LG, Ghorani B, López-Rubio A. Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108280] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
206
|
Marcial-Coba MS, Saaby L, Knøchel S, Nielsen DS. Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei. FEMS Microbiol Lett 2019; 366:5255125. [PMID: 30576460 DOI: 10.1093/femsle/fny290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
The viability of probiotics is affected by several factors during manufacturing, storage and gastrointestinal tract passage. Protecting the probiotics from harmful conditions is particularly critical for oxygen sensitive species like Akkermansia muciniphila, a bacterium which recently has been proposed as a next-generation probiotic candidate. Previously, we have developed a protocol for microencapsulating A. muciniphila in a xanthan/gellan gum matrix. Here, we report the enhanced survival during storage and in vitro gastric passage of microencapsulated A. muciniphila embedded in dark chocolate. Lactobacillus casei, as a representative species of traditional probiotics, was included in order to compare its behavior with that of A. muciniphila. For A. muciniphila we observed a 0.63 and 0.87 log CFU g-1 reduction during 60 days storage at 4°C or 15°C, respectively. The viability of L. casei remained stable during the same period. During simulated gastric transit (pH 3), microencapsulated A. muciniphila embedded in chocolate showed 1.80 log CFU mL-1 better survival than naked cells, while for L. casei survival was improved with 0.8 log CFU mL-1. In a hedonic sensory test, dark chocolate containing microcapsules were not significantly different from two commercially available chocolates. The developed protocol constitutes a promising approach for A. muciniphila dosage.
Collapse
Affiliation(s)
- Martín Sebastián Marcial-Coba
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Lasse Saaby
- Bioneer-Farma, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Susanne Knøchel
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
207
|
Marcial-Coba MS, Knøchel S, Nielsen DS. Low-moisture food matrices as probiotic carriers. FEMS Microbiol Lett 2019; 366:5281433. [PMID: 30629190 DOI: 10.1093/femsle/fnz006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
To exert a beneficial effect on the host, adequate doses of probiotics must be administered and maintaining their viability until consumption is thus essential. Dehydrated probiotics exhibit enhanced long-term viability and can be incorporated into low-moisture food matrices, which also possess high stability at refrigeration and ambient temperature. However, several factors associated with the desiccation process, the physicochemical properties of the matrix and the storage conditions can affect probiotic survival. In the near future, an increased demand for probiotics based on functionally dominant members of the gut microbiome ('next-generation probiotics', NGP) is expected. NGPs are very sensitive to oxygen and efficient encapsulation protocols are needed. Strategies to improve the viability of traditional probiotics and particularly of NGPs involve the selection of a suitable carrier as well as proper desiccation and protection techniques. Dehydrated probiotic microcapsules may constitute an alternative to improve the microbial viability during not only storage but also upper gastrointestinal tract passage. Here we review the main dehydration techniques that are applied in the industry as well as the potential stresses associated with the desiccation process and storage. Finally, low- or intermediate-moisture food matrices suitable as carriers of traditional as well as NGPs will be discussed.
Collapse
Affiliation(s)
- Martín Sebastián Marcial-Coba
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Susanne Knøchel
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| |
Collapse
|
208
|
Jang WJ, Choi SY, Lee JM, Lee GH, Hasan MT, Kong IS. Viability of Lactobacillus plantarum encapsulated with poly-γ-glutamic acid produced by Bacillus sp. SJ-10 during freeze-drying and in an in vitro gastrointestinal model. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
209
|
Krunić TŽ, Obradović NS, Rakin MB. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem 2019; 293:74-82. [DOI: 10.1016/j.foodchem.2019.04.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/14/2023]
|
210
|
Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R. Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
211
|
Enhancing encapsulation efficiency of alginate capsules containing lactic acid bacteria by using different divalent cross-linkers sources. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
212
|
Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
213
|
Ahmad M, Gani A, Hamed F, Maqsood S. Comparative study on utilization of micro and nano sized starch particles for encapsulation of camel milk derived probiotics (Pediococcus acidolactici). Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
214
|
Arenas-Jal M, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E. Trends in the food and sports nutrition industry: A review. Crit Rev Food Sci Nutr 2019; 60:2405-2421. [DOI: 10.1080/10408398.2019.1643287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Arenas-Jal
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - J. M. Suñé-Negre
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Pilar Pérez-Lozano
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Encarna García-Montoya
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
215
|
Zhao Y, Liu S, Feng Y, Bilal M. Development and Optimization of Attapulgite Clay Based Microencapsulation for Lactic Acid Bacteria by Response Surface Methodology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2019-0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractLactic acid bacteria (LAB), screened and purified from the fermented yogurt, were microencapsulated in sodium alginate (SA) and attapulgite composite microcapsules by external gelation to increase their viability and stability. Surface characterization by scanning electron microscope clearly evidenced a high number of the LAB embedded in SA/attapulgite composite microcapsules than SA counterparts due to a more cohesive structure, and biocompatible microenvironment. SA/attapulgite and CaCl2/attapulgite composites analysis revealed a better embedding effect of attapulgite blend with SA solvent compared with attapulgite mixed with CaCl2. Influence of three major factors including SA, calcium chloride, and attapulgite concentration on LAB embedding rate were optimized by “single factor strategy” as well as response surface methodology (RSM). Optimal conditions of these factors obtained by RSM were SA (1.03 %), Attapulgite (0.28 %), and CaCl2 concentration (1.17 %). The related embedding rate was predicted as 87.1369 %, and the actual measured value was 91.24 % by experiments using the optimal conditions. In conclusion, the results revealed that LAB microencapsulation in the SA and attapulgite composite might display noteworthy protection against the gastrointestinal environment.
Collapse
Affiliation(s)
- Yuping Zhao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Shuai Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Yunqi Feng
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Muhammad Bilal
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| |
Collapse
|
216
|
Liu H, Cui SW, Chen M, Li Y, Liang R, Xu F, Zhong F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit Rev Food Sci Nutr 2019; 59:2863-2878. [PMID: 28933562 DOI: 10.1080/10408398.2017.1377684] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there is a rising interest in the number of food products containing probiotic bacteria with favorable health benefit effects. However, the viability of probiotic bacteria is always questionable when they exposure to the harsh environment during processing, storage, and gastrointestinal digestion. To overcome these problems, microencapsulation of cells is currently receiving considerable attention and has obtained valuable effects. According to the drying temperature, the commonly used technologies can be divided into two patterns: high temperature drying (spray drying and fluid bed drying) and low temperature drying (ultrasonic vacuum spray drying, spray chilling, electrospinning, supercritical technique, freeze drying, extrusion, emulsion, enzyme gelation, and impinging aerosol technique). Furthermore, not only should the probiotic bacteria maintain high viability during processing but they also need to keep alive during storage and gastrointestinal digestion, where they additionally suffer from water, oxygen, heat as well as strong acid and bile conditions. This review focuses on demonstrating the effects of different microencapsulation techniques on the survival of bacteria during processing as well as protective approaches and mechanisms to the encapsulated probiotic bacteria during storage and gastrointestinal digestion that currently reported in the literature.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Steve W Cui
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , Guelph , Ontario , Canada
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi , China
| | - Feifei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| |
Collapse
|
217
|
Etienne G, Ong ILH, Amstad E. Bioinspired Viscoelastic Capsules: Delivery Vehicles and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808233. [PMID: 31081156 DOI: 10.1002/adma.201808233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Microcapsules are often used as individually dispersed carriers of active ingredients to prolong their shelf life or to protect premature reactions with substances contained in the surrounding. This study goes beyond this application and employs microcapsules as principal building blocks of macroscopic 3D materials with well-defined granular structures. To achieve this goal and inspired by nature, capsules are fabricated from block-copolymer surfactants that are functionalized with catechols, a metal-coordinating motive. These surfactants self-assemble at the surface of emulsion drops where they are ionically cross-linked to form viscoelastic capsules that display a low permeability even toward small encapsulants. It is demonstrated that the combination of the mechanical strength, flexibility, and stickiness of the capsules enables their additive manufacturing into macroscopic granular structures. Thereby, they open up new opportunities for 3D printing of soft, self-healing materials composed of individual compartments that can be functionalized with different types of spatially separated reagents.
Collapse
Affiliation(s)
- Gianluca Etienne
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Irvine Lian Hao Ong
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
218
|
Ji R, Wu J, Zhang J, Wang T, Zhang X, Shao L, Chen D, Wang J. Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology. Front Microbiol 2019; 10:1389. [PMID: 31316479 PMCID: PMC6609881 DOI: 10.3389/fmicb.2019.01389] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Bifidobacteria are considered one of the most important intestinal probiotics because of their significant health impact. However, this ability is usually limited by gastrointestinal fluid and temperature sensitivity. Emulsification and internal gelation is an encapsulation technique with great potential for probiotic protection during storage and the gastrointestinal transit process. This study prepared microcapsules using an emulsification and internal gelation encapsulation method with sodium alginate, chitosan, and Bifidobacterium longum as wall material, coating material, and experimental strain, respectively. Optical, scanning electron, and focal microscopes were used to observe the microcapsule surface morphology and internal viable cell distribution, and a laser particle size analyzer and zeta potentiometer were used to evaluate the chitosan-coating characteristics. In addition, microcapsule probiotic viability after storage, heat treatment, and simulated gastrointestinal fluid treatment were examined. Alginate microcapsules and chitosan-coated alginate microcapsules both had balling properties and uniform bacterial distribution. The latter kept its balling properties after freeze-drying, verified by scanning electronic microscopy (SEM), and had a clear external coating, observed by an optical microscope. The particle size of chitosan-coated alginate microcapsules was slightly larger than the uncoated microcapsules. The zeta potential of alginate and chitosan-coated alginate microcapsules was negative and positive, respectively. Heat, acid and bile salt tolerance, and stability tests revealed that the decrease of viable cells in the chitosan-coated alginate microcapsule group was significantly lower than that in uncoated microcapsules. These experimental results indicate that the chitosan-coated alginate microcapsules protect B. longum from gastrointestinal fluid and high-temperature conditions.
Collapse
Affiliation(s)
- Rui Ji
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jiahui Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Junliang Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, China
| | - Tao Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,College of Life and Environmental Science, Shanghai Normal University, Shanghai, China
| | - Xudong Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,College of Life and Environmental Science, Shanghai Normal University, Shanghai, China
| | - Lei Shao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.,National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
219
|
Gu M, Zhang Z, Pan C, Goulette TR, Zhang R, Hendricks G, McClements DJ, Xiao H. Encapsulation of Bifidobacterium pseudocatenulatum G7 in gastroprotective microgels: Improvement of the bacterial viability under simulated gastrointestinal conditions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
220
|
Song H, Zhang J, Qu J, Liu J, Yin P, Zhang G, Shang D. Lactobacillus rhamnosus GG microcapsules inhibit Escherichia coli biofilm formation in coculture. Biotechnol Lett 2019; 41:1007-1014. [DOI: 10.1007/s10529-019-02694-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
|
221
|
Riaz T, Iqbal MW, Saeed M, Yasmin I, Hassanin HAM, Mahmood S, Rehman A. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. J Microencapsul 2019; 36:192-203. [DOI: 10.1080/02652048.2019.1618403] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saeed
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Yasmin
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Diet and Nutritional Science, Faculty of Health and Allied Science, Imperial College of Business Studies, Lahore, Pakistan
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Hinawi A. M. Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
222
|
Pramanik SK, Pal U, Choudhary P, Singh H, Reiter RJ, Ethirajan A, Swarnakar S, Das A. Stimuli-Responsive Nanocapsules for the Spatiotemporal Release of Melatonin: Protection against Gastric Inflammation. ACS APPLIED BIO MATERIALS 2019; 2:5218-5226. [DOI: 10.1021/acsabm.9b00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India
| | - Uttam Pal
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700 064, India
| | - Preety Choudhary
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700 032, India
| | - Harwinder Singh
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Anitha Ethirajan
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek 3590, Belgium
| | - Snehasikta Swarnakar
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700 032, India
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India
| |
Collapse
|
223
|
Ghibaudo F, Gerbino E, Copello GJ, Campo Dall' Orto V, Gómez-Zavaglia A. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria. Colloids Surf B Biointerfaces 2019; 180:193-201. [PMID: 31054459 DOI: 10.1016/j.colsurfb.2019.04.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 04/24/2019] [Indexed: 01/22/2023]
Abstract
The goal of this work was to investigate biophysical stability of iron-pectin nanoparticles and analyze the feasibility of using them as delivery systems for the probiotic strain Lactobacillus plantarum CIDCA 83114. Iron oxide (Fe3O4) nanoparticles were synthesized from 0.25M FeCl2/0.5 M FeCl3.6H2O, and coated with citrus pectins. Their physico-chemical properties [FTIR, X-ray diffraction (XRD), ζ-potential, particle size, SEM, TEM] and their effect on bacterial stabilization (viability after freeze-drying/storage, stability when exposed to simulated gastro-intestinal conditions) were assessed. XRD indicated the almost exclusive presence of magnetite crystalline phases. FTIR spectra confirmed the adsorption of pectin on magnetite nanoparticles surface. SEM and TEM images evidenced agglomerated nanoparticles, and a morphological surface change after adsorption of pectin. DLS and ζ-potential results proved the solvation of the ionizable groups in the hydrophilic network which induced chain expansion and agglomeration. Iron from nanoparticles demonstrated to be non-toxic for microorganisms up to 1.00 mg/mL. Simulated saliva and gastric solutions prevented nanoparticles from dissolution. The higher pH of the intestinal conditions (solvated -COO- and Fe-O- groups) facilitated the dispersion and partial dissolution of nanoparticles. Pectins adsorption on magnetite nanoparticles significantly enhanced electrostatic repulsion, which aided the solvation of ionized iron forms. The soluble species diffused out from the aggregates, being detected in the simulated intestinal fluid. Regarding bacterial viability, no decays were observed neither when pectin-decorated nanoparticles were exposed to simulated fluids nor when stored at 4 °C for 60 days. The composites engineered in this work appear as adequate delivery systems for probiotic bacteria, whose target is the gut.
Collapse
Affiliation(s)
- Florencia Ghibaudo
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900, La Plata, Argentina
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900, La Plata, Argentina
| | - Guillermo J Copello
- CONICET - Universidad de Buenos Aires. Instituto de Quı́mica y Metabolismo delFármaco (IQUIMEFA), Junı́n 956, C1113AAD, Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquı́mica,Departamento de Quı́mica Analı́tica y Fisicoquı́mica, (UBA), Junı́n 956, C1113AAD,Buenos Aires, Argentina
| | - Viviana Campo Dall' Orto
- CONICET - Universidad de Buenos Aires. Instituto de Quı́mica y Metabolismo delFármaco (IQUIMEFA), Junı́n 956, C1113AAD, Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquı́mica,Departamento de Quı́mica Analı́tica y Fisicoquı́mica, (UBA), Junı́n 956, C1113AAD,Buenos Aires, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900, La Plata, Argentina.
| |
Collapse
|
224
|
Paula DDA, Martins EMF, Costa NDA, de Oliveira PM, de Oliveira EB, Ramos AM. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. Int J Biol Macromol 2019; 133:722-731. [PMID: 31002903 DOI: 10.1016/j.ijbiomac.2019.04.110] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
The objectives of this study were i) to microencapsulate probiotic cells of Lactobacillus plantarum through a dual process consisting of emulsification followed by complex coacervation using gelatin and gum arabic, ii) to characterize the lyophilized microcapsules, iii) to evaluate their behavior in simulated in vitro gastrointestinal conditions and iv) to evaluate the survival of microencapsulated probiotic cells during 45 days of storage at 8 °C, 25 °C and -18 °C. The optimized conditions for complex coacervation consisted of a 50:50 biopolymer ratio and pH = 4.0. Emulsification was followed by complex coacervation using gelatin and gum arabic. The microcapsules presented dispersibility of 0.183 ± 0.17 g·mL-1, moisture content of 4.5%, water activity of 0.34 ± 0.03 and hygroscopicity of 9.20 ± 0.43 g of absorbed water per 100 g. Their size ranged from 66.07 ± 3.04 μm to 105.66 ± 3.24 μm. Viability of the encapsulated L. plantarum cells was 8.6 log CFU·g-1 and the encapsulation efficiency was 97.78%. After in vitro simulation of gastrointestinal conditions, viability of the encapsulated cells was 80.4% whereas it was only 25.0% for the free cells at 37 °C. Probiotic cell viability was maintained during storage at 8 °C and - 18 °C for 45 days.
Collapse
Affiliation(s)
- Daniele de Almeida Paula
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil.
| | - Eliane Maurício Furtado Martins
- Federal Institute of Education, Science and Technology of Southeast of Minas Gerais, Food Science and Technology Department, Av. Dr. José Sebastião da Paixão - Lindo Vale, 36180-000 Rio Pomba, Minas Gerais, Brazil
| | - Nataly de Almeida Costa
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Patrícia Martins de Oliveira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Eduardo Basílio de Oliveira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Afonso Mota Ramos
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
225
|
Li M, Jin Y, Wang Y, Meng L, Zhang N, Sun Y, Hao J, Fu Q, Sun Q. Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. J Dairy Sci 2019; 102:4832-4843. [PMID: 30981490 DOI: 10.3168/jds.2018-15597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
Yogurt is a popular product worldwide partly because of the health-promoting effects of the probiotics that it contains. Probiotics with high survivability constitute a promising direction for fortified yogurt products. This study aimed to prepare Bifidobacterium breve-loaded yogurt with the bacteria surviving transit to the lower part of small intestine or colon. Bifidobacterium breve beads were prepared through an ion-crosslinking method using low methoxyl pectin as the encapsulating material. Features such as encapsulation efficiency and stability during storage and passage through the simulated gastrointestinal tract were studied in vitro. A commercial starter was used for yogurt fermentation, and B. breve with or without encapsulation was added as a probiotic supplement with the starter or 3 to 4 h after fermentation. The effects of B. breve beads on yogurt characteristics were evaluated after different fermentation processes: BC, milk fermented with marketed yogurt starter; UBFF, unencapsulated B. breve added to fresh milk and then fermented; EBFF, encapsulated B. breve added to fresh milk and then fermented; UBAF, unencapsulated B. breve added after fermentation with the starter; and EBAF, encapsulated B. breve beads added 3 to 4 h after fermentation with the starter. Evaluation was based on texture, electronic nose, and electronic tongue analyses. The particle size analysis of B. breve beads showed that they were uniform, mostly spherical, 1 to 1.5 mm in diameter with encapsulating efficiency higher than 99%. Following treatment with the simulated gastrointestinal tract conditions, the number of B. breve decreased by 1.76 and 4.82 log cfu/g for B. breve beads and unencapsulated B. breve, respectively. The EBAF group showed the lowest viscosity (2,235.67 cP) at d 0, and the lower postfermentation degree was reflected by the slow increase in yogurt viscosity. All groups kept a relatively stable pH during storage. The cohesiveness values of the EBAF and UBAF groups were significantly higher than those of the other groups. The trends in texture changes within the BC, UBFF, and EBFF groups were similar, and the UBAF and EBAF groups showed similar trends. In conclusion, B. breve beads showed good stability in vitro and improved yogurt characteristics by increasing the survival rate of the encapsulated cells. Good compatibility of low methoxyl pectin beads with yogurt was also observed.
Collapse
Affiliation(s)
- Mengyang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yunxiang Jin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yawei Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, No. 138 TongDa Street Daoli District, Harbin 150076, China
| | - Ying Sun
- College of Tourism and Cuisine, Harbin University of Commerce, No. 138 TongDa Street Daoli District, Harbin 150076, China
| | - Jingfei Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qi Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
226
|
Plant Extracts in Probiotic Encapsulation: Evaluation of their Effects on Strains Survivability in Juice and Drinkable Yogurt During Storage and an in-vitro Gastrointestinal Model. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
227
|
Yucel Falco C, Amadei F, Dhayal SK, Cárdenas M, Tanaka M, Risbo J. Hybrid coating of alginate microbeads based on protein‐biopolymer multilayers for encapsulation of probiotics. Biotechnol Prog 2019; 35:e2806. [DOI: 10.1002/btpr.2806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | - Federico Amadei
- Heidelberg University, Institute for Physical Chemistry Heidelberg Germany
| | | | - Marité Cárdenas
- Biomedical Laboratory Science and Biofilm Research Center for Biointerfaces, Faculty of Health and SocietyMalmö University Malmö Sweden
| | - Motomu Tanaka
- Heidelberg University, Institute for Physical Chemistry Heidelberg Germany
| | - Jens Risbo
- University of CopenhagenDepartment of Food Science Copenhagen Denmark
| |
Collapse
|
228
|
Marcial-Coba MS, Cieplak T, Cahú TB, Blennow A, Knøchel S, Nielsen DS. Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage. Food Funct 2019; 9:5868-5879. [PMID: 30362482 DOI: 10.1039/c8fo01331d] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Akkermansia muciniphila, an abundant member of the human gut microbiota, has been suggested as a potential next-generation probiotic. However, its high sensitivity to oxygen limits the development of dosage protocols. Here, we describe microencapsulation, in a xanthan and gellan gum matrix, and a subsequent freeze-drying protocol for A. muciniphila DSM22959. For comparison Lactobacillus plantarum subsp. plantarum ATCC14917 was microencapsulated and freeze-dried using similar protocols. Four different mixtures were tested for cryoprotective properties: sucrose 5% plus trehalose 5%; agave syrup 10%; skim milk 10%, glucose 1%, yeast extract 0.5%, and mannitol 2.5%; as well as peptone 0.1% plus sorbitol 1.2%. Milli-Q-water served as control. Only cryoprotectant solutions with high sugar or protein content significantly improved the survival of both strains during freeze-drying. Microencapsulated cells were stored aerobically or anaerobically for 1 month at 4 °C or 25 °C. Survival of A. muciniphila was significantly better when stored anaerobically at 4 °C. The survival of microencapsulated L. plantarum, was relatively stable at both temperatures under anaerobic conditions. Survival of microencapsulated cells was compared with that of free cells during in vitro simulated upper gastrointestinal tract (GIT) transit at fasted and fed state. During in vitro simulated stomach passage, encapsulation significantly improved survival and viable cells remained at relevant levels after the entire simulated upper GIT transit. In conclusion, we here report a protocol for encapsulating A. muciniphila giving acceptable storage stability and enhancing survival during in vitro simulated upper GIT transit and thus constitutes an important step towards enabling future use of this important member of the human colonic microbiota as a probiotic.
Collapse
Affiliation(s)
- Martín Sebastián Marcial-Coba
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark.
| | | | | | | | | | | |
Collapse
|
229
|
Abstract
Nowadays, probiotic bacteria are extensively used as health-related components in novel foods with the aim of added-value for the food industry. Ingested probiotic bacteria must resist gastrointestinal exposure, the food matrix, and storage conditions. The recommended methodology for bacteria protection is microencapsulation technology. A key aspect in the advancement of this technology is the encapsulation system. Chitosan compliments the real potential of coating microencapsulation for applications in the food industry due to its physicochemical properties: positive charges via its amino groups (which makes it the only commercially available water-soluble cationic polymer), short-term biodegradability, non-toxicity and biocompatibility with the human body, and antimicrobial and antifungal actions. Chitosan-coated microcapsules have been reported to have a major positive influence on the survival rates of different probiotic bacteria under in vitro gastrointestinal conditions and in the storage stability of different types of food products; therefore, its utilization opens promising routes in the food industry.
Collapse
|
230
|
Chen P, Liu L, Zhang X, Massounga Bora AF, Li X, Zhao M, Hao X, Wang Y. Antioxidant activity of Cheddar cheese during its ripening time and after simulated gastrointestinal digestion as affected by probiotic bacteria. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1579836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ping Chen
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiuxiu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Awa Fanny Massounga Bora
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinyue Hao
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yu Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
231
|
Evaluation of Probiotic Potential of Bacteriocinogenic Lactic Acid Bacteria Strains Isolated from Meat Products. Probiotics Antimicrob Proteins 2019; 10:762-774. [PMID: 29396844 DOI: 10.1007/s12602-018-9388-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, the probiotic potential of five bacteriocin-producing lactic acid bacteria (LAB) strains, isolated from meat products, was investigated. They were presumptively identified as Lactococcus lactis subsp. cremoris CTC 204 and CTC 483, L. lactis subsp. hordinae CTC 484, and Lactobacillus plantarum CTC 368 and CTC 469 according to morphological, biochemical, and physiological characteristics. Analysis of genetic variability (random amplified polymorphic (RAPD)-PCR) and whole-cell proteins (SDS-PAGE) revealed similarity between Lactobacillus strains and variability among Lactococcus strains. The evaluation of the probiotic potential showed that the five LAB strains were tolerant to pH 2.0, and only strain CTC 469 was tolerant to the lowest concentration of the bile salts evaluated (0.1%). All strains showed survival or growth ability at 4, 25, and 37 °C, and tolerance at - 20 °C. Although strain CTC 204 in TSB Broth supplemented with MgSO4 showed the highest intensity of biofilm production, this compound was produced by all of them. The safety assessment showed that no thermonuclease, hemolytic, or gelatinase activities were detected. All strains were resistant to erythromycin and sensitive to amoxicillin and phenoxymethylpenicillin; furthermore, CTC 204 was resistant to chloramphenicol, CTC 368 and CTC 469 to chloramphenicol and vancomycin, CTC 483 to tetracycline and vancomycin, and CTC 484 to clindamycin and chloramphenicol. The evaluated strains showed biogenic amine production; the lowest levels were produced by CTC 204 and CTC 368 strains. It was concluded that CTC 204 and CTC 368 strains have the greatest potential for becoming probiotics.
Collapse
|
232
|
Archacka M, Białas W, Dembczyński R, Olejnik A, Sip A, Szymanowska D, Celińska E, Jankowski T, Olejnik A, Rogodzińska M. Method of preservation and type of protective agent strongly influence probiotic properties of Lactococcus lactis: A complete process of probiotic preparation manufacture and use. Food Chem 2019; 274:733-742. [DOI: 10.1016/j.foodchem.2018.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
|
233
|
do Carmo MS, Santos CID, Araújo MC, Girón JA, Fernandes ES, Monteiro-Neto V. Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food Funct 2019; 9:5074-5095. [PMID: 30183037 DOI: 10.1039/c8fo00376a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infectious diarrhea is the second most common cause of morbidity and mortality in children under 5 years of age in the underdeveloped areas of the world. Conventional treatment consists of rehydration, which may be coupled with antimicrobial agents in more severe bacterial infections or with antiprotozoal agents. In the last few decades, research on the use of probiotic strains, such as Lactobacillus rhamnosus GG ATCC 53013 (LGG), Lactobacillus reuteri DSM 17938 and Saccharomyces boulardii, has gained much attention to prevent and treat diarrheal diseases. However, they are rarely used in the clinical routine, perhaps because there are still gaps in the knowledge about the effective benefit to the patient in terms of the reduction of the duration of diarrhea and its prevention. Furthermore, only a few probiotic strains are safely indicated for usage in pediatric practice. This review summarizes the current knowledge on the antimicrobial mechanisms of probiotics on distinct enteropathogens and their role in stimulating host defense mechanisms against intestinal infections. In addition, we highlight the potential of probiotics for the treatment and prevention of diarrhea in children. We conclude that the use of probiotics is beneficial for both the treatment and prevention of diarrhea in children and that the identification of other candidate probiotics might represent an important advance to a greater reduction in hospital stays and to prevent infectious diarrhea in a larger portion of this population.
Collapse
Affiliation(s)
- Monique Santos do Carmo
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | | | | | | | | | | |
Collapse
|
234
|
Lapuhs P, Fuhrmann G. Engineering Strategies for Oral Therapeutic Enzymes to Enhance Their Stability and Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:151-172. [PMID: 31482499 DOI: 10.1007/978-981-13-7709-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oral application of therapeutic enzymes is a promising and non-invasive administration that improves patient compliance. However, the gastrointestinal tract poses several challenges to the oral delivery of proteins, including harsh pH conditions and digestive proteases. A promising way to stabilise enzymes during their gastrointestinal route is by modification with polymers that can provide both steric shielding and selective interaction in different digestive compartments. We give an overview of modification technologies for oral enzymes ranging from functionalisation of native proteins, to site-specific mutation and protein-polymer engineering. We specifically focus on enzymes that are active directly in the gastrointestinal lumen and not systemically absorbed. In addition, we discuss examples of microparticle and nanoparticle encapsulated enzymes for improved oral delivery. The modification of orally administered enzymes offers a broad chemical variability and may be a promising tool for enhancing their gastrointestinal stability.
Collapse
Affiliation(s)
- Philipp Lapuhs
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
235
|
Xavier dos Santos D, Casazza AA, Aliakbarian B, Bedani R, Saad SMI, Perego P. Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
236
|
Liu T, Wang Y, Zhong W, Li B, Mequanint K, Luo G, Xing M. Biomedical Applications of Layer-by-Layer Self-Assembly for Cell Encapsulation: Current Status and Future Perspectives. Adv Healthc Mater 2019; 8:e1800939. [PMID: 30511822 DOI: 10.1002/adhm.201800939] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/10/2018] [Indexed: 12/23/2022]
Abstract
Encapsulating living cells within multilayer functional shells is a crucial extension of cellular functions and a further development of cell surface engineering. In the last decade, cell encapsulation has been widely utilized in many cutting-edge biomedical fields. Compared with other techniques for cell encapsulation, layer-by-layer (LbL) self-assembly technology, due to the versatility and tunability to fabricate diverse multilayer shells with controllable compositions and structures, is considered as a promising approach for cell encapsulation. This review summarizes the state-of-the-art and potential future biomedical applications of LbL cell encapsulation. First of all, a brief introduction to the LbL self-assembly technique, including assembly mechanisms and technologies, is made. Next, different cell encapsulation strategies by LbL self-assembly techniques are explained. Then, the biomedical applications of LbL cell encapsulation in cell-based biosensors, cell transplantation, cell/molecule delivery, and tissue engineering, are highlighted. Finally, discussions on the current limitations and future perspectives of LbL cell encapsulation are also provided.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Ying Wang
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Wen Zhong
- Department of Biosystem Engineering; Faculty of Agriculture; University of Manitoba; Winnpeg MB Canada
| | - Bingyun Li
- School of Medicine; West Virginia University; Morgantown WV 26506-9196 USA
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering; University of Western; Ontario London N6A 5B9 Canada
| | - Gaoxing Luo
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Malcolm Xing
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
- Department of Mechanical Engineering; Faculty of Engineering; University of Manitoba; Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
237
|
Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019; 19:e1800259. [PMID: 30295012 PMCID: PMC6333493 DOI: 10.1002/mabi.201800259] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Supramolecular hydrogels are a class of self-assembled network structures formed via non-covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol-gel and/or gel-sol transition upon subtle changes in their surroundings. Such stimuli-responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli-responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self-assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC,
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham 27710, NC
| |
Collapse
|
238
|
Taherian M, Mahin Samadi P, Rastegar H, Faramarzi MA, Rostami-Nejad M, Yazdi MH, Rezaei-Tavirani M, Yazdi Z. An Overview on Probiotics as an Alternative Strategy for Prevention and Treatment of Human Diseases. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:31-50. [PMID: 32802088 PMCID: PMC7393061 DOI: 10.22037/ijpr.2020.112232.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Probiotics are viable and useful microorganisms, which are beneficial factors for human and animal health by altering their microbial flora. Most of the probiotics belong to a large group of bacteria in the human gastrointestinal tract. There are several clinical shreds of evidence that show anti-carcinogenic effects of probiotics through altering digestive enzymes, inhibition of carcinogenic agents, and modulating the immune responses in experimental animals. Many studies have been performed to evaluate the potential effectiveness of probiotics in treating or preventing neurological diseases such as MS and novel treatment modality for T1D. The purpose of this study is to have an overview on probiotic microorganisms and to review the previous researches on the effects of probiotics on health through currently available literatures. The study was performed using following keywords; Probiotics, Cancer, Immune system, Multiple Sclerosis (MS) and Diabetes mellitus. PubMed/Medline, Clinicaltrials.gov, Ovid, Google Scholar, and Reaxcys databases used to find the full text of related articles. According to the current available data on probiotics and related health-promoting benefits, it seems that, consumption of probiotics can lead to the prevention and reduction the risk of cancer, diabetes, and multiple sclerosis. Although for the better and more decisive conclusion, there is a need to larger sample size clinical studies with more focus on the safety of these biological agents and their possible beneficial effects on different population.
Collapse
Affiliation(s)
- Mahdi Taherian
- Food and Drug Laboratory Research Center, Iran Food and Drug Organization (FDO), Ministry of Health and Medical Education (MOH), Tehran, Iran.
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pariya Mahin Samadi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Rastegar
- Food and Drug Cosmetic Research Center, Iran Food and Drug Organization (FDO), Ministry of Health and Medical Education (MOH), Tehran, Iran.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zeinab Yazdi
- Department of Medicine and epidemiology, School of veterinary Medicine, University of California, Davis, USA.
| |
Collapse
|
239
|
Microencapsulation for Delivery of Probiotic Bacteria. NANOBIOTECHNOLOGY IN BIOFORMULATIONS 2019. [DOI: 10.1007/978-3-030-17061-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
240
|
Ghosh S, Alam S, Rathore AS, Khare SK. Stability of Therapeutic Enzymes: Challenges and Recent Advances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:131-150. [DOI: 10.1007/978-981-13-7709-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
241
|
Zeng K, Groth T, Zhang K. Recent Advances in Artificially Sulfated Polysaccharides for Applications in Cell Growth and Differentiation, Drug Delivery, and Tissue Engineering. Chembiochem 2018; 20:737-746. [DOI: 10.1002/cbic.201800569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Kui Zeng
- Wood Technology and Wood ChemistryGeorg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Thomas Groth
- Biomedical Materials GroupMartin Luther University Halle-Wittenberg Heinrich-Damerow-Strasse 4 06120 Halle/Saale Germany
| | - Kai Zhang
- Wood Technology and Wood ChemistryGeorg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| |
Collapse
|
242
|
Basu S, Banerjee D, Chowdhury R, Bhattacharya P. Controlled release of microencapsulated probiotics in food matrix. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
243
|
Kundu S, Kumari N, Soni SR, Ranjan S, Kumar R, Sharon A, Ghosh A. Enhanced Solubility of Telmisartan Phthalic Acid Cocrystals within the pH Range of a Systemic Absorption Site. ACS OMEGA 2018; 3:15380-15388. [PMID: 31458196 PMCID: PMC6644309 DOI: 10.1021/acsomega.8b02144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/29/2018] [Indexed: 05/16/2023]
Abstract
Telmisartan (TLM), a nonpeptide angiotensin II antagonist, is widely prescribed for treating arterial hypertension and marketed by the innovator with the trade name of Micardis and Micardis plus. Telmisartan exhibits low aqueous solubility in the pH range of 3-7, which is the physiological pH. For addressing the issue of poor solubility of TLM, its commercial form makes use of inorganic alkalinizers. The present work illustrates the attempt to improve the solubility of telmisartan via a crystal engineering approach. A novel solid form of telmisartan with phthalic acid was obtained through the solution crystallization method (TPS) and the reaction crystallization method (TPR). Both the forms (TPS and TPR) were thoroughly characterized by powder diffraction X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and 1H NMR and were identified to be two different crystalline forms. Solubility studies of TPS and TPR were conducted at varying pH of phosphate buffer, and they exhibited 11-fold and 22-fold increased solubility, respectively, when compared to that of the pure drug at pH 5, which is within the pH of small intestine at which telmisartan is best absorbed orally from the systemic circulation.
Collapse
Affiliation(s)
- Sudeshna Kundu
- Department
of Pharmaceutical Sciences and Technology and Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Nimmy Kumari
- Department
of Pharmaceutical Sciences and Technology and Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Saundray Raj Soni
- Department
of Pharmaceutical Sciences and Technology and Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Subham Ranjan
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741252, India
| | - Rajan Kumar
- Department
of Pharmaceutical Sciences and Technology and Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Ashoke Sharon
- Department
of Pharmaceutical Sciences and Technology and Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
- E-mail: . Phone: +91-651-2276531. Fax: +91-651-2275401 (A.S.)
| | - Animesh Ghosh
- Department
of Pharmaceutical Sciences and Technology and Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
- E-mail: , . Phone: +91-651-2276247. Fax: +91-651-2275290 (A.G.)
| |
Collapse
|
244
|
Gul O, Atalar I. Different stress tolerance of spray and freeze dried Lactobacillus casei Shirota microcapsules with different encapsulating agents. Food Sci Biotechnol 2018; 28:807-816. [PMID: 31093438 DOI: 10.1007/s10068-018-0507-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/25/2018] [Accepted: 11/04/2018] [Indexed: 11/26/2022] Open
Abstract
In this study, the effects of encapsulation with maltodextrin and reconstituted skim milk (RSM) and their binary and ternary blends with gum arabic (GA) by spray and freeze drying methods on viability of probiotic Lactobacillus casei Shirota under different stress conditions were evaluated. All microcapsules showed high survival ratios (7.91-9.37 log cfu/g) after microencapsulation. The viability of microencapsulated cells was significantly higher than free cells when exposed to stress conditions. Spray dried microcapsules exposed to low pH showed small decrease in the viability of cells compared to freeze dried microcapsules, but freeze drying microcapsules showed higher protective effect at 85 and 90 °C. After exposure to 3% bile salt, almost 2.5 log decreases in the encapsulated cell counts were determined for both methods. The results indicated that using RSM:GA mixture as an encapsulating agent showed the higher cell protection against high temperature, acidic pH and bile salts.
Collapse
Affiliation(s)
- Osman Gul
- 1Program of Food Technology, Yeşilyurt Demir-Çelik Vocational School, Ondokuz Mayis University, Samsun, 55300 Turkey
| | - Ilyas Atalar
- 2Department of Food Engineering, Faculty of Engineering and Architecture, Bolu Abant Izzet Baysal University, Bolu, 14030 Turkey
| |
Collapse
|
245
|
Mao L, Pan Q, Hou Z, Yuan F, Gao Y. Development of soy protein isolate-carrageenan conjugates through Maillard reaction for the microencapsulation of Bifidobacterium longum. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
246
|
Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018; 136-137:2-27. [PMID: 30359631 DOI: 10.1016/j.addr.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.
Collapse
|
247
|
Feng K, Zhai MY, Zhang Y, Linhardt RJ, Zong MH, Li L, Wu H. Improved Viability and Thermal Stability of the Probiotics Encapsulated in a Novel Electrospun Fiber Mat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10890-10897. [PMID: 30260640 DOI: 10.1021/acs.jafc.8b02644] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
For the enhancement of the probiotics' survivability, a nanostructured fiber mat was developed by electrospinning. The probiotic Lactobacillus plantarum was encapsulated in the nanofibers with fructooligosaccharides (FOS) as the cell material. Fluorescence microscope image and scanning electron microscopy (SEM) showed that viable cells were successfully encapsulated in nanofibers (mean diameter = 410 ± 150 nm), and the applied voltage had no significant influence on their viability ( P > 0.05). A significantly improved viability (1.1 log) was achieved by incorporating 2.5% (w/w) of FOS as the electrospinning material ( P < 0.001). Additionally, compared with free cells, the survivability of cells encapsulated in electrospun FOS/PVA/ L. plantarum nanofibers was significantly enhanced under moist heat treatment (60 and 70 °C). This study shows that the obtained nanofiber is a feasible entrapment structure to improve the viability and thermal stability of encapsulated probiotic cells and provides an alternative approach for the development of functional food.
Collapse
Affiliation(s)
- Kun Feng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Meng-Yu Zhai
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Ying Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Min-Hua Zong
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Lin Li
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , Dongguan 523808 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Hong Wu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| |
Collapse
|
248
|
Mawad A, Helmy YA, Shalkami AG, Kathayat D, Rajashekara G. E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro. Appl Microbiol Biotechnol 2018; 102:10675-10690. [DOI: 10.1007/s00253-018-9417-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
|
249
|
Coelho-Rocha ND, de Castro CP, de Jesus LCL, Leclercq SY, de Cicco Sandes SH, Nunes AC, Azevedo V, Drumond MM, Mancha-Agresti P. Microencapsulation of Lactic Acid Bacteria Improves the Gastrointestinal Delivery and in situ Expression of Recombinant Fluorescent Protein. Front Microbiol 2018; 9:2398. [PMID: 30344518 PMCID: PMC6182071 DOI: 10.3389/fmicb.2018.02398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
The microencapsulation process of bacteria has been used for many years, mainly in the food industry and, among the different matrixes used, sodium alginate stands out. This matrix forms a protective wall around the encapsulated bacterial culture, increasing its viability and protecting against environmental adversities, such as low pH, for example. The aim of the present study was to evaluate both in vitro and in vivo, the capacity of the encapsulation process to maintain viable lactic acid bacteria (LAB) strains for a longer period of time and to verify if they are able to reach further regions of mouse intestine. For this purpose, a recombinant strain of LAB (L. lactis ssp. cremoris MG1363) carrying the pExu vector encoding the fluorescence protein mCherry [L. lactis MG1363 (pExu:mCherry)] was constructed. The pExu was designed by our group and acts as a vector for DNA vaccines, enabling the host cell to produce the protein of interest. The functionality of the pExu:mCherry vector, was demonstrated in vitro by fluorescence microscopy and flow cytometry after transfection of eukaryotic cells. After this confirmation, the recombinant strain was submitted to encapsulation protocol with sodium alginate (1%). Non-encapsulated, as well as encapsulated strains were orally administered to C57BL/6 mice and the expression of mCherry protein was evaluated at different times (0-168 h) in different bowel portions. Confocal microscopy showed that the expression of mCherry was higher in animals who received the encapsulated strain in all portions of intestine analyzed. These results were confirmed by qRT-PCR assay. Therefore, this is the first study comparing encapsulated and non-encapsulated L. lactis bacteria for mucosal DNA delivery applications. Our results showed that the microencapsulation process is an effective method to improve DNA delivery, ensuring a greater number of viable bacteria are able to reach different sections of the bowel.
Collapse
Affiliation(s)
- Nina D Coelho-Rocha
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila P de Castro
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Luis C L de Jesus
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sophie Y Leclercq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Savio H de Cicco Sandes
- Laboratório de Genética Molecular de Protozoários Parasitas, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alvaro C Nunes
- Laboratório de Genética Molecular de Protozoários Parasitas, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
250
|
Giordani B, Melgoza LM, Parolin C, Foschi C, Marangoni A, Abruzzo A, Dalena F, Cerchiara T, Bigucci F, Luppi B, Vitali B. Vaginal Bifidobacterium breve for preventing urogenital infections: Development of delayed release mucoadhesive oral tablets. Int J Pharm 2018; 550:455-462. [DOI: 10.1016/j.ijpharm.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023]
|